
Design and implementation of a
waveform-matching based triggering system

Arthur Beckers, Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede

KU Leuven Dept. Electrical Engineering-ESAT/COSIC and iMinds
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{firstname.lastname}@esat.kuleuven.be

Abstract. Implementation attacks such as side channel attacks and
fault attacks require triggering mechanisms to activate the acquisition
device or fault injection equipment. Most academic works work with
a very simple and reliable trigger mechanism where the device under
test itself provides a dedicated signal. This however is not possible in
real attack scenarios. Here the alternative is to use IO signals or coarse
features of the side channel signal (co-processor switches on, power con-
sumption goes up) for triggering. However, fault injection in particular
requires very accurate timing. Our work deals with the many scenarios
where such simple triggering mechanisms are not available or not effec-
tive. We present our design, architecture and FPGA implementation of
a waveform-matching based triggering system. Our configurable trigger
box is able to sample and match an arbitrary waveform with a latency
of 128 ns. We provide results of our experimental evaluation on devices
and side channel signals of different nature, and discuss the influence of
several parameters.

Keywords: Triggering, waveform matching, fault injection

1 Introduction

Implementation attacks are well-known techniques that can pose a serious threat
to the security of embedded devices. Side channel attacks rely on the analysis of
physical observations of the device during cryptographic executions, for instance,
running time [15], power consumption [16] or electromagnetic emanations [14,
17]. Fault attacks [9] on the other hand rely on injecting faults during cryp-
tographic computations. Examples are clock glitches [7, 8], voltage spikes [19],
electromagnetic pulses [13, 18] or optical attacks [5, 20].

To perform implementation attacks an adversary requires some sort of trig-
gering mechanism capable of activating the side channel acquisition device or
the equipment for fault injection. Depending on the concrete attack scenario,
precise timing may be essential. The prevalent approach in academic works is
to generate a trigger signal from within the device under test. This allows to
concentrate on the evaluation of a certain attack or countermeasure, while ab-
stracting from practical issues. This approach is however not possible in realistic

scenarios. Here, one would typically use the built-in triggering functionalities
of an oscilloscope to detect simple features such as logic events in the IO line,
well-defined shapes in the side channel signals (sudden amplitude changes, gaps
of certain width, etc.), or a combination thereof. If the selected event does not
occur just before or after the targeted operation, hold-off timers can be employed
to shift the trigger closer to the time of interest.

While this approach may achieve high accuracy and reproducibility in certain
settings, it suffers from two main limitations. First, the range of trigger options
is limited to the capabilities of the oscilloscope, e.g. mostly edge, pulse and
logic triggering. This may not be sufficient to trigger on devices where existing
signals lack coarse features. And second, the insertion of hold-off timers implic-
itly assumes deterministic program executions. Devices with non-deterministic
behaviour (due to preemptive multitasking, caches, branch predictors, etc.) or
implementations with built-in countermeasures (random delays [10, 11], clock
jitter, etc.) can easily make triggering a practical bottleneck.

A more suitable alternative consists in using a pattern-based triggering mech-
anism which can detect arbitrary waveforms in the side channel signals. The
method runs in two stages. First, one selects a suitable reference or pattern
from a window of interest in the side channel signal. And second, one employs a
waveform-matching algorithm to detect such pattern on an incoming side chan-
nel signal. In the following we denote these stages as capture mode and matching
mode. It is important that the analog-to-digital conversion process in both modes
is the same. The selection of the underlying waveform-matching algorithm de-
pends on the use case requirements. Fast response time is particularly desirable
for fault injection attacks. Flexibility allows the method to adapt to different
setups. Additionally, robustness is required to compensate for the noise that is
inherently present in the signals.

To the best of our knowledge the only publicly documented solution for
pattern-based triggering is icWaves [4], developed and commercialized by Riscure.
This solution implements a waveform-matching algorithm based on the sum of
absolute differences. It can detect pattern(s) up to 1x512 samples or 2x256 sam-
ples long and has a response time of around 500 ns. The usage of this device
for laser fault injection attacks has been documented by van Woudenberg et al.
in [21].

