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Experimental Validation of a Combined Global and Local LPV System
Identification Approach with �2,1-norm Regularization*

Dora Turk1, Joris Gillis, Goele Pipeleers and Jan Swevers

Production Engineering, Machine Design and Automation, Department of Mechanical Engineering

KU Leuven, Belgium

Abstract— This paper explores a combined global and local
identification approach for linear parameter-varying systems.
Ideally, the combined approach retains advantages of its two
extremes - global and local - with the possibility to emphasize
one or the other. Practically, it is prone to overfitting. This
paper proposes a remedy based on the �2,1-norm regularization,
describes its implementation within the nonlinear least squares
framework, and gives an experimental validation. The results
show a substantial decrease in the Euclidean norm of the model
parameters, which resulted in a significantly smoother fre-
quency response function surface and in overall, less-deviating
model behavior.

Keywords - system identification, time-varying systems,
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I. INTRODUCTION

Linear parameter-varying (LPV) systems are nonlinear

systems described by a linear model with coefficients varying

as a function of one or more scheduling parameters. These

time-varying parameters determine the system’s operating

point. The inherited features of the well-studied linear time-

invariant (LTI) systems make LPV systems attractive for

modern industrial control, with main applications in aircrafts,

robotics, and wind turbines.

The literature on LPV system identification distinguishes

between a global and local approach. The global techniques

(e.g. [1], [2]) directly identify an LPV model based on data

obtained from an experiment where both the input signal

and scheduling parameters are continuously changing. Ex-

periments of this kind are referred to as global experiments.

The local identification techniques (e.g. [3], [4]) typically

consist of two steps. In the first step, several LTI models

are identified based on local input-output data obtained for

various fixed values of the scheduling parameters (local

experiments). These LTI models are in the second step

interpolated, yielding a parameter dependent model.

Both approaches have their advantages and disadvantages.

The global approach aims at optimizing model accuracy

under changing scheduling parameter conditions. In addition,

dynamic scheduling dependency - dependency on time-

shifted instances of the scheduling parameters - can only be

*This research is sponsored by the Fund for Scientific Research
(FWO-Vlaanderen) through project G.0002.11, by the KU Leuven-BOF
PFV/10/002 Center-of-Excellence Optimization in Engineering (OPTEC),
and by the Belgian Program on Interuniversity Poles of Attraction, initiated
by the Belgian State, Prime Ministers Office, Science Policy programming
(IAP VII, DYSCO).

1dora.turk@kuleuven.be

detected through a global identification experiment. The local

approach can only identify systems with static scheduling

dependency - in which the system depends solely on the in-

stantaneous time values of the scheduling parameters, but can

to a large extent rely on the well-studied LTI identification

methods. Although different, data originating from global

and local experiments both provide valuable information

that, when combined, gives a more complete picture of the

system at hand. This hypothesis led to the combined global

and local approach [5]. As a sequel, this paper validates

the approach experimentally on a mechatronic XY-motion

system. In addition, it provides an �2,1-norm regularization-

based remedy for the problems observed in practice, and

which can be attributed to an excess in degrees of freedom:

a poor local model fit for the values of the scheduling

parameter not used in the identification, a cumbersome model

and frivolous evolution of the model’s poles and zeroes.

The paper is organized as follows. Section II describes

the chosen LPV model structure. Section III introduces the

combined global and local identification method with �2,1-

norm regularization, shows the underlying optimization prob-

lem, and gives instructions for solving it. In Section IV, the

presented identification method is experimentally validated

and compared with the method without regularization [5].

The obtained results form the bottom line for the conclusions

conveyed in Section V.

