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Preface

Four years (approximated, which I can do now, since I will get an engineering
degree), that I have spent in this research group, working on these interesting
subjects, meeting a lot of interesting people, will now come to an end with
writing this preface. It were amazing years, filled with joys and frustrations that
were new to a recently graduated master’s student. I learned the frustration
of searching for weeks on end on a complicated problem and I learned the joy
of waking up in the middle of the night with an idea that would solve it all.
I learned the joy of compressing all the work I had spent months on into one
paper, and the frustration of getting it rejected for parts of the problem I did
not think about. I learned the frustration of having to rewrite the same piece
of text again and again and again, but then the fantastic feeling if it finally
becomes this really nice compact clear flow of ideas and it gets accepted for
publication. These four interesting years and the resulting thesis would have
never been possible if it was not for a whole bunch of people.

I would have never even started working in this subject if it wasn’t for my
supervisor Marc. Marc, your incredible amount of enthusiasm for your field of
research is jaw-dropping and very inspiring'. When doing my master’s thesis in
your group, you sparked me with (a bit of) the same enthusiasm which made
me want to pursue this PhD in Knowledge Representation, and which gave
me the motivation to keep wanting it when things were not going as planned.
Thank you for the many long discussions and ideas that have led to the research
in this thesis. And finally, thank you for teaching me a whole new level of

11 know you don’t like me using very in a text, but this time it was very much needed.
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deadline-driven research, where almost half of a paper can be researched and
written in the night before the deadline.

Halfway through my PhD, Marc got support in guiding me by Gerda. Thank
you Gerda, for guiding me in the more application-oriented topics. Thank you
for taking the time for proof-reading all my texts, even if the comments of last
time sometimes weren’t incorporated as well as you would have liked. And
foremost, thank you for taking time to assist Marc in the management of my
work, to stay grounded and to make sure things were planned correctly and
executed according to plan (something we both were not so great at).

While many say that doing a PhD is a lonesome job, those people have not
done their PhD in the KRR research group at KU Leuven. Being able to do
your research in a group of (mostly) likeminded people makes it much more
rewarding and motivating. Thank you Broes, Stef, Bart, Joachim, Jo,
Ingmar, Matthias, Ruben, Laurent and Tim for the interesting (albeit
sometimes extremely long) discussions, fun trips to Helsinki, Kasterlee, Istanbul,
Westmalle, New York,. .., and our very fun board game nights.

During my PhD I got the chance to travel to beautiful places to meet interesting
people. There are a few people that I would like to thank in particular with
helping in the forming of this PhD. Thank you to the members of my jury for
traveling to Leuven (twice!) and/or for taking all the time to read this work
and give detailed interesting feedback on it. Vaishak, thanks for guiding me
into the complex field of modal logics and thank you for all ideas. Marcos,
thank you for not agreeing to my ideas, since many of the results in this work
come from those discussions and thank you for all the productive and fun trips
to Luxembourg.

Outside of work, there are many friends I would like to thank here for relieving
me of the grasp that thinking about “if someone knows is someone only knows
whether something is known by everyone does he then know if this can be
common knowledge” can get on your brain. Thank you Ruben, Filip, Marién,
Derde, Wouter, Cois, Sanne, Vincent, ...2 and the people in Poseidon
for the fun times outside of work: playing games, drinking beers, taking trips,
going to festivals, diving, .... A special thank you goes to Cie for my Master’s
degree.

To my parents: heel erg bedankt voor al de steun alle 9 jaar (en de 18 daarvoor)
dat ik gespendeerd heb werkend naar dit doctoraat. Bedankt voor alle steun,
zowel moreel als financieel. Tk kan met heel grote zekerheid zeggen dat ik hier
nooit gestaan had zonder jullie. Dankjewel!

2 Apologies to the people T might have forgotten, I mean nothing by it :)
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To conclude, there is one more person to thank. As stated above, my reasoning
skills are better than my planning skills, but luckily I had someone who always
stood by me and helped through this. Lieze, thank you for helping me plan,
and for being there when my planning failed and I had to do the deadline-driven
research our research group was famous for. Thank you for always being there,
listening to me pitching ideas (even if you had no clue what they were about),
listening to me complaining and motivating me to push through when times
were though and I couldn’t see the forest for the trees. Ik zie je graag!






Abstract

In Artificial Intelligence, the scientific field of Knowledge Representation and
Reasoning (KRR) is concerned with developing formal languages, to represent
knowledge, and inference methods to solve tasks using that knowledge. Most
of the existing approaches develop a formal language (a logic) together with
an inference, to solve some type of computational task. The recently proposed
Knowledge Base (KB) paradigm applies a strict separation of concerns to
information and problem solving, based on the idea that knowledge is completely
independent of the computational task it is used for. A KB system allows
information to be stored in a knowledge base, and provides a range of inference
methods, all using the same knowledge base. With these inference methods,
various types of problems and tasks can be solved using the same knowledge
base.

In this text we study this paradigm in detail and we prove the hypothesis that
this approach has many advantages over standard declarative paradigms. We use
an implementation of a KB system: the IDP system with corresponding language
FO(+) to model challenging and interesting applications. These applications
show the need to provide extensions: we develop new language constructs and
formalize new inferences.

In the first part of this work, we study two applications from industry. We first
look at interactive product configuration. In these interactive configuration
problems, a configuration of interrelated objects under constraints is searched,
where the system assists the user in reaching an intended configuration. We
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show that multiple functionalities in this domain can be achieved by applying
different forms of inferences on a formal specification of the configuration domain.
To this goal, a set of new, derived inferences are defined. A second application
is the car-rental system, a prototypical example from the domain of Business
Rules: rule-based systems that are used in industry for knowledge intensive
applications. We investigate whether all necessary knowledge can be represented
in our knowledge Representation language FO(-). We propose an extension of
the concept of inductive definitions in the form of a "new“-operator to model
knowledge about situations where a new object is created, for which a good
formalism was not available in our framework.

In the second part, we focus on applying the ideas of the KB paradigm and the
KB system IDP in a security context, by modelling Access Control applications.
We use a KB system in a distributed way to verify if a certain agent has
access, based on the policies of other agents. We develop a generalisation of
autoepistemic logic to a distributed setting as a language for these distributed
policies. Distributed autoepistemic logic (dAEL) is equipped with tools to
express references to the knowledge of other agents. We study generalisations
of well-known semantics of autoepistemic logic, using Approximation Fixpoint
Theory (AFT). dAEL assumes complete mutual introspection between agents,
every agent knows exactly what every other agent knows. This is a reasonable
assumption when modelling public statements that an agent makes, but it is
not reasonable for every multi-agent application.

In the last part of this thesis we present another new logic: COL,,, an extension
of first order logic with constructs for a knowledge modality K 4 for each agent,
a common knowledge modality C' and an only knowing modality O4 for each
agent. We study how these modalities behave together and develop a new
semantic structure that can resolve formulas of this language, without assuming
any introspection.



Samenvatting

Het doel van kennisrepresatie en redeneren (KRR), een onderzoeksveld in
Artificiéle Intelligentie is het ontwikkelen van formele talen om kennis mee voor
te stellen op een wiskundige manier, en het ontwikkelen van inferentie methoden
zodat verschillende taken kunnen worden opgelost met behulp van deze kennis.

Bestaande aanpakken in KRR ontwikkelen een formele taal (een logica) met
een bijhorende inferentie, specifiek toegepast op een bepaald soort redeneertaak.
Het Kennisbank (KB) paradigma pakt dit anders aan. Er is een strikte
scheiding tussen de relevante kennis en waar het voor gebruikt wordt. De
achterliggende visie is dat domeinkennis compleet onafhankelijk is van de
redeneertaak waarvoor het gebruikt dient te worden. In een KB systeem
wordt informatie opgeslagen in een centraal beheerde kennisbank, waarbij een
verzameling inferenties worden aangeboden die redeneertaken kunnen oplossen,
gebruikmakend van deze kennisbank.

In deze tekst bestuderen we dit paradigma en we onderzoeken en bewijzen dat
deze aanpak een heel aantal voordelen biedt ten opzichte van eerdere aanpakken.
We maken gebruik van een bestaand KB systeem: het IDP systeem, met eigen
KR taal FO(-) (eerste-orde logica met een verzameling uitbreidingen). We
gebruiken dit systeem om verschillende interessante en complexe toepassingen
te modelleren. Vanuit deze toepassingen zien we de nood tot het uitwerken
verschillende uitbreidingen. We definiéren nieuwe taalconcepten en ontwikkelen
nieuwe inferentietechnieken.

In het eerste deel van deze thesis bekijken we twee toepassingen uit de industrie.
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De eerste gaat over interactieve configuratie van producten en systemen. In
interactieve configuratie problemen wordt er een configuratie gezocht van
verschillende gerelateerde objecten die aan een verzameling voorwaarden moeten
voldoen. Het systeem begeleidt de gebruiker in deze configuratietaak en werkt
samen met de gebruiker om een gewenste configuratie te bereiken. We bekijken
deze toepassingen en tonen aan dat verschillende functionaliteiten bereikt
kunnen worden door inferenties toe te passen op een formele specificatie
van de domeinkennis over de configuratie. We definiéren een verzameling
nieuwe, afgeleide inferenties die deze nieuwe functionaliteiten voorzien. De
tweede toepassing die we bekijken is een systeem dat een autoverhuur bedrijf
ondersteund. Dit is een voorbeeld dat prototypisch is in de wereld van de
Business Rules: regelgebaseerde systemen die vaak in de industrie gebruikt
worden voor kennisintensieve toepassingen. We onderzoeken of alle relevante
domeinkennis in onze taal FO(-) kan worden uitgedrukt. We definiéren een
uitbreiding op het concept van inductieve definities in onze taal, die het toelaat
om nieuwe objecten te creeéren en introduceren een "new“-operator, aangezien
dit formalisme ontbrak in de huidige taal.

Het tweede deel van deze thesis bekijken we Access Control (of toegangsbeheer)
toepassingen vanuit het oogpunt van het KB paradigma. We gebruiken het IDP
systeem en kijken naar uitbreidingen voor de taal om deze bruikbaar te maken
in een security context, voor deze Access Control toepassingen.

We onderzoeken hoe we een KB systeem op een gedistribueerde manier (onder
verschillende agenten) kunnen gebruiken om uit te zoeken welke agent toegang
krijgt tot welke bestanden, gebaseerd op het beleid van de andere agenten.
We definiéren dAEL: distributed autoepistemic logic, een veralgemening van
autoepistemische logica om dergelijk gedistribueerd beleid in voor te stellen.
Distributed autoepistemic logic (dAEL) is uitgerust met taalconstructies om
te refereren naar kennis van andere agenten. We bekijken semantieken voor
deze logica, gebaseerde op gekende semantieken voor autoepistemische logica.
Hiervoor gebruiken we het algebraisch framework Approximation Fixpoint
Theory (AFT). dAEL veronderstelt dat de verschillende agenten open en eerlijk
comminuceren en bijgevolg perfect weten wat elke andere agent weet en niet
weet. Deze veronderstelling is redelijk voor de toepassingen die we onderzocht
hebben, maar is dit niet in het algemeen.

In het laatste deel van deze thesis stellen we COL,, voor: een logica gebaseerd op
eerste-orde logica met taalconstructies voor verschillende modaliteiten: kennis
van een agent (K 4), common knowledge (C') en beperkingen van kennis van een
agent (Only knowing: O4). We onderzoeken deze modaliteiten, bekijken hoe ze
zich onderling verhouden en ontwikkelen een nieuwe semantische structuur die
toelaat formules van deze vorm te interpreteren. In deze logica hebben we geen
vooropgestelde veronderstellingen zoals introspectie.
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1.

Introduction

Key to creating artificial intelligence is making machines “understand”
information. Solving problems often requires an extensive amount of knowledge
about a certain field of discourse. The field of Knowledge Representation and
Reasoning (KRR) is concerned with representing information about the world
in a form such that it can be comprehended by a machine and studies how this
knowledge can be used for reasoning.

The first aspect of KRR is about developing languages to represent knowledge.
To do this, a language has to be a formal, mathematical, language (a logic),
yet it has to be natural and readable since humans have to express knowledge
in this language. Many logics have been studied for this task, some of which
will be discussed in this thesis. A well-known logic, prominently featured in
this thesis is first-order logic. First-order logic is a mathematical language
with operators (such as and, or, not, ...) and quantifications (such as for all
and there exists) that allow to combine (atomic) facts to form more complex
statements. In first-order logic, statements such as “All men are mortal” and
“Socrates is a man” can be expressed as:

Vo : Man(x) = Mortal(z).

Man(Socrates).

The second aspect is about studying how specifications in such formal languages
can be used to solve complex problems or how they can be used for reasoning.
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Inferences or reasoning tasks take a specification in a formal language as input
and use this for reasoning. For example, the deduction inference can be used to
derive from the above specification that Socrates is mortal (Mortal(Socrates)).
The deduction inference is only one of many useful possible inference tasks that
are studied in the field. In this thesis we will discuss many more, such as for
example modelgeneration (generate a situation or an example, i.e. a model,
that is possible given the specification formulated in the language).

A third aspect is developing reasoning machines or algorithms implementing
these inferences. Combining these three aspects allows to build systems where a
user can specify the relevant knowledge in a readable formal language, and the
system can use this knowledge to solve real-life problem without the need of the
user to state how the system should solve these problems. Many KRR systems
have been built, where the three aspects are tightly connected: a system is
developed supporting a specific inference with a language developed to state
knowledge, that is to be used with that specific inference in mind.

The vision behind the Knowledge Base Paradigm is that while all three
aspects are crucial, they should not be intertwined in any way. Information
is independent of the inference it is used for and has nothing to do with the
implementation wherein it is used. The goal is to develop a Knowledge Base
System (KBS), where a user (often an expert in the relevant domain) stores
his knowledge about the domain of discourse and the system provides the user
with a whole set of inferences that he can use to solve different tasks in that
domain. A good example of an application of a KBS is a course scheduling task
at a school. The domain knowledge consists of constraints on the availability of
teachers, rooms, ..., and of information on the groups of students, courses that
have to be taught, etc. This information can be used to make a schedule at the
start of the year, but is also relevant when a teacher falls ill and a revision of
the schedule has to be made.

In this thesis we focus on the language FO(-) and the IDP Knowledge Base
System that implements a number of inferences for FO(-). Important when
developing such a system is to have a language that allows to represent as many
applications as possible in a precise, concise but natural way and to support
many reasoning tasks by logical inferences. Since the only way to investigate
the maturity of such a system (“Is the language rich enough to express real-life
knowledge?”, “Are there enough inferences available to be used in real-life
applications?”,...) is to take it out into the world and try it, which is what we
have done in this thesis. We investigate the applicability of the IDP system in
different contexts and study what language constructs and reasoning tasks are
still lacking. We formulate extensions to the knowledge representation language
FO(-) and formulate new inferences that allow to apply the IDP system in
these application domains.
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Studying applications from a KB point of view is two-fold: it is not only a test
for the idea of the Knowledge Base Paradigm, it also studies how information
is used in these applications, what kind of language constructs are relevant and
study how they work. The applications motivating this thesis can be divided in
two subcategories. First, we have business applications. In the first two chapters,
we study interactive configuration as an application of the KB paradigm and
look at an application from the domain of Business Rules: a formalism that
is often used in industry for knowledge intensive applications. Afterwards, in
the last two chapters, we look at modal logics. Motivated by an application
in access control we develop modal logics for representing policies of agents in
access control applications. We also propose general modal logics, that do not
make any assumptions and have a rich language to express many modalities,
for a wide range of applications.

The main contributions of the presented research are as follows:

o We present our case study of applying the KBS to the field of interactive
configuration. We study the feasibility and usefulness of using a KBS in
this setting. We identify eight subtasks an interactive configuration system
should support, such as “Acquiring information from the user”, “Checking
the consistency of a given answer by the user” and “Autocompletion of
a partial configuration” and formalize them all as logical inferences on
a centrally maintained knowledge base. We developed a prototype of
an implementation, using the domain knowledge from a configuration
application provided to us by a banking company and evaluate our
approach using the criteria from knowledge-based configuration research
and compare to other approaches using these same criteria.

Summarized: Studying how to apply a KBS to the interactive
configuration domain, we formalize eight inferences on a
central knowledge base implementing all relevant subtasks of
an interactive configuration system.

This work was published as a conference paper at the Practical Aspects
of Declarative Languages conference in [Van Hertum et al., 2016b] and
later an extended version was published as a journal paper in Theory and
Practice of Logic Programming [Van Hertum et al., 2016¢].

¢ The domain of Business Rules is well-represented in industry for handling
knowledge intensive applications. They often use a rule-based format to
encode information. In order to compare our knowledge based approach
with this field, we study a prototypical example from the Business Rules
domain: the EU-Rent Car Rental company. EU-Rent is a fictitious car
rental company spread over different countries, with a collection of cars
spread over multiple branches. We study how the information could be
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formalized and implemented two relevant use cases. We plan reservations
using a specification representing the rules and constraints relevant for
a car rental company and we study how to represent the knowledge of
purchasing a new car and adding it to the system. We propose a new
inference for the first use case and a set of language extensions for the
second. The research that is presented in Chapter 3 was a first step in
exploring the problem domain and the motivation for further work, done
by Bogaerts et al. in [Bogaerts et al., 2014¢c] and [Bogaerts et al., 2014b].

Summarized: To represent rule-based knowledge in the IDP KBS,
we introduce a new language construct allowing to create new
domain elements and tested this approach in a use case of
the EU-Rent Car Rental company, well-known in the Business
Rules domain.

This work was published as a technical communications paper at the
International Conference on Logic Programming in [Van Hertum et al.,
2013b] and as a technical report in [Van Hertum et al., 2013a]. A abstract
was published in [Van Hertum, 2014]

Imagine a setting where there are a set of principles and a set of resources,
and a set of agents that together have to decide which principal gets
access to which resource. Some agents own certain resources for which
they decide whether to give access or to delegate that decision to others.
To model this setting in a logic, a logic is needed where each agent can
have its own knowledge base and they can refer to each other’s knowledge.
To be able to delegate decisions to others, an agent has to know what the
other agents know. To delegate the decision to revoke to other agents,
an agent has to know what other agents do not know. When Moore first
formulated autoepistemic logic (AEL) in [Moore, 1984] this was motivated
by the idea to consider an agent’s theory to be a complete characterization
of what the agent knows. With a similar motivation we introduce dAEL:
distributed autoepistemic logic. dAEL is a multi-agent generalisation of
AEL, where the agents have full introspection into each other’s knowledge
(or stated differently, where the agents refer to each others public belief).
This assumption is motivated by applications in access control. We show
the applications and compare this logic to other formalisms.

Summarized: dAEL is a multi-agent generalisation of autoepis-
temic logic that we developed, motivated by an application in
Access Control. It assumes a setting where the agents are open,
honest and fully collaborative.

This work was published as a conference paper at the International Joint
Conference on Artificial Intelligence in [Van Hertum et al., 2016a)].
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When reasoning about agents, sometimes we want to state that a certain
knowledge base is all that an agent knows. Levesque captured this idea
using “Only Knowing” [Levesque, 1990]. Only knowing a formula ¢
(denoted as O4¢) by an agent A implies that A knows ¢ (denoted as
K 4p), and that for every formula ¢ that is not a logical consequence of ¢,
A does not know ¢ (=K 44). Multi-agent only knowing has been studied
before [Halpern and Lakemeyer, 2001, Belle and Lakemeyer, 2010], and
the combination of common knowledge and only knowing in a multi-agent
context was first discussed in [Belle and Lakemeyer, 2015]. We propose
a new semantical structure that has a clean mathematical structure,
motivated by issues we discovered in the earlier approaches. We formalize
public announcements in this logic and show how the muddy children
puzzle can be modelled in the proposed logic.

Summarized: We propose a new semantical structure for a logic
accommodating operators for knowledge, only and common
knowledge.

1.1 Structure of the text

This

text is structured as follows:

Chapter 2 introduces background knowledge: concepts and notation not
part of this research but used throughout the text. It introduces first-order
logic, its extensions in FO(+), the knowledge base paradigm, autoepistemic
logic and approximation fixpoint theory.

Chapter 3 studies the interactive configuration application. It introduces
the field of interactive configuration, studies which tasks are used in
a configuration application and how they can be formalize as logical
inferences.

Chapter 4 handles the Business Rules application. In order to compare
rule-based systems to our knowledge base paradigm we study how to
model use cases of the EU-Rent Car Rental company in our KBS. We
propose new inferences and language extensions to make this possible.

Chapter 5 introduces dAEL: distributed autoepistemic logic. dAEL is a
generalisation of autoepistemic logic for a distributed setting. Different
agents can each have their own theories and refer to each other’s knowledge.
It is motivated by an application in access control and assumes completely
open, honest and communicative agents.
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o Chapter 6 proposes COL,,: a multi-agent modal logic accommodating
knowledge, common knowledge and only knowing. We propose a new
semantical structure, show the issues with previous approaches and
motivate why this semantic structure does not have these issues. This
logic makes no assumptions on introspection or truthfulness.

o Chapter 7 presents the conclusions of this research. We also give some
directions for possible future work.
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Background

This preliminary chapter looks at concepts and notations, not part of this
research, but needed and used throughout this text. It starts with a look at
First-order Logic (FO) (or classical logic), a formal language for which we
formulate new extensions in this thesis. Afterwards, we look at some extensions
that have already been formalized in the FO(-) family of languages.

We introduce the Knowledge Base Paradigm, and its implementation IDP. We
present the ideology of the paradigm and give an overview of the supported
reasoning tasks, or inferences.

In order to define some of the extensions, we use an algebraical framework:
AFT. The needed concepts will be introduced in Section 2.6. This chapter will
be concluded with a section containing a short introduction to the different
semantics of autoepistemic logic (AEL), defined by AFT.

2.1 First-order Logic

This section only gives an overview of FO and the notations that will be used
through the rest of this thesis. For a more detailed exposition, see for example
[Enderton, 2001].

To define a formal language, we need to look at a number of aspects of that
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language. First, a set of symbols that can be used in that language is needed,
which we call a vocabulary. Given this set of symbols, we need rules that define
how these can be used to form correct sentences of the language: the syntax.
Lastly, we need a semantics. The semantics of a language is a mathematical
account of what sentences of that language mean.

To illustrate all concepts and notation, we use a running example: the planning
of a course schedule for a high school, involving courses, teachers and groups of
students.

Example 2.1.1. We look at a course scheduling application that schedules
classes for teachers, courses and groups of students for one day, that satisfy
following constraints:

e A teacher can only be teaching one class at a time.
e A group of students needs to have at least one class for each course.

e A teacher can only teach the classes he is qualified for.

- 1 2 3 4 5 6 7 8
; Sports, Math, Biology,
Group A Philosophy, Marc CS, Gerda Alice Pleter e
. . . Sports, Philosophy,
Group B | |CS, Gerda Mathematics, Pieter Biology, Leon Marc Marc

Figure 2.1: An example schedule for Example 2.1.1

2.1.1 Syntax and Semantics

FO uses two types of symbols: logical and non-logical symbols. The logical
symbols have a fixed meaning in the language, while the non-logical symbols
are the context-dependent symbols that are declared in the vocabulary. The set
of logical symbols of FO contains variables (x,y, 2, . ..), logical connectives ("=,
TN,V =, <, &), quantifiers (V’,’3’) and punctuation symbols (°(’, )7, V).

A vocabulary 3 declares the non-logical symbols, and consists of:

e A set of predicate symbols: X p

e A set of function symbols: ¥ g
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We say a vocabulary ¥’ is a subvocabulary of a vocabulary ¥, if ¥ C ¥p
and Y C ¥p. With each predicate/function symbol o, we associate a natural
number, its arity, which indicates the number or arguments the symbol takes.
We sometimes write o/n to denote that o is a predicate with arity n and o/n :
to denote it is a function with arity n. Propositional symbols are predicates of
arity 0 and constants are 0-ary function symbols. Propositional symbols also
include T and 1, denoting true and false.

Example 2.1.2. For our course scheduling domain, we have the following
vocabulary:

Y=/
Yp ={Time/1, Course/l, Teacher/1l, Group/1, Class/4}
Y r = {Qualification/1 :}

In FO, we use a structure to define the semantics. A Y-structure S associates
values to the predicate and function symbols in 3.

Definition 2.1.3. A X-structure S consists of

¢ The domain or universe Dg. This is the set of all values we consider,
which are called the domain elements.

« For each predicate P/n, S contains an interpretation P°: a subset of
(Ds)".

 For each function f/n, S contains an interpretation f°: a mapping
% :(Ds)® — D. Sometimes we also identify an interpretation f with a
subset of (Dg)"+1.

We assume the predicate symbol = /2 (equality) to be implicitly contained in
every vocabulary and interpreted by every structure in the standard way.
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Example 2.1.4. A structure S for vocabulary ¥ for course scheduling can be:

S=A
Ds = {G4,Gp, Pieter, Gerda, Marc, Math,CS, Philosophy, 1..8}
Time® = {1..8}
Course® = {Math,CS, Philosophy}
Teacher® = {Pieter, Gerda, Marc}
GT’OUpS - {GA7 GB}
Class® = {(1, Marc, Philosophy, G 1), (4, Marc, Philosophy, Gg),
(1,Gerda,CS,Gp), (3, Pieter, Math, G 4),
(4,Gerda,CS,G 4), (7, Pieter, Math, Gg), (8, Pieter, Math,Gp)}
Qualification® = {Marc — Philosophy, Gerda — CS,
Pieter — Math}

Where (1, Marc, Philosophy,G4) for example means that Marc teaches
Philosophy to group A in the first hour of the day.

Using the symbols of a vocabulary, we construct terms and formulas in FO.
Definition 2.1.5. Given a vocabulary X, the set of terms T over ¥ is inductively
defined as:

1. Each variable is a term.

2. If ty,...t, are terms, and f/n € X g, then f(t1,...,t,) is a term.
We usually consider logical expressions in the context of a fixed domain D, in
which case domain elements are also considered terms.
Definition 2.1.6. Given a vocabulary X, a formula over ¥ is inductively
defined as:

1. If ty,...t, are terms, and P/n € ¥p, then P(ty,...,t,) is a formula,

called an atom.
2. If ¢ and ¢ are formulas, and x is a variable, then —p, @ A, V9, Jxp

and Vx1 are formulas.

We assume that — binds stronger than A and V, which bind stronger than V and
3. Expressions ¢ = ¥, ¢ < ¢ and ¢ < 1 are shorthand for - V¢, ¢ V =
and respectively (m¢p V 9) A (¢ V —p). As is standard in mathematics, we often
add parenthesis to improve readability. We use ¢ to denote tuples of terms. If
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Z denotes the tuple of variables (z1,...,x,), then (VZy) denotes the formula
Va1Vas ...V, e, likewise for (3z¢). We also denote the language of first-order
logic by Lro.

The subset of the language of first-order logic that uses no quantification (V, 3)
and only propositional symbols, is called propositional logic, sometimes denoted
as Lprop -

A literal is an atom P(t) (a positive literal) or the negation —P(f) of an atom
(a negative literal). In a formula Vayp or Jzp, we call ¢ the scope of x. Every
occurrence of x in its scope is said to be bound. A variable is bound if all of its
occurrences are bound. Non-bound variables are called free. A sentence is a
formula with no free variables.

Definition 2.1.7. Given a vocabulary X: a Y-theory T is a set of sentences
over X.