Our contribution. In this work we put forward a waveform-matching based trig-
gering system for use in the context of implementation attacks. Our solution
is specifically designed for low latency, i.e. to minimize the response time once
the pattern occurs in the side channel, and it is based on an interval match-
ing algorithm. We provide a detailed description of our design and architecture
choices, as well as the implementation of a functional trigger box on an FPGA
development board. Our solution supports detection of arbitrary waveforms,
and incorporates multiple options to ensure flexibility and ease of adaptation
to different scenarios. We illustrate these aspects by performing an empirical
evaluation on two different cryptographic devices (dedicated Java Card smart
card, high-speed general purpose ARM processor) with side channel signals of

different nature (power measurements using shunt resistor, contactless power
measurements using EM probe). Finally, we discuss the influence of several pa-
rameters on the triggering behaviour.

2 Waveform matching

The essence of waveform matching is to compare a fixed reference (or pattern)
signal g of length N samples with a continuous incoming signal h. There exist
many different algorithms for pattern matching in the literature, but the vast
majority work according to the same basic principle. The algorithm calculates
a measure of correspondence between g and (a part of) h and represents it by
a single score T (k), where k represents a time shift from the starting execution
point. The comparison of T (k) with a pre-defined threshold determines whether
the signals are considered a match. In our case, we work with discrete-time
signals resulting from an analog-to-digital conversion. Therefore the threshold
selection needs to account for the effect of quantization noise as well as noise
caused by system and environmental variations.

In the following we review different options for waveform matching and dis-
cuss their suitability to our use case. We concentrate on algorithms that allow
for low-latency matching and can be efficiently implemented in hardware. All
considered algorithms perform a sample-wise comparison of the reference with
the incoming signal, i.e. the score at a certain time shift k can be computed as:

T (k) =

N∑
m=1

scorem, where scorem = f
(
g(m), h(m+ k)

)
.

Cross-correlation. This statistical function is perhaps the most natural algorithm
to measure the similarity of two series. It uses the product of two samples to
compute a measure of their resemblance as:

scorem = g(m)h(m+ k). (1)

Sign comparison (see Figure 1a). This method transforms the reference signal
g into a binary sequence g′ by assigning g′(m) = 1 if g(m) > µ, and g′(m) = 0
otherwise. Here µ is the mean value of g. The incoming signal h is transformed
into h′ in the same manner. The sample score is calculated using g′ and h′ as:

scorem =

{
1 if g′(m) == h′(m+ k)

0 otherwise .
(2)

Sum of absolute differences (SAD) (see Figure 1b). This algorithm performs
a sample-wise subtraction between reference and incoming signals, taking as a
score the absolute value of the difference as:

scorem =
∣∣g(m) − h(m+ k)

∣∣ . (3)

Interval matching (see Figure 1c). This algorithm defines an interval with a
chosen offset above and below the reference. The score is calculated by checking
whether the sample of the incoming signal lies within a valid interval as:

scorem =

{
1 if g(m) + offset ≥ h(m+ k) ≥ g(m) − offset

0 otherwise .
(4)

Algorithm selection. Our primary selection criteria for the pattern matching
algorithm is low latency, but we also consider aspects such as flexibility, imple-
mentability and suitability to our application. Despite its robustness, we discard
cross-correlation due to its use of multiplications. Note that the maximum pat-
tern length is determined by the availability of multipliers on the implementation
platform, which can be quite low. Additionally, the final score T (k) can grow
significantly with N , posing additional demands in hardware due to need of large
adders. The remaining three algorithms do not suffer from these issues, as their
sample-based comparison relies on simple operations yielding low scores.

am
p

lit
u

d
e

samples

mean

0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 SCORES

pattern

signal

(a) Sign comparison.

8 6 2 2 2 4 7 0 5 4 2 8 3 2 7

signal

am
p

lit
u

d
e

samples

SCORES

pattern

(b) Sum of absolute differences (SAD).

0 0 1 1 1 0 0 1 0 1 1 0 0 1 0

signal

offset

am
p

lit
u

d
e

samples

SCORES

pattern

(c) Interval method.

