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We report on two experiments, published originally in Japanese, on judged goodness and simplicity of dot pat-
terns with reflectional and rotational symmetries (with 1–4 reflection axes and repeats, respectively) under
free-viewing tasks. We found that (a) both goodness and simplicity increase monotonously with the number
of transformations underwhich a pattern is invariant; (b) stimulus outlines, such as squares and hexagons, affect
both goodness and simplicity; and (c) factors such as contrast polarity and collinearity affect simplicity rather
than goodness. The employed free-viewing tasks contrast with detection tasks involving short presentation
times, and based on behavioural and neurophysiological evidence, we conclude that this transformational ap-
proach captures late rather than early aspects of visio-cognitive processing of visual regularities.
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1. Introduction

Mirror symmetry is abundantly present in nature and decorative art,
and it is considered to be a visual regularity, that is, a regularity towhich
the human visual system is sensitive. This sensitivity implies that visual
regularities influence how we perceive and appreciate things. In this
study, we discuss this in more detail. We focus on effects of visual regu-
larities on judgments of stimulus complexity and figural goodness,
which, in research on visual shape perception, have been seen as differ-
ent notions as well as being associated with each other.

Complexity, on the one hand, usually refers to the effort – in terms of
descriptive parameters – to specify a stimulus (e.g., Attneave, 1954,
1955; Chipman, 1977; Leeuwenberg, 1969, 1971). This implies, for in-
stance, that an irregular quadrangle is more complex than an irregular
triangle, because it consists of more line segments and angles. A regular
quadrangle like a square, however, is simpler than an irregular triangle,
because it is mirror-symmetrical and, therefore, consists of fewer differ-
ent line segments and angles. The latter shows that regularities likemir-
ror symmetry are factors that essentially reduce complexity. This
contrasts with, for instance, Marković and Gvozdenović (2001) who –
for unclear reasons– took symmetry and simplicity as separate stimulus
dimensions. However, it agrees with ideas of complexity reducing regu-
larities being crucial in aesthetics (Birkhoff, 1933; Boselie &
Leeuwenberg, 1985; Eysenck, 1941), and more general, in perceptual
.

roup theoreticalmodel of sym
organization (e.g., Hochberg & McAlister, 1953; Leeuwenberg & van
der Helm, 2013; van der Helm, 2014).

Goodness, on the other hand, is an intuitive notion that, in the past,
got connotations such as learnability and rememberability of all sorts of
stimuli. This was taken to be related to complexity, under the motto: A
simpler stimulus is better in that it can be learned faster and remem-
bered more accurately. Later, goodness received the connotation of de-
tectability of regularities such as mirror symmetry, Glass patterns (i.e.,
randomly positioned but coherently oriented dot dipoles; Glass, 1969;
Glass & Pérez, 1973) and repetition — usually under short presentation
times of less than 500 ms (e.g., Bertamini, 2010; Bruce &Morgan, 1975;
Maloney, Mitchison, & Barlow, 1987; Wagemans, 1995; Wenderoth,
1995). A regularity then is said to be better if it is detected faster and
more accurately, and if its detectability is more robust to perturbations.
This detectability is known to correlate poorly with stimulus complexi-
ty. For instance, fairly independent of complexity, mirror symmetries
and Glass patterns are about equally well detectable and better detect-
able than repetitions (van der Helm, 2010; van der Helm &
Leeuwenberg, 1996).

Here, in two experiments reported originally in Japanese, we used
free-viewing tasks to investigate judged goodness and complexity of
mirror symmetries and full-circle repetitions in polar coordinates, also
known as reflectional and rotational symmetries, with 1–4 reflection
axes and repeats, respectively. Free-viewing tasks, by which partici-
pants have ample time to make their judgments, contrast with detec-
tion tasks involving short stimulus presentation times. Whereas the
latter could be said to probe early symmetry perception, the former
metry cognition, Acta Psychologica (2016), http://dx.doi.org/10.1016/
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could be said to probe later symmetry cognition (we return to this issue
in the General discussion section). Furthermore, reflectional and rota-
tional symmetries are so named because these patterns are invariant
under transformations such as reflection and rotation. This transforma-
tional characterization has been applied, for instance, in crystallography
to classify crystals by the number and type of such invariance rotations
(see, e.g., Shubnikov & Koptsik, 1974) and in research on decorative art
to classify repetitive 2Dmotifs in wallpaper, bands, and friezes (see, e.g.,
Weyl, 1952).

The transformational characterization of regularities – though not
the only one available (see General discussion section) – is employed
in this study, and to specify it further, we consider Japanese crests (see
Fig. 1). Such crests number up to a few thousands. They reflect, among
other things, historical and legal embodiments associated with families,
and as a rule, they contain transformational symmetries. Based on the
latter, Hamada, Uchiumi, Fukushi, and Amano (2011) classified them
into 8 configurations having 1–4 invariance rotations (360°, 180°,
120°, and 90°) around the center of the pattern and 1–4 reflection
axes passing through the center of the pattern. In group theory, two-di-
mensional (2D) patterns with only invariance rotations over 360°/n
(n=1, 2,…) form cyclic groups Cn, while 2D patterns with n reflection
axes (n = 1, 2, …) and invariance rotations over 360°/n form dihedral
groups Dn. Furthermore, a pattern generating the cyclic group Cn has
order n and a pattern generating the dihedral group Dn has order 2n.
This group order reflects the number of transformations under which
a pattern is invariant. For example, in Fig. 1, the Crane (C1) has order 1
(1 invariance rotation over 360°); the Four Diabolos (C4) has order 4
(4 invariance rotations over 90°); the Hermitage (D1) has order 2 (1 in-
variance rotation over 360° and 1 reflection axis); and the Four Squares
(D4) has order 8 (4 invariance rotations over 90° and 4 reflection axes).