Example 2.1.8. In the introduction of this running example (Example 2.1.1),
we stated the following constraints:

1. A teacher can only be teaching one class at a time.

2. A group of students needs to have at least one class for each course.

3. A teacher can only teach the classes he is qualified for.
We translate them to FO:

1. (Vti, te, c1, c2, g1, g2)(Class(ti,te,c1,91) A Class(ti,te,ca, ga) = ¢1 =
Co A g1 = gg).
2. (Vg, ¢)(Group(g) A Course(c) = (3ti, te)(Class(ti,te,g,c))).

3. (Vti, te, ¢, g)(Class(ti,te,c,g) = Qualification(te) = c).

2.1.2 Semantics

For a given Y-structure S, we define when a formula (and by extension a theory,
as set of sentences) is satisfied in S.

Definition 2.1.9. We define the truth assignment function of a structure S
on a formula ¢ by structural induction on ¢:

e P(t)% is true iff #° € PS, and false otherwise,
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o —)% is true iff ¢)° is false, and false otherwise,

o (pA)Y is true iff ¢ is true and ° is true, and false otherwise,

o (p V) is true iff ¥ is true or ¢ is true, and false otherwise,

e VY : 1 is true iff for each d € D, [z /d]® is true, and false otherwise,

e 3w : % is true iff for at least one d € D7, [z/d]° is true, and false
otherwise.

If ¥ is true, we also say that S satisfies ¢, or S is a model of ¢, with notation
S E . A structure is a model of a theory T if it satisfies all sentences in 7.

2.2 Partial structures

The structure as defined in Definition 2.1.3 gives an account of the state of the
world. However, often we have only partial information on the world. We define
partial three-valued structures, as a generalization of structures.

A partial set on a domain D is a function from D to {t,f,u}. It is called a
partial set, because a domain element can now be in the set (t), not in the set
(f) or unknown to be in the set (u). A partial set is two-valued (or total) if
u does not belong to its range. A partial structure S ' consists of a domain
D and an assignment of a partial set o to each predicate or function symbol
o € (XpUXF), called the interpretation of o in S. For a predicate p with
arity n, the interpretation p® of p in S is a partial set on domain D", and the
interpretation fS of a function f with arity n in S is a partial set on domain
D"+, In case the interpretation of (a predicate or function symbol) o in S is a
two-valued set, we abuse notation and use ¢ as shorthand for {d|o°(d) = t},
otherwise we use following shorthands

of = {dlo®(d) = t}
of = {do°(d) = f}

o5 = {d|o®(d) = u}

The truth order >; on truth values is defined by t >; u >; £f. The (partial)
precision order >, on truth values is defined by u <, t and u <, f.

INote the difference in typography between a partial structure S and a total structure S.
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To extend the valuation function as in Definition 2.1.9, we use the Kleene
semantics [Kleene, 1952], which extends the truth tables of all operators to
handle unknown. E.g., ¢ V % is true if either ¢ or 1 is true, false if both are
false and unknown otherwise.

The precision <, order can be extended pointwise to partial sets and partial
structures, denoted S <, §’. This means that an interpretation has become
more precise if tuples of domain elements that were previously mapped to
unknown now map to true or false. Similar for the truth order <;. Notice that
total structures are the maximally precise ones in the precision order. We will
illustrate the extended precision relation in Example 2.2.1. When S <, &', we
say that &’ extends S, that S approximates S’ or that S’ is an expansion of S.
The satisfaction relation is monotone: if § <, &’, then ©° <p cpSl. Hence, if a
formula is true in a partial structure, it is true in all two-valued expansions of
it. For a theory T and a partial structure S, we say that S is a model of T, or
S satisfies T' (in symbols S E T) if TS =t and S is two-valued. We sometimes
abuse notation and write T F ¢ (or T = T") for the entailment relation, as a
shorthand for “For every structure S such that S F T, we have S F ¢.”.

A total structure S is called functionally consistent if for each function f, the
interpretation f° is the graph of a function D™ — D. A partial structure S is
functionally consistent if it has a functionally consistent two-valued extension.
Unless stated otherwise, we assume for the rest of this thesis that all (partial)
structures are functionally consistent.

A domain atom (domain term) is a tuple of a predicate symbol P (a function
symbol F) and a tuple of domain elements (di,...,d,). We will denote it
as P(di,...,d,) (respectively F(dy,...,d,)). We say a domain term ¢t is
uninterpreted in S if {d|d € D A (t = d)° = u} is non-empty.

Example 2.2.1. To represent input information for Example 2.1.1, such as
the teachers, groups and courses that have to be planned and some constraints
on when a certain teacher is not available, we use a partial structure S’. S’ is a
partial structure that approximates S (Example 2.1.4). With

S'={
Dgs = {G4,Gp, Pieter, Gerda, Marc, Math,CS, Philosophy, 1..8}
Time® = {1..8}
Course® = {Math,CS, Philosophy}
Teacher® = {Pieter, Gerda, Marc}
Group® = {G,Gp}
Classy = {(1, Marc, Philosophy, G 1), (4, Marc, Philosophy, Gg)}
Classg = {(5,Gerda,CS,G ), (5, Gerda,CS,Gp),
(8,Gerda,CS,G4)}
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An associated theory

The associated theory Ts of a partial structure S is a representation of the
information contained in S as a theory, which will be used in Chapter 3. It is
defined by the following collection of constraints. For every predicate symbol
P, this collection contains two sets of constraints:

{P(d)d € P}

{~P(d)|d € P}
and two sets of constraints for every function symbol F:

{F(d)=e|(de) € FY'}

{-F(d) =el(d,e) € F¥'}

Given a partial structure S, the domain structure Sp is the structure containing
only the domain of S. It is easy to see that S contains the same information as
Ts USp.

2.3 Extensions for first order logic: FO(-)

In this section, we discuss a number of extensions for FO. As is standard in
literature, we denote an extension to FO as FO(x), with x an identifier for that
extension. FO(-) [Denecker and Ternovska, 2008] is used to denote the set of
extensions for FO. Abusing notation we also use FO(-) as a shorthand for the
language that is the union of all extensions discussed below.

2.3.1 Sorted logic: FO(Types)

Above, we defined one-sorted (or untyped) FO, which used a domain D in any
interpretation. Many-sorted (or typed logic (FO(TYPES)) is an extension that
categorizes domain elements into different sorts or types. For many applications,
typed FO is a more natural language. In FO(TYPES), the vocabulary contains
in addition to a set of predicates X p and a set of functions X g now also a

set of types Y. A predicate of arity n now has a type [r1,..., 7], which is
an n-tuple of type symbols 7, € Xp. A function of arity n now has a type
[T1,...,Tn] = Tna1, a (n + 1)-tuple of type symbols®>. The definition of a

structure is adapted as follows:

2A predicate P with type [71,...,7s] is also denoted as P(71,...,7,). A function is
denoted f(71,...,7n) : 7.
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e Instead of a domain D, an interpretation contains a domain D, for every
TE Y.

o A (partial) interpretation of a predicate P[ry,...7,] is a (partial) subset
of D;y X Dyy X ... x D, .

o A (partial) interpretation of a function P[ry,...7,] = Th41 is a (partial)
subset of D, x D, X ... x D, x D

Tn+1"

Throughout this thesis, we implicitly always use typed logics, while in theorems
and proofs we use the untyped variant for readability. We can do this, since the
result of Oberschelp [Oberschelp, 1962] shows that typed FO can be reduced to
untyped FO by introducing a predicate of arity 1, for each sort in the vocabulary
of the typed logic.

Types are intended to mimic the classification in a domain. As such, it is natural
to extend the notion of a type to type hierarchies: a type can be a subtype or
supertype of another type, indicating that an interpretation of the former will
be a subset/superset of the latter.

Example 2.3.1. A typed vocabulary for Example 2.1.1 can look like:

Y=
Y1 = {Time, Course, Teacher, Group}
Y p = {Class(Time, Teacher, Course, Group)}
Y = { Qualification(Teacher) : Course}

}

Note that we have less predicates in this vocabulary then before. Because of
the types, there is no need anymore for unary predicates representing the set of
teachers, groups, ...

2.3.2 Partial functions: FO(PF)

The functions used in FO are total functions. A function of arity » has an
image for every tuple of length n in the domain of the function. In real life
and mathematics, we regularly come across functions that are partial. A good
example is the division of integers: + : Z x Z — Q, since there is no image for
any tuple of the form (z,0), with « € Z. A partial function has for each input
tuple, zero or one image(s). In context of a three-valued structure S, a partial

function f should, given an input tuple d, have at most one tuple (d,d) in fZ.

If f/n is a partial function, we allow that for certain d € D™, f(d) is undefined.
We recursively extend the interpretation of terms and formulas as follows. A
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term that has an undefined subterm is also undefined (for example a term
+(3,+(5,0)) would be undefined) and an atom containing an undefined term is
false.

2.3.3 Sets and aggregates: FO(Agg)

In FO(AGG), we define a set expression as an expression of the form {Z : v}
or of the form {T : ¢ : t}, with T a tuple of variables, ¢ a formula in FO
and t a term as defined in FO. Call 5 the free variables of ¢, then T C i and
define Z = 7 \ Z, the free variables of the set expression. Given a structure S
with domain D and an assignment d to the free variables Z, the interpretation
{7 : p}7 is the set {E, € D\@[E/EI,E/E]S =t} and {7 : ¢ : t}° is the multiset
{tlz/d ,z/d)5|d € D} and p[z/d ,z/d)5 =t}.

An aggregate term is a term of the form Agg(E), with Agg an aggregate function
symbol and E a set expression as defined above. At this point Max, Min, Sum,
Card and Prod are defined in the FO(AGG) language. The Card aggregate
maps a set expression {Z : ¢} to the number of elements that set contains.
The Maz, Min, Sum and Prod aggregates map a set expression {Z : ¢ : t} to
respectively the maximum, minimum, sum and product of the terms ¢ of the
tuples (7, t) that satisfy . For set expressions {Z : ¢}, the Maz, Min, Sum
and Prod aggregates are only defined for sets that contain tuples of length
one, and map such a set expression F to respectively the maximum, minimum,
sum and product of the first (and only) element of each tuple in that set. By
consequence, it makes no sense using this operators on sets containing tuples of
arity higher then 1. Sum and product aggregates are undefined for sets that
contain non-numeric values and the minimum and maximum of an empty set
is also undefined. Note that this means that those four aggregates are partial
functions.

We also use aggregates for another extension we use in this text: extended
quantifications. Since they are just syntactic sugar, we shortly introduce them
here. We introduce (3.;T)p, with ~€ {=, <,>,<,>} as a shorthand for:

Card{T : ¢} ~i

2.3.4 Definitions: FO(ID)

When we have a graph, with nodes and edges, there is an important concept,
that is inexpressible in FO: the reachability between nodes [Libkin, 2004] (or, put
differently the transitive closure in a graph). Say we have a vocabulary containing
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a type Node and predicates Edge(Node, Node) and Reach(Node, Node), there
exists no formula ¢ in FO such that in any model M satisfying ¢ it is the case
that (ny,n2) € Reach™ iff there is a path between n; and ny in the graph.

It is however not a difficult concept to formalize, using a recursive or inductive
definition:

¢ Node ns is reachable from node ny if there is an edge connecting them;

¢ Node ns is reachable from node n; if there is a node n that is reachable
from n; such that ns is reachable from n.

In this section we present FO(ID) [Denecker, 2000]: an extension that allows
to express (inductive) definitions over FO formulas.

Definitions A are sets of rules § of the form VZ : P(f) < ¢, with the free
variables of ¢ among the variables in = and ¢ a first-order formula. We call
P(%) the head (head(d)) and ¢ the body (body(d)) of the rule. We say that
A defines Q if A contains a rule § with head(6) = Q(¢). We use Def(A) to
denote all symbols defined in A; all other symbols are called parameters, or
opens, denoted as Open(A). FO(ID) is now defined as the language, where a
formula is a FO formula or a definition A.

Example 2.3.2. To show how a definition looks, we formalize the definition of
reachability in FO(ID). We take the vocabulary ¥ = {Reach/2, Edge/2} and
show a definition A that defines Reach in terms of Edge.

Vo y : Reach(x,y) + Edge(z,y).
Vx y : Reach(x,y) <3z : Reach(x, z) A Reach(z,y).

The satisfaction relation for FO can be extended for FO(ID), using the well-
founded semantics [Van Gelder, 1993]. This semantics formalizes the informal
semantics of rule sets as inductive definitions [Denecker, 1998, Denecker et al.,
2001, Denecker and Vennekens, 2014]. Let A’ be the definition constructed
from A by replacing each rule VT : P(t)«¢ with Vy : P(y)«3T : t = 7 A ¢.
The interpretation I satisfies A (I = A) if I is a parametrized well-founded
model of A, that means that I is the well-founded model of A’ when the open
symbols are interpreted as in I.

A definition A is total if for each structure I that is two-valued on Open(A)
and is unknown on Def(A), a two-valued expansion of I exists which is a
model of A [Denecker and Ternovska, 2008]. The completion of A for a
symbol P, defined in A by the rules VZ; : P(t;)¢; with i € [1,n], is the set
consisting of the sentence VZ; : ;= P(t;) for each i € [1,n] and the sentence
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VT : P(@)=V,epn 0 (T = t; A ;). This set is denoted as comp(P, A), the union
of all these sets for A as comp(A). It is well-known that, if I = A, then
I = comp(A) but not always vice-versa (e.g., the inductive definition expressing
transitive closure is stronger than its completion).

2.3.5 Time-dependent specifications in FO(-): LTC

Further in this thesis, we look at specification of processes, and as such have
an FO(-) theory that has a dynamic domain. There exist many languages,
suited for this purpose, such as situation calculus [Reiter, 2001], event calculus
[Shanahan, 1997] and a family of action languages [Gelfond and Lifschitz, 1998].
In this section, we define a specific set of FO(:) vocabularies and theories,
that make up such a calculus: Linear Time Calculus (LTC). This section only
contains a short introduction on the subject, explaining the results that will be
used in this thesis. For a more in-depth discussion on the subject, we refer to
[Bogaerts et al., 2014a].

We first define a linear-time vocabulary ¥ r¢ and a linear-time structure Spr¢
(a specific case of a vocabulary in FO(+)).

Definition 2.3.3. A linear-time vocabulary is a typed first-order vocabulary
Y rrc such that:
e Yrrc has a type Time, a constant Z : Time and a function Next(Time) :
Time.

o All other symbols in Y7 have at most one argument of type Time.

e Apart from Z and Next, the type of the image of functions is not Time.
We partition symbols in ¥ ;¢ in three categories:

1. Time, Z and Next are LTC-symbols
2. Non-LTC-symbols with a Time argument are dynamic symbols.
3. Non-LTC-symbols without a Time argument are static symbols.
For ease of notation, we assume that Time always occurs last in dynamic

symbols. Intuitively, the Z constant represents 0, and the Next function
represents the successor function.

Definition 2.3.4. A (partial) linear-time structure Sprc is a (partial) structure
over a vocabulary ;¢ such that
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o Time is interpreted by a subset of the natural numbers N.

e Next is interpreted by the successor function n +— n + 1 for the natural
numbers.

e Z is interpreted by 0.

Definition 2.3.5. If P(rq,...,7,—1,Time) is a dynamic predicate symbol in

Yrre, then we define Pss(71,...,7Tn—1) as its projected symbol. Analogously:
fss(T1,...,Th—1) : 7 is the projected symbol of a dynamic function symbol
fss(T1, ..o o1, Time) : 7 in Xppe.

Definition 2.3.6. Given a X7, we define the derived single state vocabulary
Yo as:

e The single state vocabulary contains all types of X1, except Time.
e The single state vocabulary contains all static symbols of ¥ 7¢.

e For each dynamic symbol o, the single state vocabulary contains its
projection os.

Intuitively a structure over 7%~ describes one single state in the process that
one can describe over Xprc.

We now define a mapping for structures over ¥ ¢ to single state structures
over Nt

Definition 2.3.7. Let © be the interpretation of a dynamic symbol ¢ in a
structure S over Xy r¢ and k € N. The set of tuples (dy,...,d,_1) such that
(di,...,dpn—1,k) € Q is the k-projection of Q, denoted 7, (). It is a mapping
from a structure representing the entire process to a representation of the state
of affairs on timepoint k.

Given a linear-time structure S over X rc, we define its projection on time
point i, i € Time® as S* as follows:

e For each type 7 € Xprc, T # Time: 7' =75,
e For each static symbol o € ¥17¢: oS =S,
e For each dynamic symbol o € X1 oS = (o).

We finally define the reverse.

Definition 2.3.8. Given a linear-time vocabulary Xpprc, its single state
vocabulary 7%~ and two structures Sy and S7 over X7%~ such that
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« For each type 7 € Sprc, T # Time: 750 = 751,

« For each static symbol o € Xpp¢: 050 = 1.

We define the bistate structure Sy, = bistate(X ¢, So, S1) as follows:

o TimeSs ={0,1}
e For each type 7 € Xprc, T # Time: 75 = 75 for each i € {0,1}.
« For each static symbol o € ¥7¢: 05 = ¢° for each i € {0,1}.

« For each dynamic symbol o € X;7¢: 0 is the interpretation such that
7o(0%s) = o0 and 7 (0%) = 1.

2.4 The Knowledge Base Paradigm

The key idea in the KB paradigm lies in applying a strict separation of concerns
to information and to problem solving. Instead of compiling knowledge to
working imperative code, a user states the domain knowledge explicitly in a
formal language in the KB paradigm and uses predefined reasoning engines to
get the desired behaviour from this. A Knowledge Base System (KBS) [Denecker
and Vennekens, 2008] allows information to be stored in a knowledge base, and
provides a range of inference methods. With these inference methods various
types of problems and tasks can be solved using the same knowledge base. As
such the knowledge base is neither a program nor a description of a problem,
it cannot be executed or run. It is nothing but information. However, this
information can be used to solve multiple sorts of problems. Many declarative
problem solving paradigms are mono-inferential: they are based on one form
of inference. In comparison, the KB paradigm is multi-inferential. We believe
that this implements a more natural, pure view of what declarative logic is
aimed to be. The FO(-) KB project is a research project that runs now for a
number of years. Its aim is to integrate different useful language constructs and
forms of inference from different declarative paradigms in one rich declarative
language and a KBS. So far, it has led to the KB language FO(-) [Denecker
and Ternovska, 2008] and the KB system IDP [De Cat et al., 2016].

2.4.1 The language of a KB system

Central in a KBS is a formal knowledge representation language, used for
representing the domain knowledge. So the choice of a good language is very
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important. The language should be a rich language, such that users can
represent a reasonable set of domain knowledge. It also should be natural, to
reduce the chance for errors and improve readability. Lastly, a good Knowledge
Representation (KR) language for a KBS should be modular, such that a
specification of domain knowledge can be easily reused and extended.

Some literature states that a language should be not too expressive, such that
“the language” remains decidable. In the context of our KB Paradigm, we do
not support or believe in this statement, for two reasons. The first one is that
there is no such thing as (un)decidability for a language, a specification in a
language is pure information and when one is talking about being decidability,
there is reasoning involved. Decidability can be defined for each task where
a language is used for: for example, deduction for FO is undecidable, while
model generation with a finite domain is decidable for FO. Second, while a more
expressive language does indeed allow a user to express more difficult tasks,
this does not imply that all tasks stated in a more expressive language become
more difficult. On the contrary, using a more expressive statement allows the
user to express structure in the problem (that can be exploited by the system)
that would be lost in a lower level language.

In the IDP project, we have chosen for the language FO(TYPEs, 1D, Aca, PF),
which (as stated above) we shorten as FO(:). The choice for FO as a base
language is made because conjunction, disjunction, negation, and universal
and existential quantification are natural (or one may even argue, the basic)
connectives of information. They have a clear informal semantics that
corresponds well to our intuitions. FO has, however, various shortcomings
for which language extensions where defined. Types, because they impose a
clear classification of objects into categories, reducing changes of mistakes while
writing a specification. When quantifying in natural language, types are often
involved: “Everyone is mortal”. Definitions have been added because FO cannot
express inductively defined concepts. Definitions are often also very useful
without induction: they express the definitional if, which is not the same as the
material if, but in texts the word “if” is ambiguously used for both meanings.
An example of a material if is the following statement: "If it rains, I will take
my umbrella." In the situation where it does not rain, but it is very cloudy it is
still reasonable of me to take my umbrella and the statement would not be a
lie. This is a material implication: if the antecedent is false, the statement is
true no matter the truth of the consequence. A definitional if does, by contrast,
makes a statement about the situation in which the antecedent is false. For
example: "I will join you in the bar, if my classes end on time". This sentence
clearly implies that I will not join if my classes do not end on time.

With aggregates a user can express information on sets, reducing the need
for very complex and long FO formulas (such as: “there exist at most 5... 7).
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Partial functions are also omnipresent in natural language: “Which chess piece
is on this square?”

2.4.2 Inferences in a KB system

In the KB paradigm, a specification is a bag of information. This information
can be used for solving various problems by applying a suitable form of inference
on it. In this section we give a short overview of inferences that are available in
the IDP system. Further in this thesis we refer to these inferences as the base
inferences of the IDP system.

Inferences are described as functions, taking a number of information building
blocks (=(partial) structures, vocabularies, theories and terms) and returning
an information building block. We assume a fixed vocabulary ¥ and finite
domain in all the structures. We recall the complexities, given in function of
the domain size.

Modelexpand(T,S): input: theory T and partial structure S; output: a
model I of T such that S<,I or UNSAT if there is no such I.
Modelexpand [Wittocx et al., 2008] is a generalization for FO(-) theories
of the modelexpansion task as defined by Mitchell et al. [Mitchell
and Ternovska, 2005]. Complexity of deciding the existence of a
modelexpansion is in NP.

Modelcheck(T, S): input: a total structure S and theory T over the
vocabulary interpreted by S; output is the boolean value S |= T. Note
that Modelcheck is a degenerate case of the Modelexpand inference, with
S a total structure. Complexity is in P.

Minimize(T,S,t): input: a theory T, a partial structure S and a term ¢ of
numerical type; output: a model I >, S of T such that the value t! of t is
minimal. The term ¢ represents a numerical expression whose value has
to be minimized. This is an extension to the Modelexpand inference. The
complexity of deciding that a certain ¢! is minimal, is in AE.

Propagate(7,S): input: theory T and partial structure S; output: the most
precise partial structure S, such that for every model I >, S of T it is
true that I >, S,. The complexity of deciding that a partial structure
S’ is S, is in AY. Note that we assume that all partial structures are
functionally consistent, which implies that we also propagate functional
integrity constraints.

Consequence(T7,73) Input are two logical theories 77 and Tb. Output is
true if 77 = Ty. Consequence (or Deduction) is undecidable for FO(+).
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Query(S, E): input: a (partial) structure S and a set expression £ = {T |
©(T)}; output: the set Ag = {T | ¢(Z)° = t}. Complexity of deciding
that a set A is Ag is in P.

Progress(T, Sp) input: a single-state structure Sy over X5%.~ and a theory
T over a linear-time vocabulary Y;rc (Defintion 2.3.3); output: a
single-state partial structure S; such that bistate(Xrrc, So,S1) E T.
Complexity of deciding the existence of a progression is in NP.

Example 2.4.1. Within a course scheduling application, there are a number of
tasks that all need the same information. A key task is to generate a schedule
given a partial input structure that satisfies all constraints: a model expansion
inference. In some cases all constraints cannot be satisfied because the teachers
have too many constraints on their availability, then we might look for a schedule
that has a minimal amount of conflicts, using the minimisation inference. Given
a full schedule, the school might want to give teachers their personal schedule.
For this, the school can use a query inference on the schedule.

There are many more examples of inferences that can be used in the context of a
course scheduling application. In Chapter 3, we explore this multi-inferentiality
for a bigger application: interactive configuration.

2.5 Autoepistemic Logic

The language £, of AEL [Moore, 1985] is defined recursively using the standard
rules for the syntax of first-order logic (Definition 2.1.6), augmented with:

K(yp)e Ly ifyely

Informally, the K operator is read as "it is known that". We call formulas in
L}, that do not contain any occurrences of K objective, and we refer to an atom
of the form K¢ as a modal atom. An AEL theory T is a set of formulas over
L. AEL uses the semantic concepts of standard modal logic. A structure is
defined as usual in first-order logic. It formally represents a potential state of
affairs of the world. We assume a domain D, shared by all structures, to be
fixed throughout this section. In the context of modal logics, we sometimes also
refer to structures as "worlds". Furthermore, we assume that for each d € D, d
is a constant symbol of £ whose interpretation in all structures is d.

Definition 2.5.1. A Possible World Structure (PWS) @ is a set of structures.

It contains all structures that are consistent with an agent’s knowledge. Possible
world structures are ordered with respect to the amount of knowledge they
contain.
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Possible world structures that contain less structures possess more knowledge.

Definition 2.5.2. Given two PWS’s Q1 and @2, we define the knowledge order
<k as:

Q1 <g Q2iff Q2 C Q1

We say that Q1 knows more than Qs if Q2 <g Q1.

Note that the knowledge order is the inverse of the subset order. Following
example will explain the intuitions about this:

Example 2.5.3. Say, we have a figure that has a color and a shape.

5= {
Y = {color/0 :, shape/0 :}

We define two structures:

S1={
Dg, = {blue, green, yellow, round, square}
colorSt = blue
shapeSt = round

}

Sy ={
Dg, = {blue, green, yellow, round, square}
color®? = green
shape®* = round

If we now look at two PWS’s: @ = {S1} and Q' = {51, 52}. It is clear that
Q C @', while Q) contains more knowledge than @Q’. Indeed, in @ the color of
the figure is known to be blue, while in @’ it is only known to be blue or green.

The semantics of AEL is based on the S5 truth assignment. The wvalue of a
sentence ¢ € L with respect to a possible world structure () and a structure I
(denoted ¢@7) is defined using the recursive rules for first-order logic augmented
with:

(Kp)®' =t if 997/ =t for each J € Q.

Moore defines that Q) is an autoepistemic expansion of T if for every world I, it
holds that I € @ if and only if 79! = t.
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The above definition is essentially a fixpoint characterisation. We define a
underlying operator Dr, that maps @ to

Dr(Q) ={I | T%" =t}.

Autoepistemic expansions are exactly the fixpoints of D7 ; they are the possible
world structures that, according to Moore, express candidate belief states of an
autoepistemic agent with knowledge base T.

Soon, researchers pointed out certain “anomalies” in the expansion semantics
[Halpern and Moses, 1985, Konolige, 1988]. In the following years, many different
semantics for AEL were proposed. It was only with the abstract algebraical
framework approzimation fixpoint theory (AFT) that a uniform view on those
different semantics was obtained. We define several of the semantics of AEL
later, after we introduce the algebraical preliminaries on AFT.

2.6 Approximation Fixpoint Theory

To define the semantics of some new extensions for FO in this thesis, we use
AFT [Denecker et al., 2000], an algebraical framework that studies semantics of
logics using approximators of valuations for that logic. In this section, we recall
the basics of lattice theory and introduce the most important result of AFT
that will be used in later chapters.