Fig. 1: Visualization of different algorithms for waveform matching.

We have ran several experiments in order to determine the suitability of all
algorithms in the context of side channel signals, i.e. by testing their success rate

in matching arbitrary patterns from real (noisy) measurements collected with an
oscilloscope. Our experiments showed that the sign comparison algorithm has an
unreliable triggering behaviour. Therefore we opt to discard it. SAD and interval
matching algorithm perform rather well, and they both have the potential for low
latency and good implementability. Flexibility is thus the criteria that determines
our choice. In particular, the fact that the interval matching algorithm enjoys
an extra degree of configurability via the offset. An additional benefit of interval
matching is a better resistance to outliers. Note that for SAD, a large difference
on a single sample may have a significant impact on the T (k), potentially leading
to a false negative. We therefore select interval matching as core algorithm for
our design.

3 Architecture

In this section we describe the hardware architecture of our triggering system
based on the interval matching algorithm. The top level view is shown in Figure 2.
The main components are a control unit, an analog-to-digital converter (ADC),
and two modules responsible for the different modes of operation (capture and
matching) sharing a memory block. The control unit provides a communication
IO interface to enable external access for configuration. The incoming signal
is first sampled by the ADC and then forwarded to the capture and matching
modules. During capture mode, samples provided by the ADC are stored in
memory when indicated by the capture signal. The amount of samples that
can be stored is implementation-dependent, i.e. it is uniquely determined by
the memory length. The captured measurement can be read through the IO
interface. During matching mode, a pattern is first written to memory through
the IO interface. The parameters of the algorithm (offset, threshold) are also
externally set. The matching module contains an instantiation of the interval
matching algorithm. If a match between the sampled incoming signal and the
programmed reference is found, the trigger signal is activated.

ADC Control

Matching module

Memory

Capture module

incoming signal IO interface

capture signal

trigger signal

Fig. 2: Top level architecture view.

Due to its basic structure, the architecture of the capture module is not de-
scribed in detail. Instead, we focus on the more critical matching module which
determines the latency of the system. Its architecture, depicted in Figure 3, is
essentially a shifting integration structure formed by a parallel cluster of com-
parator blocks and a register adder chain that shifts its content towards the
threshold comparison. Each comparator block checks whether an incoming sam-
ple lies in the interval specified by the reference and the offset for g(m), i.e. it
performs the test described in Equation 4. The interval comparison is done in
parallel for all samples in the pattern and thus we require N comparator blocks.
The binary output of the comparator is fed to the register adder chain, which
keeps track of the aggregated results from the previous comparisons. That way
when a certain sample h(m+ k) is at reg0, the result from comparing i previous
samples is already stored at regi. This architecture enables a quick response
time when a similar pattern appears in the side channel trace. The outcome
of comparatorN is added to regN−1, which contains the aggregated result of
the previous N − 1 samples. The resulting T (k) is directly compared with the
threshold to determine whether a trigger needs to be generated, i.e. in case of a
match. This full step can be implemented in one clock cycle, and it is the critical
path in the module. The latency of our architecture is 4 clock cycles, since it
includes buffers in the IO pins and an extra register for the flexible hold-off time
before triggering.

input sample reg0

comparator1

+ comparator2

+ comparatorN-1

>

comparatorN

trigger
threshold

reg1

reg2

+

regN-1

Fig. 3: Architecture of the matching module.

A more detailed view of the architecture of a comparator block and the
following register adder chain is illustrated in Figure 4. An input sample stored
in reg0 is compared against the upper and lower values of the interval for a
sample g(m). The pair (upper limitm, lower limitm) is calculated in advance
and stored in the corresponding registers ULm and LLm, i.e. ULm contains
g(m)+ offset and LLm contains g(m)− offset. The binary output of the interval

comparisons is fed to an AND gate whose output determines whether the value
in regm−1 needs to be incremented before storing it in regm. The reset register
allows to adjust the length of the reference signal, adding yet another flexibility
feature to our design.

reg0

LLm

ULm

>

<

 +

regm-1

regm

upper limit m

lower limit m

rst

reset

Fig. 4: Architecture of comparator block and register adder chain.

