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Abstract 12 

‘Kanzi’ is a recently developed apple cultivar that has extremely low ethylene production, and 13 

maintains its crispiness during ripening. To identify key determinants of the slow softening 14 

behaviour of ‘Kanzi’ apples, a comparative analysis of pectin biochemistry and tissue fracture 15 

pattern during different ripening stages of ‘Kanzi’ apples was performed against ‘Golden 16 

Delicious’, a rapid softening cultivar. While substantial pectin depolymerisation and 17 

solubilisation was observed during softening in ‘Golden Delicious’ apples, no depolymerisation 18 

or increased solubilisation was observed in ‘Kanzi’ apples. Moreover, tissue failure during 19 

ripening was mainly by cell breakage in ‘Kanzi’ apples and, in contrast, by cell separation in 20 

‘Golden Delicious’ apples. ‘Kanzi’ apples had lower activity of beta-galactosidase, with no 21 

decline in the extent of branching of the pectin chain. A sudden decrease in firmness observed 22 

during senescence in ‘Kanzi’ apples was not due to middle lamella dissolution, as tissue failure 23 

still occurred by cell breakage. 24 
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1. Introduction 26 

Softening in fleshy fruits is one of the main changes that occurs during ripening. Cell wall 27 

modifications and middle lamella polysaccharide dissolution are thought to be the main cause of 28 

flesh softening (Brummell & Harpster, 2001; Fischer, 1994; Giovannoni, 2001). Pectin 29 

polysaccharides play an important role in maintaining the integrity of the middle lamella, by 30 

acting as a crosslink between networks of xyloglucan-cellulose microfibrils (Carpita & Gibeaut, 31 

1993). The crosslinking ability of pectin polysaccharides is dependent on its chemical structure, 32 

and modifications in pectin structure is largely responsible for softening during fruit ripening. 33 

The most common changes that occur in the cell wall pectin during ripening are debranching 34 

(due to losses in side chain neutral sugars of rhamnogalacturonan I, RG-I), depolymerisation, and 35 

solubilisation (Fischer, 1994; Gwanpua et al., 2014; Peña & Carpita, 2004). Additionally, in 36 

some fruits, there may be loosening of cell walls by expansin and xyloglucan 37 

endotransglucosylase/hydrolase (Atkinson, Johnston, Yauk, Sharma, & Schröder, 2009; 38 

McQueen-Mason & Cosgrove, 1995).  39 

Several enzymes, acting in a concerted manner, are involved in the breakdown of cell wall pectin 40 

and loss of middle lamella integrity (Bennett & Labavitch, 2008; Brummell & Harpster, 2001; 41 

Goulao, Santos, de Sousa, & Oliveira, 2007). Side chain debranching enzymes, such as beta-42 

galactosidase (β-GAL) and alpha-arabinofuranosidase (α-AF), and cell wall loosening expansins 43 

increase cell wall porosity, facilitating access of other enzymes. Pectin methylesterase (PME) 44 

removes the methyl group of the galacturonic acid residues of the pectin homogalacturonan 45 

backbone, while polygalacturonase (PG) depolymerises the demethylated pectin backbone.  46 

‘Kanzi’ apple is a recently developed apple cultivar that is characterised by a firm texture and 47 

very low ethylene production (Gwanpua et al., 2013). It was developed in Belgium by a natural 48 

cross between ‘Gala’ and ‘Braeburn’ apples (Finn & Clark, 2008). ‘Kanzi’ apples can be kept at 49 

ambient shelf life conditions for several weeks without any noticeable loss in flesh firmness 50 

(Gwanpua et al., 2013). The current study aims at understanding the mechanistic basis of the 51 

ability of ‘Kanzi’ apples to remain crispy during ripening, by investigating the pectin 52 

biochemistry and tissue fracture pattern during ripening. Moreover, these cell wall properties 53 
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were simultaneously investigated during ripening of ‘Golden Delicious’ apples, a rapid softening 54 

apple cultivar, with relatively higher rates of ethylene production (Wakasa et al., 2006). The cell 55 

wall pectin polysaccharides of ‘Kanzi’ and ‘Golden Delicious’ apples at different ripening stages 56 

were characterised, the activities of different cell wall hydrolases were investigated, and the 57 

tissue fracture pattern was visualised by scanning electron microscopy. Key differences, with 58 

respect to middle lamella pectin biochemistry and tissue fracture pattern, between ‘Kanzi’ and 59 

‘Golden Delicious’ apples will be discussed. 60 

2. Materials and methods 61 

2.1. Plant Material 62 

‘Kanzi’ and ‘Golden Delicious’ (Malus × domestica Borkh.) apple fruits were harvested in 2014 63 

from orchards in Flanders, Belgium. Fruit from each cultivar was harvested from the same row 64 

of trees within an orchard to limit batch-to-batch variability, which could obscure the cultivar 65 

differences. The apples were harvested at commercial maturity, using a combination of firmness 66 

(>73.6 N), starch (<7.5 based on the European starch chart), sugar and acid measurements 67 