2.6.1 Sets, Lattices and Operators

A complete lattice (L, <) is a set L equipped with a partial order <, such that
every set S C L has both a least upper bound and a greatest lower bound,
denoted lub(S) and glb(S). A complete lattice has a least element L and
a greatest element T. As custom, we also use the notations AS = glb(95),
x Ay = glb({z,y}), VS = lub(S) and = Vy = lub({x,y}). An operator
O : L — L is monotone if x <y implies that O(z) < O(y). An element z € L
is a prefizpoint, a fixpoint, a postfirpoint if O(x) < z, O(x) = x, respectively
z < O(z). Every monotone operator O in a complete lattice has a least
fixpoint, denoted Ifp(O), which is the limit (least upper bound) of the sequence
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O“ given by:
0%x) =L
Ot = 0(0%(x))

OMz) = lub({0%(x) | a < A}), with A a limit ordinal

2.6.2 AFT

Given a lattice L, AFT makes use of the bilattice L?. We define projections
for pairs as usual: (x,y); = z and (z,y)s = y. Pairs (z,y) € L? are used to
approximate all elements in the interval [z,y] = {z | z < 2z A z < y}. We call
(x,y) € L? consistent if [x,y] is non-empty and use L¢ to denote the set of
consistent elements. Elements (z,x) € L¢ are called ezact. We identify a point
x € L with the exact bilattice point (x,x) € L°. The precision order on L? is
defined as (z,y) <p (u,v) if £ <u and v < y. If (u,v) is consistent, the latter
means that (z,y) approximates all elements approximated by (u,v). If L is a
complete lattice, then so is (L%, <, ).

AFT studies fixpoints of lattice operators O : L—L through operators
approximating O.

Definition 2.6.1. An operator A : L? — L? is an approzimator of O if

o Ais <,-monotone

e Vz e L: O(x) € [2/,y'], where (2/,y') = A(x, ).

Approximators map L€ into L¢. As usual, we restrict our attention to symmetric
approximators: approximators A such that for all x and y, A(z,y)1 = A(y, z)a.
Denecker et al. [2004] showed that the consistent fixpoints of interest (supported,
stable, well-founded) are uniquely determined by an approximator’s restriction
to L°, hence, sometimes we only define approximators on L°. Given an
approximator A, we can also derive the stable operator Sy : L — L: Sa(y) =
Ifp(A(-,y)1), where A(-,y); denotes the operator L — L : x — A(z,y)1.

AFT studies fixpoints of O using fixpoints of A.
o The A-Kripke-Kleene fizpoint is the <,-least fixpoint of A and
approximates all fixpoints of O.

o A partial A-stable fixpoint is a pair (z,y) such that x = Sx(y) and
y=Sa(x).
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o An A-stable fizpoint of O is a fixpoint « of O such that (z,x) is a partial
A-stable fixpoint.

e The A-well-founded fixpoint is the least precise partial A-stable fixpoint.

2.6.3 Semantics for AEL using AFT

Denecker et al. [1998] showed that many semantics from AEL can be obtained
by direct applications of AFT. In order to do this, they defined a three-valued
version of semantic operator Drp.

In order to approximate an agent’s state of mind, i.e., to represent partial
information about possible world structures, Denecker et al. defined a belief
pair as a tuple (P, S) of two possible world structures. They say that a belief
pair approzimates a possible world structure @ if P <gx @ <k S, or equivalently
if § C Q C P. Intuitively, P is an underestimation and S is an overestimation
of ). That is, P contains all interpretations that are potentially contained
in the possible world structure, and S all interpretations that are certainly
contained in the possible world structure. Stated even differently, P contains
all knowledge the agent certainly has and S all knowledge the agent possibly
has. We call a belief pair (P, S) consistent if P <k S, i.e., if it approximates at
least one possible world structure. From now on, we assume all belief pairs to
be consistent. Belief pairs are ordered by a precision ordering <,. Given two
belief pairs (P, S) and (P’,S’), we say that (P, S) is less precise than (P’,S’)
(notation (P, S) <, (P',S")) if P <gx P’ and S’ <k S.

We now define a three-valued valuation of sentences with respect to a belief
pair (which represents an approximation of the state of mind of an agent) and
a structure, representing the state of the world.
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Definition 2.6.2. The wvalue of ¢ with respect to belief pair B and
interpretation I (notation ¢?7) is defined inductively:

(P@)BI =% € P!

t if Bl =f
(ﬁQD)B’I _ f if (pB,I =t
u otherwise
t if P =t and B I =t
(@A) =S f if Bl =for Bl =Ff
u otherwise
t if p[z/d|P! =t forallz € D
(Vo : )BTt f if plx/d)B = f for some z € D
u otherwise
t ifPSI —¢forall I’ e P
(KSO)(P’S)’I =< f if w(P’S)’I/ =f forsome I’ € S

u otherwise

Example 2.6.3. We show how the three-valued valuation works, using the
PWS’s from Example 2.5.3. We define a belief pair B = (Q’, Q). Using this
belief pair, we find that K(color = green)® is false since there is a PWS
(S1) in Q where color = green is not true. (shape = round)® is true since
(shape = round)® =t for all S € Q'. Lastly, K(color = blue)? is unknown,
since there is no S € @ such that (color = blue)® = f, but it is also not the
case that (color = blue)S =t for all 8" € Q'.

The logical connectives combine truth values based on Kleene’s truth tables
[Kleene, 1938]. Denecker et al. [2000] defined the bilattice operator D7 that
maps (P, S) to (P',S’) where

P ={I| TP £} and &' = {I | TP = ¢}

P’ contains all knowledge that can certainly be derived from the current state
of mind and S’ all knowledge that can possibly be derived from it. Denecker et
al. showed that D7 is an approximator of Dy. The operators induce a class of

semantics for AEL:
o Moore’s expansion semantics (supported fixpoints).

o Kripke-Kleene expansion semantics [Denecker et al., 1998] (Kripke-Kleene
fixpoints).
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o (Partial) stable extension semantics [Denecker et al., 2003] ((partial) stable
fixpoints).

o Well-founded extension semantics [Denecker et al., 2003] (well-founded
fixpoints).

The latter two were new semantics induced by AFT.






Interactive Configuration

In the past decades enormous progress in many different areas of computational
logic was obtained. This resulted in a complex landscape with many declarative
paradigms, languages and communities. One issue that fragments computational
logic more than anything else is the reasoning/inference task. Computational
logic is divided in different declarative paradigms, each with its own syntactical
style, terminology and conceptuology, and designated form of inference (e.g,
deductive logic, logic programming, abductive logic programming, databases
(query inference), answer set programming (answer set generation), constraint
programming, etc.). Yet, in all of them declarative propositions need to be
expressed. Take, e.g., “each lecture takes place at some time slot”. This
proposition could be an expression to be deduced from a formal specification
if the task was a verification problem, or to be queried in a database, or it
could be a constraint for a scheduling problem. It is, in the first place, just a
piece of information and we see no reason why depending on the task to be
solved, it should be expressed in a different formalism (classical logic, SQL,
ASP, MiniZinc, etc.).

This chapter presents a study with the KB system we introduced in the previous
chapter. Here, we investigate the application of knowledge representation and
reasoning to the problem of Interactive Configuration (IC) and analyse how the
KB-paradigm behaves in a real-life context.

An interactive configuration problem [McDermott, 1982, Mittal and Frayman,
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1989, Fleischanderl et al., 1998, Junker and Mailharro, 2003, Hadzic, 2004]
is an interactive version of a constraint solving problem. One or more users
search for a configuration of objects and relations between them that satisfies a
set of constraints. Industry abounds with interactive configuration problems:
configuring composite physical systems such as cars and computers, insurances,
loans, schedules involving human interaction, webshops (where clients choose
composite objects), etc. However, building such software is renowned in industry
as difficult and no broadly accepted solution methods are available [Felfernig
et al., 2014, Axling and Haridi, 1996]. Building software support using standard
imperative programming is often a nightmare [Barker and O’Connor, 1989,
Piller et al., 2014], due to the fact that (1) many functionalities need to be
provided, (2) they are complex to implement, and (3) constraints on the
configuration tend to get duplicated and spread out over the application, in
the form of snippets of code performing various computations relative to the
constraint (e.g., context dependent checks or propagations) which often leads
to an unacceptable maintenance cost. This makes interactive configuration
an excellent domain to illustrate the advantages of declarative methods over
standard imperative or object-oriented programming.

The research question in this chapter is: how can we express the constraints
of correct configurations in a declarative logic and provide the required
functionalities by applying inference on this domain knowledge? This is a
KRR question albeit a difficult one. In the first place, some of the domain
knowledge may be complex. For an example in the context of a computer
configuration problem, take the following constraint: the total memory usage of
different software processes that needs to be in main memory simultaneously,
may not exceed the available RAM memory. It takes an expressive knowledge
representation language with aggregates to (compactly and naturally) express
such a constraint. Many interactive configuration problems include complex
constraints: various sorts of quantification, aggregates, definitions (sometimes
inductive), etc. Moreover, an interactive configuration system needs to provide
many functionalities: checking the validity of a fully specified configuration,
correct and safe reasoning on a partially specified configuration (this involves
reasoning on incomplete knowledge, sometimes with infinite or unknown
domains), computing impossible values or forced values for attributes, generating
sensible questions to the user, providing explanation why certain values are
impossible, backtracking if the user regrets some choices, supporting the user
by filling in his don’t-cares while potentially taking into account a cost function,
etc. That declarative methods are particularly suitable for solving this type of
problem has been acknowledged before, and several systems and languages have
been developed [Hadzic, 2004, Schneeweiss and Hofstedt, 2011, Tiihonen et al.,
2013, Vlaeminck et al., 2009].
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The contributions of this research are two-fold. First, we analysed IC problems
from a knowledge representation point of view. We show that multiple
functionalities in this domain can be achieved by applying different forms
of logical inference on the same formal specification of the configuration domain.
We define various sorts of inference and analyse them in terms of which different
functionalities can be supplied. The second contribution is the reverse: we
study the feasibility and usefulness of the KB paradigm in this important class
of applications.

This chapter is structured as follows: first, we analyse the functional
requirements for a good IC system, by identifying all required subtasks a
good system should support. We then suggest a formalisation of these subtasks
in the form of logical inferences on a central knowledge base. Using this, we build
a proof of concept around a knowledge base to support a large configuration
problem for a banking company. The logic used in this experiment is the
logic FO(+) [Denecker and Ternovska, 2008], an extension of first-order logic
(FO), and the system is the IDP system [De Cat et al., 2016]. We discuss the
complexity of (the decision problems of) the inference problems and why they
are solvable, despite the high expressivity of the language and the complexity
of inference. We evaluated our approach using the evaluation criteria of the
knowledge-based configuration research [Felfernig et al., 2014]. This chapter
is then concluded with a discussion of related work in using knowledge-based
systems for configuration and a comparison of our approach with these systems.

The work presented in this chapter was published as a conference paper at the
Practical Aspects of Declarative Languages conference in [Van Hertum et al.,
2016b] and later an extended version was published as a journal paper in Theory
and Practice of Logic Programming [Van Hertum et al., 2016¢].

3.1 Interactive Configuration

In an IC problem, one or more users search for a configuration of objects and
relations between them that satisfies a set of constraints. Typically, the user is
not aware of all constraints. There may be too many of them to keep track of.
Even if the human user can oversee all constraints that he needs to satisfy, he
is not a perfect reasoner and cannot comprehend all consequences of his choices.
This in its own right makes such problems hard to solve. The problems get
worse if the user does not know about the relevant objects and relations or the
constraints on them, or if the class of involved objects and relations is large,
if the constraints get more complex and more “irregular" (e.g., exceptions), if
more users are involved, etc. On top of that, the underlying constraints in such
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PriceOf PreReq
software int software  software
Windows 60 Office Windows
Linux 20 ETEX Linux
TREX 10
Office 30

DualBoot 40

MaxCost IsOS
employee  int software
Secretary 100 Windows
Manager 150 Linux

Table 3.1: Example data

problems tend to evolve quickly. All these complexities occur frequently, making
the problem difficult for a human user. In such cases, computer assistance is
needed: the human user chooses and the system assists by guiding him through
the search space.

For a given IC problem, an IC system has information on that problem. There
are a number of stringent rules to which a configuration should conform, and
besides this there is a set of parameters. Parameters are the open fields in the
configuration that need to be filled in by the user or decided by the system.

To illustrate all concepts used and introduced in this section, we will use a
running example. This example is a simplified version of the application that
was studied, that will be described in Section 3.3.1. We will use this example
multiple times in Section 3.2.

We introduce the domain knowledge of this example here.

Example 3.1.1. Software on a computer has to be configured for different
employees. Table 3.1 contains the information on the software, the requirements,
the budgets of the employees and the prices of software. Available software is
Windows, Linux, ITEX, Office and a DualBoot system. Each software item
has a price, which can be seen in column PriceOf. Column PreReq specifies
which software is required for other software. Every type of employee has a
budget, provided in column MaxCost. IsOs lists the pieces of software that
are operating systems. Next to the information in the table, we know that if
more than one OS is installed, a DualBoot System is required.
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3.1.1 Subtasks of an interactive configuration system

Any system assisting a user in interactive configuration must be able to perform a
set of subtasks. We look at important subtasks that an interactive configuration
system should support.

Subtask 1: Acquiring information from the user

The first task of an IC system is acquiring information from the user. The
system needs to get a value for a number of parameters of the configuration from
the user. There are several options: the system can ask questions to the user, it
can make the user fill in a form containing open text fields, dropdown-menus,
checkboxes, etc. Desirable aspects would be to give the user the possibility to
choose the order in which he gives values for parameters and to omit filling in
certain parameters (because he does not know or does not care). For example,
in the running example a user might need a I¥TgX-package, but he does not
care about which OS he uses. In that case the system will decide in his place
that a Linux system is required. Since a user is not fully aware of all constraints,
it is possible that he inputs conflicting information. This needs to be handled
or avoided.

Subtask 2: Generating consistent values for a parameter

After a parameter is selected (by the user or the system) for which a value is
needed, the system can assist the user in choosing these values. A possibility is
that the system presents the user with a list of all possible values, given the
values for other parameters and the constraints of the configuration problem.
Limiting the user with this list makes that the user is unable to input inconsistent
information.

Subtask 3: Propagation of information

Assisting the user in choosing values for the parameters, a system can use
the constraints to propagate the information that the user has communicated.
This can be used in several ways. A system can communicate propagations
through a GUI, for example by coloring certain fields red or graying out certain
checkboxes. Another way is to give a user the possibility to explicitly ask “what
if”’-questions to the system. In Example 3.1.1, a user can ask the system what
the consequences are if he was a secretary choosing an Office installation. The
system answers that in this case a Windows installation is required, which
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results in a Linux installation becoming impossible (due to budget constraints)
and as a consequence it also derives the impossibility of installing IXTEX.

Subtask 4: Checking the consistency for a value

When it is not possible/desirable to provide a list of possible values, the system
checks that the value the user has provided is consistent with the known data
and the constraints.

Subtask 5: Checking a configuration

If a user makes manual changes to a configuration, the system provides him with
the ability to check if his updated version of the configuration still conforms to
all constraints.

Subtask 6: Autocompletion

If a user has finished communicating all his preferences, the system
autocompletes the partial configuration to a full configuration. This can be done
arbitrarily (a value for each parameter such that the constraints are satisfied)
or the user can have some other parameters like total cost, that has to be
optimized.

Subtask 7: Explanation

If a supplied value for a parameter is not consistent with other parameters, the
system can explain this inconsistency to the user. This can be done by showing
minimal sets of parameters with their values that are inconsistent, by showing
(visualizations of) constraints that are violated or by combinations of both. It
can also explain to the user why certain automatic choices are made, or why
certain choices are impossible.

Subtask 8: Backtracking

It is not unthinkable that a user makes a mistake, or changes his mind after
seeing consequences of choices he made. Backtracking is an important subtask
for a configuration system, and can be supported in numerous ways. The
simplest way is a simple back button, which reverts the last choice a user made.
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A more involved option is a system where a user can select any parameter and
erase his value for that parameter. The user can then decide this parameter
at a later timepoint. Even more complex is a system where a user can supply
a value for a parameter and if it is not consistent with other parameters the
system shows him which parameters are in conflict and proposes other values
for these parameters such that consistency can be maintained.

3.2 Interactive Configuration in the KB paradigm

To analyze the IC problem from the KB point of view, we aim at formalizing
the subtasks of Section 3.1.1 as inferences. We will not deal with user interface
aspects. For a given application, our knowledge base consists of a vocabulary X,
a theory T expressing the configuration constraints and a partial structure S.
Initially, Sy is the partial structure that contains the domains of the types and
the input data. During IC, Sy will evolve into more and more precise partial
structures S; due to choices made by the user. For IC, the KB also contains
Ls,, the set of all uninterpreted domain atoms/terms! in Sy. These domain
terms are the logical formalization of the parameters of the IC problem. ¥ and
T are fixed. As will be shown in this section, all subtasks can be formalized by
(a combination of) inferences on this knowledge base consisting of X, T, Sy, Ls,
and information gathered from the user.

Example 3.2.1. Continuing Example 3.1.1, use vocabulary X:

5=
Y = {software, employee, int}
Y p = {Install(software), IsOS(software),
PreReq(software, software)}
Y = {PriceOf(software) : int, MaxCost(employee) : int,
Cost : int, Requester : employee}

}

1In the rest of this chapter, a domain atom is treated as a term that evaluates to true or
false.
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The initial partial structure Sy consists of:

So={
Ds, = {Secretary, Manager, Windows, Linuz, WTEX,
Office, DualBoot} UZ
employeeS® = {Secretary, Manager}
softwareS® = {Windows, Linuzx, WTEX, Office, Dual Boot}
intSo =7
15055 = {Windows, Linux}
PreReq® = {(Office, Windows), (WTgX, Linuzx)}
MazCostS = {Secretary — 100, Manager — 150}
PriceOf%° = {Windows — 60, Linuz — 20, WTEX — 10,
Office — 30, Dual Boot — 40}

}

which is a formal representation of Table 3.1. All symbols from ¥ that are not
specified above are assumed to be fully unknown in Sp.
The set of parameters Lg, is:

{Requester, Install(Windows), Install( Linux),
Install( Office), Install(BTEX), Install(Dual Boot), Cost}

The theory T consists of the following constraints:

Vsls2: Install(sl) A PreReq(sl,s2) = Install(s2).
// The total cost is the sum of the prices of all installed software.
Cost = sum{s|Install(s)|PriceOf(s)}.
Cost < MaxCost(Requester).
ds: Install(s) A 1sOS(s).
Install(Windows) A Install(Linux) = Install(DualBoot).

Subtask 1: Acquiring information from the user

Key in IC is collecting information from the user on the parameters. During
the run of the system, the set of parameters that are still open changes. In our
KB system a derived inference (a combination of the inferences as introduced in
Section 2.4.2) is used to calculate this set of parameters. Complexity results of
derived inferences stem from basic results formulated by Mitchell and Ternovska
[2005] and the observation that modelchecking is polynomial in the size of the
domain.

Definition 3.2.2. Calculating uninterpreted terms.
GetOpenTerms(T,S) is the derived inference with input a theory T', a partial
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structure S >, Sp and the set Ls, of terms. Output is a set of terms such that
for every term ¢ in that set, there exist models I; and Is of T that extend S
(I, Iy >, S) for which ¢/t # t’2. Or formally:

{lll € Ls, AN{d|(l = d)°" =u} # O AS" = Propagate(T,S)}

The complexity of deciding whether a given set of terms A is the set of
uninterpreted terms is in AF.

Note that in practice it is often not needed to find all uninterpreted terms at
once. The system can generate these dynamically, giving one term or a subset
of terms can also be very useful for the user. When the A% complexity becomes
an issue, this can be a good approximative way to use this inference.

An IC system can use this set of terms in a number of ways. It can use a metric
to select a specific term, which it can pose as a direct question to the user. It
can also present a whole list of these terms at once and let the user pick one
to supply a value for. In Section 3.3.1, we discuss two different approaches we
implemented for this project.

Example 3.2.3. In Example 3.2.1, the parameters and domains are already
given. Assume that the user has chosen the value Manager for Requester,
true for Install(Windows) and false for Install(Linuz). The system will return
GetOpenTerms(T,S) = {Install(Office), Install(DualBoot), Cost}.

Subtask 2: Generating consistent values for a parameter

A domain element d is a possible value for term ¢ if there is a model I >, S
such that (t = d)! =t.

Definition 3.2.4. Calculating consistent values.
GetConsistent Values(T, S, t) is the derived inference with input a theory T,
a partial structure S and a term ¢ € GetOpenTerms(T,S). Output is the set

{t!| I is a model of T extending S}
The complexity of deciding that a set P is the set of consistent values for ¢ is in
AP

Example 3.2.5. The consistent values for Requester given T and the initial
partial structure Sy from Example 3.2.1 is:

GetConsistentValues(T, S, Requester) = {Secretary, Manager}
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Consistent values for other terms are the integers for Cost and {true, false} for
the others.

Subtask 3: Propagation of information

It is informative for the user that he can see the consequences of assigning a
particular value to a parameter.

Definition 3.2.6. Calculating Consequences.
PosConsequences(T,S,t,a) and NegConsequences(T, S, t,a) are derived
inferences with input a theory T, a partial structure S, an uninterpreted term ¢
€ GetOpenTerms(7T, S) and a domain element a € GetConsistentValues(T', S, t).
As output it has a set CT, respectively C~ of tuples (q,b) of uninterpreted
terms and domain elements. (g,b) € C, respectively C~ means that the choice
a for t entails that ¢ will be forced, respectively prohibited to be b. Formally,

Ct={g:0) [ (4= =tA(g=b°=u
A 8" = Propagate(T,S U {t = a})

A q € GetOpenTerms(T,S) \ {t} }

/

C"={@o)|@=0% =fA(g=0c)°=u
A 8" = Propagate(T,S U {t = a})

A q € GetOpenTerms(T,S) \ {t} }

The complexity of deciding whether a set P is C* or C~ is in AY.

Example 3.2.7. Say the user has chosen Requester = Secretary and wants
to know the consequences of making Install(Windows) true. The output
in this case contains (Install(BTEX),f) in PosConsequences(T,S,t,a) and
(Install(BTEX), t) in NegConsequences(T, S, t, a) since this combination is too
expensive for a secretary. Note that there is not always such a correspondence
between the positive and negative consequences. For example, when deriving
a negative consequence for Cost, this does not necessarily imply a positive
consequence.

Subtask 4: Checking the consistency for a value

A value d for a term ¢ is consistent if there exists a model of T" in which ¢t = d
that extends the partial structure representing the current state.
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Definition 3.2.8. Consistency Checking.
CheckConsistency (7, S, t, d) is the derived inference with input a theory T,
a partial structure S, an uninterpreted term ¢ and a domain element d. Output
is a boolean b that represents whether S extended with ¢ = d still satisfies T
Formally we return t if

(SU{tS=d})ET

and f otherwise. Complexity of deciding if a value d is consistent for a term ¢ is
in NP.

Example 3.2.9. If a user has chosen Install(Windows) and Install(IW¥TEX)
to be true, then Manager will and Secretary will not be a consistent answer
for Requester.

Subtask 5: Checking a total configuration

Once the user has constructed a 2-valued structure S and makes manual changes
to it, he may need to check if all constraints are still satisfied. A theory T is
checked on a total structure S by calling Modelcheck(T,S), with complexity
in P.

Subtask 6: Autocompletion

If a user is ready communicating his preferences (Subtask 1) and there are
undecided terms left which he does not know or care about, the user may
want to get a full configuration (i.e. a total structure). This is computed by
modelexpand. In particular:

I = Modelexpand(T,S)

In many of those situations the user wants to have a total structure with, for
example, a minimal cost (given some term representing the cost ¢). This is
computed by minimize:

I = Minimize(T, S, 1)

Example 3.2.10. Assume the user is a secretary and all he knows is that he
needs Office. He chooses Secretary for Requester and true for Install( Office)
and calls autocompletion. A possible output is a structure S where for the
remaining parameters, a choice is made that satisfies all constraints, e.g.,
Install(Windows)® = t, Install(Dual Boot)® =t and the other Install atoms
false. This is not a cheapest solution (lowest cost). By calling minimize using
cost-term Cost, the DualBoot is dropped.
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Subtask 7: Explanation

A whole variety of options can be developed to provide different kinds of
explanations to a user. If a user supplies an inconsistent value for a parameter,
options can range from calculating an inconsistent subset of the theory T' (1) to
giving a proof of inconsistency as in [Pontelli and Son, 2006] (2), to calculating
a partial subconfiguration that has this inconsistency (3). UnsatSubstructure is
a logical inference for option 3.

Definition 3.2.11. Calculating inconsistent structures.
UnsatSubstructure(7,S) is a derived inference with input a theory T and a
partial structure S that cannot be extended to a model of T" and as output all
(partial) structures 8" <, S such that S’ cannot be extended to a model I of T
Formally, we return:

{§'8' <, SA=(3I >, S ANTET)}
Complexity of deciding if a set is an inconsistent substructure is in co — NP.

Example 3.2.12. When a user has selected Secretary for Requester and has
chosen Install(Windows) and Install(IBTEX) to be true, this results in a partial
structure S; that cannot be extended to a model of theory T, in this case, for
example &; can be an element of UnsatSubstructure(7,S;):

St ={
Dgs, = {Secretary, Manager, Windows, Linuz, WTEX,
Office, DualBoot} U Z
employee® = {Secretary, Manager}
software®® = {Windows, Linuzx, WTEX, Office, Dual Boot}
int% =7
15055 = {Windows, Linux}
PreReq® = {(Office, Windows), (WTEX, Linux)}
MazCostS = {Secretary — 100, Manager — 150}
PriceOf%° = {Windows — 60, Linuz — 20, BTEX — 10,
Office — 30, Dual Boot — 40}
softwares® = {Windows}

The inference in Definition 3.2.13 calculates an inconsistent subtheory.

Definition 3.2.13. Calculating inconsistent theories.
UnsatSubtheory (7, S) is a derived inference with input theory T' and a partial
structure S such that there does not exist a model I, extending S, satisfying T'.
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The inference has as output all theories 7”7 such that 7/ C T and there is no
model satisfying T, extending S. Formally, we return:

{T'""T"CTA-(3I>,SATET')}
Complexity of deciding if a theory is such an inconsistent theory is in co — NP.

Example 3.2.14. When a user has selected Secretary for Requester and has
chosen Install(Windows) and Install(BTEX) to be true, this results in a partial
structure S; that cannot be extended to a model of theory T, in this case, for
example 7" can be an element of UnsatSubheory(T, S;):

// The total cost is the sum of the prices of all installed software.
Cost = sum{s|Install(s)|PriceOf(s)}.
Cost < MaxCost(Requester).
ds: Install(s) A IsOS(s).
Install(Windows) A Install(Linux) = Install(Dual Boot).

Note that Definition 3.2.11 and 3.2.13 do not make any statements of minimality.

Using the associated theory Ts (Section 2.2) and domain structure Sp of a
partial structure S, it is possible to consider calculating minimally precise
partial configurations as a special case of calculating a minimal inconsistent
subset of the theory. As in [Shchekotykhin et al., 2014], we can introduce a
“background theory” B C T'UTg (a subset of the theory in which there are
assumed to be no conflicts). We define multiple derived logical inferences, with
different degrees of minimality (not-minimal, subset-minimal and minimal in
size) of increasing complexity, able to provide explanations to the user.

Definition 3.2.15. Calculating inconsistent theories with a back-
ground.

UnsatSubtheory (7, S, B) is a derived inference with input theory T', a partial
structure S and a background theory B C T'U Ts such that there does not
exist a model I, with the domains as in Sp satisfying T'U Ts (or equivalently:
extending S and satisfying T'), but there is a model satisfying B. The inference
has as output all theories 7" such that B C T" C T'UTs and there is no model
satisfying 7”. Formally, we return:

{T'"'BCT C(TUTs)AN—(3] >, Sp ANTET')}
Complexity of deciding if a theory is such an inconsistent theory is in co — NP.

Definition 3.2.16. Calculating minimal inconsistent theories with a
background.
MinimalUnsatTheory(7,S, B) is a derived inference with input theory T,
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a partial structure & and a background theory B as above. Output is the
subset of subset minimal theories from UnsatSubtheory(T,S, B). Complexity of
deciding if a set is a subset minimal inconsistent theory is in AL’

Definition 3.2.17. Calculating minimum inconsistent theories with a
background.