Note that the architecture given in Figure 4 is slightly different for the
first and last comparator blocks. In particular, the output of the AND gate
in comparator1 can be directly stored in reg1. For the last comparator block,
the output of the multiplexer goes to the threshold comparator.

4 Implementation

In this section we describe the realization of a trigger box based on the design
and architecture of our waveform-matching based triggering system. We provide
a brief description of the main components and interfaces and list the charac-
teristics achieved after synthesis and place-and-route on an FPGA.

We have described our architecture in VHDL and implemented it on an Al-
tera Cyclone IV GX FPGA Development Kit [2]. This low-end FPGA is equipped
with 150k logic elements and 6.5 Mbits of embedded memory. Our hardware de-
scription deliberately avoids the use of any manufacturer-specific IP block, and
thus can be easily ported to other commercial FPGAs. We have used Quartus
II Web Edition Software for synthesis, place-and-route and programming. The
Cyclone IV development board is not equipped with an ADC, required to sample
the incoming side channel signal. Therefore we use an external Terasic AD/DA
Data Conversion card [3]. This card provides two 14-bit ADC with a maximal
sampling rate of 150 MS/s. It interfaces with the Cyclone IV development board
via a standard HSMC interconnect header. A DC block is placed in front of the
ADC to remove the DC component from the incoming signal.

We have enabled an RS-232 serial interface for IO communication and de-
vised a rich instruction set to allow for external configuration. The commands
allow at any time to select between capture or matching mode, read captured
signals, program references, set the parameters of the interval matching (offset

and threshold), vary the internal sample rate, and assign hold-off times for cap-
turing signals and/or trigger generation, among others. Both capture and trigger
signals are implemented as GPIO pins. For the latter we could alternatively use
one of the digital-to-analog converters (DAC) of the Terasic AD/DA card.

Synthesis results. The figures of our trigger box depend directly on the resources
of the FPGA. We run the synthesis and place-and-route processes optimizing
for speed. With this we obtain a design that can run at 171.17 MHz and allows
for a pattern length of 1 500 samples. We clock the trigger box at 125 MHz
using the built-in global oscillator, therefore obtaining a latency of 32 ns for our
architecture. Taking into account the 96 ns delay caused by the ADC, the total
latency of our trigger box is 128 ns. Note that by using Altera’s specific IP blocks
for PLLs we could generate a faster clock and thus slightly decrease our latency.
The resource occupation is 133k logic elements (around 88%) and 86k flip-flops.
Most resources are occupied by the 14-bit comparators. The memory depth for
trace capture is only limited by the memory resources of the FPGA, which is
rather large. For the purposes of testing we fix it to 60 000 samples.

Note that several tradeoffs are possible. In particular, we can increase the
maximum reference length by lowering the sample resolution. Dropping the least
significant bits of the ADC output from 14 to 12 bits decreases the demand of
the comparators. This allows to increase the reference length to 1 875 samples at
the cost of some precision. Further reductions are also possible. The impact of
tradeoffs on the performance of the trigger box can only be empirically evaluated,
as it will naturally depend on the properties of the target device and the side
channel signal.

For the sake of completeness, we list in Table 1 some features of our trigger
box and the icWaves solution from Riscure. The latter figures are retrieved from
the product data sheet [4]. Note that features related to signal conditioning are
omitted from the listing in the table, as they will be discussed in Section 5. Other
common features such as hold-off times are similarly unlisted.

Our design icWaves

Algorithm interval matching SAD

Latency 128 ns 500 ns

Sample rate 125 Msamples/s 200 Msamples/s

Resolution 14-bit 12-bit 8-bit 8-bit

Sample length 1 500 1 875 2 625 (1 x 512) or (2 x 256)

Memory depth 60k 60k 120k 8 000k

Table 1: Main features of our trigger box designs and icWaves.

5 Evaluation

In this section we evaluate the performance of our trigger box by means of prac-
tical experiments. Our tests involve two different devices and two different types
of side channel signals. We discuss the role of the interval matching parame-
ters on the triggering behaviour and highlight the importance of analog signal
conditioning.