(soluble solids content > 13%). Both cultivars were stored under optimal storage conditions for 68 

long term storage. For ‘Kanzi’, the fruit were stored at 4 °C under a controlled atmosphere (CA) 69 

condition of 2 % O2 and 0.7 % CO2, while the ‘Golden Delicious’ apples were stored at 1 °C 70 

under a CA condition of 2 % O2 and 2.5 % CO2. In addition, for the ‘Kanzi’ apples, the 71 

application of CA was delayed by 21 d after harvest according to commercial protocols, to avoid 72 

incidence of browning disorder. After 6 months, the apples were removed from storage and 73 

allowed to ripen under ambient shelf life conditions (18 °C under regular atmosphere, with 74 

relative humidity at 55 – 85 %) for 6 weeks. Apples coming out of storage were considered to be 75 

at the ‘onset’ of ripening, while those that had additionally been kept for two and six weeks 76 

under ambient ripening conditions will be denoted as ‘ripe’ and ‘senescent’ respectively. 77 

2.2. Physiological assessment  78 

Tissue biomechanical properties (firmness, yield stress, and yield strain) were measured using an 79 

LRX Universal Testing Machine (Lloyd Instruments, UK) (Harker, Stec, Hallett, & Bennett, 80 

1997). The firmness was measured by driving a self-cutting cylindrical plunger with a surface of 81 
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1 cm², attached to a load cell of 500 N, at a constant speed of 8 mm s-1 into the fruit. The 82 

firmness was taken as the maximum force (N) needed for the plunger to penetrate the fruit to a 83 

depth of 8 mm. Two measurements were taken on the equator, 180° apart, and the average was 84 

taken as the firmness value. For ‘Kanzi’ apples, these two measurements were taken at the blush 85 

side and at the green side. Measurements were done with the fruit skin intact. For each sampling 86 

point, the firmness of 10 fruit was measured.  87 

The yield stress and yield strain of the same fruit were measured using a tissue cylinder (16 mm 88 

in diameter, 20 mm in height), excised from the apple outer cortex, close to the region where the 89 

penetrometer readings were taken. Two 10 mm diameter cork borers, separated by a distance of 90 

4 mm, were used to create notches at each side midway of the tissue cylinder, providing a 91 

weakened zone. The tissue block was glued at both ends to PVC materials and attached to the 92 

LRX Universal Testing Machine, and pulled apart at a constant speed of 10 mm min-1 until tissue 93 

failure. The yield stress was calculated as the ratio of the tensile strength (maximum force before 94 

tissue failure) to the cross sectional area of the weakened zone, while the yield strain (strain at 95 

failure) was calculated as the maximum deformation relative to the original length of the 96 

weakened zone (10 mm). Fractured tissues were stored in 70 % ethanol, and the fractured 97 

surfaces were viewed in a scanning electron microscope to visualise cell failure, as will be 98 

detailed in section 2.8. 99 

Ethylene production was measured according to the protocol of Bulens et al. (2011). An apple 100 

was enclosed in a jar of 1.1 L and flushed for 1 hour with humidified air at 18 °C. The inlet and 101 

outlet were then closed and the jars were kept at 18 °C for 4 h to allow for sufficient ethylene 102 

accumulation. 3 mL gas samples were withdrawn from the jars and analysed by injecting into a 103 

CompactGC (Interscience, Louvain-la-Neuve, Belgium). Calibration was done by ethylene 104 

standards ranging from 50 μg L−1 to 50 mg L−1. For each sampling time, the ethylene production 105 

of six fruit was measured individually.  106 

Also, the weight of 20 fruit were individually monitored, to estimate moisture loss during 107 

ripening.  108 
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2.3. Cell wall pectin extraction and fractionation 109 

Cell wall materials were isolated using a method adapted from Renard (2005). The absence of 110 

starch was confirmed by performing a starch iodine test on apples at the ‘onset’ stage 111 

(Supplementary Figure S1). About 30 g of apple cortex tissue was chopped into small pieces and 112 

dropped into a boiling solution of 70 % (v/v) ethanol for 20 min, to inactivate endogenous 113 

enzymes. The sample was then frozen in liquid nitrogen, crushed, and homogenised in 200 mL 114 

95 % (v/v) ethanol. The suspension was filtered (Macherey-Nagel MN 615 Ø 90 mm, Germany) 115 

and the residue was again homogenised in 100 mL 95 % (v/v) ethanol. Following filtration, the 116 

residue was homogenised in 100 mL acetone. The final residue was dried overnight at 40 °C to 117 

obtain the alcohol insoluble residue (AIR). The cold water extractable (WEP), chelator 118 

extractable (CEP), and Na2CO3 extractable (NEP) pectin fractions were sequentially extracted 119 

from the AIR. WEP was extracted by stirring 0.25 g of AIR in 50 mL of distilled water for 6 h at 120 