MinimumUnsatTheory(T, S, B) is a derived inference with input theory T,
a partial structure S and a background theory B as above. Output is the subset
of cardinality minimal theories from MinimalUnsatTheory(T,S, B). Complexity
of deciding if a set is a cardinality minimal inconsistent theory is IT%.

Note that Definition 3.2.11 is equivalent to calculating a minimal inconsistent
subset of a theory T'UTg, with B = T, if you translate the output back to a
pair of a theory and a structure. Definition 3.2.13 is equivalent to calculating a
minimal inconsistent subset of a theory T'U Ts, with B = T, if you translate
the output back to a pair of a theory and a structure.

In literature multiple approaches are discussed, all mapping to one of our
explanation-related inferences. QuickXPlain [Junker, 2004] is an algorithm
that calculates elements of Definition 3.2.15. The Hitting Set Directed Acyclic
Graph (HSDAG) [Reiter, 1987] algorithm calculates subset minimal inconsistent
theories (Definition 3.2.16), as in different ASP solvers [Shlyakhter et al., 2003,
Syrjanen, 2006]. Implementations of Definition 3.2.17 have been described in
[Lynce and Silva, 2004] and [Zhang et al., 2006]. In our experiment, we have an
implementation of Definition 3.2.16 [Wittocx et al., 2009], where we, however,
do not calculate the entire set of subset minimal theories. We only calculate
one, which gives one explanation of the inconsistency. If the user resolves that
problem, he can ask for a new explanation which will point to another reason
of inconsistency. This process is reiterated until all problems are resolved.

Example 3.2.18. We show a minimal inconsistent subtheory in a situation with
T as in Example 3.2.1 and §;, a partial structure representing an intermediate
configuration where a user started with Sy and has chosen Secretary for
Requester, and wants to Install Office and Linuz. This is not possible, and
as such, the user asks the system for an explanation in the form of a minimal
inconsistent theory. A possible minimal inconsistent theory with B = {), is:

Install( Office).
(Install( Office) A PreReq(Office, Windows)) = Install(Windows).
Cost = sum{(s, PriceOf(s))|Install(s)}.

Cost < MaxCost(Requester).
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This means that there is no valid configuration because Windows needs to be
installed as prerequisite for Office, and the total cost then exceeds the budget
of a Secretary.

Subtask 8: Backtracking

If a value for a parameter is not consistent, the user has to choose a new value for
this parameter, or backtrack to revise a value for another parameter. In Section
3.1.1 we discussed three options of increasing complexity for implementing
backtracking functionality. Erasing a value for a parameter is easy to provide
in our KB system, and since this is a generalization of a back button (erasing
the last value) we have a formalization of the first two options. Erasing a value
d for parameter ¢ in a partial structure S is simply modifying S such that
(t = d)° = u. As with explanation, a number of more complex options can
be developed. We look at one possibility. Given a partial configuration S, a
parameter p and a value d that is inconsistent for that parameter, calculate a
minimal set of previous choices that need to be undone such that this value is
possible for this parameter. The converse of this problem is well known under
the name of maximum satisfiability problems. In other words, you want to hold
on to as much of the structure as possible while ensuring satisfiability.

This problem is closely related to the explanation subtask [Heras et al., 2011,
Marques-Silva and Planes, 2008]. You can imagine the explanation problem as
asking the system to point out a mistake in your reasoning. However, solving
this mistake will not guarantee you have not made any other mistake in the
rest of the problem. What we actually need is a minimal set of things we can
remove, so every problem is solved simultaneously.

So more formally, we can use Definition 3.2.11 and calculate UnsatStructure(TA
(t = d),S). This inference calculates a set A of sets of previous choices that
together are inconsistent. Undoing an arbitrary choice in all of these sets results
in a partial subconfiguration S’ of S such that d is a possible value for ¢ in S'.
To find the maximal partial subconfiguration S’ that satisfies that property, the
minimal hitting set [Reiter, 1987] of all sets in A has to be calculated.
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3.3 Proof of Concept

3.3.1 Implementation

In this section we will describe the developed application and implementation.
Our application has a simple client-server architecture. The server plays the
role of the reasoning engine, which is mainly a thin wrapper around the IDP
system. The client consists of a GUI made in QML [QML] as front-end.

The server converts IDP into a stateless server which is accessible through
the web. The client application sends the necessary information, consisting of
theories, partial structures and choices, to this server and the server executes
the needed inferences. This is a design which involves repeatedly sending over
the choices a user has made, but it allows for a very simple architecture to show
the feasibility of our design.

This implementation was done in cooperation with Adaptive Planet, a
consulting company [Adaptive Planet] that developed the user interface,
and an international banking company that provided us with a substantial
configuration problem for testing purposes. More practical information
about this implementation, some screenshots, a downloadable demo and
another example of a configuration system developed with IDP as a reasoning
engine (a simpler course configuration demo) can be found at: http://www.
configuration.tk.

The Reasoning Engine

As explained before, the application we developed was built on the knowledge
base system IDP, which was not developed specifically with configuration
problems in mind. It provides the basic inferences listed at the end of Section
2.4.2. The goal of this experiment was to check if this general infrastructure
could be readily applied to applications such as configuration.

In Section 3.2 we showed how the tasks which are needed for configuration relate
to the infrastructure provided by IDP. Our main implementation task was to
convert these specifications to code. Some subtasks such as autocompletion
did not require any extra work, as this functionality is directly available as the
modelexpand inference. Some functionality, e.g. calculating consequences, did
require some work but the existing functionality provided almost all needed
components.
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We mainly use the existing forms of inference that are readily available in
the IDP system. No dedicated or specialized algorithms are used for the
configuration subtasks. This proves the point that the KB-paradigm is very
flexible but this also means that we had relatively little impact upon the
efficiency of our server. However, the system ended up being quite responsive
and we could conclude that IDP (and by extension the KB-paradigm) passed
the test for usefulness in this application.

User Interface

Apart from a reasoning engine, it is also necessary to have an accessible front
end so the user has easy access to the multitude of functionalities which are
available. The front end consists of an application written in the Qt framework
using QML [QML] and connects to a configuration engine over the web. For
the purposes of our demo, we developed two different graphical interfaces:

Wizard In the wizard interface, the user is interrogated and he answers on
subsequent questions selected by the system, using the GetOpenT erms inference.
An important side note here is that the user can choose not to answer a
specific question, for instance because he cannot decide as he is missing relevant
information or because he is not interested in the actual value (at this point).
These parameters can be filled in at a later timepoint by the user, or by the
system, using propagation, or in case the user calls autocompletion.

Drill-Down In the drill-down interface, the user sees a list of the still open
parameters, and can pick which one he wants to fill in next. This interface is
useful if the user is a bit more knowledgeable about the specific configuration
and wants to give the values in a specific order.

In both interfaces the user is assisted in the same way when he enters data.
When he or the system selects a parameter, he is provided with a dropdown
list of the possible values, using the GetConsistentV alues inference. Before
committing to a choice, he is presented with the consequences of his choice,
using the calculate consequences inference. The nature of the system guarantees
a correct configuration and will automatically give the user support using all
information it has (from the knowledge base, or received from the user).
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3.3.2 Evaluation
Evaluation Criteria

When evaluating the quality of software (especially when evaluating declarative
methods), scalability (data complexity) is often seen as the most important
quality metric. Naturally when using an interactive configuration system,
performance is important. However, in the configuration community it is known
that reasoning about typical configuration problems is relatively easy and does
not exhibit real exponential behavior [Tiihonen et al., 2013]. Also, depending
on the application, it is reasonable to expect the number of parameters to
be limited, since humans need to fill in the configuration in the end. When
developing a configuration system, challenges lie in the complexity of the
knowledge, its high volatility and the complex functionalities to be built. To get
a more complete view of the performance of a configuration system, we chose
to evaluate on a larger set of different evaluation criteria. In recent literature
[Felfernig et al., 2014] nine evaluation criteria are used to differentiate between
different paradigms used for configuration. In Section 3.4, ten other existing
approaches will be discussed and compared to our solution using the same nine
criteria.

Grapical Modeling Concepts (C1) is supported if there are standard
graphical modeling techniques available that visualize configuration
knowledge. They improve understandability, development time and
maintenance of new knowledge bases.

Component Oriented Modeling (C2) is a criterion that states that the
modeling language is a natural language that allows knowledge base
design on the basis of real-world concepts: types, relations, hierarchies,
etc.

Automated Consistency Maintenance (C3) can be broken down to two
categories. Firstly, a system can have support for a priori automated
consistency maintenance. This helps a developer write consistent
constraints and verifying correctness while writing the knowledge base.
Secondly, runtime automated consistency maintenance supports the end
user, by guaranteeing that every intermediate configuration he can make,
can be extended to a valid configuration.

Modularization Concepts are available (C4) if the modeling language is
modular and has support for adding additional structure to the knowledge
base, for example by organizing the constraints in blocks or groups.
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Maintainability (C5) relates to the adaptability of the knowledge base if
the background information changes. The background information is
volatile, it is for example depending on ever-changing company policies.
As such, it is vital that when that information changes, the system can
be easily adapted. When using custom software, all tasks using domain
knowledge (like rules and policies) need their own program code. The
domain knowledge is scattered all over the program. If this policy changes,
a programmer has to find all snippets of program code that are relevant
for guarding this policy and modify them. This results in a system that
is hard to maintain, hard to adapt and error-prone. Every time the
domain knowledge changes, a whole development cycle has to be run
through again. Some systems have support for intelligent knowledge base
navigation tools for complex knowledge spaces.

Model-based (C6) means that a knowledge base in the system expresses
exactly what it means for a configuration to be valid. This in contrast to
rule-based configuration, where a knowledge base also contains problem
solving knowledge (i.e. information on how the rules should be used/fired).

Efficiency (CT7) relates to efficiency and scalability of the reasoning engine.

Ability to solve generative problem settings (C8) means that the lan-
guage supports talking about component types instead of specific objects.
A system supports generic constraints if it allows for constraints that
apply to every instance of a component type on which the constraint is
defined. For example, the first constraint of Theory T in Example 3.2.1
is a generic constraint about all software, without explicitly naming the
individual pieces of software.

Ability to provide explanations (C9) means that the system is able to
communicate reasons for inconsistencies or explain why certain choices
are forced/prohibited.

Evaluation

The criteria discussed in previous section are a good way to evaluate the KB
implementation of a configuration system. We evaluate our implementation and
the IDP system with these criteria.

Grapical Modeling Concepts (C1). IDP has no support for graphical
modeling of domain knowledge and we did not develop any tools for
this experiment. However, it must be noted, that a highly expressive and
readable modeling language often makes graphical modeling obsolete.
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Component Oriented modeling (C2). The FO(-) language used in this
experiment is an extension of typed first-order logic. First-order logic uses
small set of connectives: A,V,—,=,< 3 V. These connectives are also
the basic connectives of information used by humans. Classical logic is a
good KR language because it has a very clear informal semantics. As is
well known, there are major shortcoming for it to be used for knowledge
representation. FO(-) extends classical logic with a number of extensions
that arise from research in Al and KR, such as aggregates, inductive
definitions, types, ... This makes FO(+) a suited modeling language for a
configuration system.

Automated Consistency Maintenance (C3). A priori consistency main-
tenance is supported in the implementation by using the explanation
inferences. If the developer has a collection of constraints that is consistent,
it is possible to evaluate if a new constraint leads to an inconsistency
and ask the system what other constraints it conflicts with, using for
example definition 3.2.16. At runtime consistency maintenance is partially
supported, by using the inferences in subtask 2, 3 and 4. These inferences
are theoretically able to guarantee consistency, but due to computational
limitations, approximate versions can be used. These are not always able
to give the same guarantees.

Modularization concepts are available (C4). The implemented configu-
ration system is modular, since a knowledge base can consist of multiple
theories and structures, that together make up the specification. The
explanation inference allows that a user selects background constraints, as
in definition 3.2.16, and in this way he can choose about which constraints
he needs feedback.

Maintainability (C5). The development of a KB system with a centrally
maintained knowledge base makes the knowledge directly available,
readable and adaptable. A well-known advantage of this approach is
in maintainability: if domain information changes, the developer can
easily modify the knowledge base. The current implementation does
however have no additional support for knowledge base navigation tools.

Model-based (C6). The FO(:) modeling methodology is based on formu-
lating the properties of a correct configuration in a natural way, such
that the models of a specification correspond with configurations. This is
inherently a model-based approach.

Efficiency (C7). As explained in Section 3.3.1, we have only written a
thin layer upon existing software which did not target configuration
problems specifically. The performance of the IDP system has been
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tested extensively in other contexts [Jansen et al., 2014, Bruynooghe et al.,
2015]. The reasoning engine for IDP is very similar in performance to
mainstream ASP solvers [Calimeri et al., 2014]. Their performance was
tested more extensively in the context of configuration by Tiihonen et al.
[2013]. It is also very difficult to reliably compare the response times
for interactive systems. Standard benchmarking techniques in software
engineering traditionally use instances which need multiple minutes to
solve. In this setting we aim for subsecond response times, for which no
standard benchmarks are available as far as we are aware.

In this experiment (a configuration task with 300 parameters and 650
constraints), our users reported a response time of a half second on average
with outliers up to 2 seconds. Note that the provided implementation
was a naive prototype and optimizing the efficiency of the implemented
algorithms is still possible in a number of ways.

Ability to solve generative problem settings (C8). FO(:) is an exten-
sion of first-order logic, and as such has native support for quantification
which is needed for generative problem settings.

Ability to provide explanations (C9). Subtask 7 and 8 in Section 3.2 are
inferences that are used to support giving explanations. The implemented
configuration system has an implementation of definition 3.2.16.

3.4 Related Work

3.4.1 Other approaches

In different branches of Al research, people have been focusing on configuration
software in different settings. The following discussion of knowledge-based
approaches is based on a book in recent literature [Felfernig et al., 2014]. After
the discussion we will compare the ten approaches with our approach (IDP).

Historically, the first knowledge-based configuration systems were rule-based
(RBS) [McDermott, 1982, Barker and O’Connor, 1989]. These systems operate
on a working memory and if the condition of a rule is fulfilled, it fires and
modifies the working memory, applying the conclusion of that rule. Rule-based
systems are sensitive to rule orderings. This complicates modification of the
rule-base. More importantly, inclusion of problem solving knowledge in the
rule-base, makes a rule-base problem specific and focused towards one specific
task. This leads to the same problems as in imperative languages. To solve
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different tasks, more rule-bases have to be built, leading to duplication and
fanning out of knowledge, giving issues in maintainability.

Constraint Satisfaction Problems are widely used for tackling configura-
tion problems [Mittal and Frayman, 1989, Fleischanderl et al., 1998].
A (static?) constraint satisfaction problem (SCSP) is a triple (V,D,C)
of a set of domain variables V. = {vj,v9,...,v,}, a set of domains
{dom(v1),dom(vs),...,dom(v,)} and set of constraints C. A solution for
a SCSP is an assignment S of domain elements d; € dom(v;) to variables
v;, such that each variable has a value in S and constraints C are satisfied
by S. A configuration task in SCSP is searching for a solution for a SCSP
(V, D, C), where C contains the configuration constraints together with the user
preferences. To make efficient CSP configuration systems, different techniques
have been used, such as local search [Li et al., 2005, symmetry breaking [Kiziltan
et al., 2001] and knowledge compilation techniques such as binary decision
diagrams [Hadzic and Andersen, 2005]. In response to limitations of SCSP in
configuration, extensions have been developed. Dynamic Constraint Satisfaction
Problems (DCSP) [Mittal and Falkenhainer, 1990] allow for variables to be
inactive or irrelevant. If a variable is inactive, it does not need a value in a
solution (for example, when configuring a smartphone, no camera resolution is
needed if no camera is present). Generative Constraint Satisfaction Problems
(GCSP) [Fleischanderl et al., 1998] extends SCSP with component types and
generative constraints.

Janota [2008] studied a mapping of CSP to SAT to use a SAT solver to provide
functionality for a configuration system.

There exist many graphical approaches for doing knowledge configuration, and
visualizing a configuration model. Kang [1990] used feature models (FM) for
modeling these concepts, while UML was proposed in [Falkner and Haselbock,
2013]. FM and UML configuration approaches have no reasoning algorithms,
they need to be used with external algorithms. Karatas et al. [2010] for example
combined feature models with constraint logic programming (CLP) to provide
reasoning and automated analysis.

Decidable subsets of first-order logic, description logics (DL) are used often in
context of the semantic web. They have also been used for the development of
configuration systems [Hotz et al., 2006, McGuinness and Wright, 1998]. The
trade-off for having decidable subsets of first-order logic is that they are limited
in expressivity. This make domain knowledge in these systems less readable, less
natural and harder to maintain. An ontology based method was also proposed
by Vanden Bossche et al. 2007 using OWL.

2In constrast to dynamic and generative constraint satisfaction problem.
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Tiihonen et al. developed a configuration system WeCoTin [Tiihonen et al.,
2013], based on Answer Set Programming (ASP). WeCoTin uses Smodels,
an ASP system, as inference engine, for propagating consequences of choices.
Answer set programming (ASP) is a form of declarative programming based
on the stable-model semantics [Gelfond and Lifschitz, 1988] for logic programs.
The architecture of their reasoning engine is closely related to the reasoning
engine we use. Also, in language, many similarities can be identified [Denecker
et al., 2012], as they both have their roots in extended logic programming,.

Combinations of the above approaches are also proposed in literature,
called hybrid (HB) configuration systems. Typically, they use a DL-based
representation for the ontology, together with constraints. They combine
reasoning engines from these fields to provide inference [Hotz et al., 2006].

3.4.2 Comparison of approaches

Felfernig et al. [2014] evaluated all these paradigms with respect to the evaluation
criteria from Section 3.3.2. In Table 3.2, we show this evaluation, together with
scores for our implementation in the IDP column, based on the discussion of
Section 3.3.2.

Table 3.2: Comparison of systems from Section 3.4 using criteria from Section
3.3.2 as in (Felfernig et al. 2014). We use a v to mark good support, a ~ for
partial support and a — to denote that no support is available.

C RBS SCSpP DCSP GCSP SAT FM UML DL ASP HB IDP

1 - - - - - v v R - ~ -
2 - - - v - - v v v v/
3 - =~ = = =~ - - S = =~ S
4 =~ - v - - v v v v/
5 =~ =~ = =~ =~ = ~ ~ ~ /
6 - v v v v v v v v v/
7 v v v v v - - ~ ~ =
8 ~ - - \/ - - - - ~ \/ \/
9w~ v v v ~ - - v v v/

All these approaches are focused towards one specific inference: ontologies
are focused on deduction, rule systems are focused on backward/forward
chaining, etc. These approaches are less general then the KB paradigm, which
is specifically designed to reuse the knowledge for different reasoning tasks. The
contributions of this work are different from previously discussed approaches:
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we analyzed IC problems from a Knowledge Representation point of view. This
chapter is a discussion of possible approaches and the importance of this point
of view. We made a study of desired functionalities for an IC system and how
we can define logical reasoning tasks to supply these functionalities. As far as
we are aware, the language we used in this experiment is more expressive than
earlier approaches.

The expressivity of the language is crucial for the usability of the approach.
It allows us to address a broader range of applications, moreover it is easier
to formalize and maintain the domain knowledge. Not discussed by Felfernig
et al. [2014] et al is work by Vlaeminck et al. [2009]. They did a preliminary
experiment using the KB approach for interactive configuration, also using the
FO(-) IDP project. It is on this work that we continue in this work by analyzing
a real-life application of a larger scale and discussing new functionalities and
inferences. This theoretical approach benefits from (1) the expressive language
to express domain knowledge adequately and (2) the general basic inferences that
realise derived inferences in an easy way, supporting the discussed functionalities,
resulting in a IC system that scores very well with relation to the evaluation
criteria (Table 3.2).

An interesting remark in Table 3.2 is that the IDP column resembles the GCSP
column, a generalisation of CSP, developed for configuration. The IDP-system
has better support for C5 (maintainability), due to the high level modeling
language and the strict seperation between domain knowledge and reasoning.
GCSP has better efficiency results. This can be partly explained by the fact
that CSP uses dedicated algorithms for reasoning over global constraints such
as alldifferent. The goal of reusing knowledge makes that we typically do not
make use of this kind of specific algorithms, since a dedicated algorithm can
only be developed with one specific inference in mind.

3.5 Challenges and Future Work

Interactive configuration problems are part of a broader kind of problems, namely
service provisioning problems. Service provisioning is the problem domain of
coupling service providers with end users, starting from the request until the
delivery of the service. Traditionally, such problems start with designing a
configuration system that allows users to communicate their wishes, for which
we provided a knowledge-based solution. Once all the information is gathered
from a user, it is still necessary to make a plan for the production and delivery
of the selected configuration. Hence the configuration problem is followed by a
planning problem that shares domain knowledge with the configuration problem
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but that also has its own domain knowledge about providers of components,
production processes, etc. This planning problem then leads to a monitoring
problem. Authorizations could be required, payments need to be checked, or
it could be that the configuration becomes invalid mid-process. In this case
the configuration needs to be redone, but preferably without losing much of
the work that is already done. Companies need software that can manage and
monitor the whole chain, from initial configuration to final delivery and this
without duplication of domain knowledge. This is a problem area where the KB
approach holds great promise but where further research is needed to integrate
the KB system with the environment that the company uses to follow up its
processes.

Other future work may include language extensions to better support
configuration-like tasks. A prime example of this are templates [Dasseville
et al., 2015]. Oftentimes the theory of a configuration problem contains lots
of constraints which are similar in structure. It seems natural to introduce
a language construct to abstract away the common parts. Another useful
language extension is reification, to talk about the symbols in a specification
rather than about their interpretation. Reification allows the system to reason
on a meta level about the symbol and for example assign symbols to a category
like “Technical” or “Administrative”.

3.6 Conclusion

In this chapter, a large application was studied to analyse how the KB-paradigm
behaves in a real-life context. We studied a class of knowledge intensive problems:
interactive configuration problems. As we discussed why solutions for this class
are hard to develop, we proposed a novel approach to the configuration problem
based on an existing KB system.

First, we analysed the functional requirements for a good IC system. In total,
8 different subtasks were identified. These subtasks are all vital and together
make up a well-working IC system. The goal of this research was to investigate
how to develop a system that provides support for all these subtasks, by logical
inferences on a knowledge base.

For this, we built a knowledge base to support a large configuration problem for
a banking company, designed to configure newly bought servers. Using this, we
identified interesting new inference methods and applied them to the interactive
configuration domain. Using a set of base inferences, provided by an existing
KB system, implementations were made for the new inferences. With these new
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implementations and the knowledge base, we built a proof of concept to solve
the configuration problem for the banking company.

To evaluate, we studied our new proposed approach and compared it with 10
earlier approaches discussed in standard literature. Using an existing set of
criteria, used for comparison between these 10 approaches, we evaluated our
proposal. Some main advantages we found were the set of problems that could
be solved, because of the richness of the language and the fact the KB approach
is model based.
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The KB Paradigm applied to
Business Rules

As a second application and test-case for the IDP KBS system in this thesis,
we look to the domain of Business Rules. Rule-based approaches are well-
represented in industry for handling knowledge-intensive applications. We
compared our KBS approach to a rule-based approach by focusing on a standard
benchmark from the Business Rule domain: the EU-rent application [Agrawal,
2011]. We compared functionality by studying two different use cases in the
application.

The first use case is the optimal planning and allocation of cars to a given
collection of reservations. Because our system is well-suited to solving search
problems of this kind, we expect that we can perform this task quite easily. We
develop a new derived inference for this application which will allow us to revise
models (or in this specific context, plannings) with penalties (or rewards) for
certain modifications.

The other use case is the purchase of a new car (or the decision of the system
to purchase a new car when certain conditions are satisfied). This second use
case may seem like a simple operation, but it will actually turn out to be more
difficult to model in the declarative language FO(+). This is because most of
the inference tasks that are supported by our current KBS are concerned with
generating or expanding models of a theory, given a fixed set of objects that is

57
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to serve as the domain of these models. However, in this use case, the set of cars
can be modified, which will require us to extend the language. We introduce a
new operator, stating when a new domain element should be created.

The work presented in this chapter was published as a technical communications
paper at the International Conference on Logic Programming in [Van Hertum
et al., 2013b] and as a technical report in [Van Hertum et al., 2013a]. A relevant
abstract was published in in [Van Hertum, 2014]

4.1 Business Rules

Business Rules encode information in the form of sets of procedural style "IF-
THEN" rules. The rules derive their (operational) meaning from the way they
are interpreted in the match-resolve-act cycle, in which the THEN part of rules
may be derived or executed given the satisfaction of the IF-part at some stage
in the process.

Multiple reasoning engines for this formalism such as ILog JRules[JRules, 2005]
and Jess[Friedman-Hill, 2003] have been developed. Due to the imbedded
operational semantics in these rules, it is hard to reuse this knowledge for any
other application than the chaining algorithm for which they were developed.

4.1.1 The Car Rental application

EU-Rent is a fictitious car rental company spread over different countries. It
has a collection of cars that are located in specific branches. They are allowed
to be moved between the branches and a customer can rent a car in one branch
and return it to another branch. The application has to process all reservations
and make a planning so that cars are at the right branch on the right time.
Moreover, it should fulfill as many reservations as possible, while minimising
the expenses. Next to this obvious task, it should be able to process smaller
changes to the database, like adding or deleting a reservation, buying or selling
a car, ...

The EU-Rent application is a well-known benchmark application used in
literature to evaluate Business Rule systems. This application provides a
simple but varied class of use cases to evaluate the expressivity and functionality
of such systems.

Figure 4.2 represents the domain model of the modelled EU-Rent application.
For readability, we use a smaller subset in this text, which can be seen in
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Figure 4.1. This domain model consists of four types of objects: drivers, cars,
reservations and branches. Each car has a purchase date and a mileage count.
For each driver we know whether he or she has a driver’s license. Reservations
are requests to hire a car for a certain period, denoted by a start and end date.
Reservations can be accepted or rejected, which is represented by a boolean
attribute.

The objects themselves are related to each other, represented by the arrows in
Figure 4.1. Every reservation has one or multiple drivers associated with it, can
have a car allocated to it, that is requested to be picked up and dropped of at a
certain branch of the company. Every car is stationed at a certain branch.

Car
0..*
¢ID
*Purchase Date
Braanh Mlleag%‘jnt Driver
¢ID
*ID 0..1 *hasLicense bool

o Reservation LK
0”*’ID 0.
*Accepted boo

*Start Date
*End Date

Figure 4.1: Restricted domain model of the modelled EU-Rent application

4.1.2 The domain knowledge

Static domain knowledge

A car rental system maintains a state recording available cars, reservations,
planning of car transports, information about clients, etc. In this section, we
describe the states and their invariants, using a vocabulary based on the domain
specification. Figure 4.2 gives an overview of the domain knowledge, relevant
for EU-Rent application. For readability, we will use a subset of that domain
knowledge, represented in Figure 4.1.

Making a FO(+) specification of the relevant domain knowledge, starts with
choosing a good vocabulary. Our modelling of the EU-Rent domain knowledge
will use vocabulary SingleState (Figure 4.3) and maintain a structure over
SingleState, representing the current state of the system. Even though we are
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Figure 4.2: Full domain model of the modelled EU-Rent application

interested in modelling the behaviour of a dynamic system, we first consider the
static aspect of the system. At every time point, assignments of reservations
should satisfy certain invariants. In typical Business Rule solutions, these
invariants are left implicit and the programmer should make sure to specify the
dynamic behaviour of the system in such a way that the invariants will always
hold during the execution of this specification. However, since we use logic as a
modelling language, in our approach it is a natural choice to explicitate those
invariants and, possibly, use techniques like theorem proving to prove that our
dynamic system actually respects those invariants.