5.1 Experimental setup

Figure 5 depicts the main components of our experimental setup as well as
their interconnections. The side channel signal of the cryptographic device is
connected to an oscilloscope and to the trigger box. We use the version with
14-bit resolution in all experiments. Note that the signal is modified by means of
analog circuitry before being fed to the ADC of the trigger box. This is required
to map the signal amplitude to the input range of the ADC, i.e. to minimize
quantization errors. Additional circuitry can be used to highlight interesting
features of the signal, as will be discussed in the next section. We use a computer
to operate the trigger box through the serial interface.

cryptographic
device

trigger box oscilloscope computer

analog circuitry

Fig. 5: Experimental setup.

Capture mode. The computer begins by configuring the trigger box to enter
capture mode. It then sends a command to the cryptographic device in order
to start a cryptographic computation. The oscilloscope, which monitors the side
channel signal of the cryptographic device, is responsible to indicate to the trigger
box when to start recording. The incoming signal is then stored in internal
memory (60 000 samples) and sent to the PC.

Note that in our setup the oscilloscope is responsible for activating the trigger
box during capture mode. Hence it is required to (at least once) be able to
configure the oscilloscope to trigger near the window of interest. This step can
be done with the usual techniques, e.g. by detecting simple features on the IO
line or on the side channel signal. The activation signal is provided by the AUX
out port of the oscilloscope. An optional hold-off time can be specified either in

the oscilloscope or in the trigger box. We stress that this step only needs to be
executed once. During our experiments, we have always been able to carry it out
without major difficulties, even if the trigger programmed in the scope has an
unstable behaviour.

Matching mode. The first step in matching mode consists in selecting a pattern
from the pre-recorded trace. Any software visualization tool can be used for this,
e.g. Matlab. The pattern is sent to the trigger box along with the parameters of
the interval matching algorithm (offset and threshold). Once the trigger box is
configured, the computer sends a command to the cryptographic device to start
the cryptographic operations. If a match is found the trigger box generates a
pulse on the trigger signal, optionally with a certain hold-off time. In our exper-
imental setup this signal is connected to an analog channel of the oscilloscope.
This allows us to easily verify whether the trigger box has found a matching
pattern and, if so, whether it is the correct one. We note that in a real attack
scenario the output trigger signal will be directly connected to an acquisition
device to start measurement collection, or alternatively to some equipment for
fault injection.

5.2 Experiments with a Java Card smart card

Our first evaluation of the trigger box is performed on a Java card that contains
an applet to compute RSA signatures. The details of the implementation are
unknown to us. We access the side channel power consumption of the Java card
by measuring the voltage drop over a shunt resistor placed in the ground line.
An exemplary trace collected with an oscilloscope at 80 MS/s is shown in Fig-
ure 6 (top). The two long similar patterns indicate that the implementation uses
RSA-CRT. Zooming into either of the CRT-branches reveals repetitive patterns
corresponding to the inner modular operations, i.e. square and multiply. This is
illustrated in Figure 6 (bottom).

Fig. 6: Power measurements of the RSA signature applet in the Java card. Full
execution (top), zoom into first CRT-branch (bottom).

Single matching. We begin our experiments by bringing our setup to capture
mode and configure it to record a trace close to the beginning of the first CRT-
branch. The aim is to find a unique pattern that appears only once per crypto-
graphic execution. We set the sampling rate of the trigger box at 125 MS/s. An
exemplary recorded trace of 60 000 samples is shown in Figure 7 (left). Note that
the shape of the trace in Figure 7 differs from the one in Figure 6. This is due
to the ADC in the trigger box being different from the ADC in the oscilloscope.

Fig. 7: Trace recorded by the trigger box during capture mode, pattern selected
for matching mode in grey (left), zoom into the pattern (right).

The next steps are to select a pattern and to set the parameters of the interval
matching algorithm. The behaviour of the trigger box will naturally depend on
a good combination of these variables. Our goal is to obtain a single correct
trigger per execution while avoiding (or at least minimizing) false negative and
particularly false positives.