II. LPV MODEL STRUCTURE

In this paper we focus on the following fully parameterized

discrete time LPV model:{
x(t +1) = (A � p)(t) · x(t)+(B � p)(t) ·u(t)
y(t) = (C � p)(t) · x(t)+(D � p)(t) ·u(t), (1)

where x(t) ∈ R
n, u(t) ∈ R

r, y(t) ∈ R
l , and p(t) ∈ R

Np , are

respectively the state vector, the input vector, the output

vector, and the scheduling parameter vector, at time instance

t. The state-space matrices of the introduced model are

parameter-dependent:

(A � p)(t) = A0 +
Nb

∑
i=1

Aiψi(p(t), ..., p(t −nd)), (2)

(B � p)(t) = B0 +
Nb

∑
i=1

Biψi(p(t), ..., p(t −nd)), (3)



(C � p)(t) =C0 +
Nb

∑
i=1

Ciψi(p(t), ..., p(t −nd)), (4)

(D � p)(t) = D0 +
Nb

∑
i=1

Diψi(p(t), ..., p(t −nd)), (5)

where A0 ∈ R
n×n, Ai ∈ R

n×n, B0 ∈ R
n×r, Bi ∈ R

n×r, C0 ∈
R

l×n, Ci ∈ R
l×n, D0 ∈ R

l×r, Di ∈ R
l×r; Nb is the number

of basis functions ψi employed for parameterization, and nd
is the number of time-shifts of the scheduling parameters.

It is here for brevity taken that Nb and nd are equal for all

model matrices {A ,B,C ,D}. This does not, however, have

to always be the case.

III. COMBINED GLOBAL AND LOCAL

IDENTIFICATION APPROACH

A. Nonlinear least-squares problem

Local identification data can be either time or frequency

domain data. Global identification data are in most cases time

domain data, although there are global identification methods

that consider frequency domain data, e.g. [6], provided

that the input and scheduling are chosen to be periodic

and synchronized. In this paper, we only consider global

identification data in time domain.

Assume that Nt different sets of time domain data and Nf

different sets of frequency domain data are available.

First consider time domain data, which can originate from

either local or global experiments. The difference between

the response yqt(Θ) of the LPV model (1) to the input of

the qth
t experiment, and the measured output yqt

m, equals:

εεεqt
t (Θ) = yqt(Θ)−yqt

m, (6)

where

Θ = [vec(A); vec(B); vec(C); vec(D)]. (7)

Second assume Nf local experiments providing frequency

domain data. The difference between the system’s complex

freq response function (FRF) Gqf
m resulting from the qth

f local

experiment and the corresponding model FRF Gqf(Θ) equals:

εεεqf
f (Θ) = Gqf(Θ)−Gqf

m . (8)

A (weighted) nonlinear least-squares (NLS) criterion that

combines global and local experiments, from the time and

frequency domain, can now be formulated:

VNLS(Θ) =
1

2

(
∑
qt

(εεεqt
t (Θ))TW qt

t εεεqt
t (Θ)+

∑
qf

(εεεqf
f (Θ))HW qf

f εεεqf
f (Θ)

)
. (9)

The weighting matrices Wt and Wf serve to emphasize a time

span or a frequency range of interest, respectively. In case

no specific weighting is required, a constant that normalizes

the time/frequency domain error is recommended, that is:

W qt
t =

(
∑
qt

‖yqt
m‖2

2

)−1

, W qf
f =

(
∑
qf

‖Gqf
m‖2

2

)−1

. (10)

The optimal set of parameter estimates Θ∗ is then the one

that minimizes (9), i.e.

Θ∗ = argmin
Θ

VNLS. (11)

The solution of such a problem is typically obtained using

the Levenberg-Marquardt algorithm.

B. Second-Order Cone Programming (SOCP) problem

Selecting an adequate set of basis functions is very chal-

lenging and time-consuming, particularly if no information

on the scheduling parameter dependency of the system model

is available. This issue has been widely discussed (see

e.g. [7] and [8]). The approach chosen to tackle it in this

paper is to propose a large set of basis functions based on

physical insights and a trial-and-error procedure, and extract

an adequate subset by applying �2,1-norm regularization to

the estimation problem. The �2,1-norm of an arbitrary matrix

M ∈ R
m×n is defined as

‖M‖2,1 =
n

∑
j=1

√
m

∑
i=1

M(i, j)2, (12)

and has a desirable “grouping” property: in case (12) would

be added to an optimization problem where all elements of M
are optimization variables, the optimization favors solutions