A structure of vocabulary SingleState records the actual state of the world
(which cars are where, who has requested which reservations, etc.), as well as
the current plans of the system (which reservations will be fulfilled by which
cars, when should cars be moved between branches, etc.).

The laws of the car scheduling problem that we extracted from the specification
can be found in theory ValidState in Figure 4.4. They form a set of invariants
of the system. An interesting feature of this theory is that although it specifies
conditions that should be satisfied in each individual state of the system, it is
still a temporal theory. Indeed, the laws of reservations are temporal in nature,
e.g., to state that the same car should not be assigned to two reservations that
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Yr = {Car, Driver, Res, Branch, Date}
Yp=A{

HasLicense(Driver)

Accepted(Res)

InitLoc(Car, Branch)

CarLoc(Car, Date, Branch)

Alloc(Res, Car)

Overlapping(Res, Res)

Move(Car, Branch, Branch, Date)

Yrp=A{
Today : Date
Serial Nr(Car) : Int
PurchaseDate(Car) : Date
Mileage(Car) : Int
BirthDate(Driver) : Date
StartDate(Res) : Date
EndDate(Res) : Date
StartLoc(Res) : Branch
EndLoc(Res) : Branch
Owner(Res) : Driver

Figure 4.3: Vocabulary SingleState

overlap in time.

Note that the combination of a structure of vocabulary SingleState and the
definitions of predicates C'ar Loc and Overlapping can be viewed as a kind of
deductive database in which all of the FO axioms in theory ValidState can be
evaluated. When an employee manually updates the current state of the system,
theory ValidState can be used with the Modelcheck inference (Section 2.4.2).
When applied to a structure S representing the current state of the system, this
checks if all invariants are still intact.

Dynamic domain knowledge

The modelled EU-Rent system is a dynamic system and as such should contain
information on what a valid transition between states is. For such a specification
we use a dynamic linear time theory, with State used as the type Time
(Section 2.3.5) representing how transactions modify the state of the system. A
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transaction can be any request for a transition in the system, entered by the
user, such as “Plan this reservation”, “Move this car”, ... To express this theory,
we will need a new vocabulary SequenceOfStates (Figure 4.5), such that each
structure for this vocabulary now corresponds to an entire sequence of states,
or equivalently: a transcription of a run of the system.

Using vocabulary SingleState, this can be derived in a principled way by
introducing an additional type State and then adding a state argument to all
predicates and functions that may change due to transactions. For the EU-Rent
application in Figure 4.1, these are the functions and predicates that are drawn
in red in Figure 4.1. This new vocabulary allows us to model our system over a
series of states.

Dynamic linear time theory ValidRun (Figure 4.6) over vocabulary SequenceOf-
States is derived from theory ValidState, since the invariants of ValidState are
needed at each state. This is achieved by taking theory ValidState, rephrasing
it in the vocabulary SequenceOfStates with a state argument s and quantifying
s universally. In the resulting theory, the scheduling predicate Alloc has no
definitional rules. This means that given an input (a set of reservations, cars
and other data) there is not necessarily a fixed output for Alloc. The values
it can have are merely constrained by the theory. This means that multiple
solutions are possible where Alloc has a different interpretation.

While ValidRun has no constraints over the transitions between states, it satisfies
all requirements to be a LTC theory. It is, however, a trivial LTC theory, since
(as long as no constraints on the transitions are added) it does not in fact
contain any more information than theory ValidState. In Section 4.1.3, we show
how both theories can be used to reason about this system and solve problems
and discuss advantages and disadvantages of both approaches.
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//Relation Constraints

Vr:3<1c: Alloc(r, ).

Ve d: #{by ba : Move(c,by,ba,d)} < 1.

Ve b d: ~Move(c,b,b,d).

//Preconditions for accepting a reservation:

Vr : Accepted(r) = Je[Car] : Alloc(r, c).

Vr ¢ : Alloc(r,c) = CarLoc(c, StartDate(r), StartLoc(r)).
Vr : Accepted(r) = HasLicense(Owner(r)).

//Maximum one reservation at a time per Driver
Vrl r2 : Overlapping(rl,r2) A rl # r2 = = Accepted(rl) V - Accepted(r2)
VOwner(r2) # Owner(r2).

//Maximum one reservation at a time per Car
Vrl r2 cl : Overlapping(rl,r2) Arl # r2 A Alloc(rl, cl)
= —Accepted(rl) V - Accepted(r2) V - Alloc(r2, cl).

//CarLoc is defined in terms of moves and initial location
Ve by - CarLoc(c, Today,by) < InitLoc(c,by).
Ve d by : CarLoc(e,d + 1,by) < CarLoc(c,d,by)A
=(Fbs : Move(c, by, by, d))
A=3r : StartLoc(r) = by
NAccepted(r)
NAlloc(r,c) A StartDate(r) = d) .
Ve d by : CarLoc(c,d + 1,bg) < 3by : Move(c, by, ba, d).
Ve d by : CarLoc(e,d + 1,bg) 3 : Accepted(r) A Alloc(r, c)
AEndDate(r) = d
EndLoc(r) = bs.
//Precondition for the move action
Ve by by d: Move(e, by, be, d) = CarLoc(c,d, by).
//Definition of Overlapping
Vry ro : Overlapping(ry, re) < (StartDate(rq) < EndDate(ry)
AEndDate(r1) < EndDate(rs))
V(StartDate(r1) < EndDate(rs)
AEndDate(rs) < EndDate(ry)).

Figure 4.4: The scheduling theory ValidState
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Y1 = {Car, Driver, Res, Branch, Date, State}
Yp=A{

HasLicense(Driver)

Accepted(Res, State)

InitLoc(Car, Branch)

CarLoc(Car, Date, Branch, State)

Alloc(Res, Car, State)

Overlapping(Res, Res)

Move(Car, Branch, Branch, Date)

Yrp=A{
Today : Date
Z : State
Neaxt(State) : State
SerialNr(Car) : Int
PurchaseDate(Car) : Date
Mileage(Car) : Int
BirthDate(Driver) : Date
StartDate(Res) : Date
EndDate(Res) : Date
StartLoc(Res) : Branch
EndLoc(Res) : Branch
Ouwner(Res) : Driver

Figure 4.5: Vocabulary SequenceOfStates
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//Relation Constraints

Vrs:3<1c: Alloc(r,c,s).

Ve s:3<1r: Alloc(r,c,s).

Ve d: #{b1 ba : Move(c,by,ba,d)} < 1.

Ve b d: = Move(e, b, b, d).

//Preconditions for accepting a reservation:

Vr s : Accepted(r, s) = 3c[Car] : Alloc(r, c, s).

Vr ¢ s : Alloc(r, ¢, s) = CarLoc(c, StartDate(r), StartLoc(r), s).
Vr s : Accepted(r,s) = HasLicense(Owner(r)).

//Maximum one reservation at a time per Driver
Vrl r2 s : Overlapping(rl,r2) Arl # r2 = —Accepted(rl, s) V ~Accepted(r2, s)
VOwner(r2) # Owner(r2).

//CarLoc is defined in terms of moves and initial location

Ve, by, s : CarLoc(c, Today, by, s) + InitLoc(c,by).

Ve,d, by, s : CarLoc(c,d+ 1,b1,s) « CarLoc(c,d, by, s)
A=(3bg : Move(c, by, by, d))
A=3r : StartLoc(r) = by
NAccepted(r, s)
NAlloc(r, ¢, s) A StartDate(r) = d.

Ve, d, by, s : CarLoc(c,d+ 1,ba, s) « by : Move(e, by, ba, d).

Ve,d, b, s : CarLoc(c,d + 1,bg, s) « 3r : Accepted(r, s) A Alloc(r, ¢, s)
AEndDate(r) =d+ 1
NEndLoc(r) = bs.

//Precondition for the move action
Ve by by d s : Move(e,by,be,d) = CarLoc(c,d, by, ).
//Definition of Overlapping
Vrl r2 : Overlapping(rl, r2) < (StartDate(rs) < EndDate(rq)
AEndDate(r1) < EndDate(rs))
V(StartDate(ry) < EndDate(rz)
AEndDate(ry) < EndDate(ry)).

Figure 4.6: The dynamic theory ValidRun
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Intermezzo: A rule-driven approach for scheduling reservations

Business Rule systems use another declarative approach to schedule reservations,
the first usecase in this project. If-Then rules are used to implement an algorithm
that will decide whether cars are available, and if so, will update the current
reservation planning. The Business Rule engine runs on a rule base and a
working memory that includes the current state and the new request. In our car
rental example, the addition of a fact representing a reservation request might
trigger rules in such a way that the resulting information allows or prevents the
reservation’s acceptance.

Using a dynamic vocabulary RentalRequest (Figure 4.7) we study a rule-based
approach, using the IDP system on a theory that mimics a Business Rules
solution to scheduling reservations. We define a theory ProcessRequest (Figure
4.8) to schedule reservations. Vocabulary RentalRequest contains some extra
predicates that give additional input information, such as a partial function
ReqRes(State) : Reservation, that outputs the request that has to be processed,
and some auxilary symbols such as Candidate(State) : Car, for readability.

Business Rules often implement a sort of logic rules and their operational
semantics corresponds to a sort of bottom up evaluation of rules similar to the
computation of intentional predicates in deductive databases. This is of course
not always true but it was the case in this use case. Not surprisingly then, we
could easily turn these rules into definitional rules of FO(-). For example, a
typical Business Rule could be that a reservation can be accepted if a car is
available for the required period, and a car is available if it is not allocated to

Y1 = {Car, Driver, Res, Branch, Date, State}

Yp=A{
Available(Car, Reservation, State)
Accepted(Res, State)
Alloc(Res, Car, State)
Overlapping(Res, Res)

}

Yp=A{
Candidate(State) : Car
ReqRes(State) : Res
StartDate(Res) : Date
EndDate(Res) : Date

Figure 4.7: Vocabulary RentalRequest
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overlapping reservations. If cars are available, another rule would assign an
available one for the reservation (the smallest in some order). The definition in
Figure 4.8, captures this logic but in a declarative way through definitions.

Ve r s Available(e,r, s) —Vr2:r £ r2 A Alloc(r2, ¢, s)
= =Q0verlapping(r,r2).
Ve s : Candidate(s+1) = ¢ < Available(c, ReqRes(s), s + 1)A
(Ve2: 2 < ¢
= —Awvailable(c2, ReqRes(s), s + 1)).
Ve s : Alloc(ReqRes(s), ¢, s + 1) < ¢ = Candidate(s + 1).
Vr ¢ s: Alloc(r,c, s + 1) « Alloc(r,c, s) Nr # ReqRes(s).
Vs : Accepted(ReqRes(s), s) < Je . Alloc(ReqRes(s), ¢, s).
Vrl r2: Qverlapping(rl,r2) < StartDate(r2) < EndDate(rl)
VStartDate(rl) < EndDate(r2).

Figure 4.8: Theory ProcessRequest

This rule-based approach has a clear operational semantics. An advantage of
our declarative approach over this rule-base approach is that theory ValidRun
is a much more natural modelling. While theory ProcessRequest models a more
simple scenario, it is already a more complicated theory. When changes are
made (for example, the company introduces two classes of cars that can be
requested and a reservation can be upgraded if no more cars in the requested
class are available), the whole definition has to be modified to make this
possible. Adaptability is more straightforward in a theory that only contains
the constraints to which any schedule must comply. The second advantage is
guaranteed correctness. Provided that the theory ValidState is correct, ValidRun
will be correct and it is implicit to the approach that any model of that theory
(or equivalently: run of the system) is correct.

4.1.3 Solving Tasks of EU-Rent

Scheduling reservations

The rule-based approach is made with the task of scheduling reservations in
mind. Theory ProcessRequest can be used to execute a reservation request
transaction, using the progression inference as described in Section 2.4.2.
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Note that declarative theories as ValidRun and ValidState can be used for many
more tasks than just processing transactions: Given a situation of the system
(transcribed by a structure .S over vocabulary SingleState) of our system, we can
use theory ValidState to see if it this is a valid state of the system, or given a
run (transcribed by S’ over SequenceOfStates) of our system, we use ValidRun
to see if it was a valid run (i.e. if S’ is a model of theory ValidRun). Theory
ValidRun can also be used for simulation, for example, we can add transactions
(for example: I move this car to the other branch and then accept these five
reservations) and check if there exists a valid run of the system, that starts in
the current structure, where those transactions are processed.

We can also use these theories to run a system that can process reservations
or other transactions. Given a structure S representing the current state, we
can manually modify the structure, adding this reservation to the domain of
reservations and performing a modelexpansion inference to find a new structure
S’ representing a valid state of the system that contains the new reservation.
This method seems to perform the task well, especially since there are no extra
constraints on the transition between states. However, it is difficult to generalise
and it leaves the knowledge about the state transition completely implicit.
Another method is using the progression inference on theory ValidRun and the
modified structure, which also calculates a new structure satisfying the theory.
This method does allow to work with constraints on transitions between states.

An operational difference with the rule-based approach is that the result when
using ValidRun or ValidState is not deterministic: at each state, the system
can freely choose a new schedule. This may pose practical problems for the
company in the sense that planning of manpower and resources becomes very
difficult (e.g. will it be necessary to move a car from one branch to another?). A
solution for this problem would be to compute solutions minimising an objective
function that penalises modifications to the previous schedule. This contrasts
sharply with the rule driven approach, where a deterministic description of a
next state is specified. In practice, the main concern of a business manager is to
make profit. Therefore, such a manager will not care which specific next state is
selected by a system as long as the decisions made by the system are profitable.
This is in fact a search problem, where we want to maximise a certain profit
function, namely, the income we obtain from renting out cars minus the sum of
all expenses. If it is possible to fulfill 8 new reservations by cancelling 1, it is
possible that a company might want to do that.

In fact the ultimate goal is, given a current state of the system and some new
reservations, to calculate a new optimal state of the system: a new optimal plan
incorporating new reservations, accepting as many as possible, with making as
few changes as possible. This new state should definitely be a valid state, hence
it has to satisfy theory ValidState.
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In the rule-based approach, manual heuristics are used as an attempt to maximise
the profit. For example, a rule might be “preferably assign a free car to a new
reservation, only if that is impossible, try shifting the schedule”. A disadvantage
of the rule based approach is that the used optimality criterion is left implicit
and not all cases can be covered, since the optimalisation is among others
limited by the creativity of the programmer.

In this section, we will describe more fundamental approaches. One using
ValidState and a Weighted Model Revision inference.

Definition 4.1.1. Revise Weighted(T',S,f) is a derived inference with as input
a structure S and theory T over the same vocabulary and a partial function
f from the set of predicates and functions to pairs of integers. Output is a
structure S’ that is a model of T, that is only different from S for elements of
the vocabulary that are in the domain of f, or UNSAT if there exists no such
structure. The resulting structure S’ has a minimal value for cost, where:

cost="Y_ (flo)1=#{dlde o Nd ¢ o}

o€Domy

+ Y (flo)x#{dlde 0¥ nd ¢ o}

o€Domy

Intuitively, the function f maps predicates and functions to the cost to make
this predicate/function more true and the cost to it make more false. The
inference calculates a model for T' that only differs from S on some symbols,
where making changes to the interpretations of symbols can be encouraged or
penalized.

Example 4.1.2. In the situation of the Car Rental company, we might give
these arguments to our model revision:

CurrentState, ValidState,
{Accepted — (=100, 300), CarLoc — (50,50), Alloc — (20,20)}

This input expresses for example that only Accepted, CarLoc and Alloc can be
changed. We also see that it is very good (profit 100) to accept more reservations,
while it is costly (cost 300) to cancel a previously confirmed reservation. Of
course, these parameters can be fine-tuned depending on real life information.
The weighted model revision then calculates a new model: a revision of the
old model that minimises the cost (sum over all changed atoms of the weight
assigned to that particular change).

A more general approach using theory ValidRun (and thus allowing constraints
on state transition) uses Weighted Progression.
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Definition 4.1.3. Weighted Progression is a derived inference with as input a
single-state structure Sy over X5%., a theory 1" over a linear-time vocabulary
Yrre and a numerical term ¢t. Output is a single-state partial structure Sp
such that bistate(Xrrc, So,S1) = T such that for every other S satisfying
bistate(X1rc, S0, S;) = T it is the case that 51 < 51,

A user can add a definition of cost to the ValidRun theory and then use weighted
progression to calculate a possible next state that minimises the cost.

Example 4.1.4. To model the same scenario as in example 4.1.2, we add a
term Cost : Int to SequenceOfStates and following definition to ValidRun:

{
Cost = —100 * #{xz|~Accepted(x, Z) N Accepted(x, Next(Z))}

+ 300 * #{x|Accepted(x, Z) N ~Accepted(x, Next(Z))}
+ 50 x #{c d b|=CarLoc(c,d,b, Z) A CarLoc(c,d,b, Next(Z))}
+ 50 x #{c d b|CarLoc(c,d,b, Z) N ~CarLoc(c,d,b, Next(Z))}
+ 20 x #{r c|-Alloc(r,c, Z) N\ Alloc(r, e, Next(Z))}
+ 20 « #{r c|Alloc(r,c, Z) N =Alloc(r,c, Next(Z))}

}

We use ProgressWeighted(ValidRun, Sy, Cost) with a structure Sy represent-
ing the current state, to calculate a good next state for the system.

To conclude, we studied 4 approaches to schedule reservations. The reservation
is added to the structure and one of four inferences can be used:
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Modelexpand(V alidState, Sp) ReviseW eighted(ValidState, Sy, f)

Calculates a model that Calculates a model that
contains the added reservation contains the added reservation
and satisfies all constraints. and satisfies all constraints

where the cost associated
with f is minimized.

Progress(ValidRun, Sp) ProgressWeighted(ValidRun, Sy, t)
Calculates a next step such Calculates a next step
that the combination of both with minimal cost ¢ such

steps satisfies the bistate theory. | that the combination of both steps
satisfies the bistate theory.

It is clear that the bottom-right approach is the most general and extensible,
since it allows to state constraints on state transition and to do optimisation.
The top-left approach is the most simple. We continue with using the
ProgressWeighted approach in the rest of this text.

4.1.4 Adding New objects

Our second use case is an extension of the first one: we want to extend theories
with the possibility of adding new objects. In many software systems, adding
a new object is a trivial task: new entries in a database are constantly being
created. The car rental problem domain also allows for cars to be purchased,
and hence it must be possible to add a new car to the set of cars. In logic speak:
it must be possible to add a new object to the Car domain.

The obvious way to do this would simply be to extend the structure (or
database) with an extra car. However, this means that the knowledge about
the introduction of a new car is introduced is not present in the logical theory
representing the problem domain. This also means that information about this
transaction is not reusable for other forms of reasoning, e.g. making simulations
of the system, verification, etc. To remedy this, we propose a new logical
operator representing the knowledge that a new domain element is created.

Before we explain the exact syntax and semantics of this operator in Section
4.2, we take a look at how the addition of a novel logic operator could solve the
creation of a car in our car rental problem domain:
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Vs sn: new c¢: SerialNr(c) = sn
A PurchaseDate(c) = s A Mileage(c) = 0+ BuyCar(sn,s).

This definition states that if a car with serial number sn is bought in a certain
state s, a new car has to be added to the system with that specific serial
number, purchased at that point in time, with zero mileage, and some other
initial attributes. Note that we added a predicate BuyCar(Int, State) to
the vocabulary SequenceOfStates, representing the serial numbers of any cars
bought. In order to support this kind of expressions, we introduce a new logic,
FO(-1), which basically extends FO(-) by allowing more complex formulas in
the head of definitions.

4.2 FO(-"): alogic accomodating a ""'new''-operator

4.2.1 Syntax

An FO(-T) specification consists of a set of sentences ¢ in FO and a set
of extended definitions: definitions with a FO sentence in the body, but an
extended notion of a head of a definition.

Definition 4.2.1. A formula ¢}, is a head formula if

e (p is an atom
e wp = 1 Ay with ¢ and ¢ head formulas.
e ¢ = new ¥ with ¥ a head formula.

Definition 4.2.2. An extended definition A over Lo is a set of rules of the
form
VT : ©hn < Py

where ¢, € Lro, pn is a head formula and all the free variables of ¢, and ¢y,
are among the variables in 7.

4.2.2 Intuitions

Like in informal definitions, any rule produces a set of atoms described by
the head formula. Even though conjunctive head formulas resemble simple
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FO formulas the intended meaning of an extended rule is not “if a body is
true, the corresponding head formula is true”. It means that if the body of a
certain rule is true, the head formula will determine a set of atoms to be true
(and nothing more). The reason for this is that inductive definitions describe a
process that starts from an empty interpretation for defined symbols and keeps
executing rules (or deriving that certain heads can never be derived anymore)
until fixpoint. In the extended formalism, one rule can make several atoms true
at once (and create new elements). Conjunctive head-rules represent multiple
effects of the same action: multiple things becoming true together. Hence,
the set of atoms made true is simply the union of the atoms made true by
subformulas. The new operator causes the creation of a new domain element
different from all other elements of this same type. These are the intuitions
how such rules should be read. We now describe a formal semantics for this
logic that preserves the intuitions described in this section.

4.2.3 Semantics

We define a transformational semantics for FO(-1): a transformation from a
specification in FO(-1) to a specification in FO(+) with an explanation of how
this transformation preserves the intuitions from the previous section.

Given a vocabulary ¥ used for writing a theory T in FO(-T), the FO(+)
translation of T" will be written in a slightly modified version of T'.

Definition 4.2.3. Given a vocabulary ¥ and a theory T that we want to
translate, we define a vocabulary ¥ as:
e Y contains all elements of X

e For each defined type S in T, we add a new predicate InTypeg, with
arity one and type S.

« For each new rule of the form
VZ[t] : new ys] : pu(T,y) < @b

we introduce a new partial function F': ¢ — s (for every “new-rule”, this
is a new function).

o For every new rule as above, we add a predicate Domp(t) representing
the domain of each F.

The translation theory T = Trans(T) in FO(+) contains all formulas of T'. For
the definitions we define a recursive translation that translates a rule into one
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or more rules with a strictly smaller head formula. We recursively apply this
transformation until all rules have simple heads (atoms).

¢ The simplest rules to transform are conjunctive rules. Since they represent
multiple effects of the same action, they can simply be translated to
multiple rules. A rule

(1 AN p2) ¥
is translated as
P11
P2 =Y
o A new rule (as above) is translated into three rules:

Vz : Domp(Z) < ©p.

Vz,y : InType,(y) <+ Domp(Z) A F(Z) =y.

VZ,y : on(Z,y) < Domp(Z) A F(Z) =y.

The intuitions behind these rules are the following: by doing this for
every rule containing creator symbols, we get that InType, is defined as
the union of all elements that occur as image of some creation function.
Le. InType will be true exactly for all those elements such that a new-rule
gets triggered. Furthermore, for those elements, ¢p should hold.

Since newly created elements are completely unique, we should add unique
name axioms (UNA) for the created elements:

o Every creatorfunction is injective: Vz,y : F(z) = F(y) =z =y.

o Elements created by different creatorfunctions are unique: Vz : Fy(z) #
Fy()

The created elements are also a closed domain: the number of new elements are
exactly those elements that are “created” by a certain constructing rule. We also
want to establish the link between the domain predicate and the corresponding
partial function: creatorfunctions are defined on (and only on) their domain.
Hence we add the following constraints to our theory:

o Vz[S] : InTypeg(z),
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o VZ :Domp(z) < Jyls]: F(z) =y.

No modifications on structures are made.

Example 4.2.4. We illustrate this translation on the above example. Given
vocabulary SingleState and the rule creating the car in FO(-1):

Vs sn: new c: SerialNr(c) = sn
A PurchaseDate(c) = s A Mileage(c) = 04— BuyCar(sn, s).

We look at what we add to vocabulary SequenceO fStates and we look at
translation theory 7" that models the same behaviour. The vocabulary contains
3 new symbols:

1. InTypecqr: a predicate representing all created cars

2. F': a partial function that maps serial numbers and purchase dates to new
cars.

3. Domp: a predicate representing the domain of F'.

A theory containing the rule creating the new car will be modified as:

Vs sn: Domp(s,sn) + BuyCar(sn, s).
Vs sn: ¢: InTypecar(c) < Domp(s,sn) A F(sn,s) = c.
Vs sn: c¢: SerialNr(c) = sn
A PurchaseDate(c) = s
A Mileage(c) =0 < Domp(s,sn) A F(sn,s) =c.
Vs1 sny S sng : F(s1,sn1) = F(s2,8n2) = s1 = $2 A snp = sna.
Ve[Car] : InTypecg,(€).
Vs sn: Domp(s, sn) < 3c[Car] : F(s,sn) = c.

4.3 Reasoning with FO(-*) in a finite domain
reasoning system

The above transformation cannot be applied in a context when reasoning with a
finite domain. It assumes that the interpretations of the types can be unknown
when finding models for a theory. This assumption is not valid for the IDP
system, hence another transformation had to be implemented. Below we show
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how a modelexpansion inference can be done for a FO(-T) theory in a reasoning
system with a finite domain solver.

The implementation of this semantics uses an overapproximation. It first
replaces all defined types with a overapproximation (a set of potential objects,
if you will). We remove the constraint that all elements of a type S are in the
predicate InTypes and use this predicate as the subset of elements of S that
are really created. Since the types are overapproximated, we have to be careful:
all quantification over defined types should become conditional. This means we
replace any universal quantification VZ[S] : o(Z) by VZ[S] : InTypes(z) = ©(Z)
and any existential quantification 3z[S] : ¢(Z) by 3Z[S] : InTypes(Z) A p(Z).
After the solving step, we redefine the interpretation of type by the subset in
the interpretation of InTypes. The projection of this structure to the original
vocabulary ¥, we get a structure that satisfies all constraints and where the
new elements have been created.

4.3.1 Using FO(-") in the car rental application

Processing a transaction where a new car is bought was the motivation behind
developing FO(-T). We give an overview how given a structure S over
Vocabulary SingleState state representing the current state of the system
and a theory T containing theory SequenceOfStates and containing the rule
creating a new car can be used to create a structure S’ satisfying T', having a
new car. Vocabulary SequenceO fStates is a linear-time vocabulary (Definition
2.3.3), with State as the type Time, and Vocabulary SingleState is the derived
single state vocabulary of SequenceO fStates (Definition 2.3.6). This means
that we can use the progression inference Progress(T,S) for a FO(-) theory
T over SequenceO fStates and a structure S over SingleState. We define a
generalisation of the progression inference defined in Section 2.4.2 that can be
used on FO(-1) theories.

Definition 4.3.1. Progress(T, Sp) is a logical inference with input:

e a FO(-%) theory T over a linear-time vocabulary Xpr¢

« a single-state structure Sy over X977

And output: The projection to vocabulary ¥9%.~ of a single-state partial
structure Sy over FO(-) such that bistate(Srrc, So, S1) | Trans(T).
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4.4 Context and Future Work

The work presented in this chapter was a preliminary study of the problem
setting in modelling Business Rule applications in our KBS, and the motivation
for further research. It led to the FO(C) logic from [Bogaerts et al., 2014c] and
[Bogaerts et al., 2014b]. To give an overview of the context of the work in this
chapter and the future work it led to we will discuss this FO(C) logic.

