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Abstract. Lattice-based public key cryptography often requires sam-
pling from discrete Gaussian distributions. In this paper we present an
efficient hardware implementation of a discrete Gaussian sampler with
high precision and large tail-bound based on the Knuth-Yao algorithm.
The Knuth-Yao algorithm is chosen since it requires a minimal number of
random bits and is well suited for high precision sampling. We propose
a novel implementation of this algorithm based on an efficient traver-
sal of the discrete distribution generating (DDG) tree. Furthermore, we
propose optimization techniques to store the probabilities of the sample
points in near-optimal space. Our implementation targets the Gaussian
distribution parameters typically used in LWE encryption schemes and
has maximum statistical distance of 2−90 to a true discrete Gaussian
distribution. For these parameters, our implementation on the Xilinx
Virtex V platform results in a sampler architecture that only consumes
47 slices and has a delay of 3ns.
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1 Introduction

Lattice-based cryptography has become one of the main research tracks in cryp-
tography due to its wide applicability (see [19] for some applications) and the fact
that its security is based on worst-case computational assumptions that remain
hard even for quantum computers. The significant advancements in theoretical
lattice-based cryptography [14, 15, 17] have more recently been complemented
with practical implementations [16, 9, 5] both in software and hardware.

Lattice-based cryptosystems often require sampling from discrete Gaussian
distributions. The implementation of such a discrete Gaussian sampler for cryp-
tographic applications faces several challenges [7]. Firstly, most existing sam-
pling algorithms require a large number of random bits, which could become a
limitation for lattice-based cryptosystems on a computationally weak platform.
Secondly, the sampling should be of high precision, i.e. the statistical distance
to the true distribution should be negligible for the provable security results



to hold [4]. Sampling with negligible statistical distance however either requires
high precision floating arithmetic or large precomputed tables.

There are various methods for sampling from a non-uniform distribution [1].
Rejection sampling and inversion sampling are the best known algorithms. In
practice, rejection sampling for a discrete Gaussian distribution is slow due to
the high rejection rate for the sampled values which are far from the center of the
distribution [9]. Moreover, for each trial, many random bits are required which
is very time consuming on a constrained platform.

The inversion method first generates a random probability and then selects a
sample value such that the cumulative distribution up to that sample point is just
larger than the randomly generated probability. Since the random probability
should be of high precision, this method also requires a large number of random
bits. Additionally, the size of the comparator circuit increases with the precision
of the probabilities used. A recent work [3] shows that the number of random
bits can be reduced by performing table lookup in a lazy fashion.

In [11], Knuth and Yao proposed a random walk model for sampling from
any non-uniform distribution. They showed that the number of random bits re-
quired by the sampling algorithm is close to the entropy of the distribution and
thus near-optimal. However the method requires the probabilities of the sample
points to be stored in a table. In case of a discrete Gaussian distribution, the bi-
nary representations of the probabilities are infinitely long. For security reasons,
the probability expansions should be stored with high precision to keep the sta-
tistical distance between the true Gaussian distribution and its approximation
small [4]. Hence the storage required for the probabilities becomes an issue on
constrained platforms. In [7], Galbraith and Dwarkanath observed that the prob-
ability expansions for a discrete Gaussian distribution contain a large number
of leading zeros which can be compressed to save space. The authors proposed
a block variant of the Knuth-Yao algorithm which partitions the probabilities
in different blocks having roughly the same number of leading zero digits. The
paper however does not report on an actual implementation.

Although there are several hardware implementations of continuous Gaussian
samplers [6, 10], these implementations have low precisions and are not suitable
for sampling from discrete Gaussian distributions. To the best of our knowledge,
the only reported hardware implementation of a discrete Gaussian sampler can
be found in [9]. The hardware architecture uses a Gaussian distributed array
and an LFSR as a pseudo-random bit generator to generate a random index of
the array. However the sampler has rather low precision and samples up to a tail
bound which is small (2s). This results in a large statistical distance to the true
discrete Gaussian distribution which invalidates worst case security proofs [4].

Our contributions In this paper we propose a hardware implementation of a
discrete Gaussian sampler based on the Knuth-Yao algorithm [11]. To the best of
our knowledge, this is the first hardware implementation of Knuth-Yao sampling.
The implementation targets sampling from discrete Gaussian distributions with
small standard deviations that are typically used in LWE encryption systems [18,



12]. The proposed hardware architecture for the sampler has high precision and
large tail-bound to keep the statistical distance below 2−90 to the true Gaus-
sian distribution for the LWE cryptosystem parameter set [9]. Furthermore, this
paper proposes the following optimizations which are novel:

1. An implementation of the discrete distribution generating (DDG) tree [11]
data structure at run time in hardware is challenging and costly. We use
specific properties of the DDG tree to devise a simpler approach to tra-
verse the DDG tree at run time using only the relative distance between the
intermediate nodes.