In cognitive psychology, various versions of the transformational
characterization of regularities have been applied to investigate figural
goodness. For instance, according to Garner and Clement (1963) and
Garner (1966, 1970), the figural goodness of a pattern does not depend
on characteristics of the individual pattern but depends on the size of a
pattern's rotation and reflection subset, also called the equivalence sub-
set size (ESS). ESS specifies the number of different patterns obtained
when a pattern is rotated (in steps of 90°) or reflected (horizontally, di-
agonally, or vertically). Under themotto “Good patterns have few alter-
natives”, Garner postulated that pattern goodness is correlated
inverselywith ESS. In a similar vein, Palmer (1982, 1983) considered in-
variance under the group of Euclidean similarity transformations (rota-
tion, translation, reflection, and dilatation) to account for figural
goodness, under themotto: Invariance undermore transformations im-
plies higher goodness. Using the samemotto, Imai, Ito, and Ito (1976a,b)
and Imai (1986, 1992) considered invariance under what they called
cognitive transformations (reflection, 180° rotation, or both), which
accounted for differences in goodness between patterns with the
same ESS.

Following up on this, the present study focuses on judged good-
ness and complexity of cyclic Cn patterns (i.e., rotational symmetries
with group order n) and dihedral Dn patterns (i.e., reflectional sym-
metries with group order 2n). In Experiment 1, we consider 21-dot
Cn and Dn patterns (n = 1, 2, 4) in a 9 × 9 matrix framework, and
Fig. 1. Japanese crests and t
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in Experiment 2, 19-dot Cn and Dn patterns (n = 1, 2, 3) in a 19-
cell hexagonal framework (see Fig. 2). Notice that framework size
and type codetermine which values of n can be investigated, and
that we anticipate an effect of framework type on judged goodness
and complexity.
2. General method

In both experiments reviewed here, stimulus patterns consisted of
open and solid dots printed on white cards, with pattern numbers
printed at the bottom of the card. Participants were undergraduate stu-
dents from Tokushima University (they received course credits). Each
participant sat in front of a desk in a normally lit room at a viewing dis-
tance of about 30 cm. Participants were given a deck of cards, were
asked to shuffle it and to rate the patterns on either goodness or
complexity.

Goodness and complexity ratingswere performed separately. Partic-
ipants were not informed about our criteria for goodness and complex-
ity, and were simply asked to rate goodness and complexity on 9-point
scales from Poor (1) to Good (9) and from Simple (1) to Complex (9).
They viewed the cards freely, which made it hard to fixate pattern ori-
entation. Therefore, pattern orientation was treated as a random factor
that was not analyzed further.

Before rating goodness or complexity, participants looked through
the deck of cards once in order to grasp the outline of the patterns.
Then, working at their own pace, they rated the set of cards by writing
the pattern number and ratings on a response sheet. They repeated
the shuffle-and-rate process twice. The first session was considered
practice and only data from the second session were used for data
analysis.
3. Experiment 1

Hamada (1988, Experiment 2) probed 13-dot compound patterns in
a 7 × 7 matrix framework, made by superimposing 5-dot patterns in
3 × 3 matrices centered on 8-dot patterns in 4 × 4 matrices (without
overlapping dots). The dots in these constituent matrices were all
open, or all solid, or open in one matrix and solid in the other (open/
solid). He found no significant differences between the goodness ratings
of open, open/solid, and solid dot patterns, while the complexity ratings
of solid dot patterns were higher than those of open/solid dot patterns,
which, in turn, were higher than those of open dot patterns.

Expanding on Hamada's (1988) 13-dot compound patterns,
Hamada, Uchiumi, Fukushi, and Amano (2013) probed 21-dot com-
pound patterns in a 9 × 9 matrix framework, composed similarly of 8-
dot prototype figures in 4 × 4 matrices and 13-dot prototype figures
in 5 × 5matrices (see Fig. 2a and b). For instance, in Fig. 2, the superim-
position of a solid 8-dot prototype and an open 13-dot prototype in the
4× 4 and 5×5matrixes resulted in the 21-dot compoundpattern. Next,
we review this experiment, which tested these compound patterns in a
within-participant design to investigate effects of symmetry group
order on pattern goodness and complexity.
heir symmetry groups.

metry cognition, Acta Psychologica (2016), http://dx.doi.org/10.1016/
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Fig. 2. (a) and (b) Imaginary frameworks used in Experiment 1. (c) Imaginary framework used in Experiment 2. For each experiment, an example pattern is shown.
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3.1. Method