FO(C) is a combination of C-LoG and first-order logic, and is a member of
the FO(+) family of languages. The goal of C-LoOG is to capture complex
causal relations in a knowledge representation language. It is a generalisation
of CP-logic [Vennekens et al., 2009], that allows to express

o Non-deterministic choices between a dynamic set of alternatives.
e The causation of the creation of new objects.

e The nesting of causal laws: a entire causal law can be caused in itself.

The creation of new objects was already studied in this chapter. Similar
constructs were developed in various extensions of Datalog [Abiteboul and
Vianu, 1991, Van den Bussche and Paredaens, 1995]. In the LogicBlox system
they have a notion of implicit existentially quantified head variables, that
correspond with the new-expression discussed above.

4.5 Conclusion

We evaluated the Knowledge Base Paradigm and compared it to Business Rules,
using a real life application from the Business Rules domain: the EU-Rent Car
Rental company. We looked at two specific use cases in this application: the
scheduling of reservations and the task of adding new cars to the system.

The main advantage of the KB approach over rule-based systems is that a
specification in a KBS is an explicit modelling of the domain knowledge. This
allows for easy modification when the domain knowledge changes and reuse
of knowledge and specifications in various inferences. In this chapter we have
used the same specification of domain knowledge for verification, simulation
and execution.

To study the difference between a rule-based approach and our KBS in more
detail, we modelled a rule-based specification using the definitional rules of
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FO(:) and used it to schedule reservations. We noticed another practical
advantage of the KB approach. The determinism that is implicit in such a
rule-based approach does not always allow the system to optimise profit; it
encodes a heuristic to deterministically pick a quite good solution, and excludes
other, possibly better solutions.

We discussed a new derived inference that allows us to revise models where
changes to certain interpretations can be encouraged or penalised. This new
inference made that we could revise a schedule, that introduced no unneeded
changes.

The current version of the IDP system and FO(+) language were not fit for
making small database changes, such as adding a new car to the domain. These
lacks were no fundamental faults of the KB paradigm, but rather a lack of
expressivity of the current version of the language we used. Therefore, we
described a new logic, using an extension of the definitions in FO(+) which filled
the gap that was left in our modelling of a car rental system.
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A knowledge representation

language for reasoning in a
distributed environment: dAEL

Access control is concerned with methods to determine which principal (i.e.
user or program) has the right to access a resource, e.g., the right to read or
modify a file. Multiple logics have been proposed for distributed access control
[Abadi, 2003, Gurevich and Neeman, 2008, Abadi, 2008, Garg and Pfenning,
2012, Genovese, 2012]. Most of these logics use a modality k says ¢ indexed
by an agent k. Logics of says-based access control are designed for systems
in which different agents can issue statements that become part of the access
control policy. k saysy is usually rendered as “k supports ¢”, which can be
interpreted to mean that k has issued statements that — together with some
additional information present in the system — imply . Different access control
logics vary in their account of which additional information may be assumed in
deriving the statements that k supports.

In Section 5.4, we argue that it is reasonable to assume that the statements
issued by an agent are a complete characterization of what the agent supports.
This is similar to the motivation behind AEL to consider an agent’s theory to
be a complete characterization of what the agent knows [Moore, 1985, Levesque,
1990, Niemel4, 1991, Denecker et al., 2011]. This motivates an application of
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AFEL to access control. However, AEL is designed to model the knowledge of
one single (introspective) rational agent. An extension to AEL with multiple
agents has been defined by Vlaeminck et al. [2012], but this extension requires a
global stratification on the agents, which is undesirable for a distributed system.
Therefore, we extend AEL to a distributed setting, where each agent has his
own policy, possibly referring to the policy of others. We argue in Section 5.4
that the proposed extension provides a good formal model of the says-modality.

As the term “autoepistemic logic” suggests, AEL was designed to model (a
single agent’s) knowledge, including knowledge derived from reasoning about
knowledge. However, the formalism of AEL can be applied to model other
modalities too. Note that when making a claim about an agent’s knowledge, we
make a claim about that agent’s internal state of mind. However, the formalism
of AEL does not presuppose that its K modality represents an internal state of
mind of an agent. In our approach, we use theories of agents to represent their
publicly announced access control policy. In this case, we can interpret the K
modality to refer to the public commitments of an agent, i.e., interpret K¢ to
mean that the agent in question has publicly made statements that imply ¢. In
line with the terminology in the AEL literature, we use the terms “knowledge”
and “belief” (and the verbs “knows” and “believes”) interchangeably to refer
to the K modality of AEL, without thereby implying that it represents an
internal state of mind. Similarly, we use terms like “positive introspection into
other agents’ knowledge” to describe a certain formal behaviour of the modality,
without implying that an agent knows the internal state of mind of another
agent.

This chapter proposes an extension of autoepistemic logic AEL [Moore, 1985]
called Distributed Autoepistemic Logic (dAEL) with multiple agents with full
introspection into each other’s knowledge. In dAEL, we assume agents to have
full (positive and negative) introspection into other agents’ knowledge. This
is of course an unreasonable assumption when the K modality represents an
internal state of mind like actual knowledge. It is, however, reasonable when
the K¢ is interpreted to mean that an agent has issued statements that imply

¢.

In Section 5.1, we first define the syntax of dAEL, then define a 2-valued and
a 3-valued semantic operator for dAEL, and then show how approximation
fixpoint theory can be applied to these operators to define five semantics for
dAEL corresponding to five well-known semantics for AEL. In Section 5.2,
we define a mapping from dAEL to AEL and show that for a subset of the
logic defined by a strong consistency constraint, the mapping preserves the five
semantics. In Section 5.4, we argue that dAEL with the well-founded semantics
can be fruitfully applied to access control. We conclude this chapter in Section
5.5.
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The work presented in this chapter was published as a conference paper at the
International Joint Conference on Artificial Intelligence in [Van Hertum et al.,
2016a).

5.1 Syntax and Semantics of distributed Autoepis-
temic Logic

We describe the syntax of dAEL as an extension of FO. Throughout this entire
chapter, we assume a fixed set of agents A, vocabulary ¥ and a fixed domain
D. Furthermore, we assume that for each d € D, d is a constant symbol in
dAEL whose interpretation in all structures is d. The class of Y-structures
with domain D (and each d € D interpreted by itself) represents all potential
objective states of affairs.

An epistemic state of an agent is a set of structures of this class of structures.
By imposing the use of this class of structures in the representation of the
epistemic state of agents, two important constraints on the knowledge of agents
are induced:

o Every agent knows the domain of discourse to be D.

e Every agent knows the identity of each constant d € D.
Thus, we do not model situations where one agent has incomplete knowledge of

the domain or where different agents have different opinions about the domain.

Next to constants that represent domain elements, we also allow constants (as 0-
ary function symbols). Note that there are no constraints on the interpretation
of these symbols: agents can have no information about them, or differ in
opinion on their interpretation.

5.1.1 Syntax and Basic Semantic Notions

Definition 5.1.1. We define the language £, of distributed autoepistemic logic
using the standard recursive rules of first-order logic, augmented with:

K4(v) is a formula if ¢ is a formula and A € A

JAvY is a formula if ¢ is a formula and A € A
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dAEL generalises autoepistemic logic in the sense that we have multiple agents,
each having their own theory describing their belief or knowledge about the
world.

Definition 5.1.2. A distributed theory is an indexed family 7 = (T4)aca
where each T4 is a set of sentences in dAEL. We will denote T4 also as (7) 4.
Following example shows how a specification in dAEL looks.

Example 5.1.3. In a university, there are 2 agents: Professor Alice and her
postdoctoral researcher Bob. Together they manage 3 students: Charlie, Dylan
and Ellen. The professor has two databases Db and Db2, for which access needs
to be controlled. This is the policy of Alice:

e Charlie gets access to Db, without any restrictions.

o Ellen’s access of Db is decided by Bob, she gets access if and only if Bob
says So.

e For Db2, any student gets access, unless Bob explicitly says otherwise.
e Dylan gets access to any database, unless I have a reason to decide
otherwise.
Postdoc Bob has following policy:
o If anyone is explicitly distrusted (does not get access) by the professor, I
will follow her and will also not allow access.
o Ellen can have access to Db.

o Ellen cannot have access to Db2.

A formalisation of this can be made, using a vocabulary

n={

Y1 = {student, resource}

Y p = {Access(student, resource) }

Y r = {Charlie, Dylan, Ellen, Db, Db2}
}

We will use A, B, C, D, E to respectively denote Alice, Bob, Charlie, Dylan and
Ellen. In dAEL, the policy is modeled as a distributed theory T = (Ta,T5),
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where

Ty ={
Access(C, Db).
Access(E, Db) < KpAccess(E, Db).
Vs[Student] : = Access(s, Db2) < Kp—Access(s, Db2).
Vo : mKa—-Access(D, x) = Access(D, x).
}
T ={
Vo, y: Ka-Access(z,y) = —Access(z,y).
Access(E, Db).
—Access(E, Db2).

In Section 2.5, we introduced possible world structures: sets of structures
that are consistent with an agents knowledge. To generalise the concept of
possible world structure, we introduce the notion of a Distributed Possible
World Structure (DPWS) which represents the knowledge of multiple agents.

Definition 5.1.4. A DPWS Q is an indexed family Q = (Qa)aca, where Q4
is a possible world structure for each A € A. We will denote Q4 also as (Q)a.

The knowledge order of Definition 2.5 can be extended pointwise to DPWS’s.
One DPWS contains more knowledge than another if each agent has more
knowledge: given two DPWS’s Q; and Qs, we define Q1 <g Qs if (Q1)a <k
(Q2)a for each A € A.

The value of a sentence is obtained like in AEL by evaluating each modal
operator with respect to the right agent.

Definition 5.1.5. The value of a sentence ¢ in Q, I (denoted p<7) is defined
inductively by the standard recursive rules for first-order logic, augmented with:

(Kap)®' =t if 097 =t for each J € Q4

Since the set A of agents is fixed, we will interpret 341 as syntactic sugar for
the finite disjunction \/ 4, 4 ¥[A/A'].

In order to generalise this valuation to a partial setting, we define a generalisation
of belief pairs: a belief pair (i.e., an upper and lowerbound for the possible
world structure) for each agent.

Definition 5.1.6. A Distributed Belief Pair (DBP) is an indexed family B =
(Ba)aea, where for each A € A, By is a pair (P4,S4) of possible world
structures. We will denote B4 also as (B) 4.
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Recall that we call a DBP consistent if (B) 4, that is the belief pair associated
with agent A, is consistent (Section 2.6.3) for all A . The precision order on
DBP’s is a pointwise extension of the precision order on belief pairs: B <, B’ if
(B)a <, (B')4 for each A € A. By abuse of notation, we sometimes identify B
with a pair of distributed possible world structures (B¢, B') where B¢ stands
for the tuple (B4)aea of conservative bounds (a DPWS), and B! for the tuple
(BY) aca of liberal bounds (a DPWS). Intuitively, for each agent A, BY is the
underestimation and BY is the overestimation of the knowledge of A, so B
contains all knowledge the agent certainly has (or, what he knows if we look at
his belief pair from a conservative viewpoint) and BY all knowledge the agent
possibly has (or, what he knows if we look at his belief pair from a liberal
viewpoint).

A DBP B is more precise than B’ if for each agent A: BY >x B’ and

BYy <k B 54. The following proposition follows easily from the equivalent result
in AEL.

Proposition 5.1.7. The set of all DPWS’s forms a complete lattice when
equipped with the order <k . The set of all DBP’s forms a lattice when equipped
with the order <,. The latter is the bilattice of the former.

As before, we assume that all DBP’s are consistent.

The notion of three-valued valuations is extended to the distributed setting by
evaluating each modal operator with respect to the correct agent.

Definition 5.1.8. The value of ¢ with respect to DBP B and interpretation I
(notation 57 is defined inductively by replacing the fifth rule in the recursive
definition of the three-valued valuation of an AEL formula (Definition 2.6.2) by:

t if BT =tforall I' € (B4
(Kap)BT =3 £ if oB1 = f for some I' € (B!)4
u otherwise

When the DBP is exact, the valuation corresponds with the two-valued valuation
defined in Definition 5.1.5.

Proposition 5.1.9. Given a DPWS Q, a structure I, and a dAEL-formula p,

we have that

02! =,
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Proof. We prove this by induction on the structure of ¢. The only non-trivial
case is the one where ¢ = K41 for an agent A € A. In this case:

t  if (@D =t for all I’ € ((Q, Q)%)a

(Kap) QDT =8 £ if (20" = f for some I' € (2,91
u otherwise
t ify! =tforall I’ € (Q)a
=4 f if ! =f for some I’ € (Q)4

u otherwise

[t ifyl =tforall I' € (Q)a
T f if ! =1 for some I’ € (Q)4

= (Kap)®!

where the first steps follows from the induction hypothesis, and the second by
the observation that the valuation (-)2 is two-valued (as in: the valuation
02! for any dAEL formula ¢). O

The valuation essentially provides us with the means to apply AFT to lift the
class of semantics of AEL to dAEL.

5.1.2 Semantics for dAEL

The two- and three-valued valuations form the building blocks to extend the
semantic operator and its approximator from AEL to dAEL. This will allow us
to apply AFT and lift all the various semantics defined for AEL to dAEL. In
order to generalise the various semantics for AEL to the distributed setting, we
first define a semantic operator Dr.

Definition 5.1.10. The knowledge revision operator for a distributed theory
T = (Ta) aca is a mapping on the set of distributed possible world structures,
defined by

D7(Q) = ({I | (Ta)?' = t})aea

This revision operator revises the knowledge of all agents simultaneously, given
their current states. Fixpoints of this operator represent states of knowledge of
the agents that cannot be revised any further. Or, in other words, distributed
possible world structures that are consistent with the theories of all agents. AFT
studies fixpoints of semantic operator D using fixpoints of an approximator
Dx-.
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Definition 5.1.11. The approximator for a distributed theory T = (T4) aca
on a DBP B is defined by D-(B) = (D5(B), D4-(B)), where

DS (B) = ({I| (Ta)®" # £}) aca
DL(B) = ({I| (Ta)?T = t}) aca

Proposition 5.1.12. The approzimator is <, monotone: for any 2 DBP’s
where B >, B': D3(B) >, D5(B’).

Proof. This follows directly from Definition 5.1.11 and the fact that the valuation
()8! is <, monotone. O

Theorem 5.1.13. D is an approzimator of Dr.

Proof. By definition 2.6.1, we need to prove three things to show that D is an
approximator of Dy.

1. D% is <, monotone.
2. For each DPWS Q, we have that DS-((Q, Q)) <, Dr(Q)
3. For each DPWS Q, we have that D4-((Q, Q)) >, Dr(Q)

The first follows directly from Proposition 5.1.12. The second statement follows
straightforward from the definition of Dx-:

({T | (Ta) T £ £} ) aca
= ({I|(Ta)%" #£})aca
= ({I](Ta)%" =t})aca

where we use Proposition 5.1.12 and the fact that the valuation (-)<7! is two-
valued.

The proof for the third statement is similar. O
The stable operator D5t is defined for dAEL as D5(Q) = lip(Di(-, Q)°).

Different fixpoints of these operators lead to different semantics as discussed in
Section 2.5;

Definition 5.1.14. Let 7 be a distributed theory.
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o A supported model of T is a fixpoint of Dr.
o The Kripke-Kleene model of T is the <,-least fixpoint of D7

A partial stable model of T is a DBP B, such that B¢ = D3 (B') and
B = Dt (B°),

o A stable model of T is a DPWS Q, such that (Q, Q) is a partial stable
model of T.

e The well-founded model of T is the least precise partial stable model of 7.
To illustrate these operators, fixpoints and semantics we will make use of

two examples. Using these, we will look into the different semantics and the
intuitions behind them.

Example 5.1.15. Imagine a situation with two agents, a mother and a father
that have a 6-year old child together: A = {M, D}. The child really wants
candy and asks his parents. His father answers: “You can have a piece of candy
if it is ok for your mom.”. When he asks the mother, she answers: “You may
take some candy, if your father says so.”. In dAEL, with a vocabulary ¥ = {c}
this can be modelled as T = (Tp, Th), with:

TD:{KM(C):>C} TM:{KD(C):>C}.

Luckily, the child has an inherent comprehension of dAEL. To find out whether
or not he will get candy, he studies which possible semantics the parents can
choose. There exist four possible world structures for each agent '

1. The empty possible world set or inconsistent belief: (J, denoted as T.
2. The belief of ¢: {{c}}

3. The disbelief of ¢: {0}

4. The lack of knowledge: {0,{c}}, denoted as L.

The semantic operator associated to this theory is:
D7(Q) = (b, Qur)

= ({I| ~(Eum(e)? Ve =t} {I|~(Kp(e)? Ve =t})

IThe reason we use T for the smallest and L for the largest set is that they are the largest
respectively the smallest element according to the knowledge order.
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And the approximator is Di(B) = (D$(B), D4-(B)), where:
DF(B) = ({1 | ~(Kn(c)® Ve # £} {1 | ~(Kp(e)P vl #£})
Dy(B) = ({I | ~(Knm(c)® Vel =t} AT | ~(Kp(e)® Vel =1t})

Supported models are fixpoints of Dy. There are two supported models, namely
(Lp,Lar) and ({{c}}p,{{c}}rr): either both Dad and Mom agree to giving
candy or none of them does.

The Kripke-Kleene fixpoint is the least fixpoint of D} with the precision relation.
The Kripke-Kleene model is (L, {{c}})p, (L, {{c}})ar). Soin the Kripke-Kleene
semantics it is unknown for both Dad and Mom whether the child can have
candy. However, from none of their theories it follows that the child can have
no candy.

The DPWS L := (Lp, L) is the (unique) stable model: (L, 1) is a partial
stable model, since Lp = Ifp(D3(-, L)) and Ly = Up(Di(-, L))" As such,
(L, 1) is the well-founded model.

The stable and well-founded semantics only derive knowledge that is “grounded”
in the theory: knowledge is only derived if there is a non-self supporting reason.
This is a reasonable way of deriving knowledge from the theories. Differences
between the stable and well-founded semantics occur when loops over negation
occur as next example shows:

Example 5.1.16. Assume the same situation as in the example above, but with
divorced parents, a mother and a father that have a 6-year old child together:
A = {M,D}. The child really wants candy and asks his parents. His father
answers: “You get a piece of candy from me, if your mom doesn’t approve.”.
When he asks the mother, she answers: “If your father says no, you may take
some candy.”. These statements can be modelled in dAEL as:

Tp = {-Ky(c)=c} Ty = {—-Kp(c) = c}.

This theory has no supported models, since no model is “consistent” with this
theory. The Kripke-Kleene model is again ((L, {{c}})p, (L, {{c}})a). However,
this theory has two stable models: | := (Lp,cp) and (¢p, Las). The well-
founded model is ((L, {{c}})p, (L, {{c}})m), the non-exact well-founded model
is due to the loop over negation in this theory.
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5.2 A Mapping from dAEL to AEL

We now describe a mapping from dAEL to AEL. We prove that for distributed
theories that do not contain any inconsistency, the semantics for dAEL match
the corresponding semantics for AEL. In the case of partially inconsistent
distributed theories, the semantics do not coincide: dAEL allows for a single
agent to have inconsistent beliefs, whereas AEL has no mechanism to encapsulate
an inconsistency in a similar way. This capacity of dAEL to encapsulate
inconsistencies is a desirable feature, for instance for the application of dAEL
in access control, where it facilitates, for example, to isolate a faulty agent, as
we will show below.

It has been noted before, by Vennekens et al. [2007] and Vlaeminck et al. [2012]
that natural embeddings of certain “stratified” theories in AEL fail when there
is the possibility of inconsistent knowledge. They have presented the notion of
permaconsistent theories as a criterion for their embeddings to work. In this
section, we show

e how to generalise permaconsistency to dAEL,

o that for permaconsistent theories, the mapping we define indeed preserves
semantics, and

o that a weaker criterion (being universally consistent) works for three of
the five semantics.

We first generalize the notion of permaconsistency [Vlaeminck et al., 2012] to
the distributed case:

Definition 5.2.1. A distributed theory T is permaconsistent if for each A €
A and each theory T’ that can be constructed from (7 )4 by replacing any
occurrence of formulas Kpy not nested under a modal operator by t or f
independently of each other is consistent.

Note that with “replacing all occurences” it is meant that every occurence can
be independently and arbitrarily replaced by t or f.

5.2.1 A translation for vocabularies, theories and structures

Intuitively, the mapping from dAEL to AEL adds an argument to each symbol
of the vocabulary containing an agent, the agent from whose view this symbol
is interpreted. In Example 5.1.15, ¢ would be transformed to a predicate ¢/1,
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where ¢(M) and ¢(D) state whether the mother respectively the father gives
candy.

The mapping from dAEL to AEL consists of a collection of translation
functions. These functions translate syntactic constructs of dAEL like formulas
and distributed theories and semantic constructs of dAEL like DPWS’s and
distributed belief pairs into the corresponding constructs of AEL. We denote
each of these translation functions by 7 with some subscript, where the subscript
indicates the type of the output of the translation function. For example, we use
7r to denote the translation function from distributed theories to AEL-theories,
because T is the usual symbol used for an AEL-theory.

Given a vocabulary ¥ of a distributed theory 7 in dAEL, the AEL translation
of T will be written in a slightly modified vocabulary Y’ that adds the extra
argument to the predicates and functions.

Definition 5.2.2. Given a vocabulary X, we define ¥’ to be the vocabulary
consisting of the same predicate and function symbols as ¥ but with the arity
of each predicate and function symbol that is not a domain element increased
by one.

The additional argument of each predicate and function symbol refers to the
agent whose beliefs about the predicate/function symbol we are using to interpret
the symbol. Given an n-ary function symbol f € ¥, we will therefore interpret
f as an n+1l-ary function symbol in AEL, where f(ay,...,an,an+1) should
be interpreted as the interpretation of f(aq,...,a,) according to agent a,1.
Since we assume all functions to be total, f(ay,...,an,a,+1) also needs to be
interpreted when a, 11 is not an agent. Since it does not matter which value
we give to f(a1,...,an,ant1) (this will follow from our particular translation)
in this case, we fix an arbitrary element § in our domain D to assign to such
defective terms.

We use the following notational conventions in this section: ¢ denotes a dAEL
formula over X | ¢ denotes an AEL formula over ', I denotes a Y-structure,
and .J denotes a Y'-structure. We also use £ to denote the language of dAEL
and L, to denote the language of AEL. With a superscript £* to a language L,
it is explicitated that £ is a language over vocabulary X.

Definition 5.2.3. Given a Y-term ¢ and an agent A, we define the ¥'-term ¢4
recursively as follows:
e x4 := x for each variable =

e dy = d for each domain element d € D.



A MAPPING FROM DAEL TO AEL 91

o (f(t1,.--stn))a:=f(tras--- tna, A)

Definition 5.2.4. We define the function 7, : A x EdE — Ekzl as follows:

(A, P(t1,....tn) == P(tia, - tya, A)
(4,7¢) = ~74(4,9)
* To(A o NY) = To(A,0) ATe(A, 1)

(A

(

e Ty

s Ty

, (V2)¢) = (V)70 (A, ¢)
e 7,(A,Kp¢) = K7,(B, )

s Ty

Definition 5.2.5. For a distributed theory T, define 77 (7) := U 42 4 7o (A, Ta).

To give some intuition, we now show how the mapping for theories works in
Example 5.1.15.

Example 5.2.6. Given a set of agents A = {M, D} and the distributed theory
T = ({Kpc= c},{Kpc=c}), we calculate:

m0(T) =rr({Kpe = ¢}, {Kye = c})
= {1,(M,Kpc = ¢)} U{1,(D, Kyc = c)}
= {1,(M,~KpeV ¢), 7,(D, ~KneVe)}
= {7 (M, Kpc) V 7,(M,c), =7,(D, Kpre) V 7,(D, c)}
= {~76(D,c) V e(M), =~7,(M, ) V (D)}
= {=c(D) V e(M), =c(M)V ¢(D)}
= {c(D) = ¢(M), (M) = c(D)}

Example 5.2.7. To illustrate how this mapping isolates faulty agents, assume
following distributed theory 7 that is not permaconsistent:

= ({e A=t {e})
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In this case:
mr(T) =rr({c A =}, {c})
= {rp(c A=)} U{rp(0)}
= {1e(M,cA=e)} U{r,(D, 0)}
= {c(M) A =e(M), (D)}
= {f}

Assume a third agent with policy {Kp(c) = ¢}, it is clear that in T this
agent would still be able to decide to give candy to the child, while this is not
the case in 77(T).

We now define a transformation for the semantical structures in dAEL. To map
a DPWS Q to a PWS @, we define a mapping

Q(Q) =Q

such that there is a structure J € @ for each indexed family in {(74)aca|la €
Qa} (intuitively, every tuple such that there is one structure for each agent,
picked from the relevant PWS Q4).

Definition 5.2.8. For an indexed family Z = ([4)aca of ¥-structures, we
define the X'-structure 7;(Z) by defining

F7Edy, .. dn, A) = Ay, dy)

for each n-ary function symbol f € ¥ and all dy,...,d, € D, and by defining
P D (dy, ... d,,A)iff Pta(d,,...,d,)

for each n-ary predicate symbol P € ¥ and dy,...,d, € D.

Definition 5.2.9. For a DPWS Q, we define 7¢(Q) = {7;((Ia)aca) | Ia €
Q4 for every A € A}.

Definition 5.2.10. For a distributed belief pair B, define

75(B) = (1q(B°), 7q(B"))

We show this again using Example 5.1.15.
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Example 5.2.11. A possible DPWS for this example is one where the father
knows to give candy, while the mother does not know anything:

Q= ({{}: et} {{c}1p))

We calculate

7Q(Q) = T ({{}; {c}}am, {{c}}p)
={rs({}m;{ctp), 7s({ctrr, {c}p)
= {{c(D)},{c(M),c(D)}}

5.2.2 Proof of correctness

The main result of this section is that the above mapping from dAEL to AEL
preserves all semantics in case 7 is permaconsistent.

Theorem 5.2.12. Let o € {Sup, KK, PSt, St, WF} be a semantics®, let T
be a permaconsistent distributed theory, and let Q be a distributed possible
world structure and B be a distributed belief pair. Then B or Q (depending
on the semantics) is a o-model of T iff T5(B), respectively 19(Q) is a
a-model of 77 (T).

“We use Sup, KK, PSt, St, WF as shorthands for respectively the Supported, Kripke-
Kleene, Partial Stable, Stable, and Well-founded semantics.

We also present a weaker criterion that preserves models for three out of the
five semantics.

Definition 5.2.13. We call a DPWS Q universally consistent if (Q)a # @ for
all A € A.

Definition 5.2.14. We call a distributed belief pair B universally consistent if
B! is universally consistent.

If B is universally consistent, so is B€.

Definition 5.2.15. Let o € {Sup, KK, PSt, St, WF} be a semantics. We call a
distributed theory T universally consistent under o iff every o-model of T is
universally consistent.

The following theorem states that the mapping from dAEL to AEL is faithful
for universally consistent models of a distributed theory for three out of the five
semantics.



94 A KNOWLEDGE REPRESENTATION LANGUAGE FOR REASONING IN A DISTRIBUTED
ENVIRONMENT: DAEL

Theorem 5.2.16. Let o € {Sup, St} be a semantics, let T be a distributed
theory, let Q be a universally consistent DPWS. Then Q is a o-model
of T iff 7o(Q) is a o-model of Tp(T). Let B be a universally consistent
distributed belief pair, then B is a PSt-model of T iff T5(B) is a PSt-model

Of TT(T),

Since permaconsistent implies universal consistency (Theorem 5.2.17), Theorem
5.2.16 implies 5.2.12 for supported and (partial) stable semantics.