2. The Knuth-Yao sampling algorithm assembles the binary expansions of the
probabilities of the sample points in a bit matrix. How this bit matrix is
stored in ROM greatly influences the performance of the sampling opera-
tion. Unlike the conventional row-wise approach, we propose a column-wise
method resulting in much faster sampling.

3. Unlike the block variant of the Knuth-Yao method in [7], we perform column-
wise compression of the zeros present in the probability matrix due to the
ROM specific storage style. A one-step compression method is proposed
which results in a near-optimal space requirement for the probabilities.

The remainder of the paper is organized as follows: Section 2 has a brief
mathematical background. Implementation strategies for the Knuth-Yao sam-
pler architecture are described in Section 3. The hardware architecture for the
discrete Gaussian sampler is presented in Section 4 and experimental results are
given in Section 5. Finally, Section 6 has the conclusion.

2 Background

Here we recall the mathematical background required to understand the paper.

2.1 Discrete Gaussian Distribution

The continuous Gaussian distribution with standard deviation σ > 0 and mean
c ∈ R is defined as follows: let E be a random variable on R, then for x ∈ R

we have Pr(E = x) = 1
σ
√

2π
e−(x−c)2/2σ2

. The discrete version of the Gaussian

distribution over Z with mean 0 and standard deviation σ > 0 is denoted by
DZ,σ and is defined as follows: let E be a random variable on Z, then

Pr(E = z) =
1

S
e−z2/2σ2

where S = 1 + 2

∞∑

z=1

e−z2/2σ2

Here S is a normalization factor and is approximately σ
√

2π. Some authors use a
slightly different normalization and define Pr(E = z) proportional to e−πz2/s2

.
Here s > 0 is called the parameter of the distribution and is related to the
standard deviation σ by s = σ

√
2π.



The discrete Gaussian distribution DL,σ over a lattice L with standard de-

viation σ > 0 assigns a probability proportional to e−|x|
2/2σ2

to each element
x ∈ L. Specifically when L = Z

m, the discrete Gaussian distribution is the
product distribution of m independent copies of DZ,σ.

2.2 Tail Bound of the Discrete Gaussian Distribution

The tail of the Gaussian distribution is infinitely long and cannot be covered
by any sampling algorithm. Indeed we need to sample up to a bound known
as the tail bound. A finite tail-bound introduces a statistical difference with the
true Gaussian distribution. The tail-bound depends on the maximum statistical
distance allowed by the security parameters. As per Lemma 4.4 in [13], for any
c > 1 the probability of sampling v from DZm,σ satisfies the following inequality.

Pr(|v| > cσ
√

m) < cme
m

2
(1−c2) (1)

2.3 Precision Bound of the Discrete Gaussian Distribution

The probabilities in a discrete Gaussian distribution have infinitely long binary
representations and hence no algorithm can sample according to a true discrete
Gaussian distribution. Secure applications require sampling with high precision
to maintain negligible statistical distance from actual distribution. Let ρz de-
note the true probability of sampling z ∈ Z according to the distribution DZ,σ.
Assume that the sampler selects z with probability pz where |pz − ρz| < ǫ for
some error-constant ǫ > 0. Let D̃Z,σ denote the approximate discrete Gaussian
distribution corresponding to the finite-precision probabilities pz. The approx-
imate distribution D̃Zm,σ corresponding to m independent samples from D̃Z,σ

has the following statistical distance ∆ to the true distribution DZm,σ [7]:

∆(D̃Zm,σ, DZm,σ) < 2−k + 2mztǫ . (2)

Here Pr(|v| > zt : v← DZm,σ) < 2−k represents the tail bound.

2.4 Sampling Methods and the Knuth-Yao Algorithm

Rejection and inversion sampling are the best known techniques to sample from
a discrete Gaussian distribution [1]. However both sampling methods require
a large number of random bits. On the other hand, the Knuth-Yao algorithm
performs sampling from non-uniform distributions using a near-optimal number
of random bits. A detailed comparative analysis of different sampling methods
can be found in [7]. Since our proposed hardware architecture uses the Knuth-
Yao algorithm, we mainly focus on the Knuth-Yao method.