25 °C. Extraction of CEP and NEP were done following the protocol described in Gwanpua et 121 

al., (2014). Basically, CEP was obtained by stirring the residue resulting from WEP extraction in 122 

a solution of 0.05 M cyclohexane-trans-1,2-diamine tetra-acetic acid for 6 h, while NEP was 123 

subsequently extracted from the resulting residue by incubating in a solution of 0.05 M Na2CO3, 124 

containing 0.02 M NaBH4, for 22 h. The uronic acid content of the AIR and the different pectin 125 

fractions was measured spectrophotometrically at 520 nm, following complete hydrolysis by 126 

concentrated sulphuric acid (Blumenkrantz & Asboe-Hansen, 1973). For each ripening stage, the 127 

AIR was extracted and fractionated from four individual fruit (biological replicates). Lyophilised 128 

samples of the different pectin fractions were obtained by freeze drying, following dialysis for 48 129 

h (molecular weight cut-off of 12–14 kDa) against demineralized water to minimize the presence 130 

of small co-solutes. For the CEP fraction, there was initial dialysis against 0.1 M NaCl for 24 h 131 

followed by dialysis against demineralised water for another 24 h. The cell wall pectins of these 132 

lyophilised samples were further characterised as described in sections 2.4 – 2.6.  133 

2.4. Determination of degree of methylesterification 134 

The pectin degree of methylesterification (DM) was determined using FT-IR spectroscopy, as 135 

described by Kyomugasho, Christiaens, Shpigelman, Van Loey, & Hendrickx (2015). The pH of 136 

the samples was confirmed to be around 6.0. A sample from the dry material (AIR or lyophilised 137 
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WEP) was firmly compacted to expel entrapped air and create smooth surfaces. The sample was 138 

then placed on the sample holder of the FT-IR (Shimadzu FTIR-8400S, Japan), and the 139 

transmittance was recorded at wavenumbers from 4000 cm-1 to 400 cm-1, at a resolution of 4 cm-140 

1. For each sample, the spectra of 100 scans were averaged to ensure a high signal to noise ratio. 141 

The spectra were converted into absorbance mode prior to base line correction and reading of the 142 

absorption at the maxima of both peaks. The obtained ratio ( R ) between the intensity of the 143 

peak situated at 1740 cm-1 (due to the ester carbonyl group (C═O) stretching) to the combined 144 

intensities of the peak at 1740 cm-1 and the peak at 1600 cm-1 (due to carboxylate group (COO−) 145 

stretching) (Szymanska-Chargot & Zdunek, 2013) was used to calculate the DM based on the 146 

calibration line DM 136.86 3.987R    (Kyomugasho et al., 2015).  147 

2.5. Neutral sugar analysis 148 

The neutral sugar content of the different pectin fractions was quantified by a high-performance 149 

anion exchange chromatography (HPAEC) using a Dionex system (DX600), equipped with a 150 

GS50 gradient pump, a CarboPac™ PA20 column, a CarboPac™ PA20 guard column, and an 151 

ED50 electrochemical detector (Dionex, Sunnyvale, USA). The lyophilised samples (0.005 g) of 152 

the pectin fractions were hydrolysed in 0.5 mL of 4 M trifluoroacetic acid (TFA) at 110 °C for 153 

1.5 h. The digested samples were dried under N2 evaporator at 45 °C, and the TFA was removed 154 

by adding 1 M NH4OH and drying again under N2 at 45 °C. The dried sample was dissolved in 155 

ultrapure water (organic free, 18.2 MΩ cm resistance), filtered through a 0.45 μm filter 156 

(Chromafil® A-45/25, Germany) and injected onto the HPAEC system. Prior to sample 157 

injection, the system was equilibrated for 5 min using 100 mM NaOH, and for additional 5 min 158 

using 4 mM NaOH. Samples (10 μL) were injected and eluted for 20 min at a flow rate of 0.5 159 

mL/min with 4 mM NaOH at 30 °C, followed by column regeneration (for 10 min) using 500 160 

mM NaOH. Commercial neutral sugar standards at varying concentrations (1-10 mg L-1) were 161 

used as external standards for identification and quantification. To correct for degradation of the 162 

monosaccharides during the acid hydrolysis step, mixtures of the sugar standards were subjected 163 

to the aforementioned hydrolysis conditions, and the peak areas were compared to those of 164 

untreated standard mixtures (Houben, Jolie, Fraeye, Van Loey, & Hendrickx, 2011).  165 
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2.6. Analysis of molecular mass distribution 166 

The molecular mass distribution of the different WEP fractions was investigated using size 167 

exclusion chromatography. We focused on the WEP fractions as they are easily accessible by 168 

polygalacturonase and should contain the shorter pectin fragments (increased solubilisation) due 169 

to the activity of this enzyme. In addition, this fraction is less sensitive to pectin aggregation (due 170 

to cross linking) during the HPLC SEC measurements and the sample pre-filtering. The 171 

separation was performed on series of three Waters columns (Waters, Milford, MA), namely, 172 

Ultrahydrogel 250, 1000, and 2000 with exclusion limits of 8 × 104, 4 × 106, and 1 × 107 g mol-1, 173 

respectively. The eluent was monitored using a reflective index detector (Shodex RI-101, Showa 174 