M with as many zero columns as possible. In this paper

we extend the concept of columns in (12) to the matrix

blocks associated with the same basis functions, in order

to obtain an algorithm that automatically discards redundant

basis functions. The regularization term added to the NLS

criterion (9) is therefore

Vreg(Θ) = γ
Nb

∑
i=1

(
‖vec(Ai)‖2 +‖vec(Bi)‖2+

+‖vec(Ci)‖2 +‖vec(Di)‖2

)
, (13)

where γ is a scalar, the value of which determines the impor-

tance of the regularization with regard to the model accuracy,

and vec stands for matrix vectorization. The optimal set of

parameters is now one that minimizes the updated criterion:

Θ∗ = argmin
Θ

(VNLS(Θ)+Vreg(Θ)). (14)

Due to a nonquadratic nature of (13), the optimization

problem (14) cannot be solved by the Levenberg-Marquardt

algorithm. However, having it reformulated into

minimize
Θ, s

VNLS(Θ)+ γ
Nb

∑
i=1

(
sA

i + sB
i + sC

i + sD
i

)

subject to ‖vec(Ai)‖2 ≤ sA
i

‖vec(Bi)‖2 ≤ sB
i

‖vec(Ci)‖2 ≤ sC
i

‖vec(Di)‖2 ≤ sD
i

i = 1, ...,Nb

(15)



one can recognize a nonlinear second-order cone program-

ming (NSOCP) problem, [9]. In [10], an SQP-type algo-

rithm for solving such problems is proposed. This algorithm

solves a convex SOCP subproblem in each iteration, with

the constraints being linear approximations of the con-

straint functions of the original problem, and with a convex

quadratic function as the objective function. The same prin-

ciple is adopted here, but remaining withing the Levenberg-

Marquardt framework. Namely, in each iteration k the step

ΔΘ is calculated by solving the following subproblem

minimize
ΔΘ, Δs

∇VNLS(Θk)T ΔΘ+
1

2
ΔΘT MkΔΘ+

+ γ
Nb

∑
i=1

(
ΔsA

i +ΔsB
i +ΔsC

i +ΔsD
i

)

subject to ‖vec(Ak
i +ΔAk

i )‖2 ≤ sA,k
i +ΔsA

i

‖vec(Bk
i +ΔBk

i )‖2 ≤ sB,k
i +ΔsB

i

‖vec(Ck
i +ΔCk

i )‖2 ≤ sC,k
i +ΔsC

i

‖vec(Dk
i +ΔDk

i )‖2 ≤ sD,k
i +ΔsD

i

i = 1, ...,Nb

(16)

using the Embedded Conic Solver (ECOS) [11]. In (16), Mk
is a Hessian approximation matrix defined as in the original

Levenberg-Marquardt version:

Mk = ∇VNLS(Θk)T ∇VNLS(Θk)+

+λ 2diag(∇VNLS(Θk)T ∇VNLS(Θk)), (17)

where ∇VNLS(Θk) is the Jacobian matrix, and λ is the

damping parameter. The algorithm is stopped once the step

size is smaller than a specified threshold or after a sufficient

improvement in the model performance has been reached.

IV. EXPERIMENTAL VALIDATION:

IDENTIFICATION OF AN XY-MOTION SYSTEM

A. Setup description

The system under test is the XY-motion system shown in

Fig. 1. The system consists of two perpendicularly mounted

linear stages (X and Y) and a flexible cantilever beam. The

length of this beam is changed by the position of the Y-

motor, such that the cantilever beam resonances and hence

the dynamics of the XY-motion system in the X-direction

depends on the position of the Y-motor [12]. The reference

position for the position controller of the Y-motor can thus

be seen as a scheduling parameter of the system we aim to

identify. The reference velocity for the velocity controller

of the X-motor is the system input, while the acceleration

of the end-effector in the same direction represents the

system output. The acceleration is measured by a MEMS

(Micro-Electro-Mechanical Systems) accelerometer designed

to measure low frequency vibration and motion, and having a

flat frequency spectrum within f ∈ [0,250]Hz. The estimated

signal-to-noise (SNR) ratio is 47dB.