The Knuth-Yao algorithm uses a random walk model to perform sampling
using the probabilities of the sample space elements. The method is applicable
for any non-uniform distribution. Let the sample space for a random variable X

consist of n elements 0 ≤ r ≤ n−1 with probabilities pr. The binary expansions
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Fig. 1. Probability matrix and corresponding DDG-tree

of the probabilities are written as a matrix which we call the probability matrix

Pmat. The rth row of the probability matrix corresponds to the binary expansion
of pr. An example of the probability matrix for a sample space containing three
sample points {0, 1, 2} with probabilities p0 = 0.01110, p1 = 0.01101 and p2 =
0.00101 is shown in Figure 1.

A rooted binary tree known as a discrete distribution generating (DDG) tree
is constructed from the probability matrix. Each level of the DDG tree can have
two types of nodes: intermediate nodes (I) and terminal nodes. The number
of terminal nodes in the ith level of the DDG tree is equal to the Hamming
weight of ith column in the probability matrix. Here we provide an example of
the DDG tree construction for the given probability distribution in Figure 1.
The root of the DDG tree has two children which form the 0th level. Both the
nodes in this level are marked with I since the 0th column in Pmat does not
contain any non-zero. These two intermediate nodes have four children in the
1st level. To determine the type of the nodes, the 1st column of Pmat is scanned
from the bottom. In this column only the row numbers ‘1’ and ‘0’ are non-zero;
hence the right-most two nodes in the 1st level of the tree are marked with ‘1’
and ‘0’ respectively. The remaining two nodes in this level are thus marked as
intermediate nodes. Similarly the next levels are also constructed. The DDG tree
corresponding to Pmat is given in Figure 1. In any level of the DDG tree, the
terminal nodes (if present) are always on the right hand side.

The sampling operation is a random walk which starts from the root; visits
a left-child or a right-child of an intermediate node depending on the random
input bit. The sampling process completes when the random walk hits a terminal
node and the output of the sampling operation is the value of the terminal
node. By construction, the Knuth-Yao random walk samples accurately from
the distribution defined by the probability matrix.

The DDG tree requires O(nk) space where k is the number of columns in the
probability matrix [7]. This can be reduced by constructing the DDG tree at run
time during the sampling process. As shown in Figure 1, the ith level of the DDG
tree is completely determined by the (i − 1)th level and the ith column of the
probability matrix. Hence it is sufficient to store only one level of the DDG tree
during the sampling operation and construct the next level (if required) using
the probability matrix [11]. In fact, in the next section we introduce a novel



method to traverse the DDG tree that only requires the current node and the
ith column of the probability matrix to derive the next node in the tree traversal.

3 Efficient Implementation of the Knuth-Yao Algorithm

In this section we propose an efficient hardware-implementation of the Knuth-
Yao based discrete Gaussian sampler which samples with high precision and
large tail-bound. We describe how the DDG tree can be traversed efficiently in
hardware and then propose an efficient way to store the probability matrix such
that it can be scanned efficiently and also requires near-optimal space. Before
we describe the implementation of the sampler, we first recall the parameter set
for the discrete Gaussian sampler from the LWE implementation in [9].

3.1 Parameter Sets for the Discrete Gaussian Sampler

Table 1 shows the tail bound |zt| and precision ǫ required to obtain a statistical
distance of less than 2−90 for the Gaussian distribution parameters in Table 1
of [9]. The standard deviation σ in Table 1 is derived from the parameter s using
the equation s = σ

√
2π. The tail bound |zt| is calculated from Equation 1 for

the right-hand upper bound 2−100. For a maximum statistical distance of 2−90

and a tail bound |zt|, the required precision ǫ is calculated using Equation 2.

m s σ |zt| ǫ
256 8.35 3.33 84 106
320 8.00 3.192 86 106
512 8.01 3.195 101 107

Table 1. Parameter sets and precisions to achieve statistical distance less than 2−90

However in practice the tail bounds are quite loose for the precision values
in Table 1. The probabilities are zero (upto the mentioned precision) for the
sample points greater than 39 for all three distributions. Given a probability
distribution, the Knuth-Yao random walk always hits a sample point when the
sum of the probabilities is one [11]. However if the sum is less than one, then
the random walk may not hit a terminal node in the corresponding DDG tree.
Due to finite range and precision in Table 1, the sum of the discrete Gaussian
probability expansions (say Psum) is less than one. We take an difference (1 −
Psum) as another sample point which indicates out of range event. If the Knuth-
Yao random walk hits this sample point, the sample value is discarded. This out

of range event has probability less than 2−100 for all three distribution sets.