Denko K.K., Kawazaki, Japan). A 100 µL of 0.5 % of the lyophilised WEP fraction was 175 

solubilized in the eluent and filtered through 0.45 µm filter before being injected by an 176 

autosampler (G1329A, Agilent technologies, Diegem, Belgium). The eluent (0.1 M MES (2-(N-177 

morpholino) ethanesulfonic acid buffer, pH 6.5), with 0.1 M NaCl to assure a stable pH and 178 

minimize ionic interactions) was prepared using ultrapure water (organic free, 18 MΩ cm 179 

resistance), filtered (0.1 µm) and degassed by an on-line degasser of the HPLC system (Agilent 180 

technologies 1200 Series, Diegem, Belgium). The flow rate was 0.5 mL min-1 and the columns 181 

were kept at 35 °C. 182 

2.7. Extraction and assay of PME, β-Gal, and α-AF enzymes 183 

PME, β-Gal, and α-AF enzymes were extracted and assayed from crushed frozen apple samples 184 

at ‘onset’, ‘ripe’, and ‘senescent’ stages as defined above, following the protocols used by 185 

Gwanpua et al. (2014). PME was extracted using 0.2 M Tris buffer pH 7.5, containing 1.0 M 186 

NaCl, 0.1 % (v/v) Triton X-100, and 5 % Polyvinylpolypyrrolidone (PVPP); β-Gal was extracted 187 

using 10 mM borate buffer pH 9.0, containing 1.0 M NaCl, 0.1 % (v/v) Triton X-100, and 5 % 188 

PVPP, and α-AF was extracted using a 20 mM borate buffer pH 9.0, containing 2.0 M NaCl, 0.2 189 

% (v/v) Triton-100, 5 % PVPP, 3 mM ZnCl2 and 2 % (w/v) sucrose. All extractions were done 190 

for 2 h at 4 °C. 191 

PME activity was assayed using the method described by Ly-Nguyen, Van Loey, Fachin, 192 

Verlent, & Hendrickx (2002). 0.2 mL of enzyme extract was added to a solution of 0.35 % apple 193 

pectin, containing 0.117 M NaCl. The reaction mixture was incubated at 22 °C, while titrating 194 

with 0.01 M NaOH to maintain the pH at 7.5 using an automatic pH-stat (718 STAT titrino, Ω 195 
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Metrohm, Switzerland). One unit of PME activity was defined as the amount of enzyme required 196 

to release 1 μmol of carboxyl group per min, under the assay conditions.  197 

β-Gal was assayed as described in Tateishi, Inoue, & Yamaki (2001). The reaction mixture 198 

containing 0.2 mL of the enzyme extract, 0.5 mL of 0.1 M citrate buffer (pH 4.0), 0.1 mL BSA 199 

solution and 0.4 mL of 13 mM p-nitro phenyl-β-D-galactopyranoside was incubated for 10 min 200 

at 37 °C. The reaction was stopped by adding 2 mL of 0.2 M Na2CO3 solution and the 201 

absorbance at 400 nm was measured. One unit of enzyme activity was defined as the amount of 202 

enzyme that hydrolyses the release of 1 µmol of p–nitrophenol per min, under the given assay 203 

conditions. 204 

α-AF were assayed using the method used by Tateishi, Kanayama, & Yamaki (1996). 0.1 mL of 205 

the enzyme extract was incubated in a reaction mixture consisting of 0.25 mL of 0.1 M citrate 206 

buffer (pH 4.0), 0.05 mL BSA solution, and 0.2 mL of 3.6 mM p-nitrophenyl-α-L-207 

arabinofuranoside, at 37 °C. The reaction was stopped after incubation for 10 min by adding 2 208 

mL of 0.2 M Na2CO3 solution, and the absorbance was measured at 400 nm. One unit of enzyme 209 

activity was defined as the amount of enzyme that hydrolyses the release of 1 µmol of p–210 

nitrophenol per min, under the given assay conditions. 211 

The enzyme activities were measured in fruit at each ripening stage, using samples from the 212 

same four biological replicates used for characterising cell wall pectin.  213 

2.8. Scanning electron microscopy 214 

Sample preparation was done following the protocol used by Vrijdaghs, Flores-Olvera, & Smets 215 

(2014). The fractured surfaces of the apple tissues were prepared for critical point drying by 216 

washing twice with 70 % ethanol for 5 min. Next, the material was placed in a mixture (1:1) of 217 

70 % ethanol and dimethoxymethane (DMM) for 5 min, and subsequently transferred to 100 % 218 

DMM for 20 min. Critical point drying was done using liquid CO2, with a CPD 030 critical point 219 

dryer (BAL-TEC AG, Balzers, Liechtenstein). The dried samples were mounted on aluminium 220 

stubs using Leit-C and coated with gold via a SPI-ModuleTM Sputter Coater (SPI Supplies, 221 

West-Chester, PA, USA). Scanning electron microscope (SEM) images were obtained with a 222 

Jeol JSM-6360 (JEOL Ltd., Tokyo) at the Ecology, Evolution and Biodiversity Conservation 223 
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Section (KU Leuven). Fracture surfaces of tissue samples from three different apples at each 224 

ripening stage were observed to obtain representative images. 225 

2.9. Data analysis 226 

Significant differences (p < 0.05) between means were investigated using one-way ANOVA. A 227 

multiple comparison was carried out between all factor level combinations using Tukey’s Honest 228 