It is important to stress that there is no generic rule on how parameters
need to be set. However, some general observations can be made. First and most
important, it is critical that the pattern we want to trigger on is as unique as
possible. Since the length of the reference is limited, a way to incorporate more
unique features is by varying the sample rate. This variation should however
not result in an undersampling of the signal. Second, using the maximal pattern
length is in general beneficial for detection. However, once the unique features
are incorporated in the pattern it may not make a difference in terms of success
rate. We have empirically observed the existence of a convergence point in which
the percentage of correct matches stops varying even when the reference length
is increased. Third, there is a natural relation between signal noise and offset.
Noisy side channel signals will inevitably demand higher offsets to account for the
variability in the observations. This comes however at a risk, as arbitrarily high
offsets will cause wrong patterns to be considered a match. Finally, the threshold
can be used as a tuning parameter once all other values are constant. In fact
for a given pattern and offset there will be a threshold value that maximizes the
percentage of correct matches.

Let us illustrate this behaviour with an example. Assume we select as pattern
the grey area in Figure 7 (left) which is also depicted in Figure 7 (right). We
set the pattern length to the maximum (1 500 samples) and test different offset
values. These are rather conservative, as the noise level in our side channel signal
is quite low. Figure 8 shows an area plot that visualizes the responses of the

trigger box for each offset value in function of the threshold. The vertical axes
shows the outcome (in percentage) computed by running multiple experiments.
Each color (grey, black, white) indicates a possible outcome of the experiments
(false positive, correct match, false negative).

Fig. 8: Percentage of outcomes for varying thresholds: grey (false positive), black
(correct match), white (false negative). Values of offset are 150 (left), 300 (mid-
dle), 450 (right).

The plots clearly show that for a given offset the desired triggering behaviour
can be tuned by varying the threshold. In most cases one wants to avoid false
positives. Therefore, it is preferable to select a threshold that is slightly higher
than the one that maximizes the percentage of correct matches, i.e. to move away
from the grey area in the plot. We also observe that higher offsets demand higher
thresholds in order to avoid false positives. In contrast, the maximal percentage
of correct matches only varies slightly with the offset.

Our best results when triggering at the beginning of the first CRT-branch
are obtained when selecting the combination offset of 450 and threshold of 900,
which yields a percentage of correct matches of 90%, with 10% false negatives
and no false positives.

Multiple matching. Our follow-up experiment consists in checking whether
it is possible to trigger on each execution of a modular operation in the CRT-
branches. For this we need to select the repetitive pattern in Figure 6 (bottom),
which perfectly characterizes the occurrence of squarings and multiplications. We
lower the sampling rate of the trigger box to 62.5 MS/s in order to fit the pattern
in less than the maximum 1 500 samples supported by our implementation. The
recorded pattern is shown in Figure 9 (left).

Although the pattern appears to contain characteristic features, it turns out
to be completely unsuitable for the purposes of triggering. In fact, all our exper-
iments yield a negligible percentage of correct matches for any combination of
offset and threshold. Most observed outcomes are false negatives or false posi-
tives. The reason behind these results is the repetitiveness of the features in the
reference, which is caused by the relatively high frequency of the side channel
signal. This causes a non unique pattern with many matches in the incoming
signal.

Fig. 9: Repetitive pattern in CRT-branches. Normal (left), with envelope detec-
tion (right).

In order to overcome this issue, some extra analog circuitry is required to con-
dition the signal before the ADC and highlight its low-frequency features. We
opt to incorporate an ADL5511 envelope detector board with some added ca-
pacitors that effectively reduces the bandwidth of the incoming signal to 2 MHz.
The envelope detector consists of a rectification stage followed by a low-pass fil-
tering. Using this circuitry we can effectively reduce the bandwidth of the signal
independently of its high frequencies, and therefore capture useful features.