3.2 Construction of the DDG Tree During Sampling

During the Knuth-Yao random walk, the DDG tree is constructed at run time.
The implementation of DDG tree as a binary tree data structure is an easy
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problem [21] in software, but challenging on hardware platforms. As described
in Section 2.4, the implementation of the DDG tree requires only one level of the
DDG tree to be stored. However the ith level of a DDG tree may contain as many
as 2i nodes (where 2i < nk). On software platforms, dynamic memory allocation
can be used at run time to allocate sufficient memory required to store a level
of the DDG tree. But in hardware, we need to design the sampler architecture
for the worst case storage requirement which makes the implementation costly.

We propose a hardware implementation friendly traversal based on specific
properties of the DDG tree. We observe that in a DDG tree, all the intermediate
nodes are on the left hand side; while all the terminal nodes are on the right hand
side. This observation is used to derive a simple algorithm which identifies the
nodes in the DDG tree traversal path instead of constructing each level during
the random walk. Figure 2 describes the (i − 1)th level of the DDG tree. The
intermediate nodes are I, while the terminal nodes are T . The node visited at
this level during the sampling process is highlighted by the double circle in the
figure. Assume that the visited node is not a terminal node. This assumption is
obvious because if the visited node is a terminal node, then we do not need to
construct the ith level of the DDG tree. At this level, let there be n intermediate
nodes and the visited node is the kth node from the left. Let d = n − k denote
the distance of the right most intermediate node from the visited node.

In the next step, the sampling algorithm reads a random bit and visits a
child node on the ith level of the DDG tree. If the visited node is a left child,
then it has 2d + 1 nodes to its right side. Otherwise, it will have 2d nodes to its
right side (as shown in the figure). To determine whether the visited node is a
terminal node or an intermediate node, the ith column of the probability matrix
is scanned. The scanning process detects the terminal nodes from the right side
of the ith level and the number of terminal nodes is equal to the Hamming weight
h of the ith column of the probability matrix. The left child is a terminal node if
h > (2d + 1) and the right child is a terminal node if h > 2d. If the visited node
is a terminal node, we output the corresponding row number in the probability
matrix as the result of sampling process. When the visited node in the ith level
is internal, its visited-child in the (i + 1)th level is checked in a similar way.

From the analysis of DDG tree construction, we see the following points :

1. The sampling process is independent of the internal nodes that are to the
left of the visited node.



Algorithm 1: Knuth-Yao Sampling

Input: Probability matrix P
Output: Sample value S
begin1

d← 0; /* Distance between the visited and the rightmost internal node */2

Hit ← 0; /* This is 1 when the sampling process hits a terminal node */3

col← 0; /* Column number of the probability matrix */4

while Hit = 0 do5

r ← RandomBit() ;6

d← 2d + r̄ ;7

for row = MAXROW down to 0 do8

d← d− P [row][col] ;9

if d = −1 then10

S ← row ;11

Hit ← 1 ;12

ExitForLoop() ;13

end14

end15

col← col + 1 ;16

end17

end18

2. The terminal nodes on the (i−1)th level have no influence on the construction
of the ith level of the DDG tree.

3. The distance d between the right most internal node and the visited node
on the (i− 1)th level of the DDG tree is sufficient (along with the Hamming
weight of the ith column of the probability matrix) to determine whether
the visited node on the ith level is an internal node or a terminal node.

During the Knuth-Yao sampling we do not store an entire level of the DDG
tree. Instead, the difference d between the visited node and the right-most inter-
mediate node is used to construct the visited node on the next level. The steps
of the Knuth-Yao sampling operation are described in Algorithm 1. In Line 6,
a random bit r is used to jump to the next level of the DDG tree. On this new
level, the distance between the visited node and the rightmost node is initialized
to either 2d or 2d + 1 depending on the random bit r. In Line 8, the for-loop
scans a column of the probability matrix to detect the terminal nodes. Whenever
the algorithm finds a 1 in the column, it detects a terminal node. Hence, the
relative distance between the visited node and the right most internal node is
decreased by one (Line 9). When d is reduced to −1, the sampling algorithm
hits a terminal node. Hence, in this case the sampling algorithm stops and re-
turns the corresponding row number as the output. In the other case, when d

is positive after completing the scanning of an entire column of the probability
matrix, the sampling algorithm jumps to the next level of the DDG tree.