Significant Difference (HSD) test using the Statistics Toolbox of Matlab (The Mathworks Inc., 229 

Natick, USA). For each variable analysed, significant differences were estimated in common for 230 

all means within both cultivars, for all ripening stages. 231 

3. Results 232 

3.1. Climacteric and post-climacteric evolution of firmness, ethylene 233 

production, and moisture loss in ‘Kanzi’ and ‘Golden Delicious’ apples 234 

‘Kanzi’ apples remained firm up to four weeks at 18 °C under normal atmosphere. However, 235 

between the fourth and sixth week of ripening, there was a sudden drop in firmness (Fig. 1A). 236 

This sudden decline in firmness coincided with considerable visible shrinkage. The ‘Golden 237 

Delicious’ apples were much softer than the ‘Kanzi’ apples already at the beginning of the shelf 238 

life exposure, and underwent further loss in firmness during ripening under ambient shelf life 239 

conditions (insert Fig 1A). There was also a sudden decline in firmness between the fourth and 240 

sixth week of shelf life in ‘Golden Delicious’, but this was less drastic than those observed for 241 

‘Kanzi’ apples. The ‘Kanzi’ apples had extremely low ethylene production throughout ripening 242 

(Fig. 1B), several hundred folds less than ‘Golden Delicious’. Both cultivars had peak ethylene 243 

production one week after exposure to ambient shelf life conditions. ‘Golden Delicious’ apples 244 

were able to maintain this high level of ethylene production until the fourth week of ripening, 245 

after which ethylene production started to decline. Ethylene production in ‘Kanzi’ apples 246 

declined immediately after reaching the – relatively very low – climacteric maximum. Both 247 

cultivars had comparable moisture loss, which increased linearly with time to about 10 % after 6 248 

weeks of shelf life (Fig. 1C) resulting in visually shrivelled fruit at ‘senescent’. 249 
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3.2. Changes in pectin fractions and depolymerisation of WEP  250 

The content of the different pectin fractions during the different ripening stages for both ‘Kanzi’ 251 

and ‘Golden Delicious’ apples is shown in Figure 2A. There was no change in the amount of 252 

WEP, CEP, and NEP in ‘Kanzi’ for all three ripening stages. For ‘Golden Delicious’ apples, only 253 

the WEP fraction changed during ripening, with a steady increase observed from the ‘onset’ to 254 

the ‘ripe’ and ‘senescent’ stages. Consequently, the size exclusion chromatographic (SEC) 255 

profile of the WEP fraction should provide information about possible pectin depolymerisation. 256 

The SEC profile of the WEP for both ‘Kanzi’ and ‘Golden Delicious’ apples during the different 257 

ripening stages is shown in Figure 2B.  A clear shift from large size pectin at the ‘onset’ stage to 258 

smaller size pectin at the ‘ripe’ and ‘senescent’ stages was observed in ‘Golden Delicious’ 259 

apples. Pectin depolymerisation in ‘Golden Delicious’ was more evident between the ‘onset’ and 260 

‘ripe’ stages, with very little changes occurred between the ‘ripe’ and the ‘senescent’ stages. 261 

Contrarily, ‘Kanzi’ apples ripen without any noticeable pectin depolymerisation, based on the 262 

SEC profiles of the WEP fractions. In fact, there was a shift in the molar mass distributions to 263 

larger size pectin between the ‘onset’ and the ‘ripe’ stages (Fig. 2B). 264 

3.3. Loss of pectin neutral sugars, and activities of side-chain debranching 265 

enzymes beta-galactosidase and alpha-arabinofuranosidase  266 

The galactose and arabinose content of different pectin fractions were quantified for both ‘Kanzi’ 267 

and ‘Golden Delicious’ apples at the ‘onset’, ‘ripe’, and ‘senescent’ stages (Fig. 3A). The 268 

galactose content of the WEP fraction was higher in ‘Kanzi’ apples than in ‘Golden Delicious’ 269 

during the ‘ripe’ stage. Also, the amount of galactose and arabinose declined between the ‘onset’ 270 

and ‘ripe’ stages in ‘Golden Delicious’ apples, but not in ‘Kanzi’. No significant differences 271 

were observed between the galactose and arabinose content in the CEP fractions for both apple 272 

cultivars, and no changes were observed during the different ripening stages. The NEP fractions 273 

were richer in arabinose, with higher values found in ‘Golden Delicious’. No clear decline in 274 

galactose or arabinose content was observed in the NEP fractions for either cultivar. To get an 275 

idea of the extent of branching of the pectin side chain, the ratio of the sum of galactose and 276 

arabinose contents to the rhamnose content was calculated for all three pectin fractions (Fig 3B). 277 

The extent of branching declined between the ‘onset’ and ‘ripe’ stages for ‘Golden Delicious’ 278 

apples in both the WEP and NEP fractions. The activities of both beta-galactosidase (β-GAL) 279 
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and alpha-arabinofuranosidase (α-AF) were much higher in ‘Golden Delicious’ apples (Fig 3C). 280 