3.1.1. Participants
The participants in this experiment were 208 undergraduates.

3.1.2. Stimuli
The 8- and 13-dot prototypefiguresweremade using open and solid

dots with a diameter of 4 mm. The prototype figures were placed in
4 × 4 and 5 × 5 matrices, respectively, with a distance of 10 mm be-
tween the centers of the dots (see Fig. 2). Examples of the 21-dot com-
pound patterns used in the experiment are shown in Fig. 3.When the 8-
dot and 13-dot prototype figures consisted of only open dots or only
solid dots, the conditions were called homogeneous. When the 13-dot
prototype figures consisted of open dots and the 8-dot prototype figures
of solid dots, the conditionwas called open/solid. When the 13-dot pro-
totype figures consisted of solid dots and the 8-dot prototype figures of
open dots, the condition was called solid/open. The open/solid and
solid/open conditions were called heterogeneous. Apart from the con-
trast polarity of the dots, the same 36 pattern configurations were
used in all conditions. The quadrants in Fig. 3 show these 36 pattern
configurations by way of 9 patterns from each of the four conditions.
The patterns were printed on 70 mm × 66 mm cards.

3.1.3. Procedure
The 208 participants in this experimentwere divided into two sets of

104 participants each, one set for goodness ratings and the other set for
complexity ratings. Each set of 104 participants was divided into two
groups (groups A and B) of 52 participants each. Group A was exposed
to the homogeneous open dots condition and heterogeneous open/
solid dots condition (see the top quadrants in Fig. 3). Group B was ex-
posed to the homogeneous solid dots condition and heterogeneous
solid/open-dots condition (see the bottom quadrants in Fig. 3). Each
participant was given a deck of 72 cards to rate goodness or complexity
of 36 homogeneous and 36 heterogeneous patterns. To control for the
effect of orientation, each group was divided into 4 subgroups of 13
Please cite this article as: Hamada, J., et al., A group theoreticalmodel of sym
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participants each, one subgroup for each of four orientations of
the patterns (0°, 90°, 180°, 270°).

3.2. Results

The Pearson's correlation coefficients between groups A and B for
the 72 compound patterns, pooled over the four orientations, were
high for both goodness (r = .943, p b .001) and complexity (r = .980,
p b .001). The groups were therefore pooled, and Fig. 3 shows the
means of the goodness and complexity ratings for the 36 pattern config-
urations. The Pearson's correlation coefficient between the goodness
and complexity ratings of the 72 compound patterns was high
(r = −.915, p b .001).

3.2.1. Effects of contrast polarity
Fig. 3 indicates, for each pattern configuration, the dihedral (D1, D2,

or D4) or cyclic (C1, C2, or C4) group to which it belongs, and Fig. 4
shows rated goodness and complexity for the homogeneous and het-
erogeneous conditions in function of the order of the symmetry groups.
Mean was calculated from 104 participants for the fifteen C1, nine C2,
and three C4 compound patterns. t-Tests for Cn compound patterns
yielded significant differences between the homogeneous and hetero-
geneous conditions for both goodness (p b .001) and complexity
(p b .001). Similarly, means for the five D1, three D2, and one D4 com-
pound patterns are shown in Fig. 4. t-Tests of homogeneous versus het-
erogeneous conditions for Dn compound patterns did not yield a
significant difference for goodness ratings (p=.214), but did yield a sig-
nificant difference for complexity ratings (p b .001).

3.2.2. Effects of symmetry group order
In function of the order of the symmetry groups, the goodness rat-

ings of Cn and Dn patterns (n = 1, 2, 4) increased monotonously,
while the complexity ratings decreased monotonously (see Fig. 4).
This holds for both the homogeneous condition and the heterogeneous
condition,which showed differences in absolute ratings (see above) but
yet showed very similar tendencies in function of group order. In fact,
metry cognition, Acta Psychologica (2016), http://dx.doi.org/10.1016/
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Fig. 3. Results of Experiment 1. For each of 36 21-dot compound pattern configurations, the mean goodness and complexity ratings are given for the homogeneous and heterogeneous
conditions.
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these tendencies were so similar that the Pearson's correlation coeffi-
cients between the two conditions were r = .999 (p b .001) for both
goodness and complexity. Therefore, the two conditions were pooled
for further analysis.

t-Tests of rated goodness yielded significant differences (p b .001)
between Dn and C2n patterns (n= 1, 2). That is, D1 compound patterns
(meanM=6.1)were better than C2 compound patterns (M=5.6), and
D2 compound patterns (M = 7.5) were better than C4 compound pat-
terns (M = 6.8). Hence, the goodness ratings of Dn patterns are higher
than those of C2n patterns (n = 1, 2), even though they have the same
group order. t-Tests of rated complexity also yielded significant differ-
ences (p b .001) betweenDn and C2n patterns (n=1, 2). That is, C2 com-
pound patterns (M = 4.5) were more complex than D1 compound
patterns (M = 3.9), and C4 compound patterns (M = 3.8) were more
complex than D2 compound patterns (M=2.5). Hence, the complexity
ratings of Dn patterns are lower than those of C2n patterns (n = 1, 2),
even though they have the same group order. In other words, goodness
and simplicity (the inverse of complexity) of both Cn andDn patterns in-
creasedmonotonously with the order of the symmetry groups, but with
Please cite this article as: Hamada, J., et al., A group theoreticalmodel of sym
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group order having higherweights for Dn than for Cn (i.e., for each group
order, Dnpatterns yielded higher goodness and simplicity values thanCn
patterns).
3.3. Discussion