3.3 Storing the Probability Matrix Efficiently

The Knuth-Yao algorithm reads the probability matrix of the discrete Gaussian
distribution during formation of the DDG tree. A probability matrix having r

rows and c columns requires rc bits of storage. This storage could be significant
when both r (depends on the tail-bound) and c (depends on the precision) are



large. Figure 3 shows a portion of the probability matrix for the probabilities
of 0 ≤ |z| ≤ 17 with 30-bits precision according to the discrete Gaussian dis-
tribution with parameter s = 8.01. In [7] the authors observed that the leading
zeros in the probability matrix can be compressed. The authors partitioned the
probability matrix in different blocks having equal (or near-equal) number of
leading zeros. Now for any row of the probability matrix, the conditional proba-
bility with respect to the block it belongs to is calculated and stored. In this case
the conditional probability expansions do not contain a long sequence of leading
zeros. The precision of the conditional probabilities is less than the precision of
the absolute probabilities by roughly the number of leading zeros present in the
absolute probability expansions. The sampling of [7] then applies two rounds
of the Knuth-Yao algorithm: first to select a block and then to select a sample
value according to the conditional probability expansions within the block.

However the authors of [7] do not give any actual implementation details. In
hardware, ROM is ideal for storing a large amount of fixed data. To minimize
computation time, data fetching from ROM should be minimized as much as
possible. The pattern in which the probability expansions are stored in ROM
determines the number of ROM accesses (thus performance) during the sampling
process. During the sampling process the probability matrix is scanned column
by column. Hence to ease the scanning operation, the probability expansions
should be stored in a column-wise manner in ROM.

In Figure 3, the probability matrix for a discrete Gaussian distribution con-
tains large chunks of zeros near the bottom of the columns. Since we store the
probability matrix in a column-wise manner in ROM, we perform compression of
zeros present in the columns. The column length is the length of the top portion
after which the chunk of bottom zeros start. We target to optimize the storage
requirement by storing only the upper portions of the columns in ROM. Since
the columns have different lengths, we also store the lengths of the columns.
The number of bits required to represent the length of a column can be reduced
by storing only the difference in column length with respect to the previous
column. In this case, the number of bits required to represent the differential
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001010010010001110000011001110
000111010011001101100110100000
000100101100101100100011010010
000010101111011110010010001110
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000000000010101110111011001001
000000000000111000101110001100

000000000000000001000100110001
000000000000000000001111000100
000000000000000000000010111111
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000000000000010000101011010101
000000000000000100011100100010

001111001101110110011011001101
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#2

#1
001110_1110111_110

11011_110010111_11

000111111111010111000101110101

Part of Probability Matrix First two ROM words

Fig. 3. Storing Probability Matrix



column length is the number of bits in the maximum deviation and a sign bit.
For the discrete Gaussian distribution matrix shown in Figure 3, the maximum
deviation is three and hence three bits are required to represent the differential
column lengths. Hence the total number of bits required to store the differential
column lengths of the matrix (Figure 3) is 86 (ignoring the first two columns).

For the discrete Gaussian distribution matrix, we observe that the difference
between two consecutive column lengths is one for most of the columns. This
observation is used to store the distribution matrix more efficiently in ROM. We
consider only non-negative differences between consecutive column lengths; the
length of a column either increases or remains the same with respect to its left
column. When there is a decrement in the column length, the extra zeros are
also considered to be part of the column to keep the column length the same as
its left neighbor. In Figure 3 the dotted line is used to indicate the lengths of
the columns. It can be seen that the maximum increment in the column length
happens to be one between any two consecutive columns (except the initial few
columns). In this representation only one bit per column is needed to indicate
the difference with respect to the left neighboring column: 0 for no-increment
and 1 for an increment by one. With such a representation, 28 bits are required
to represent the increment of the column lengths for the matrix in Figure 3.
Additionally, 8 redundant zeros are stored at the bottom of the columns due
to the decrease in column length in a few columns. Thus, a total of 36 bits are
stored in addition to the pruned probability matrix. There is one more advantage

Algorithm 2: Knuth-Yao Sampling in Hardware Platform

Input: Probability matrix P
Output: Sample value S
begin1

d← 0; /* Distance between the visited and the rightmost internal node */2

Hit ← 0; /* This is 1 when the sampling process hits a terminal node */3

ColLen← INITIAL; /* Column length is set to the length of first column */4

address← 0; /* This variable is the address of a ROM word */5

i← 0; /* This variable points the bits in a ROM word */6

while Hit = 0 do7

r ← RandomBit() ;8

d← 2d + r̄ ;9

ColLen← ColLen + ROM [address][i] ;10

for row = ColLen− 1 down to 0 do11

i← i + 1 ;12

if i = w then13

address← address + 1 ;14

i← 0 ;15

end16

d← d− ROM [row][i] ;17

if d = −1 then18

S ← row ;19

Hit ← 1 ;20

ExitForLoop() ;21

end22

end23

end24

return (S)25

end26



of storing the probability matrix in this way in that we can use a simple binary
counter to represent the length of the columns. The binary counter increments
by one or remains the same depending on the column-length increment bit.