A high β-GAL activity was observed between the ‘onset’ and ‘ripe’ stages for ‘Golden 281 

Delicious’ apples, but declined between the ‘ripe’ and ‘senescent’ stages. α-AF activity was 282 

much lower, and not significantly different between both cultivars. Moreover, the α-AF activity 283 

did not change significantly during any of the ripening stages.  284 

3.4. Pectin degree of methylesterification and pectin methylesterase activity 285 

The degree of methylesterification (DM) of the alcohol insoluble residues (AIR) was comparable 286 

for the two cultivars, and constant throughout ripening (Fig. 4A). The WEP fractions of ‘Kanzi’ 287 

apples had lower DM values (between 50 and 60 %) than those of ‘Golden Delicious’ (Fig. 4B), 288 

but remained constant throughout ripening. The pectin methylesterase (PME) activity was not 289 

significantly different between the ‘Golden Delicious’ and ‘Kanzi’ apples, and decreased 290 

drastically between the ‘ripe’ and ‘senescent’ stage to undetectable levels in both cultivars (Fig. 291 

4C)  292 

3.5. Fracture pattern of ‘Kanzi’ and ‘Golden Delicious’ apples during ripening  293 

The fractured surface observed by SEM revealed differences in the mode of tissue failure in 294 

‘Kanzi’ and ‘Golden Delicious’ apples. At all ripening stages, tissue failure in ‘Kanzi’ was 295 

almost exclusively by cell breakage (Fig. 5A-C). For ‘Kanzi’ apples at the ‘onset’ stage, the 296 

ruptured surfaces were regularly shaped, with high yield stress (Fig. 6A), and low yield strain 297 

(Fig. 6B). During the ‘ripe’ and ‘senescent’ stages, tissue failure was still by cell breakage, with 298 

low tensile stress but large tissue deformation (Fig. 6A & B). Tissue failure in ‘Golden 299 

Delicious’ apples at the ‘onset’ stage was both by cell breakage and cell separation, as there were 300 

both ruptured and non-ruptured cells. However, as ripening progressed, tissue failure was almost 301 

exclusively by cell separation. Unlike in ‘Kanzi’ apples, there was no increase in tissue 302 

deformation (yield strain) in ‘Golden Delicious’ apples at the ‘senescent’ stage (Fig. 6B).  303 
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4. Discussion 304 

4.1. ‘Kanzi’ apples ripen with minimal modifications in cell wall pectin 305 

By comparing softening-related cell wall modifications and tissue fracture patterns of ‘Kanzi’ 306 

apples and the rapid softening ‘Golden Delicious’, important determinants of softening were 307 

identified. Several studies on apple softening have suggested that the loss in side chain galactose 308 

and arabinose from the RG-I side chain of the cell wall pectin, concomitant with increased 309 

activities of β-GAL and α-AF, occurs during softening (Gwanpua et al., 2014; Ng et al., 2015; 310 

Peña & Carpita, 2004). In the current study, the activity of β-GAL was higher in ‘Golden 311 

Delicious’ than in ‘Kanzi’ apples. α-AF activity remained constant during climacteric ripening, 312 

but appeared to increase during the post-climacteric ripening in both cultivars. This is in 313 

accordance with an earlier study where loss in arabinose neutral sugars was shown to occur 314 

during the later stages of ripening in different apple cultivars (Peña & Carpita, 2004). However, 315 

in this study there was no significant decrease in the arabinose content during any of the ripening 316 

stages, in any of the pectin fractions for both ‘Golden Delicious’ and ‘Kanzi’ apples. Moreover, 317 

the high β-GAL activity during climacteric ripening in ‘Golden Delicious’ apple seems not to be 318 

accompanied by any significant loss in side chain galactose in any of the pectin fractions. 319 

Nevertheless, by considering the extent of side chain branching, rather than the absolute 320 

arabinose and galactose content, there appears to be more side chain neutral sugar degradation in 321 

‘Golden Delicious’ apples. This decline in extent of branching was most evident in the WEP and 322 

NEP fractions between the ‘onset’ and ‘ripe’ stages, suggesting that there is little pectin side-323 

chain neutral sugar degradation during senescence in ‘Golden Delicious’ apples. This was 324 

concomitant to the decline in β-GAL activity in ‘Golden Delicious’ between the ‘ripe’ and 325 

‘senescent’ stages. 326 

Pectin depolymerisation and increased solubilisation were more obvious softening-dependent 327 

cell wall pectin modifications. The complete absence of any measurable increase in 328 

solubilisation or depolymerisation of the WEP fraction in ‘Kanzi’ could be the main reason for 329 

the lack of detectable loss in firmness during normal climacteric ripening. An apparent shift in 330 

the SEC profile of the WEP towards pectin with higher molecular weight observed in ‘Kanzi’ 331 

could be related to the extraction of WEP fractions with larger sizes in latter ripening stages. 332 