For the 21-dot compound patterns in the 9 × 9 matrix framework,
goodness ratings for both Cn and Dn compound patterns (n=1, 2, 4) in-
creasedmonotonouslywith the order of the symmetry groups, butwith
a higher group order weight for Dn than for Cn (see Fig. 4). This weight
difference is not consistent with the transformational approaches men-
tioned in the Introduction section, which related goodness to symmetry
group order without differentiating between Cn and Dn patterns. How-
ever, it is consistent with Palmer's (1991) finding that, for 9- or 10-dot
patterns in a 5 × 5 matrix, the goodness of Dn and Cn patterns (n = 1,
2, 4) increased monotonously with the order of the symmetry groups,
but with a higher group order weight for Dn than for Cn. This suggests
that, irrespective of the number of dots or the size of the matrix,
metry cognition, Acta Psychologica (2016), http://dx.doi.org/10.1016/
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Fig. 4. Rated goodness and complexity in Experiment 1 as function of the order of
symmetry groups.
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goodness depends on symmetry group order but with differences be-
tween types of symmetry groups.

Furthermore, we found that the goodness ratings of the Cn com-
pound patterns and the complexity ratings of both Cn and Dn patterns
under the heterogeneous conditions were higher than those under the
homogeneous conditions. For the goodness ratings of Dn compoundpat-
terns, however, we found no significant difference between the homo-
geneous and heterogeneous conditions. This exception suggests that
goodness and complexity of Dn compound patterns might be processed
differently in the cognitive system. It also agrees with Wenderoth
(1996) who, using dot patterns on a grey background, investigated
the effects of contrast polarity on the detection of bilateral symmetry.
He found the same results for (a) all dots being either black or white
and (b) half of the dots being black and the other half being white
(with positive correspondence between symmetrical pairs of dot).
This suggests, as concluded by Tyler and Hardage (1996), that detection
of mirror symmetry is mediated predominantly by polarity-insensitive
mechanisms. Future studies may investigate if such mechanisms are
consistent with the above-mentioned differences, which we neverthe-
less did find.
4. Experiment 2

Hamada (1988, Experiment 1) designed a 19-cell hexagonal frame-
work (Fig. 2c)with Cn andDnfilled patterns (n=1, 2, 3) consisting of 19
open and solid dots. He investigated the effects of the order of symmetry
groups as well as the effects of collinear and non-collinear elements on
goodness and complexity. His results can be summarized as follows: (a)
Goodness of the filled patterns increased with the order of the symme-
try groups, but, this time, with a higher group order weight for Cn than
for Dn (see also Hamada & Ishihara, 1988), and (b) complexity of collin-
ear element patterns decreased with the order of cyclic and dihedral
groups without a weight difference between Cn and Dn, whereas that
of non-collinear element patterns was medium, regardless of group
order. This contrasts with our results for the matrix framework in Ex-
periment 1, where we found that the goodness of Dn patterns was
higher than that of C2n patterns. To further investigate this goodness re-
versal for the two frameworks, Hamada et al. (2013, Experiment 2) con-
ducted the experiment that is reviewed here. It probed two additional
aspects.

First, for patterns in a matrix framework, Garner and Clement
(1963) andMatsuda (1978) found an effect of collinearity on goodness,
and for patterns in a hexagonal framework, Hamada (1988) found an
Please cite this article as: Hamada, J., et al., A group theoreticalmodel of sym
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effect of collinearity on complexity but not on goodness. This was inves-
tigated further in the experiment reviewed here.

Second, Hamada (1988) used filled patterns with 9 solid and 10
open dots as well as their contrast-reversed patterns with 9 open and
10 solid dots. In both cases, the solid-dot configuration tends to be per-
ceived asfigure against an open-dot background, so that the contrast re-
versal also implies a figure-ground reversal. Hamada (1988) did not
analyze the effect of this difference in contrast polarity on goodness
and complexity, but in the experiment reviewed here, this analysis
was included.

4.1. Method

4.1.1. Participants
The participants in this experiment were 144 undergraduates.

4.1.2. Stimuli
The stimuli consisted of 17 filled patterns with 9 solid and 10 open

dots (S-patterns; see Fig. 5) and 17 filled patterns with 9 open and 10
solid dots (O-patterns). The S-patterns consisted of (a) collinear ele-
ment patterns composed of ten open dots and three identical sets of
three collinear non-overlapping solid dots, and (b) non-collinear ele-
ment patterns composed of ten open dots and nine solid dots that did
not form three identical sets of three collinear non-overlapping solid
dots. One collinear element pattern was designed for each of the D3,
D2, D1, C2, and C1 groups (a collinear C3 pattern is not possible in this
framework). Additionally, two non-collinear element patternswere de-
signed for each of the six symmetry groups. The O-patterns were creat-
ed by reversing the contrast polarities of the dots in the S-patterns.