Theorem 5.2.17. Let o € {Sup, KK, PSt, St, WF}. If T is permaconsistent,
then T is universally consistent under o.

Proof. Suppose T is permaconsistent. Now, for each agent A € A and each
theory T" that can be constructed from T4 = (7 )4 by replacing any non-nested
occurrence of modal literals by t or f is consistent. Now, for each agent A, let
T, the theory constructed from T4 by replacing all non-nested occurrences of
modal literals by t if they occur in a negative context (under an odd number of
negations) and by f otherwise. This theory is clearly stronger than T'4. Since
T is permaconsistent, T is satisfiable, so let 14 be a model of 77%. In this case,

it holds that TIEXJ"T)’IA =t (since T4 is weaker than T7).

From this, we find that for each agent A, {I | TIEXL’T)’I} is non-empty and thus
that D%*(L, T) is universally consistent. From the definitions in AFT it follows
directly that each model of 7 (under any of the semantics), is more precise
than D3-(L, T). Furthermore, if B’ >, B and B is universally consistent, then
so is B'. O

Example 5.2.18. The reverse of Theorem 5.2.17 does not hold as can be seen
for example by a theory {p=Kap, Kap=p} with one agent A.

Since the proofs of these theorems and intermediate results are very technical
and do not bring much insight, we omit them here. They can be found in
Appendix A.1.

5.3 Extension: Complex terms for agents: dAEL™

When a user specifies his access control policy, he might want to refer to the
knowledge of an agent, even when he does not know his identity. For example,
assume there is a function Owner : file — Agents, that maps files to the agent
responsible for managing that file. The interpretation of that function can differ
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from agent to agent, and even within the different possible worlds in an agent’s
PWS. This allows an agent to make policies like :

VI p: Kowner(z)Access(p, x) < Access(p, ).

And while the different possible worlds of that agent can have different
interpretations for Owner, the agent will allow access if in all of his possible
worlds the owner allows access.

We define syntax and valuation as adjustments to Definition 5.1.1, 5.1.5 and
5.1.8. Given these modification of the valuations, the operator and approximator
and by consequence the different semantics are defined exactly as before, so we
will not repeat that here.

Definition 5.3.1. We define the language dAEL™ of distributed autoepistemic
logic with terms using the standard recursive rules of first-order logic, augmented
with:

K;(¢) is a formula if ¢ is a formula and t € T

The intuitive reading of K;(1)) is “t is an agent and ¢ knows ¢”. So if the term
t does not denote an agent, K;(1) will be interpreted to be false.

We assume that in JAEL™ the set of agents is part of the domain (A C D) and
that dAELT contains a dedicated unary predicate Ag, whose interpretation is
assumed to always be A.

Definition 5.3.2. The value of a dAEL" sentence ¢ in Q, I (denoted <)
is defined inductively by the standard recursive rules for first-order logic,
augmented with:

(tho)Q’I —t ift! € A and gpQ’J =t for each J € (Q)u

Definition 5.3.3. The value of a dAEL" sentence ¢ with respect to DBP B
and interpretation I (notation ©57) is defined inductively by replacing the fifth

rule in the recursive definition of the three-valued valuation of an AEL formula
(Definition 2.6.3) by:

t ift! € Ag’ and BT =t for all I € (B%)u
(Kap)PT =4 £ ift! ¢ Ag! or B! =f for some I’ € (BY) 41
u otherwise

5.4 Applying dAEL to Access Control

An access control policy is a set of norms defining which principal is to be
granted access to which resource under which circumstances. Specialized logics
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called access control logics were developed for representing policies and access
requests and reasoning about them. To make a connection between the logic
and the access control, most logic based-approaches grant an access request if
and only if it is logically entailed by the policy. Another approach might be to
only disallow access if the negation of a request is entailed, which is a weaker
form of access control, since then access is given if both the request and the
negation of the request are not entailed by the policy. We will follow the first
approach, for clear security reasons. However, generalising the application of
our logic to the second approach or to other approaches (approaches in between)
is straightforward.

There is a large variety of access control logics. Many of them use a modality
k says indexed by a principal k [Abadi et al., 1993, Genovese, 2012]. says-based
access control logics are designed for systems in which different principals can
issue statements that become part of the access control policy. k sayse is
usually explained informally to mean that k supports ¢ [Abadi, 2008, Garg
and Pfenning, 2012, Genovese, 2012]. This means that k has issued statements
that — together with additional information present in the system — imply .
Different access control logics vary in their account of which rules of inference
and which additional information may be used in deriving statements that k
supports from the statements that k has explicitly issued.

We illustrate the says-modality in access control by showing how it is employed
to delegate authority. Suppose that principal A has control over a resource r,
i.e., that any principal ¢ has access to r if and only if A says that i has access
to r. Now A can delegate to principal C the decision whether B has access to r
by issuing the statement

(C says access(B,r)) = access(B,r). (5.1)

If C issues access(B,r), then (5.1) implies access(B,r), i.e., A says access(B,r),
so B has access to r.

Note that we used the fact that C said access(B,r) in order to derive what A
supports from what A explicitly said: we assumed A says (C says access(B,r))
based on C says access(B,r). To make delegation work in general, practically
all says-based logics statements allow us to derive j says (k says ¢) from k says ¢.
Note that in epistemic terminology, by identifying k says with K}, this can be
called mutual positive introspection between principals.

Many state-of-the-art access control logics are based on intuitionistic rather
than classical logic. Garg [2009] justifies the use of intuitionistic logic in access
control on the basis of the security principle that when access is granted to a
principal k, it should be known where k’s authority comes from. For example
BL, an access control logic with support for system state and explicit time [Garg,
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2009, Garg and Pfenning, 2012], is an intuitionistic modal logic with support for
mutual positive introspection but not for mutual negative introspection between
principals. dAEL, on the other hand, is based on classical logic, and supports
mutual negative introspection between principals. In order to justify our claim
that dAEL is a good access control logic, we discuss these two differences
between BL and dAEL.

We illustrate the advantage of mutual negative introspection by showing how
it allows to correctly handle statements whose goal it is to deny or revoke
access rights. Suppose A is a professor with control over a resource r, B is a
PhD student of A who needs access to r, and C is a postdoc of A supervising
B. A wants to grant B access to 7, but wants to grant C' the right to deny
B’s access to r. A natural way for A to do this is to issue the statement
(=C says —access(B, 1)) = access(B,r). This should have the effect that B has
access to 7 unless C' denies him access. However, this effect can only be achieved
if we assume the says-modality to allow mutual negative introspection: A must
know that C' does not issue a statement —access(B,r) to derive that B has
access rights.

In order to derive statements of the form —k saysp, we have to assume the
statements issued to be a complete characterization of what the agent supports,
like the “All T Know” assumption for AEL [Levesque, 1990]. Together with
support for mutual positive and negative introspection, this motivates the use
of dAEL as a viable access control logic.

The use of dAEL to model the says-modality can also be justified directly from
the intuitive reading of the says-modality mentioned above if we assume that
the additional information that may be used for deriving which statements a
principal j supports from the statements j has issued consists precisely of all
information of the form k says ¢ or =(k says ¢). We consider this a reasonable
assumption, given that the information of this form is the only information
that can be considered independent of the point of view of any principal in a
distributed system.

When using a policy to decide who gets access, there is a key security principle
that has to be guaranteed: "When access is granted to a principal k, it should
be known where k’s authority comes from” [Garg, 2009]. This points to the
responsibility the agents have in managing their resources, and the accountability
such a system needs when something goes wrong. We now argue how this
principle motivates us to use the well-founded semantics, using two examples
where access can be delegated and revoked between agents.
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5.4.1 Examples: Delegation and Revocation of Access

When principals delegate access rights to others, delegation chains can be formed.
There are different ways to treat these delegation chains when revoking rights,
which give rise to different revocation schemes [Hagstrom et al., 2001, Cramer
et al., 2015]. Of these revocation schemes, the one with the strongest effect is
called the Strong Global Negative (SGN) revocation scheme: In this scheme,
revocation is performed by issuing a negative authorization which dominates
over positive authorizations and whose effect propagates forward. We will show
that our dAEL model of SGN revocation behaves precisely like it was defined
by Cramer et al. [2015].

Assume a setting with four agents A = {A, B, C, D} and a resource r. Suppose
that A controls r and that A wants to delegate access right to other principals,
whom A wants to have the power to revoke rights from other users according
to the SGN revocation scheme. A principal k can delegate access right to a
principal j for all resources it has access to by issuing the statement deleg to(j),
and can revoke access right from j by issuing the statement revoke(j). Assuming
that access will be granted to a principal & iff A says access(k,r), A can ensure
that the statements of the form deleg_to(j) and revoke(j) will be interpreted as
delegation and SGN revocation by putting following constraint on the predicate
access:

access(A,r).
access(j,r) <
Ik (K aaccess(k,r) A Krdeleg_to(j))A

—3i (K paccess(i,r) A K;revoke(j)).

This defines who has access to what: all principals & have access to r if
K aAccess(k,r). Tt starts with a base case stating that agent A (who we assume
to be the owner) has access. It uses this to recursively state that all principals
that get access from A, or from someone who has access to r, get access to r
unless they are explicitly distrusted by A or one of his trustees.

Given a certain semantics for dAEL, we will follow the standard in access control
to grant k access to r only if K4access(k,r) holds in all models. We do this
since if there is a model (a possible situation) where someone does not have
access, there is reason to assume that he should not be given access, so for
security reasons we will not give him access. With this interpretation of the
semantics, the partial stable semantics and the well-founded semantics coincide,
since the well-founded model is the least precise partial stable model. Therefore,
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we ignore the partial stable semantics for the discussion of semantics in this
section.

We now argue using two example scenarios why we believe the well-founded
semantics to be the best choice when applying dAEL to access control. In both
scenarios, we assume that A controls r and that A has the above constraints on
access, allowing them to perform SGN revocation.

Example 5.4.1 (Scenario 1). In the first scenario, we suppose A has issued
the statements deleg_ to(B) and deleg_to(C), that B has issued the statements
revoke(C') and deleg to(D), and that C has issued the statements revoke(B)
and deleg_to(D). We visualize this scenario in Figure 5.1.

\/

Figure 5.1: Delegation-revocation example 1. Delegation is marked by a full
arrow, revocation by a (red) dotted arrow.

By issuing revoke(C), B is attempting to revoke C’s access right (and vice
versa). Of course, this attempt is only successful if B has access. So C' should
have access right iff B does not. Since the scenario is symmetric between B and
C, and we stated above that agent B can only have access if Access(B,r) is
true in all models, both agents should be denied access right. However, D does
have access in this situation, violating the security principle that it should be
clear who is accountable for giving D access. The scenario contains a conflict
that cannot be automatically resolved. At this point, A as the principal with
control over r will have to manually resolve the conflict by removing access
from at least one of them (B or C). In practice, it may take A some time to
study the situation and perform this manual resolution. During this time, the
system should still respond to access requests. It is clear that in this scenario
conflict resolution is in order. There exists different ways to handle conflicts,
see [Jajodia et al., 2001]. Important for the choice of semantics is that it points
out conflicts.

Consider the statements issued by the principals as a distributed theory in dAEL.
This theory has different models depending on the choice of semantics. We
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present the models by presenting a set of expressions X* where X is a principle
and ¢ the truth value of K4access(X,r) in the model. There are two supported
models {A, Bt, Cf, Dt} and {A%, Bf, C*, Dt}. These are also the stable models.
So, according to the supported and stable semantics: A and D have access,
while B and C do not. The Kripke-Kleene model and the well-founded model
are identical: {A®, B%,C%, D"}. This model is not exact: The truth-value of
the statements A says access(X,r), with X € {B,C, D} is unknown. Only A is
given access according to the Kripke-Kleene and well-founded semantics. Note
that all supported and stable models both grant access to D. Given our above
argument against granting access to D, these semantics cannot be considered
viable for this application. The Kripke-Kleene and well-founded model of this
theory gives access precisely to the principal that should have access according
to our above discussion. Thus these semantics, while not based on intuitionistic
logic, are faithful to the motivation that Garg and Pfenning [2012] gave for
using intuitionistic logic in access control. Furthermore, they stress the existing
conflict between B and C' by making their access right status undefined.

Example 5.4.2 (Scenario 2). Consider a second scenario, in which A has issued
the statement deleg_to(B) and C has issued the statements deleg to(C) and
revoke(B). We visualize this scenario in Figure 5.2.

B
A

D

¢

Figure 5.2: Delegation-revocation example 2: Delegation is marked by a full
arrow, revocation by a (red) dotted arrow

Here C' should clearly not have access, because the only principal granting
her access is C herself. Hence C’s revocation of B’s access right does not
have any effect, so B should be granted access. The Kripke-Kleene model
{At, BY, C%, D} of the distributed theory corresponding to this scenario is not
exact; it is unknown whether B and C have access, which clearly diverges from
our requirements. The well-founded model { A%, Bt, Cf, Df} on the other hand
correctly computes this desired outcome.



CONCLUSION 101

These scenarios illustrate our motivation of using the well-founded semantics
for access-control applications.

These findings are in line with the findings of Denecker et al. [2011], who strongly
argued in favour of the well-founded semantics in AEL.

5.5 Conclusion

Motivated by an application in access control, we extended AEL to a distributed
setting, resulting in dAFEL: distributed autoepistemic logic. dAEL allows for a
set of agents to each have their own theory and refer to each others knowledge.
For this, the K operator of AEL is replaced by an indexed operator K 4, where
A refers to an agent. In a setting where a set of agents communicate openly
and honestly, we needed a logic where this open communication was inherent.
Assuming the theories of the different agents to be characterizations of their
public commitments, we made dAEL a logic with full (positive and negative)
mutual introspection. This means that every agent can refer to the knowledge
(or equivalently in our framework: the consequences of the commitments) of
other agents and the lack thereof.

We defined the semantics of this logic using AFT and generalized 5 different
semantics from the single agent setting to dAEL: Supported semantics, Kripke-
Kleene semantics, (Partial) Stable semantics and Well-founded semantics. Other
semantics with other advantages have been studied in recent work [Bogaerts,
2015], and can also be generalised to dAEL, using the AFT framework.

We studied its relation to standard AEL and formulated an equivalence
preserving mapping from dAEL to AEL for a subset of the logic. We showed
that the embedding of dAEL in AEL is not always equivalence preserving and
pinpointed the exact situations in which equivalence can be lost. Furthermore,
we argued that in those situations, the semantics of dAEL is preferred over AEL’s
semantics, at least in the context of our applications. Further motivated by
applications in access control, we defined an extension: dAFELT: The extension
of dAEL, where one can use functions and terms in general in the subscript
of the K operator, allowing for statements like Koyner(fite)Access(A, file),
making a richer logic for our applications. We discussed the usability of this
new logic in access control and illustrated it with examples.

Possible future research directions are the generalisation of other semantics for
AEL to the distributed case, as discussed above, and the study of a decision
procedure for dAEL. In this chapter we study the semantics of dAEL, but for
practical applications, a decision procedure for dAEL or an expressively rich
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subset of it needs to be developed. The complexity of determining access rights
based on a theory written in dAEL should be studied. Furthermore, the relation
of dAEL to various existing access control models needs to be studied further.



aq

A Possible-world Semantics for a
multi-agent modal logic

When defining a semantics in the context of a multi-agent setting, a
mathematical structure (or semantical structure) needs to be defined that
allows to talk about the objective state of affairs but also allows to account
for the knowledge that the agents have about the world. First-order logic has
a mathematical formalism to talk about the objective state of affairs. The
main question in modal logics is to find a mathematical way to describe the
epistemic state of the agents. The key idea behind possible world semantics is
that an epistemic state can be represented by a collection of possible worlds.
This means that a world consists of

e An objective state of affairs

e For each agent a collection of worlds

The problem, however, is that with this definition, the notion of worlds is
unfounded. The set of worlds does not exists, or cannot be constructed in
standard set-theory. To show this, assume that this set of worlds exists, and
take a world w where the belief of an agent A consists of all worlds w’ that
satisfy the constraint that w’ is not a possible world of A in w’ (or stated
differently: the belief of A in w consists of all worlds in which A does not believe
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the objective state to be possible). In that case, w must satisfy one of the
following 2 statements:

e A believes that w is possible. In that case, w is a world that satisfies the
constraint that w is not a possible world of A in w, or equivalently: A
does not believe that w is possible.

o A believes that w is not possible. In that case, w is a world that does
not satisfy the constraint that w is not a possible world of A in w, or
equivalently: A does believe that w is possible.

This shows that if the set of worlds where the epistemic state of an agent is a
set of worlds would exist, this paradox exists.

In modal logics, this problem is avoided by using Kripke structures. When
using Kripke structures, the set of potential worlds is fixed in advance and the
logic is valuated relative to this class of worlds, by defining an access relation
for each agent between the worlds and an agent knows something in a world
w if it is true in all worlds accessible from w. This approach works well for
many applications, but when studying only knowing, it no longer suffices. When
evaluating only knowing, we want to talk about all worlds satisfying a certain
formula, so we cannot afford to only talk about all worlds that are in the set of
chosen worlds that satisfy that formula.

This same motivation is found when Belle et al. defined COL,, in [Belle
and Lakemeyer, 2015]: a logic that studied the interaction between common
knowledge (C) and only knowing (©). Based on work done by Fagin et al.
[Fagin et al., 1991] they used a semantical method to create a sufficiently rich
class of worlds such that this set of worlds is large enough to evaluate all
formulas in COL,,. Motivated by the large complexity in the work by Fagin
et al. they propose a more simple method to define worlds. While Fagin et al.
proposed a transfinite induction to a depth of w?, Belle et al. simplified this to
a construction by induction to a depth of w.

In the research presented in this thesis, we discovered anomalies that were
present in [Belle and Lakemeyer, 2015]. We discovered a formula that should
be satisfiable but cannot be made true given the semantical structure they
proposed.

The formula stating that the only thing that is known is that something is not
common knowledge cannot be true in any world they defined. However, it is
clear that this is not a statement that could never be true.

In this chapter we will propose a new semantical structure for COL,,,, based on
the work in [Fagin et al., 1991]. We propose a simplification of their k-worlds
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and knowledge assignments and will explore the only knowing modality in this
framework. We present a semantical approach of defining p-worlds (or worlds
of depth p) for every ordinal p and make the link with Kripke structures for
every A-world, with A a limit oridinal. We show that the set of satisfiable
formulas increases when the depth of the world increases and prove that w?
worlds are deep enough to interpret every formula in COL,, not containing the
only knowing operator. This is the same result as in [Fagin et al., 1991]. We
then explore the only knowing operator O in this setting.

We will introduce the logic in steps, to improve readability. First we will
introduce a logic CL,,: a multi-agent modal logic with common knowledge, that
uses a new semantical structure. Contrary to previous approaches (and to the
approach in the previous chapter), this logic has very few assumptions. It does
not assume introspection between agents or even introspection of an agent in
its own knowledge and neither knowledge or belief to be truthful. However,
given the set of semantical structures that will be defined below, subsets will be
defined that do have these assumptions. The goal of this approach is not to
develop a logic specifically for applications without for example introspection,
but to allow to in fact "turn on or off" the needed modal assumptions, when
using the logic. We will show the link between this semantical structure and
the one introduced in [Belle and Lakemeyer, 2015]. The issues with Belle and
Lakemeyer’s logic are discussed and we propose a new semantics structure and
a three-valued semantics that does not have these issues. The current proposal
for a valuation is three-valued and for each formula there exists a semantical
structure such that the valuation is two-valued for this formula in this structure
(decided if it is true or false) in a way that every more precise structure will
assign the same truth value. At the end of the chapter, we propose some
extensions to COL,,. We show how the modal axioms can be imposed on the
logic and we define COL;: COL,, extended with public announcements. As
in [Belle and Lakemeyer, 2015] we illustrate COL}. by formalising the muddy
children puzzle.

6.1 A multi-agent Modal Logic accommodating
Common Knowledge

We will here describe syntax and semantics of CL,,, the first part of our logic.
We will use this to give the main idea behind the proposed new semantical
structures: p-worlds.

As before, we will assume a fixed vocabulary X, a fixed set of agents A and a
domain D C ¥, where each d € D is a constant symbol whose interpretation in
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all structures is d. This implies that every agent knows the domain to be D
and the interpretation of every constant d to be d.

This also implies that the Barcan formula [Barcan, 1946]
KVzp & VeKep

is satisfied. However, it is well known how to relax this assumption by
introducing predicates to express the domain as a subset of D [Fitting, 1999].

6.1.1 Syntax

Definition 6.1.1. We define the language CL,, by structural induction with
the standard recursive rules of first order logic, augmented with:

K4(v) is a formula if 9 is a formula and A € A
Eg (1) is a formula if 1 is a formula and G C A

Cq () is a formula if ¢ is a formula and G C A

When G = A, we use E and C as syntactic sugar for respectively F4 and C 4.

Intuitively K41 can be read as “A knows 1, EtvY means that ”everybody
knows 1 and we can read Ct as “¢ is common knowledge”. The difference
between everybody knowing something and common knowledge is that common
knowledge also captures information on what every agent knows about the
knowledge of others. If p is common knowledge, then everybody knows p (Ep),
everybody knows that everybody knows p, everybody knows that everybody
knows that everybody knows p, ...As such, common knowledge is a much
stronger notion than everybody knows.

We call formulas in CL,, that do not contain any occurrences of K4, Eg or Cg
modal-free, or objective, and we refer to an atom of the form x¢ (x € {Ka, Eg,
Cc}) as a modal atom. We say that ¢ is a modal component of ¢ if ¢ contains
a modal atom yp.

We illustrate the syntax by translating a few sentences to CL,,.
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Example 6.1.2. For these examples about the Watergate scandal (as in [Fagin
et al., 1995]), we use a set of agents A = {D, N} and a vocabulary 3:

r={
Y1 = {person}
Y p = {Burgles(person, person), President(person)}
Yp = {McCord : person, OBrien : person, Nizon : person}

e Nixon does not believe that Dean knows that he is president

—KnKpPresident(Nizon)

o Everybody knows that Nixon is president, but it is not common knowledge.

E (President(Nixzon)) A —C (President(Nixon))

e Dean does not know whether Nixon knows that Dean knows that Nixon
knows that McCord burgled O’Brien’s office at Watergate.

-Kp(KnyKpKnBurgles(McCord, OBrien))
AN -Kp(—~KnKpKyBurgles(McCord, OBrien))
In the previous chapter, the knowledge of each agent A was characterized by
a specific theory. The agents modeled in dAEL were completely introspective
and we assumed open and honest communication between the agents. In CL,,,
we look at the world from a “god perspective” i.e. from the view of an external

viewer who describes the world in a theory and assume no modal axioms such
as introspection and the truthfulness of the knowledge of an agent.

Example 6.1.3. In dAEL the third sentence
-Kp(KnyKpKnBurgles(McCord,OBrien))
AN -Kp(~KnKpKyBurgles(McCord, OBrien))
would reduce to
—(KnBurgles(McCord, OBrien)) A ~(—KyBurgles(McCord, OBrien))

and thus further to false, because of the mutual introspection (K 4 K g simplifies
to Kpy and K4—K gy simplifies to =K g for any formula ¢ and agents A, B).
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6.1.2 Semantics

In standard first-order logic, a structure gives a formal account of the state
of affairs. In this sense, a structure plays the same role in Tarskian model
semantics for first order logic as worlds do in modal logic. In a context where
the world contains a set of agents, what is missing in such FO structures is an
account of the epistemic state of the agents in that world. Our aim here is to
extend structures to provide such an account.

In order to do this, we introduce p-worlds, defined for arbitrary ordinals pu.
Intuitively, a p-world is:

e A structure as defined in first-order logic if 4 = 0. When u = 0, a p-world
w accounts for a state of affairs of the objective world.

e A 0-world, with a set of (1 — 1)-worlds for each agent A, if p is a successor
ordinal. This way it captures the state of affairs in the objective world and
gives an account for every agent’s belief (by stating the possible worlds)
up to level y — 1 (i.e., p — 1 nested references to his own or an other
agent’s knowledge).

o A sequence of worlds w = (va)a<y of length p, where each v, is an
a-world if p is a limit ordinal. This way, w contains information on the
state of the world up to depth «, for any o < pu. Note that to make such
a sequence make sense, we need some extra constraints. An a-world in
the sequence should extend all earlier worlds, it should not, for example,
have a different objective world. We formalize this idea in definition 6.1.8
using the concept of consistent worlds.

Definition 6.1.4. The set of u-worlds W, over a vocabulary X and a set of
agents A is defined by induction '.:

o A 0-world w is a Y-structure S (with domain D) as defined in first-order
logic.

e A p+ 1-world w is a tuple consisting of a 0-world and for each agent
A € A a set of p-worlds, which we will denote as A™.

e A Xdworld w (X is a limit ordinal) is a sequence (v, ..., Vq,Vat1s--.) OF
length A, where each v, € W,, for a < A.

1We will from here on use k,l and & to address successor ordinals, A to address limit
ordinals and p as an arbitrary ordinal. We will not state this explicitly each time.
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Given a p + l1-world w, w°% is denoted as the objective state of w, and we call
A" the epistemic state of agent A in world w. The notation of the epistemic
state A" is based on the idea that for a symbol o it is standard to denote the
value of ¢ in w as ¢", and the epistemic state A can be seen as the value of
agent A in w. Since a A-world is a sequence of worlds, we will use standard
notation and given a A\-world w, we use (w),, to denote element « of sequence w,
which is an a-world. Given a A-world w, w® is also denoted as the objective
state of w and is defined as w®% = (w)o.

Example 6.1.5. In Example 6.1.2 we have shown some examples on the
Watergate scandal. A 2-world representing a possible state of affairs for that
vocabulary is shown in Figure 6.1. This figure will be used in a later example
and the semantics will be illustrated there.

President={Nixon}

Presiderﬁ‘:{Nixon} Presiéént:{} Presider{t‘:»{Nixon}

?

Presideﬁ{:{Nixon} Presiéént:{}

Presiderﬁ':(Nixon}

President={Nixon}

President={Dean}

Presiéént:{}

Presidel‘{t‘:{Dean) Presiéj“ent:{}

Figure 6.1: A possible 2-world for the Watergate-example.

Definition 6.1.6. We define, for each ordinal i the reduction R, as a function
W41 — W, per induction on p:

e For all w e W, 4
Ro(w) = WO

o For all w € W, 41, i a successor ordinal:

R,u(w) = (wObj7 (Rufl[Aw])AGA)
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e For all w € W,41, i a limit ordinal:

Ry (w) = (v ) w<p
where
— vy = w
— Vg1 = (W, ([A%],) aea) for @/ +1 < p a successor ordinal
— vx = (vi)i<a-
Where we use shorthands [W], and R[W] for {(w)q|w € W} respectively
{R(w)|w € W}, with W a set of worlds.

Finally, we define R as the union of all these functions. R is now a function
that is defined for all (u + 1)-worlds.