We have repeated our experiments by using an envelope detector in combi-
nation with an extra 30 dB amplifier (Langer PA 303) to minimize quantization
noise. The newly selected pattern, shown in Figure 9 (right), corresponds to the
envelope detected signal of a modular operation. By using this configuration with
an offset of 50 and a threshold of 810, we are able to increase our success rate to
nearly 100% without any false positive, i.e. our box is able to trigger on almost
every occurrence of a modular operation in a single RSA-CRT operation. In fact,
the only false negatives correspond to the first operation in each CRT-branch,
which have a shape different than the rest.

5.3 Experiments with an ARM processor

For our second evaluation of the trigger box we switch to a more challenging
platform featuring non-deterministic program execution. We use a BeagleBone
Black [1] equipped with a Sitara ARM Cortex-A8 32-bit RISC processor. The
non-deterministic behaviour of the processor stems from its dynamic branch
predictors, L1 and L2 cache memories and out-of-order execution engine. Addi-
tionally, the processor runs a preemptive multitasking Linux operating system
with e.g. scheduling, context switches and interrupts. The core runs at a clock
frequency of 1 GHz.

In order to monitor the power consumption, we place an electromagnetic pen
probe on one of the decoupling capacitors as previously described in [6]. Due to
the low output voltage range of the pen probe and the high operating frequency
of the processor, we require some extra analog signal conditioning. We insert a
30 dB amplifier (Langer PA 303) between the pen probe and the input of the
envelope detector, followed by another 30 dB amplifier used to minimize the
quantization noise in the ADC.

Our test application is a software implementation of the Advanced Encryp-
tion Standard (AES) [12] that performs bulk encryption. Finding a consistent

and reliable trigger on the side channel signal is an arduous task when using only
an oscilloscope, i.e. sudden amplitude changes occur frequently due to other run-
ning processes causing multiple false positives. However, we only need one correct
trigger in order to store a measurement during capture mode.

A trace recorded by our trigger box is shown in Figure 10 (left). Thanks to
the envelope detector, the batched executions of the AES are identifiable in the
trace (30 encryptions in this particular case). We select a pattern corresponding
to a single execution, depicted in Figure 10 (right), and program it into the
trigger box. The length of this reference signal is 960 samples, and it is obtained
with a sampling rate of 25 MS/s. The lower sampling rate is an additional benefit
from using an envelope detector, as it allows to sample the now low-frequency
signal without loosing its features.

Fig. 10: Trace recorded by the trigger box during capture mode, pattern selected
for matching mode in grey (left), zoom into the pattern (right).

By setting the offset to 130 and choosing a threshold of 630, we achieve 99.2%
of correct matches, i.e. we trigger on almost all AES executions, without any false
positive. The remaining 0.8% of false negatives correspond to the first encryption
and any other execution occurring after an interrupt. This is an artifact of the
instruction cache of the processor, which is filled with code after every context
switch. The cache filling leads to a different shape in the side channel signal,
which the trigger box correctly identifies as no match.

It is worth mentioning that our success rate is kept even when we increase
the number of batched encryptions to e.g. 50 000. The same outcome is achieved
when we increase the CPU load to 100% by enabling heavy computational tasks
in parallel such as RSA key generation in OpenSSL.

6 Conclusions

Triggering is critical to enable implementation attacks in real scenarios. The
lack of accurate and reliable trigger points may fully prevent to mount an attack
on a certain implementation, even if unprotected. This is particularly true for
modern high-end devices with non-deterministic behaviour due to complex CPU
architecture and operating system. In this work we have documented the design,
architecture, implementation and evaluation of a waveform-matching based trig-
gering system tailored to the context of embedded security. With this, we put
forward a tool that can be of use to the research community.

Acknowledgements. We would like to thank Victor Förster for initial contributions

to the system’s design and architecture. This work was supported in part by the Re-

search Council KU Leuven: C16/15/058. In addition, this work was supported by the

Flemish Government, FWO G.0550.12N, by the Hercules Foundation AKUL/11/19,

and through the Horizon 2020 research and innovation programme under grant agree-

ment 644052 HECTOR. Benedikt Gierlichs is a Postdoctoral Fellow of the Fund for

Scientific Research - Flanders (FWO).