Furthermore, S- and O-patterns were rotated by 60°, 120°, 180°,
240°, and 300° to make rotated filled patterns. Thus, the total number
of filled patterns used was 204. The filled patterns were printed on
white cards of 65 mm × 62 mm. The diameter of each dot was 7 mm
and the distance between the centers of adjacent dots was 10 mm.

4.1.3. Procedure
The144 participants in this experimentwere divided into two sets of

72 participants each, one set for goodness ratings and the other set for
complexity ratings. To randomize the S- and O-patterns and pattern ori-
entations, each set was divided into groups A, B, and C, which contained
24 participants each. Each participant judged goodness or complexity of
68 patterns (17 S-patterns plus 17 O-patterns, multiplied by 2
orientations).

4.2. Results

The Pearson's correlation coefficients for goodness were high be-
tween groups A and B (r = .801, p b .001), groups B and C (r = .888,
p b .001), and groups A and C (r = .899, p b .001), as well as for
complexity between groups A and B (r = .880, p b .001), groups B and
C (r = .920, p b .001), and groups A and C (r = .933, p b .001). Fig. 5
shows the means of rated goodness and complexity, pooled over the
six pattern orientations. Table 1 shows means of rated goodness and
complexity in function of the order of the symmetry groups and t-test
results.

4.2.1. Effects of symmetry group order
Table 1 shows that, for S- and O-patterns as well as for collinear and

non-collinear element patterns, goodness ratings increased with the
order of the cyclic and the dihedral groups, but this time, with a higher
group order weight for Cn than for Dn (Fig. 6 shows this for the pooled
data). That is, the means of the goodness ratings differed significantly
(p b .001) between the C2 patterns (M = 5.2) and the D1 patterns
(M = 4.5), even though they both have symmetry group order 2.

Table 1 and Fig. 6 show further that, for themeans of pooleddata, the
complexity ratings of the C3 patterns were higher than those of the C2
metry cognition, Acta Psychologica (2016), http://dx.doi.org/10.1016/
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Fig. 5. Results of Experiment 2. For each of the 17 19-dot filled pattern configurations, the mean goodness and complexity ratings are given for the basic patterns (9 solid-dot filled
patterns) and for their open-solid reversals (9 open-dot filled patterns).
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patterns. This is probably an outlier due to the fact that the C3 patterns
were all non-collinear patterns (as said, collinear C3 patterns were not
possible). For the rest, the complexity ratings decreased with the
order of the cyclic and the dihedral groups, without a difference in
group order weight. Here, there was no significant difference between
C2 and D1 patterns in the means of the complexity ratings (both M =
4.3).
4.2.2. Effects of contrast polarity
As shown in Table 1, the mean of the goodness ratings of S-patterns

was not significantly higher than that of O-patterns [M(S) = 5.2,
M(O) = 5.1, p = .101]. There were also no separate significant differ-
ences for the Cn patterns [M(S) = 4.9, M(O) = 4.7, p = .056] and the
Dn patterns [M(S) = 5.6, M(O) = 5.5, p = .641].
Table 1
Means of goodness and complexity ratings in Experiment 2.

C1 C2 C3

Goodness
S-pattern 3.3 5.4 6.0
O-pattern 3.0 5.0 6.2
t-Test p b .05 p b .001 ns
Collinear 3.0 5.7
Non-collinear 3.2 4.8 6.1
t-Test p b .05 p b .001
Mean of
pooled data 3.1 5.2 6.1

Complexity
S-pattern 5.2 3.9 4.3
O-pattern 6.1 4.6 4.8
t-Test p b .001 p b .001 p b .001
Collinear 5.9 3.1
Non-collinear 5.4 5.4 4.5
t-Test p b .001 p b .001
Mean of
pooled data 5.6 4.3 4.5

Please cite this article as: Hamada, J., et al., A group theoreticalmodel of sym
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The mean of the complexity ratings of S-patterns was significantly
lower than that of O-patterns [M(S) = 4.0, M(O) = 4.4, p b .001].
Here, this difference was due to both the Cn patterns [M(S) = 4.5,
M(O) = 5.2, p b .001] and the Dn patterns [M(S) = 3.5, M(O) = 3.7,
p b .01].

4.2.3. Effects of collinearity
As shown in Table 1, there was no significant difference in goodness

ratings between collinear (C) and non-collinear (NC) element patterns
[M(C)= 5.2,M(NC)= 5.1, p= .379]. There was also no such difference
for the Dn patterns [M(C) = 5.7,M(NC) = 5.4, p= .112], but there was
such a difference for the Cn patterns [M(C) = 4.4, M(NC) = 4.7,
p b .001].

Regarding complexity rating, there was a significant difference be-
tween collinear and non-collinear element patterns [M(C) = 3.4,
D1 D2 D3 Mean

4.6 5.8 6.3 5.2
4.4 5.6 6.6 5.1
p b .05 ns p b .01 ns
4.8 5.9 6.4 5.2
4.2 5.5 6.5 5.1
p b .001 ns ns ns

4.5 5.7 6.5 5.1

4.1 3.3 3.3 4.0
4.6 3.3 3.3 4.4
p b .001 ns ns p b .001
3.5 2.4 2.1 3.4
5.1 4.1 4.5 4.9
p b .001 p b .001 p b .001 p b .001

4.3 3.3 3.3 4.2
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M(NC)=4.9, p b .001]. Here, such a differencewas found for both theDn

patterns [M(C) = 2.7, M(NC) = 4.6, p b .001] and the Cn patterns
[M(C) = 4.5, M(NC) = 5.1, p b .001].