In ROM, we only store the portion of a column above the partition-line
in Figure 3 along with the column length difference bit. The column-length
difference bit is kept at the beginning and then the column is kept in reverse
order (bottom-to-top). As the Knuth-Yao algorithm scans a column from bottom
to top, the column is stored in reverse order. Figure 3 shows how the columns
are stored in the first two ROM words (word size 16 bits). During the sampling
process, a variable is used to keep track of the column-lengths. This variable is
initialized to the length of the first non-zero column. For the probability matrix
in Figure 3, the initialization value is 5 instead of 4 as the length of the next
column is 6. Whilst scanning a new column, this variable is either incremented
(starting bit 1) or kept the same (starting bit 0). Algorithm 2 summarizes the
steps when a ROM of word size w is used as a storage for the probability matrix.

4 Hardware Architecture

Figure 4 shows the different components of the hardware architecture for the
Knuth-Yao sampling. The ROM block has word size 32 bits and is used to store
the probability matrix as described in Section 3.3. Addressing of the ROM words
is done using a ROM-Address counter. Initially the counter is cleared and later
incremented by one to fetch data from higher ROM locations.

The scanning operation is performed using the 32-bit register present in the
Scan ROM Word block. First a word is fetched from the ROM and then stored
in the scan register. The scan register is a left-shift register and the MSB of the
register is used by the Control Unit. A 5-bit counter (Word-Bit) is used to count
the number of bits scanned from a ROM word. When all 32 bits are read from a
ROM word, the counter reaches the value 31. This event triggers data reloading
from next ROM word into the scan register.

Random (or pseudo random) bits are required during the traversal of the
DDG tree. We have used a true random bit generator based on the approach by
Golic [8]. The quality of the random bit generator is not the main focus of this
paper; the random bit generator can be replaced by any other true random bit
generator [2, 20] or pseudo-random bit generators based on LFSRs. The random
bit generator can be slow since only five random bits are required on average
during sampling from the distributions in Table 1.

An up-counter Column Length is used to store the lengths of the different
columns of the probability matrix. This counter is first initialized to the length
of the first non-zero column of the probability matrix. During the random walk,
the counter increments or remains the same depending on the column-length
bit. To count the number of rows during a column scanning operation, one down
counter Row Number is used. At the start of the column-scanning, this counter is
initialized to the length of that column; later the counter decrements. A column
scanning is completed when the Row Number counter reaches zero.
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Fig. 4. Hardware Architecture for Knuth-Yao Sampler

During construction of any level of the DDG tree, the relative position d of
the right most intermediate node with respect to the visited node is kept in the
register Distance. During the Knuth-Yao random walk, the Distance register is
first updated to 2d or 2d + 1 according to the input random bit. Later each
detection of a terminal node by the scanning operation decrements the register
by one. A subtracter is used for this purpose. The carry from the subtracter is
an input to the control FSM. When the carry flag is set (d < 0), the control FSM
stops the random walk and indicates completion of the sampling operation. After
completion, the value present in Row Number is the magnitude of the sample
output. One random bit is used as a sign of the value of the sample output.

The hardware architecture is driven by the control FSM. The FSM generates
the selection signals for the multiplexers, the write enable signals for the registers
and the enable/clear/load signals for the counters present in the architecture.

Speeding up the sampling operation The sampling operation spends most
time in scanning columns for which we propose two possible improvements.

1. Skipping Unnecessary Column Scanning The sampling operation hits
a terminal node when the initial value of the distance d in that level is smaller
than the Hamming weight of the respective column in the probability matrix
(Algorithm 1). The initial columns which have smaller Hamming weight than d

can thus be skipped; scanning is performed only for the first column that has



larger Hamming weight than d. As such, unnecessary column scanning can be
avoided by storing the Hamming weights of the columns.