Also, it could be due to possible aggregation of WEP pectin polysaccharides via Ca2+ 333 
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crosslinking, particularly as the DM of the WEP fraction of ‘Kanzi’ apples were lower than those 334 

of ‘Golden Delicious’ apples. An earlier study on evolution of firmness in ‘Kanzi’ also showed 335 

an increase in firmness during ripening (Gwanpua et al., 2013). Pectin depolymerisation and 336 

solubilisation was clearly evident in the rapid softening ‘Golden Delicious’ apples. Although in 337 

several studies endo-PG activity was undetectable in ripe apples (Goulao et al., 2007; Yoshioka, 338 

Aoba, & Kashimura, 1992), the endo-polygalacturonase 1 (PG1) gene has been shown to be 339 

strongly associated with apple fruit softening (Atkinson et al., 2012; Gwanpua et al., 2016; 340 

Longhi et al., 2013). The close connection between depolymerisation of pectin and softening in 341 

‘Golden Delicious’ apples supports the earlier reported role of PG1 in softening of ‘Golden 342 

Delicious’ apple (Longhi et al., 2013). The lack of any measureable increase in pectin 343 

solubilisation and depolymerisation during ripening in ‘Kanzi’ apples is in line with the observed 344 

firmness and tissue failure behaviour. Tissue failure in ‘Kanzi’ apples was mainly by cell 345 

breakage at all ripening stages, parallel to the absence of any noticeable increase in pectin 346 

depolymerisation and solubilisation. 347 

Another important observation from this study was that the overall DM of the cell wall pectin (or 348 

its fractions) does not necessarily need to be very low for depolymerisation to occur. The DM of 349 

WEP fraction in ‘Golden Delicious’ apples were higher than 70 %, suggesting a rather limited 350 

sensitivity of pectin to PG induced degradation. However, most plant PMEs are processive 351 

enzymes, such that de-esterification occurs in blocks, providing regions of no methyl 352 

esterification for depolymerisation (Catoire, 1998; Markoviě & Kohn, 1984). The pectin DM on 353 

itself does not provide a good indicator for softening, nor does the activity of PME during 354 

ripening. PME activity was not higher in the ‘ripe’ ‘Kanzi’ than in the ‘ripe’ ‘Golden Delicious’, 355 

yet the former had a lower DM for the WEP fractions. Elsewhere, Ng et al. (2013) did not 356 

observe any significant differences in PME activity or degree of esterification between ‘Scifresh’ 357 

(slow softening) and ‘Royal Gala’ (rapid softening) apple cultivars at the ‘mature’ and ‘ripe’ 358 

stages, further suggesting that PME is unlikely to be a key determinant in differences in 359 

softening behaviour amongst different apple cultivars. 360 

4.2. Post-climacteric softening in ‘Kanzi’ apples is driven by possible cell 361 

collapse from excessive dehydration 362 

An interesting observation in the current study was the drastic decline in firmness of ‘Kanzi’ 363 

apples between the ‘ripe’ and ‘senescent’ stages in the absence of any measurable increase in 364 
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pectin depolymerisation or solubilisation (nor increase of WEP pectin fraction, nor changes in 365 

the WEP molar mass distribution pattern). This suggests that factors other than increased cell 366 

wall dissolution were responsible for softening during post-climacteric ripening in the ‘Kanzi’ 367 

apples. Saladié et al. (2007) showed that transpirational water loss could be as integral in 368 

softening as is cell wall disassembly. Moisture loss during ripening may directly influence 369 

firmness by loss of cell turgor (Barrett, Garcia, & Wayne, 1998; Fanta et al., 2014; Jackman, 370 

Marangoni, & Stanley, 1992). While tissue failure amongst all ripening stages in ‘Kanzi’ was 371 

mainly by cell breakage, the sudden decline in firmness between the ‘ripe’ and ‘senescent’ stages 372 

was accompanied by a drastic increase in the yield strain (tissue deformation), with the tissue 373 

behaving as a ductile material. A possible explanation to this observation is that at the ‘onset’ 374 

stage the cellular turgor was very high, but the cells became flaccid as the fruit entered the post-375 

climacteric stage, due to excessive dehydration to levels far beyond the turgor-loss point. It 376 

would be interesting to see if the sudden decline in the firmness of ‘Kanzi’ apples coincide with 377 

a sudden loss in cell turgor. In a study by Tong et al. (1999), the crispy texture of ‘Honeycrisp’ 378 

was shown to be related to its ability to maintain high turgor potential and cell wall integrity.  379 

Also, the fracture surfaces of ripe tissues of ‘Scifresh’ (a slow softening apple cultivar) was 380 

shown to have greater cell rupture and greater cell adhesion that the rapid softening ‘Royal Gala’ 381 