4.3. Discussion

In Experiment 2, goodness and complexity of filled patterns in a
hexagonal framework were measured. The results showed that the
goodness and complexity ratings mirrored the results of Hamada
(1988, Experiment 1), with exception to the complexity ratings of
the non-collinear element patterns, which, in Hamada (1988),
were medium irrespective of the order of the cyclic and dihedral
groups.

4.3.1. Goodness
First, in Experiment 2, just as in Experiment 1, goodness ratings

increased monotonously with group order, but this time, with a
higher group order weight for Cn than for Dn. The latter finding for
filled patterns in a hexagonal framework is similar to that found
by Hamada (1988) and Hamada and Ishihara (1988). It differs, how-
ever, from the finding for non-filled compound patterns in the ma-
trix framework in Experiments 1, where we found a higher group
order weight for Dn than for Cn. This weight reversal seems due to
the difference in framework (the difference between filled and
non-filled patterns does not seem relevant; see Matsuda, 1978;
Hamada & Ishihara, 1988). Furthermore, the goodness ratings for
Dn filled patterns in the hexagonal framework in Experiment 2
were clearly lower than those for Dn compound patterns in the ma-
trix framework in Experiments 1. Also this seems due to the differ-
ence in framework.

Second, in Experiment 2, we neither found a significant difference in
goodness ratings between S- and O-patterns for Cn nor for Dn. This is in
partial agreement with Experiment 1, in which we found a significant
difference in goodness ratings between the homogeneous and hetero-
geneous conditions for Cn but not for Dn.

Third, whereas Garner and Clement (1963) and Matsuda
(1978) found an overall effect of collinearity on goodness for pat-
terns in a matrix framework, Hamada and Ishihara (1988) did not
find such an effect for patterns in a hexagonal framework. Here, for
patterns in the hexagonal framework in Experiment 2, we now
found a significant effect of collinearity on goodness for Cn but
not for Dn.

In sum, the type of framework seems to have a clear effect on the
goodness of Dn patterns and on whether they are better or worse than
Please cite this article as: Hamada, J., et al., A group theoreticalmodel of sym
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Cn patterns. Furthermore, contrast polarity and collinearity do not
show consistent overall effects – if anything, they seem to affect the
goodness of Cn patterns rather than that of Dn patterns.

4.3.2. Complexity
First, in Experiment 2, we found that, except for the C3 patterns,

complexity ratings for patterns in the hexagonal framework decreased
with the order of symmetry groups, without a difference in group
order weight between cyclic and dihedral groups (see also Hamada &
Ishihara, 1988). This contrasts with our findings for patterns in the ma-
trix framework in Experiment 1, where complexity ratings also de-
creased with the order of symmetry groups, but with Dn patterns
yielding lower complexity (or higher simplicity) values than C2n pat-
terns. This difference in dependency on group order seems again due
to the difference in framework.

Second, in Experiment 2, we found significant differences in com-
plexity ratings between S- and O-patterns for both Cn and Dn. This is
consistent with Experiment 1, where we found significant differences
in complexity ratings between the homogeneous and heterogeneous
conditions for both Cn andDn. This suggests that, in either type of frame-
work, contrast polarity has an overall effect on complexity, which may
be related to an implied figure-ground reversal.

Third, for patterns in the hexagonal framework in Experiment 2, we
found that collinear patterns were rated significantly simpler than non-
collinear patterns, for both Cn and Dn. This agreeswith Hamada's (1988)
findings, which also applied to patterns in a hexagonal framework.
Again, future research may show if this holds for matrix frameworks
too.

In sum, the type of framework seems to have an effect on the depen-
dency of complexity on the order of cyclic and dihedral groups. Further-
more, contrast polarity and collinearity seem to have a consistent
overall effect on the complexity of both Cn and Dn patterns.

5. General discussion

In this article, we discussed two experiments on symmetry cogni-
tion. Both experiments involved free-viewing tasks probing judged
goodness and judged complexity of dot patterns. Experiment 1
employed 21-dot cyclic Cn and dihedral Dn patterns (n = 1, 2, 4) in a
9 × 9 matrix framework, while Experiment 2 employed 19-dot Cn and
Dn patterns (n = 1, 2, 3) in a 19-cell hexagonal framework. In both ex-
periments, our main objective was to investigate the effect of the trans-
formational group order of the cyclic and dihedral patterns on goodness
and complexity ratings (group order is n in case of Cn and 2n in case of
Dn). Our results on this main point showed both parallels and differ-
ences between the two types of frameworks. This can be cast in a
model as follows (see Fig. 7).