There are two issues that make this strategy costly in terms of area. Firstly,
extra memory is required to store the Hamming weights of the columns. Secondly,
the shifting mechanism (to skip a column) for the Scan Reg (Figure 4) becomes
complicated due to the varying lengths of the columns. This also increases the
size of the multiplexer for the Scan Reg. Since the scan register is 32 bits wide,
the area overhead is significant with respect to the overall area.

2. Window-based Scanning of Columns In hardware we can scan and
process several bits of a column in a single clock cycle. Using a window-based
scanning block, we can therefore reduce the computation time nearly by a factor
equal to the size of the window. We can implement the window-based scanning
operation by performing a minor modification in the sampler architecture shown
in Figure 4. The modifications required for window size four are shown in Fig-
ure 5. The first four bits (bit[3] to bit[0]) near the MSB of the Scan Reg are
scanned simultaneously and shift operations are always performed by four bits.
During a column scanning operation, the register Distance is decremented by
the sum of the bits. The register Row Number is decremented by four. However
fast-scanning is affected when the following events occur: 1) carry#d is set, 2)
carry#row is set, and 3) the wire rowin is zero. When only event 1 occurs, the
sampling algorithm hits a terminal node and generates a sample value. Event 2
occurs when the four bits are from two columns: the end bits of the present col-
umn and the starting bits of the next column. For such events (1 or 2 or both),
the control FSM suspends any register write operation and jumps to a slow-scan

state. Now the FSM scans the bits b[i] sequentially (similar to the architecture
in Figure 4) using the selection signal sel4. Operations in this phase are similar
to the basic bit-by-bit scanning method described previously. Event 3 indicates
that the scanned four bits are actually the last four bits of the column. In this
case, the FSM updates the registers and then performs slow-scanning for the
next four bits (the first bit is the column length change bit for the new column).

The window-based scanning requires a few extra multiplexers as shown in
Figure 5 compared to the bit-by-bit method in Figure 4. However the Word-Bit

counter size reduces to three as one scanning operation for 32 bits requires eight
shifting operations. The respective comparator circuit size also reduces. Since the
multiplexers are small in size (1 and 3 bits wide), the strategy has very small area
overhead and is thus more cost effective compared to the Skip-Column method.

5 Experimental Results

We have evaluated the proposed discrete Gaussian sampler architectures on Xil-
inx Virtex V FPGAs for the distribution parameter sets given in Table 1. The
results are obtained from the ISEv11.1 tool after place and route analysis. Since
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Fig. 5. Modifications required to perform 4-window scanning operation

the parameter sets in Table 1 have similar standard deviations, the same ar-
chitecture is used to implement all the samplers; only the ROM contents are
different. In case of a given Gaussian distribution parameter, the width of the
counters, registers and arithmetic circuits can be pre-determined. Table 2 shows
the width of the registers present in the proposed sampler architectures.

ROM address Word-Bit Scan-Reg Column Length Row Number Distance
7 5 or 3 32 6 6 6

Table 2. Width of the components in Figure 4 for the distributions in Table 1

The area, delay and average case clock cycle requirements for the two sampler
architectures (Section 4) are shown in Table 3. The results do not include the
random bit generator. The core of the bit-by-bit scanning sampler (excluding
the ROM and the random bit generator in Figure 4) consumes only 30 slices;
while the core of the 4-window based fast architecture requires 6 extra slices.

On Xilinx FPGAs, ROM can be generated using LUTs or block-RAM slices.
For the parameter set in Table 1, a block ROM requires only one RAMB slice. If
LUT-based ROM is used, then a 32-by-96 ROM is sufficient for the distribution
in Table 1. On Virtex V FPGAs, the distributed ROM consumes 17 slices.

Architecture FFs Slices LUTs Delay (ns) Clock
Core ROM Core ROM Cycles

Figure 4 66 30 17 76 64 3 17
Figure 5 69 36 17 85 64 3.3 16

Table 3. Performance of the discrete Gaussian sampler on xc5vlx30

Time spent in a sampling operation is mainly the time involved in scanning
the column bits of the probability matrix. The number of bits scanned during
a sampling operation depends on the number of levels jumped (equal to the
number of random bits consumed) by the Knuth-Yao random walk along the



DDG tree. Hence the number of bits scanned in a sampling operation increases
with the number of levels jumped by random walk. However the probability of
a jump from a level to its next level reduces exponentially with increase in the
number of levels. Knuth and Yao showed that the expected number of random
bits required (i.e the number of levels jumped) is at most two more than the
entropy of the given distribution [11]. For the LWE parameter sets in Table 1,
the entropy of the distributions is less than three (for σ = 3.33 the entropy is 2.9)
and thus the average number of random bits required per sampling is at most
five. When the Knuth-Yao random walk hits a terminal node during scanning of
the fifth column of the probability matrix (Appendix A), then total number of
bits scanned (column bits + column length bits) is in the range of 14 to 21.