References

1. BeagleBone Black Starting Guide. Beagleboard.org, Last accessed: December 2015.
http://beagleboard.org/getting-started.

2. Cyclone IV GX FPGA Development Kit. Altera, Last accessed: December
2015. https://www.altera.com/products/boards_and_kits/dev-kits/altera/

kit-cyclone-iv-gx.html.
3. Highspeed AD/DA Card. Terasic, Last accessed: December 2015. http://www.

terasic.com.tw/cgi-bin/page/archive.pl?No=278.
4. icWaves Datasheet. Riscure, Last accessed: December 2015. https://www.

riscure.com/security-tools/hardware/icwaves.
5. M. Agoyan, J. Dutertre, A. Mirbaha, D. Naccache, A. Ribotta, and A. Tria. How

to flip a bit? In IOLTS 2010, pages 235–239. IEEE Computer Society, 2010.
6. J. Balasch, B. Gierlichs, O. Reparaz, and I. Verbauwhede. DPA, Bitslicing and

Masking at 1 GHz. In T. Güneysu and H. Handschuh, editors, CHES 2015, volume
9293 of LNCS, pages 599–619. Springer, 2015.

7. J. Balasch, B. Gierlichs, and I. Verbauwhede. An In-depth and Black-box Char-
acterization of the Effects of Clock Glitches on 8-bit MCUs. In L. Breveglieri,
S. Guilley, I. Koren, D. Naccache, and J. Takahashi, editors, FDTC 2011, pages
105–114. IEEE Computer Society, 2011.

8. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370–382, Feb
2006.

9. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryp-
tographic protocols for faults (extended abstract). In W. Fumy, editor, EURO-
CRYPT ’97, volume 1233 of LNCS, pages 37–51. Springer, 1997.

10. C. Clavier, J. Coron, and N. Dabbous. Differential power analysis in the presence
of hardware countermeasures. In Ç. K. Koç and C. Paar, editors, CHES 2000,
volume 1965 of LNCS, pages 252–263. Springer, 2000.

11. J. Coron and I. Kizhvatov. An efficient method for random delay generation in
embedded software. In C. Clavier and K. Gaj, editors, CHES 2009, volume 5747
of LNCS, pages 156–170. Springer, 2009.

12. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Information Security and Cryptography. Springer, 2002.

13. A. Dehbaoui, J. Dutertre, B. Robisson, and A. Tria. Electromagnetic tran-
sient faults injection on a hardware and a software implementations of AES. In
G. Bertoni and B. Gierlichs, editors, FDTC 2012, pages 7–15. IEEE Computer
Society, 2012.

14. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results.
In Ç. K. Koç, D. Naccache, and C. Paar, editors, CHES 2001, volume 2162 of
LNCS, pages 251–261. Springer, 2001.

15. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In N. Koblitz, editor, CRYPTO ’96, volume 1109 of LNCS,
pages 104–113. Springer, 1996.

16. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, CRYPTO ’99, volume 1666 of LNCS, pages 388–397. Springer, 1999.

17. J. Quisquater and D. Samyde. Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In I. Attali and T. P. Jensen, editors, E-smart
2001, volume 2140 of LNCS, pages 200–210. Springer, 2001.

18. J.-J. Quisquater and D. Samyde. Eddy current for Magnetic Analysis with Active
Sensor. In Esmart 2002, pages 185–194, 2002.

19. J. Schmidt and C. Herbst. A practical fault attack on square and multiply. In
L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J. Seifert, editors, FDTC
2008, pages 53–58. IEEE Computer Society, 2008.

20. S. P. Skorobogatov and R. J. Anderson. Optical fault induction attacks. In B. S. K.
Jr., Ç. K. Koç, and C. Paar, editors, CHES 2002, volume 2523 of LNCS, pages
2–12. Springer, 2002.

21. J. G. J. van Woudenberg, M. F. Witteman, and F. Menarini. Practical optical
fault injection on secure microcontrollers. In L. Breveglieri, S. Guilley, I. Koren,
D. Naccache, and J. Takahashi, editors, FDTC 2011, pages 91–99. IEEE Computer
Society, 2011.