5.1. A group theoretical model of symmetry cognition

Overall, we found that goodness and simplicity (the inverse of com-
plexity) increase monotonously with group order, but with the follow-
ing differences between the two types of frameworks. Regarding
goodness, the group order weight for Dn patterns is higher than that
for Cn patterns in the matrix framework, but lower in the hexagonal
framework. Furthermore, regarding simplicity, the group order weight
for Dn patterns is higher than that for Cn patterns in the matrix frame-
work, but equal in the hexagonal framework.

For goodness, neither the weight differences between Dn and Cn in
either framework nor theweight reversal between the two frameworks
is implied by the transformational approaches mentioned in the
Introduction section, which did not differentiate between Dn and Cn.
The weight reversal, in particular, suggests that the type of framework
is a goodness factor that should be taken into account (see also next
subsection). The type of framework seems relevant also for simplicity,
metry cognition, Acta Psychologica (2016), http://dx.doi.org/10.1016/
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considering the weight difference between Dn and Cn in the matrix
framework but not in the hexagonal framework.

Our findings for the hexagonal framework suggest further that
goodness (weight difference between Dn and Cn) and simplicity (no
weight difference between Dn and Cn) are differently processed con-
cepts. This is corroborated by our findings for contrast polarity (in
both experiments) and collinearity (in Experiment 2). That is, we
found that these factors have a consistent overall effect on simplicity
but not on goodness.

In sum, our findings suggest not only that goodness and simplicity
are different concepts but also that, to both concepts, the transforma-
tional group order of patterns is a pivotal factor. In addition, we found
that goodness and simplicity can be modulated by other factors, such
as the type of framework, contrast polarity, and collinearity.
5.2. Symmetry cognition versus symmetry perception

As mentioned in the Introduction section, the free-viewing judg-
ment tasks in the current experiments contrast with detection tasks in-
volving short presentation times (under 500ms). The latter tasks could
be said to probe early symmetry perception rather than later symmetry
cognition. The border between perception and higher cognitive levels is
admittedly fuzzy, but notice that we can detect stimulus features like
mirror symmetry under presentation times as short as 50 ms (e.g.,
Locher & Wagemans, 1993; Csathó, van der Vloed, & van der Helm,
2003), while complete percepts are formed within 500 ms (e.g.,
Sekuler & Palmer, 1992; Breitmeyer & Ogmen, 2006). To discuss this
issue further, we next compare the transformational ideas that guided
the current experiments to the non-transformational ideas in van der
Helm and Leeuwenberg's (1996) holographic approach to visual regu-
larities, which was developed specifically to capture early symmetry
perception.

Transformational ideas on visual symmetry, on the one hand, rely on
invariance under motion. For instance, a mirror-symmetrical pattern
with one or more reflection axes (i.e., a Dn pattern) is invariant under
180° three-dimensional rotations about the reflection axes; an (infinite)
translational symmetry, or a repetition, is invariant under 2D longitudi-
nal translations over one or more repeats; and a rotational symmetry
(i.e., a Cn pattern, or a full-circle repetition in polar coordinates) is in-
variant under 2D rotations over one or more repeats. These invariance
transformations identify pattern blocks (i.e., symmetry halves or re-
peats) with each other in one go. So, transformationally, mirror symme-
tries, translational symmetries, and rotational symmetries can all be
said to have a block structure. Furthermore, a pattern is predicted to
Please cite this article as: Hamada, J., et al., A group theoreticalmodel of sym
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be better if it is invariant under more transformations (which, albeit
with some nuances, we confirmed in this article).

The holographic approach to visual symmetry, on the other hand, re-
lies on invariance under growth. That is, it holds that visual regularities
are configurations that can be expanded (i.e., can grow) preserving the
regularity in them. For instance, preserving the regularity in them, a
mirror symmetry can be expanded by one symmetry pair at a time, a
repetition by one repeat at a time, and a Glass pattern by one dot dipole
at a time. The holographic approach can therefore be said to assign a
point structure to mirror symmetry, a block structure to repetition,
and a dipole structure to Glass patterns. Furthermore, the holographic
model basically relies on two stages: a first stage yielding the simplest
structural description of a stimulus, and a second stage in which the
goodness of a regularity is determined by the weight-of-evidence for
the regularity in this simplest structural description (see below). Notice
that it defines the complexity of a structural description by the number
of parameters needed to specify a stimulus. This may deviate from
judged complexity as considered in this article, but just aswe concluded
here, the two stages in the holographic model suggest that simplicity
and goodness are different concepts.

The holographic weight-of-evidence for a regularity in a stimulus
exploits the holographic structure differences between mirror symme-
tries, repetitions, and Glass patterns. That is, it amounts roughly to the
number of symmetry pairs, repeats, or dipoles, respectively, normalized
by the total number of elements in a stimulus. This model explains a
wide range of goodness phenomena found, notably, in behavioural ex-
periments using short presentation times (for an overview, see van
der Helm, 2014). For instance, it explains that single mirror symmetries
(i.e., D1 patterns) and Glass patterns are about equally good and equally
susceptible to perturbations (this is not implied by transformational
models, which do not cover Glass patterns and which cannot deal
with perturbations). Furthermore, it explains that the goodness of single
mirror symmetries and Glass patterns is independent of the number of
elements in a pattern (for mirror symmetries, this is also implied by
transformational models). Moreover, it explains that these regularities
are generally better than repetitions (not implied by transformational
models),while the goodness of repetitions depends onboth the number
of repeats (also implied by transformationalmodels) and the number of
elements per repeat (not implied by transformational models).