In Appendix B, we performed a software simulation to know the average
number of bits scanned. As per experimental results, on average 4.3 random bits
are required and 13.5 memory-bits are scanned to generate a sample point. This
experimental values support the Knuth-Yao upper bound for the average case.
To scan the first 14 memory-bits, the bit-by-bit scanning architecture (Figure 4)
consumes 17 clock cycles, while the 4-window based fast scanning architecture
(Figure 5) spends 16 clock cycles. These average case clock cycle requirements
for the two samplers are shown in Table 3.

The number of clock cycles saved by the fast architecture compared to the ba-
sic architecture is only 6% in average case. This is due to frequent slow-scanning

operations for the initial columns which have small lengths. The savings of the
fast architecture increases with the number of levels jumped by the Knuth-Yao
random walk increases. For example, when sample point is found during scan-
ning of the 7th column of the probability matrix, the fast architecture takes only
24 cycles compared to 43 cycles (44% saving) required by the basic architec-
ture. Thus the fast architecture provides drastic speedup when the Knuth-Yao
random walk goes beyond the average case.

Performance of the Sampler in ring-LWE Here we present an estimated
performance analysis for the proposed sampling architectures in a ring-LWE
encryption system [12]. In ring-LWE encryption, the major computations are:
1) two polynomial multiplications and 2) construction of three error polynomi-
als using discrete Gaussian sampling. A feasible solution to implement a high-
performance ring-LWE cryptosystem is to keep the multiplier and the sampler
in a pipeline; the sampler stores sampled values in a buffer and the multiplier
reads the buffer. Due to small delay, the sampler architecture can be integrated
easily with a high-frequency polynomial multiplier.

The proposed 4-window based sampling architecture requires around 12,300
and 24,600 clock cycles on average to compute the three error polynomials [12]
for the LWE parameters m = 256 and m = 512 (Table 1) respectively. The two
polynomial multiplications using the NTT-based multipliers [16] require 4,800
and 10,000 clock cycles for m = 256 and m = 512 respectively. Thus the sampler
architecture is slower compared to the polynomial multipliers in [16]. However,
we note that our implementation is optimized for area and not speed. Since



the the sampler has a very small area (compared to the multiplier) and requires
random bits only occasionally, we can simply parallelize the sampling operations.
In such a parallel implementation, the ROM and the random bit generator will
be shared by the parallel sampling cores.

6 Conclusion

In this paper we showed that for small standard deviation, high precision discrete
Gaussian samplers can be implemented in hardware using an adaptation of the
Knuth-Yao algorithm. We introduced a hardware implementation friendly strat-
egy to traverse the DDG tree in the Knuth-Yao sampling operation and proposed
an optimization technique to reduce the space required to store the probabilities
of the sample points in the discrete Gaussian distribution. Finally, we presented
efficient hardware architectures for the discrete Gaussian distribution samplers
used in LWE encryption systems. The proposed sampler architectures are small,
fast and have very high precision to obtain a negligible statistical distance to a
true discrete Gaussian distributions.
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Appendix A

Probability matrix for the discrete Gaussian distribution with parameter s =
8.01 used in the LWE crypto system of dimension n = 512 is shown in Figure 6.
The portion above the partition line is stored in ROM.

Appendix B

To know the average number of random bits required per sampling operation, we
have performed a C-program simulation of the Knuth-Yao random walk for the



Fig. 6. Probability Matrix for the discrete Gaussian distribution with s = 8.01

distribution parameter s = 8.01. Column 1 and 2 in Table 4 shows the number
of random bits required per sampling operation and the corresponding number
of events in total 106 runs of the random walk. As per the experimental data
in Table 4, on average 4.3 random bits are consumed and 13.5 bits are scanned
from memory to sample a value from the discrete Gaussian distribution.

Table 4. Number of random bits required per sampling operation in 106 runs

Number of Random Bits Occurrences

3 375097

4 312928

5 156405

6 77969

7 31093

8 19367

9 13510

10 6827

11 3380

12 1445

13 990

14 495

15 242

16 149

17 59

18 21

19 12

20 5

21 3

22 2

23 1