Fig. 1. XY-motion system
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Fig. 2. Global data set used for identification.

B. Experiment design

The assessment of the proposed approach involves global

and local experiments. All experiments were executed at

sampling rate fs = 1kHz. In the global experiment, the sys-

tem input was excited with a random-phase multisine signal,

[13], composed of frequencies in the range f ∈ [3,50]Hz. The

amplitude of this signal was selected to avoid motor current

saturation. The scheduling signal is a random multisine as

well, with the same period as the system input, that is 8.192

seconds, however with a much more restricted frequency

spectrum f ∈ [0.1,1]Hz and taking values in the operating

range p ∈ [−0.1508,0.0229]m, where 0m corresponds to

the middle position of the stage. A global data set then

consists of four consecutive signal periods, each comprising

8192 data samples of the reference velocity for the X-motor,

measured position of the Y-motor and the resulting accel-

eration of the end-effector. The first period differs from the

others in the sense that the input is scaled by a ramp signal

for a smooth start. Two different realizations of the global

experiment were conducted, one for identification (Fig. 2)

and the other for validation. The local experiments were

performed for fixed values of the scheduling parameter, that

is, fixed positions of the Y-motor. Four local experiments,



for the positions of the Y-motor equal to

p =−0.1508, −0.0929, −0.0350, 0.0229m (18)

were performed. The X-motor input signal for each local ex-

periment is a random multisine with the same specifications

as for the global experiments. The local identification data

are chosen to be used in the frequency domain. The local data

set consists of four frequency response functions (FRFs),

corresponding to four experiments and evaluated at 385

equally distributed frequency lines of interest ( f ∈ [3,50]Hz).

C. Algorithm settings

The presented identification method requires an initial

estimate of the LPV model parameters (7). This is provided

by the SMILE technique (State-space Model Interpolation

of Local Estimates) presented in [12], a numerically well-

conditioned local identification technique based on the in-

terpolation of a set of local LTI models that are obtained

for fixed operating conditions of the system. In our case,

these LTI models are obtained using a nonlinear least-squares

frequency domain linear model identification method [13].

The LTI models are of the fourth order, which dictates

the order of the LPV model. Since there was no apriori

knowledge about suitable basis functions, and since there are

four LTI models to be interpolated, a third-order polynomial

scheduling parameter dependency and hence following set of

basis functions:

ψ1 = p(t), ψ2 = p(t)2, ψ3 = p(t)3,

was chosen. Through this choice, the interpolation can be

performed without introducing errors, that is, the LTI models

correspond exactly to the LPV model for the corresponding

fixed values of the scheduling parameter. Global and local

identification data are combined into the objective function

(9), with Wt and Wf as in (10). The global and local data are

given the same importance. Both the NLS combined global

and local approach [5] minimizing (9), and its regularized

version NLS�2,1
solving (15) with γ = 0.1, are applied.

D. Results

In the first case, the Levenberg-Marquardt algorithm did

not converge; it was stopped because the maximum number

of iterations (1000) had been reached. The sequential SOCP

was stopped after 50 iterations. By looking at Fig. 3 and

Table I, one can see a significant improvement in the global

model accuracy achieved with the NLS model (yellow),

and with the NLS�2,1
(green) model, in comparison with

the SMILE model both algorithms start from (red). This is

expected given the local nature of the SMILE technique.

It also justifies the use of the global data in addition to

the local. When compared to the NLS model, the NLS�2,1

model gave (≈ 35%) larger global error; such an outcome,

although unwelcome, should not surprise since there was also

the regularization term taken into account.

Fig. 4 and Fig. 5 evaluate the models using the local

identification data (FRF measurements). The SMILE model

performs better than the NLS and NLS�2,1
models, expectedly

TABLE I

ROOT MEAN SQUARE ERROR [m/s2] OF THE MODELS ON GLOBAL

IDENTIFICATION AND VALIDATION DATA

Data set SMILE NLS NLS�2,1

Identification 5.6939 1.7859 2.4738

Validation 3.7841 1.7439 2.2969

since it originates from a local technique. The NLS model

is slightly more accurate than the NLS�2,1
model. However,

Fig. 6 and Fig. 7, which portray the dependence of the model

FRF on the scheduling parameter, show unnatural behaviour

of the NLS model for the scheduling parameter values not

involved in the identification (note that the FRF surface of

the SMILE model was smooth). There are undesired sudden

variations of the magnitude and phase surface, resulting in a

poor overall fit in the local sense. The NLS�2,1
does not have

that problem, which can be seen in Fig. 8 and Fig. 9.