Hence, the goodness predictions by the transformational and holo-
graphic approaches are different but overlap partly. Currently relevant,
this also holds for the goodness of multiple mirror symmetries (i.e., Dn

patterns, n = 1, 2, 3, ….). Both approaches predict that goodness in-
creases monotonously for n = 1, 2, 4, 8, etc. However, on the one
hand, the transformational approach predicts that the goodness for
metry cognition, Acta Psychologica (2016), http://dx.doi.org/10.1016/
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other values of n follows thismonotonous increase, which could be cap-
tured by 1 − 1/(2n) for all n. On the other hand, the holographic ap-
proach predicts that the goodness for other values of n deviates
downward from this monotonous increase. This is due to the first
stage in the holographic model. That is, for n = 1, 2, 4, 8, etc., the sim-
plest structural description of a Dn pattern specifies it as a multiple mir-
ror symmetry, but for other values of n, it specifies it as a repetition in
polar coordinates (i.e., as a Cn pattern), which yields a lower weight-
of-evidence (van der Helm, 2011).

In particular, transformationally, the goodness of D3 patterns would
fit in themonotonous increase captured by 1− 1/(2n), whereas the ho-
lographic approach predicts that they are worse than D2 patterns.
Wenderoth and Welsh (1998) pitted these predictions against each
other for Dn (n=1, 2, 3, 4). They found that the goodness of D3 patterns
deviates from the monotonous increase for the other values of n and
that D3 patterns are not better than D2 patterns. Furthermore, holo-
graphically, a D4 pattern like a square is indeed a multiple mirror sym-
metry, but a D6 pattern like a hexagon is a multiple rotational
symmetry (i.e., a C6 pattern). This may explain that a square framework
favors Dn patterns over Cn patterns (as found in Experiment 1), while a
hexagonal framework favors Cn patterns over Dn patterns (as found in
Experiment 2).

The foregoing comparison of the transformational and holographic
approaches raises the question whether they are mutually exclusive
or perhaps yet reconcilable. We think they are partly reconcilable,
namely, by relating their predictions for multiple mirror symmetries
to different time windows in visio-cognitive processing. As mentioned,
the holographic approach was developed specifically to capture early
symmetry perception as probed by detection tasks involving short pre-
sentation times. The transformational approach, conversely, seems ap-
propriate to capture later symmetry cognition as probed in this article
by free-viewing judgment tasks. In other words, it may be that the ho-
lographic approach captures early aspects of visio-cognitive processing,
while the transformational approach captures later aspects.

This differentiation is corroborated by the electroencephalography
study by Makin et al. (2016; see also Bertamini & Makin, 2014; Makin,
Rampone, Pecchinenda, & Bertamini, 2013). They tested if the event re-
lated potential called the sustained posterior negativity (SPN) is an elec-
trophysiological index of the perceptual goodness of visual regularities.
They found that, in a timewindow of 300–1000ms after stimulus onset,
the SPN correlates highlywith the holographicweight-of-evidence. This
holds, for instance, for (a) the absence of a difference between single
mirror symmetries and Glass patterns, (b) the difference between
them and 2-fold translational or rotational repetitions, and (c) the de-
pendency on the total number of pattern elements in repetitions but
not in mirror symmetries (as discussed, these aspects are not implied
by transformational models). Their currently most relevant finding ap-
plies to multiple mirror symmetries (i.e., Dn patterns, n = 1–5). In a
“perceptual” time window of 350–450 ms after stimulus onset, the
SPN correlated nearly perfectly with the holographic weight-of-evi-
dence (i.e., with D3 and D5 deviating downward from the monotonous
increase with n for the other n). In a more “cognitive” window of 600–
1000 ms after stimulus onset, however, the SPN correlated best with
the transformationally predicted monotonous increase with n for all n.
Hence, not only the difference in behavioural tasks (detection under
short presentation times versus free-viewing judgment) but also this
electrophysiological evidence suggests that, regarding multiple mirror
symmetries, both the holographic and transformational models might
be correct, but for different time windows after stimulus onset.

6. Conclusion

In this article, we discussed two experiments on symmetry cogni-
tion, using free-viewing tasks. We considered Dn patterns (n = 1–4;
i.e., reflectional symmetries or mirror-symmetrical patterns with 1–4
reflection axes) and Cn patterns (n = 1–4; i.e., rotational symmetries
Please cite this article as: Hamada, J., et al., A group theoreticalmodel of sym
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or full-circle repetitions in polar coordinates with 1–4 repeats). We
found that both the judged goodness and the judged simplicity of
these patterns increase monotonously with the number of transforma-
tions under which they are invariant. We also found, however, that
judged goodness and judged simplicity are differently processed con-
cepts, which are differentially modulated by other factors, such as stim-
ulus outline, contrast polarity, and collinearity. Finally, the employed
free-viewing tasks contrast with tasks involving short presentation
times, and based on both behavioural and neurophysiological evidence,
we conclude that the transformational approach captures late rather
than early aspects of visio-cognitive processing of visual regularities.
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