(Ng et al., 2013). 382 

In ‘Golden Delicious’ apples where tissue failure in the ‘ripe’ and ‘senescent’ fruit occurred 383 

mainly by cell separation, the separated cells were irregularly shaped, suggesting that a 384 

combination of loss in cell turgor and dissolution of the pectin in the middle lamella could have 385 

been responsible for softening. Surprisingly, the moisture loss for both apple cultivars were 386 

comparable. This implies that the differential softening behaviour of ‘Kanzi’ and ‘Golden’ was 387 

not directly linked to differences in transpirational water loss, but more to the fact that water loss 388 

in ‘Kanzi’ was not accompanied by substantial pectin breakdown. Unlike in ‘Kanzi’, ‘there was 389 

no increase in tissue yield strain between the ‘ripe’ and ‘senescent’ stages for ‘Golden Delicious’ 390 

apples, as moisture loss was accompanied by significant solubilisation and depolymerisation of 391 

the pectin in the middle lamella. This also explains why the tissue yield stress was much higher 392 

for ‘Kanzi’ than for ‘Golden Delicious’ apples.  393 
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5. Conclusion 394 

The cell wall pectin changes and the tissue fracture pattern of ‘Kanzi’, an apple cultivar with a 395 

low ethylene production and ability to remain crisp during ripening, was investigated. The 396 

limited increase in cell wall polymer solubilisation, as revealed by the limited increase of pectin 397 

depolymerisation and solubilisation, was associated with a slow softening behaviour. In addition, 398 

tissue failure in ‘Kanzi’ apples was mainly by cell breakage, even in the post-climacteric state, 399 

suggesting the integrity of pectin in the middle lamella was maintained during ripening. Even 400 

under conditions of limited increase of cell wall pectin dissolution, apple can undergo loss in 401 

firmness after extensive dehydration. The high level of pectin depolymerisation that was 402 

accompanied by solubilisation and softening during ripening in ‘Golden Delicious’ apples are in 403 

line with the key role of depolymerising enzymes, such as endo-polygalacturonase, in softening 404 

of certain apple cultivars. 405 
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Figure Captions 547 

Figure 1. Firmness loss (A), ethylene production (B) and weight loss (C) of ‘Kanzi’ and ‘Golden 548 

Delicious’ apples during ripening at 18 °C under regular air for 6 weeks. The error bars are the 549 

standard error of the mean of 10 fruit for firmness, 6 for ethylene production, and 20 for weight 550 

loss measurements. The insert in (A) shows the percentage loss in firmness. 551 

Figure 2. Changes in pectin fractions and depolymerisation of water extractable pectin (WEP) for 552 

‘Kanzi’ and ‘Golden Delicious’ apples at the ‘onset’, ‘ripe’, and ‘senescent’ stages. (A) shows 553 

the uronic acid content of the WEP, chelator extractable pectin (CEP), and Na2CO3 extractable 554 

pectin (NEP), with error bars representing the standard error of the mean of four biological 555 

replicates (means with the same letters are not significantly different at 5 % significance level). 556 

(B) shows size exclusion chromatographic (SEC) profile of the WEP. The SEC profiles are 557 

based on the integrated average refractive index (RI) signals of four biological replicate 558 

measurements 559 

Figure 3. The arabinose (Ara) and galactose (Gal) content of the water extractable pectin (WEP), 560 

chelator extractable pectin (CEP), and Na2CO3 extractable pectin (NEP) for fruit at the ‘onset’, 561 

‘ripe’, and ‘senescent’ stages (A). The extend of branching, defined as the ratio of the sum of the 562 

Ara and Gal to the rhamnose (Rha) content is shown in (B), while the activities of alpha-563 

arabinofuranosidase (α-AF) and beta-galactosidase (β-GAL) for both ‘Kanzi’ and ‘Golden 564 

Delicious’ apples are shown in (C). One unit (U) of enzyme activity was defined as the amount 565 

of enzyme that hydrolyses the release of 1 µmol of p–nitrophenol per min. The error bars are the 566 

standard error for the mean of four biological replicates. Means with the same letters are not 567 

significantly different at 5 % significance level. 568 

Figure 4. The degree of methylesterification of the alcohol soluble residues (AIR) (A) and the 569 

water extractable pectin(WEP) (B) for ‘Kanzi’ and ‘Golden Delicious’ apples at ‘onset’, ‘ripe’, 570 

and ‘senescent’ stages. The pectin methylesterase (PME) activity is shown in C. One unit (U) of 571 

PME activity was defined as the amount of enzyme required to release 1 μmol of carboxyl group 572 

per min, under the assay conditions. The error bars are the standard error for the mean of four 573 

biological replicates. Means with the same letters are not significantly different at 5 % 574 

significance level. 575 
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Figure 5. Scanning electron micrograms showing representative tissue fracture patterns during 576 

different ripening stages. A-C shows the tissue fracture pattern for fruit at the ‘onset’, ‘ripe’, and 577 

‘senescent’ stages, respectively, for ‘Kanzi’ apples. D-F shows the tissue fracture pattern for fruit 578 

at the ‘onset’, ‘ripe’, and ‘senescent’ stages, respectively, for ‘Golden Delicious’ apples.  579 

Figure 6. Tissue biomechanical properties of ‘Kanzi’ and ‘Golden Delicious’ apples at the 580 

‘onset’, ‘ripe’, and ‘senescent’ stages. A shows the yield stress, while B shows the yield strain. 581 

The error bars in G and H are the standard error for the mean of eight to ten biological replicates. 582 

Means with the same letters are not significantly different at 5 % significance level. 583 
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