Fig. 10 depicts the frivolous pole-zero evolution of the
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Fig. 3. Global identification error of the SMILE model (red), the NLS
model (yellow), and the NLS�2,1

model (green).

NLS model as the scheduling parameter is changing from the

minimal to the maximal operating value. The sudden changes

in values of the poles and zeroes are a possible explanation

for the bumpy magnitude and phase surfaces. What goes in

favor of such reasoning are the neatly grouped poles and

zeroes of the NLS�2,1
model (Fig. 11).

Table II and III give an indication of the size of the parame-

ters forming the state-space matrices of the NLS and NLS�2,1

model, respectively. Table II shows that the values of the

parameters in the NLS model are scattered throughout a large

range, and throughout the whole model, making it not that

well conditioned. Table III unveils that the size of parameters

in Bi, Ci, Di, (i = 1,2,3) is significantly smaller than the

size of the parameters in A0, B0, C0, D0, meaning that the

belonging basis functions are there unnecessary. The �2,1

regularization thus enabled us to select a simpler scheduling

parameter dependency, in the sense that the input matrix

(B) and the complete output equation (matrices C and D)

can be modeled as being scheduling parameter independent.
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Fig. 6. Magnitude surface of the NLS model.

Fig. 7. Phase surface of the NLS model.

Fig. 8. Magnitude surface of the NLS�2,1
model.

Fig. 9. Phase surface of the NLS�2,1
model.
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Keeping in mind the importance of well-conditioning and

sparsity in the LPV control design, the proposed regularized

NLS-based LPV identification method shows a potential.

V. CONCLUSION

This paper gives practical insights into identification of

LPV systems via the combined global and local approach

by revealing potential difficulties and proposing a way to

deal with them. A substantial number of model parameters -

and accordingly degrees of freedom - stimulates occasional

wanderings of the Levenberg-Marquardt algorithm, resulting

in cumbersome models. A consequence we experienced

when identifying a mechatronic system was unexpected

model behavior for the scheduling values that are in-between

the ones used in the identification, manifested in a nons-

mooth FRF surface and pole-zero evolution. To eliminate

this effect, we explored the �2,1-norm regularization of the

model parameters aiming at reducing possible overfitting.

TABLE II

PARAMETER SIZE OF THE NLS MODEL

i ‖vec(Ai)‖2 ‖vec(Bi)‖2 ‖vec(Ci)‖2 ‖vec(Di)‖2

0 2.6238 0.7556 1.2796 ·105 6.9043 ·104

1 4.7264 0.0189 9.8387 ·105 3.8269 ·105

2 78.3631 0.0574 1.2211 ·107 3.3724 ·107

3 331.0831 2.6293 4.4526 ·107 1.1201 ·108

TABLE III

PARAMETER SIZE OF THE NLS�2,1
MODEL

i ‖vec(Ai)‖2 ‖vec(Bi)‖2 ‖vec(Ci)‖2 ‖vec(Di)‖2

0 2.7656 9.7760 9.1592 ·104 1.2223 ·104

1 0.0845 1.5277 ·10−10 6.6762 ·10−12 2.2975 ·10−12

2 0.1321 1.2057 ·10−10 2.8741 ·10−11 2.2942 ·10−12

3 0.0194 1.0018 ·10−10 3.7488 ·10−11 2.3856 ·10−12

Reformulation of the optimization problem into a NSOCP

that is sequentially solved in each Levenberg-Marquardt it-

eration, resulted in an approach we here proposed and which

showed successful in identifying the XY-motion system.

Future extensions will focus on regaining the accuracy of the

nonregularized solution, while keeping the model sparse.
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