Definition 6.1.7. Given a p-world w and a p/-world w’ with ¢/ < pu, we
inductively define w to be more precise than w’ (denoted w >, w’) as follows:
o Ifpu=yp" w>,wiff w=1w

/

o If 4 is a successor ordinal and g > p': w >, w' iff R(w) >, w

o If pis a limit ordinal and p > p': w >, w' iff w' = (w)
Definition 6.1.8. Finally, we define the class of consistent p-worlds:

e a 0-world is consistent;
e a u+ 1-world w is consistent if for every A, every world in A" is consistent;
o a A-world w = (wa)a<x is consistent if for each p < A: (w), is consistent
and for each p < p/ < X: (w), <p (W),
Next, we define the a-extraction X, (a < p) from a p-world.
Definition 6.1.9. Given a u-world w, and an o < u, we define the a-extraction
X4 (w) as the unique a-world that w reduces to, by induction on pu:
o If 4 = o (which must be the case if y=0): X,(w) = w.
o If u is a successor ordinal and p > a: Xo(w) = X (R(w))

e If s a limit ordinal and g > a: X, (w) = (w)a
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To explain the concept of a consistent A-world, consider that any p-world is an
approximation of a possible state of affairs. By increasing u, the granularity
increases; the precision of our approximations increases. In particular, for every
p-world w and « < i, the a-world X, (w) is a less precise approximation of the
same state of affairs as w itself. A A-world w is to be a sequence of increasing
precision; therefore, for each ordinal ;1 < A, (w),, must have following property:

Proposition 6.1.10. For each p-world w, for each pair 0 < a < g < pu,
Xao(Xp(w)) = Xo(w).

Proof. We prove this by transfinite induction on p:

o If = B (which must be the case if y = 0) then Xg(w) = w, so

Xa(Xp(w)) = Xao(w)

o If u is a successor ordinal and 0 < a < § < p, then X, (w)
and by induction, for each a < g < p— 1:

Xo(R(w)),

Xa(Xp(R(w))) = Xa(R(w)) = Xa(w)
By definition of X5 we know that Xg(R(w)) = Xg(w), or
Xa(Xp(w)) = Xao(w) = Xo(w)

Which proves that
Xa(Xp(w)) = Xao(w)

o If p is a limit ordinal and 0 < o < 8 < p, then X,(w) = (w), and
Xg(w) = (w)g. We prove that X, ((w)g) = (w)q by induction on 3:

— If B =0, then a = 0 and X, ((w)g) = (w)a = w%

— If B is a successor ordinal, then

O

Proposition 6.1.11. If w is a consistent p-world, then so is X, (w) for each
a < p.
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Proof. Take X, (w), for @ < p. We prove that X, (w) is consistent by induction
on L
e If 4 =0, the proposition is trivial.
o If p is a successor ordinal,
Xo(w) = Xo(R(w))

and since R(w) is (u — 1)-world, we know that X, (R(w)) is consistent by
the induction hypothesis.

o If p is a limit ordinal,
Xa(w) = (w)a

s0 X, (w) is consistent by induction hypothesis.

O
Proposition 6.1.12. For each o < p, each a-world w has at least one refining

p-world w' >, w.

Proof. Take an a-world w and p > . We prove that there is a p-world w’ such
that X, (w’) = w (then, by construction w’ >, w) by induction on w:
e If 4 =0, the proposition is trivial.

o If uu is a successor ordinal, then take w* a (u—1)-world such that X, (w*) =
w (the fact that this exists follows from the induction hypothesis) and
define w' = (w7, (A"") ac 4), where for each A € A: A¥ = {v]|X,_1(v) €
A"}, Then R(w') = w*, so Xq(w') = Xo(w*) = w.

o If p is a limit ordinal, define w’ =< v, > with

— v = Xo(w) if pff <«
—vp =wif ' =«
— Ifa <y < p: vy =w"”, where w” is a world such that X, (w"”) = w.

It is clear that w’ is consistent and the fact that X, (w’) now follows from
the induction hypothesis.

O

From now on, we consider only consistent p-worlds. That is, when in the sequel,
we refer to pu-worlds, we mean consistent p-worlds.
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Proposition 6.1.13. For each w an a-world, w' a p-world with w’ >, w and
for each agent A: For every v € AY there is a v' € A" such that v/ >p .

Proof. Take an c-world w and a p-world w’ with w’ >, w. Also take an agent

A, and v € A%, we prove that thereisa v’ € A" such that v’ >p v by induction
on p and «:

o If 4 =2, then v is a O-world. Since w’ >, w, we know that R(w’) = w
and since R[AY'] = ARW) = A% there is a v/ € A¥ such that v’ >, v.

o Assume p is a successor ordinal. Since w’ >, w, we know that R(w’) >, w
and we use the induction hypothesis there is a v* € AR guch that
v* >, v. But, since R[AY'] = AR there is a v € A such that
v >, v >, 0.

o Assume p is a limit ordinal. Then construct v’ as follows: For each o/ < «
there is an o world v}, such that v
— (Vo = vy for all o/ < a.
— For each o > a:

x If o’ is a successor ordinal take (v'), any world such that
R((v")ar) = (V)ar—1
x If o/ is a limit ordinal take (v')y =< V., >qr<ar.

It is easy that v’ is consistent and v’ € A*" follows from construction. O

Definition 6.1.14. Given a ¢ € CL,, and a u-world w, we define the three-
valued valuation function ¢" by induction on u:
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If 4 = 0 or a successor ordinal, we define ¢ by induction on the structure of ¢:

PR = (fePv")

(pAY) = glbe, (0", 9")

()" = (")~

(V)= glb< {plz/d]" |d e D}

(Kap)” = { ;llbgt{gaw/\w’ € AV} :)ftflue:v?seo_world

(Egp)" = { u - if wis fi 0-world
glb< {p™ |w' € A¥ and A € G} otherwise

(Cap)® = glb< {(E&w)"|k € No}

where we use Ef o as a shorthand for k nestings of Eg:

Ea(Eg(Ea(..-(£))))

If i is a limit ordinal, we define ©™:

0" = lubs, {0 | < pu}

We say a p-world w satisfies a formula ¢ (notation: w | ¢) if p* = t.
A p-world w satisfies, or is a model of, a theory if it satisfies all formulas in
that theory.

Proposition 6.1.15. For each ordinal p and p-world w:

wl Eop < [\ Kap
A€G

Proof. We prove this by induction on p.

e If u=0, (Egp)” =u= (A cq Ka)® for any w € Wy.

e If p=a+1, take w € Wy, The fact that (Egp)” = (Aseq Ka)®
follows directly from the definition from the truth valuation for a successor
ordinal.
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o If 4= X is a limit ordinal, take w € W,. Since (¢)¥ = lubgp{w(w)ﬂoz <
A} for any formula ¢ and (Ege)™)e = (A 4eq Ka)™)e for any o < A by
induction, it follows that (Eg)® = (A 1cq Ka)®.

O

Example 6.1.16. Continuing Example 6.1.2, we look at the second sentence
discussed there: “Nixon is not sure that Dean knows that he is president”. In
CL,,, with the vocabulary as defined in Example 6.1.2 this sentence can be
written as:

- Ky KpPresident(Nixzon)

We look at two 2-worlds, in figure 6.2 and 6.3. For readability, we will only
show the relevant part for the structures in the 2-worlds.

Presider%‘t‘:{Nixon}

P

President={Nixon} President={} President={Nixon}

?

Presiderllltl:{Nixon} Presiaént:(}

President={Nixon}

Presideﬁ{:{Nixon}

Presideﬁ‘t‘:{Dean)

Presiéém:(}

President={Dean} President={}

Figure 6.2: World 1 for Example 6.1.16

The root of the tree in the figures is a structure w° representing the objective
state of the world. Agents are represented by a circular node (D for Dean, N
for Nizon), and have edges to all 1-worlds that are possible according to them.
These 1-worlds contain on their turn an objective world and a epistemic state
(a set of 0-worlds) for each agent.

In world 1, the sentence —K K p President(Nizon) is true, while it is not in
world 2. Next to this, E(President(Nizon))*? = t and E?(President(Nizon))®? =



116 A POSSIBLE-WORLD SEMANTICS FOR A MULTI-AGENT MODAL LOGIC

President={Nixon}

President=(Nixon} President=(Nixon}

Presider;t.=(Nixon)

President={Nixon}

President={Nixon}

President={Nixon}

Figure 6.3: World 2 for Example 6.1.16

t in world 2, but note that C'(President(Nizon)) is not true in world 2, this is
unknown because this world is not deep enough to capture common knowledge.

6.1.3 Resolution of a logic

We study the behaviour of these new logics and the worlds, by looking at the
connections between the depth of the world, reductions, the set of formulas that
the world can resolve (the set of formulas ¢ for w, where ™ # u) and the set
of satisfiable formulas in that logic.

Definition 6.1.17 (Resolves). A p-world w resolves a formula ¢, if ¢* # u,
it resolves a language L if it resolves every sentence ¢ € L.

Proposition 6.1.18. For any p-world w and any formula ¢ in CLyy,:

(pR(w) Sp @w

Proof. We prove that for any arbitrary u'+1-world w and any formula ¢ € CL,,:
P >, ©f(w)  We distinguish three cases:

1. If B(w) = u, it is trivial that % >p @B since every truth value is
more (or as) precise as u.
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2. It @R(w) =t, we prove that ¢ =t.

3. If (W) = f we prove that ¢ = f. The proof for this is completely
symmetrical to case 2.

We will only prove case 2, so assume an arbitrary ¢ € CL,, such that pf(®) =t,
We prove that ¢ =t by induction on the structure of .

obj bj

o If ¢ = P(f) then (W) = pRW)™7 — Huw — pw,

R(w)

i

o If o = @1 A g, then " = glb<, (¢}, ¢¥) and by induction ¢}’ >, ¢

It follows that ¢ = glb<, (¢, o¥) >, glb<, (P15 ™)) = GR®)

o If p=1 Vo, o=, p =Va), ..., the proof is the similar as above.

o If ¢ = K41 then we prove that 1/1'“’/ =t for every w’ € A¥. As such, we
fix an arbitrary w’ € A" and prove that w’ F ¢. Since R(w’) € R[A"] and
R[A"] = AR it follows that /F(*") = t. And by induction hypothesis
(¢R(w') < 1/1“’,) we can derive that " = t.

o If p = Egt), ¢* =t follows directly from the fact that Egv is syntactic
sugar for A 4. Kav and the proof above.

o If ¢ = Cep, we prove that for each k € Ny:
(B&9)" =t
We prove this by induction on k£ € Ny:
— For k = 1, it follows from the the previous case that t = (Eg)f(®) =

(pR(w) Sp: (pw — (EGw)w =t.

— For k =n+ 1, we find that ¢ = (EAT¢) = (Eg(E&4)) and use the
induction hypothesis together with the previous case to find that
t = (Bg(Eg))"™ <, (Ba(Bg¥))" = ¢*.

This proves that ¢ =1t for all ¢ € CL,,. O

A logic is defined as the combination of a language (syntax) with a semantics
(a truth valuation). We define for every ordinal p the logic u-CL,, as the logic
with language CL,, and the valuation as defined above, using u-worlds. Before
we do this, we define a few intermediate concepts such as the set of satisfiable
formulas within that logic:

Sat(p-CLy) ={p € CL,|Fw e W, 1 w = ¢}
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We now define the concept of a resolution of a logic: the set of pairs of
distinguishable formulas within that logic.

Definition 6.1.19. A pair of formulas ¢; and s is in the resolution of a logic
u-CLy, (notation: (p1,¢2) € Res(u-CLyy,)) if there is a py-world w such that

w = 1 and w £ @a.

The name resolution of a logic is based on the resolution of a microscope. A
microscope A has a higher resolution than a microscope B if there is a pair of
points between which A can distinguish, while B cannot. For a logic, we say
that a logic A has a (not necessarily strict) higher resolution than a logic B if
A can distinguish between all formulas between which B can distinguish. This
is closely related with the set of satisfiable formulas of a logic.

Proposition 6.1.20. For any two logics u-CL,, and p'-CL,, and for any two
formulas 1,9 € CL,, it is true that

Res(y'-CLy) € Res(u-CLy,) iff Sat(p'-CLyy) C Sat(u-CLyy,)

Proof. Take two logics u-CL,, and p'-CL,,.

Assume Sat(p'-CL,,) C Sat(u-CLy,). Now take (o1, p2) € Res(u'-CLy,). Then,
by definition ¢1 A —pe € Sat(u'-CL,,), and thus ¢1 A —@g € Sat(u-CL,,), or
(p1,92) € Res(u-CLy,).

Assume Res(u'-CL,,) C Res(u-CLy,). Now take @1 € Sat(u'-CLy,), then
(¢1,pA—p) € Res(p'-CL,,) for any propositional variable p. This, (¢1,pA—p) €
Res(u-CLy,), or p1 € Sat(u-CLy,). O

Proposition 6.1.21. For any p-world w and p/-world w', where w' >, w and
any formula ¢ € CL,,:

’

QOw Zp SO’LU

Proof. Take an arbitrary p-world w, p/-world w’, w’ >, w and CL,, formula ¢.
We know that p’ > p since w’ >, w. We prove that (p“’/ >p @" by transfinite
induction on '

o If /' =p, w' >, wonly if w = w.

o If 4/ is a successor ordinal > u, we know that @R(w/) >p ¢" by induction.
Using Proposition 6.1.18, it follows that <pw/ >p @R(w/) >p p”.
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o If 4/ is a limit ordinal > p, the monotonicity follows directly from the
definition of the truth valuation for p/ a limit ordinal:

= lub<, {p™)|a < '}

and the fact that we know that cp(w/)a >, ¥ for each o < p/ by induction.

This proves that ¢ >, ¢® for all w,w’ where w’ >, w and all p € CL,,. O
We now define the modal depth of formula, that states how deep a formula
refers to other agent’s knowledge

Definition 6.1.22. The modal depth M D(p) of a formula ¢ € CL,, is defined
by induction on the structure of ¢:

P(#)=0

—p) = MD(¢)

@A) = max(MD(p), MD(1)))

Kap) =MD(p) +1
MD(p)+1

) =
Cgp) = v with v being the smallest limit ordinal > M D(yp).

(
(
(
e MD(Vx: )= MD(p)
MD(
MD(Egy
MD(

Proposition 6.1.23. Given a CL,, formula p1 with subformula s, then
MD(p2) < MD(p1).
Proof. This is easy to prove by induction on the structure of ;. O

Proposition 6.1.24. For every formula ¢ in CL,,: MD(p) < w?.

Proof. This follows directly from the fact that an operator can only highten the
modal depth of a formula by w and a formula is of finite length. O

Theorem 6.1.25. A p-world w (i an arbitrary ordinal) can resolve every
formula ¢ € CL,,, with MD(p) < p.
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Proof. We prove that a p-world resolves all CL,,, formulas with modal depth
< p. We prove this by induction on p.

First, assume that u is zero, or is a successor ordinal. Take a pu-world w, and a
formula ¢ € CL,,, with M D(p) < u. We prove that ¢ # u by induction on
the structure of ¢. So, assume that ¢ # u for all ¢’ that are subformulas of

®.
o If ¢ = P(t) then ¢* = o™ £ .

o If ¢ = @1 A g, note that ¢ = glb<,(¢¥, ¢y ) and since by induction
neither ¢}’ = u nor ¢4 = u, it follows that ¢" # u.

o If p =1 Vs, o=, ¢ =Vaib, ..., the proof is similar.

o If ¢ = K1, we know that w cannot be a 0-world, since w is a p-
world, with u > MD(¢) = MD()) + 1 > 0. Since by induction it
follows that for each w' € A ((n — 1)-worlds): ¥ # u, we know that
(Kay)" = glb< {¢" | € A} # u.

o If p = Egt), v # u follows directly from the fact that Egt is syntactic
sugar for a conjunction A 4.~ Kav and the proof above.

o If ¢ = Cgt¥, we prove that (Cgy)¥ # wu. Since (Cqyp)¥ =
glb< {(EEY)¥|k € N} it is sufficient to prove that (EX¢)Y # u
for all k& € Ny. This follows from the induction hypothesis since
Cyp®) £ u implies that (E’éw)R(w) # u for all k£ € Ny, which implies
that (EEY)™ # u (by induction hypothesis) for all k.

Now, assume g is a limit ordinal. Take a py-world w, and a formula ¢ € CL,,,
with M D(p) < p. We know that M D(p) < p and g is a limit ordinal. Define
a = MD(yp) + 1, then a < p. Using the induction hypothesis, we find that
@(®e £ u, and from the monotonicity of the valuation (Proposition 6.1.21) it
follows that

p* = lubgt{go(w)“ o < p} #u

This proves that ¢ # u for all ¢ € CL,,. And by Proposition 6.1.21, it follows
that " >, . O

Consequence 6.1.1. Given a p-world w and a formula ¢ with M D(p) < u,
then for every ' -world w' >, w, we have " = @™ .

Proof. This follows directly from Proposition 6.1.21 and Theorem 6.1.25. [
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Consequence 6.1.2. Any w?-world resolves CL,,.
Proof. Follows directly from Proposition 6.1.24 and Theorem 6.1.25. O

This allows us to prove that the set of satisfiable formulas in p-CL,,, grows when
1 becomes higher.

Theorem 6.1.26. u-CL,, has a (not necessarily strict) larger set of satisfiable
formulas than p'-CLy, if > 1.

Proof. Take p and p arbitrary ordinals, such that > ¢/ and ¢ € Sat(p'-CL,,).
We prove that ¢ € Sat(u-CL,,).

If ¢ € Sat(y'-CL,y,), then there is a w’ € W, such that v’ = . Take w € W,
such that w >, w’, which exists (Proposition 6.1.12). Using Theorem 6.1.25,

we find that ¢ >, "', and by consequence that o € Sat(u-CLyy,). O

Consequence 6.1.3. There is no u-CL,, logic such that Sat(w?-L,,) € Sat(u-
CL.,).

Proof. Take a logic u-CL,, such that
Sat(w?-CLy,) C Sat(pu-CL,y,)

We prove
Sat(w?-CL,,) = Sat(u-CLy,)

So take ¢ € Sat(u-CL,,) and w such that w = ¢. By Proposition 6.1.24,
MD(p) < w?. This means that ¢* # u, for any w’ € W, (Theorem 6.1.25).
So assume towards contradiction that <pw/ = f, for any w’ € W,,2. But since
for w” = X, (w), it is the case that ¥ = @¥ (Theorem 6.1.25), it follows
that ¢* = f, which is a contradiction. So it must be the case that there is a
w?-world such that w” = . O

The bound proposed in Theorem 6.1.25 (w?) is strict as we will show in the
following proposition.

Proposition 6.1.27. For every k > 0, there is a formula ¢ such that there is
a world w in Wiy ¢¥ =u

Proof. Assume that ¥ = {p} and A = {A}. Since (Kap) = u for any w € W,
by definition, we fix an arbitrary k& € Ng. Now define a formula ¢ = C*p, we
prove that there is a w € W, such that (C¥p)*¥ = u and (C*~1p)¥ = t, by
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induction on & (and refer to this induction hypothesis as induction hypothesis
1).

Define a world wy € Wk, for each k as follows:

o (wir)o = {p}

)
o (Wi)at1 = {p, (AWKa+1) 1 4}, where for each A € A : AWat1 =
{(wr)a}

o (wk)r = (vg)g<a Where each vg = (wy)gs.
Then:

o If k=1 and wy, is a w-world, then (C%p)®* = p** =t and
(Cp)™* = lubs, {(Cp) M| < w}
— tube, {glbe, (") n € N} < )
= lub<, {ula < w}
=u

where the second step follows from the fact that (E"p)(“*)e =t for all
0 <n<aand (E"p) e =ufor all n > a.

o If k=K +1 (K >0)and wy is a (kw)-world, then
(CFpywr = lubgp{(C’kp)(wk)“|oz < kw}

= lub<, {glb<, {(E"C* p)®a|n € No}|or < kw}

We need to prove that (C*p)(“*)e = u for all o < kw. If we can prove
it for any o' such that K’w < o < (k' 4+ 1)w, which are all successor
ordinals, it follows that (C*p)(r)e = u for all a < kw by Proposition
6.1.21. So take o/ = k'w + | with [ € Ny and define wEk,’l) = (Wk) k' wti-

We prove that (Ckp)wék/»” = u by proving that (E”(Ck/p))wzk/v” =t for
all 0 < n < 1 and (E"(C¥p))”®» = u for all n > . We prove this

by induction on n (and refer to this induction hypothesis as induction
hypothesis 2).
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— If n =1, then
E((Ck/p))wzk/,w - glbgt{((]klp)”\v S szk’,m}

= (Ck/p)wék’,lfl)

=t

by induction hypothesis 1, since v = wék, 1) by construction of w
and wzk,)l_l) >, wzk’,O) = Wy
— If n>1and n <I, then

E™((C¥'p))"“ &0 = glb< {E"~1((C¥'p))"|v € A"t}
— Enfl ((Ck,p))wzk/-,l—l)

=t

by induction hypothesis 2, since n —1 <[ — 1.
—Ifn=2and! <n (sol=1), then

E2((C¥ p))"0 = glbe, {E((C¥'p))* v € A" )
— E((Ck/p))wzk/,o)

= glb< {((C¥ p) ™ 0)*|a < K}

=u
by induction hypothesis 1.
— If n>1and ! < n, then

E"((CY'p))" 5 = glbe {E"((C*'p))"[v € A0}
= B (CFp)) e
=u
by induction hypothesis 2, sincen —1 <1 —1.
The proof that (Ck/p)(“’k) = t, is similar.

This proves that ¢** = u. O

In the next section we will introduce the only-knowing modality and we show
how important it is that the depth of worlds is well-chosen.
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6.2 A multi-agent modal logic combining Only-
Knowing and common knowledge

Only knowing was first introduced as a modality in a logic by Levesque in
[Levesque, 1990] as a way to capture the notion that the beliefs of an agent
are precisely those that follow from his knowledge base. He introduced an O
operator in a modal logic, in addition to the knowing operator K. Intuitively
the O operator also fixes what an agent does not know. For example, if an
agent’s knowledge base is K(p V q), this does not exclude that the agent knows
p, while if an agent’s knowledge base is O(p V ¢q), this is excluded, since p V ¢ is
all that is known.

In this section, we will extend CL,, with an operator for only knowing O 4 for
each agent A. We will discuss possible semantics, discuss the relevant issues
and study how to solve them.

Definition 6.2.1. Given a vocabulary 3 and an indexed set of agents A, we
define the language COL,, by structural induction with the rules of Definition
6.1.1, augmented with:

Oa(y) € COL,, ifp € COL,, and Ae A

Before we define the valuation function, using A-worlds, we show two other
approaches. One using Kripke structures, based on our A-worlds and a recent
approach by Belle and Lakemeyer. We use these to show the importance of the
depth of the worlds and the resolution of the logic.

6.2.1 Intermezzo: The Valuation function

Kripke structures for COL,,

The valuation proposed in Definition 6.1.14 for CL,, is unconventional in the
sense that it is three-valued, which is not standard for modal logics. Using
this valuation, we proved two results at the end of last subsection. We proved
that every w?-world w resolves every CL,, formula ¢ (i.e., ¥ # u) and that
there is no ordinal p > w? such that there is a formula ¢ that is satisfiable in a
p-world that is not satisfiable in a w?-world. In fact, it is the case that for every
ordinal p where every u-world resolves CL,, it immediately follows that the
set of satisfiable formulas for u-CL,, is maximal, i.e., there is no u’ such that
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w'-CL,, has a strict superset of satisfiable formulas. Before we define a valuation
for only-knowing in this framework, we will show that while this correspondence
holds for the valuation defined in Definition 6.1.14 this correspondence is not
trivial.

To this extent, we propose an alternative valuation using A-worlds that is
two-valued. We do this by defining an epistemic state of an agent A in a
A-world.

Definition 6.2.2. An epistemic state A of an agent A in a A-world w is the
set of all A-worlds w’ satisfying following conditions:

o For all ordinals pu < A : (w'), € AW+
o w' is still a consistent world:

=+ 1< R((w')p41) = (W)
— For each limit ordinal \ < \:

for each pu < X

This allows us to define a logic A-COL2, with a 2-valued valuation, defined by:
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Definition 6.2.3. The truth valuation (-)?*** of a COL,, sentence in logic
A-COL2?,, given a A\-world w is defined by induction on the structure of ¢:

obj

P(T)*" = (tepr)

(p A )™ = glb<, (P27, %)

(mp)?v = (O

(V)" = glb< {p[x/d**™ | x € D}
(Kap)?™ = glb< {* |w' € A™}

(Egp)®™ = glb<, {£*"" |[w' € A" and A € G}

:(/\ KA(,O)QU:U}

AeG
(Cowp)™™ = glb< {(Eg)*"™*'|k € No}
20 _ tif AV = {w' € S|p*" =t}
(Oap)™ = { fif AV # {w' € S|p> =t}

and we use F and C as a shorthand for respectively £ 4 and C'y. We write
w ':211 ) if S02vzw =t

This allows us to define a Kripke structure for every limit ordinal A: the
A-canonical Kripke structure. The connection between worlds and Kripke
structures was also investigated in [Fagin et al., 1995]. Based on their exposition,
we will formalise this connection for every A.

Definition 6.2.4. Given a logic A — COL,,, with A a limit ordinal, we define
the A-canonical Kripke structure as: Uy = {5, (Ka)aeca} as follows:

o S =W,

e Ka: A pair (w,w') isin K4 if w' € A™.

The proposed truth valuation is based on the the standard 2-valued satisfaction
relation in Kripke structures [Hughes and Cresswell, 1996].
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Definition 6.2.5. The truth valuation of a COL,, sentence ¢: U,w F' ¢ in a
Kripke structure U and a state w is defined by induction on the structure of ¢:

PV = (feprv™)
(e Ag)T™ = glb<, (7, ")
(mp) v = (")~
(Vo : o) = glb< {ple/d)”" |z € D}
(Kap)"™ = glb< {e" [0’ € Ka}
(Bap)" = glb< {oU" |’ € K4 and A € G}
= ( /\ Kap)
AeG
(Cap)?™ = glb< {(E&e)"" |k € No}

(Oap)V = tif Ka = {w' € Sjp" =t}

A% £ if Ka # {w € S|V =t}
and we use E and C as a shorthand for respectively £ 4 and C4. We say that
a Kripke structure U and a state w satisfies a sentence ¢ (denoted U,w = ¢)
if U =t

Valuation (-)2* and (-)V'* are equivalent as next proposition shows.

Proposition 6.2.6. Given a COL,, formula ¢ and U the A-canonical Kripke
structure, we have that
Uw __ , 2vw

14 =

for every A-world w.

Proof. This follows directly from the definitions of the valuation functions
()2 and (-)Yv. O

Given valuation =’ | the next proposition states that for every A, every world
in the A-canonical Kripke structure resolves COL,,, i.e.,the truth value of every
COL,, sentence is 2-valued. However, this does not mean that the set of COL,,
sentences true in an element of this Kripke-structure is maximal, as we will see
in Proposition 6.2.9.



128 A POSSIBLE-WORLD SEMANTICS FOR A MULTI-AGENT MODAL LOGIC

Proposition 6.2.7. The truth value of every COL,, sentence is 2-valued in
U,w, with U the w-canonical Kripke structure and w € W,,.

Proof. Trivial. O

Before we show a counterexample that proves that the set of CL,,,-formulas that
can be satisfied using the w-canonical Kripke structure is not maximal (there is
a A such that the A-canonical Kripke structure satisfies strictly more formulas
than the w-canonical Kripke structure), we show a few intermediate results that
we will need for the proof.

Theorem 6.2.8. For any A, the 3-valued valuation (1)* of A\-CL,, is an
approzimation (in the precision order) of the valuation (-)U'* in the A-canonical
Kripke structure U. In other words, for any A-world w and CL,, formula ¢ it
is true that

o If o =1 then Ujw = ¢
o If ¥ =t then Uw = ¢

where U is the A-canonical Kripke structure.

Proof. Take w € W), U the A-canonical Kripke structure and ¢ € COL,,. We
will only prove that ¢* =t implies that U, w =’ ¢, the other case then follows
since o = £ iff (—p)¥ =t and since U, w £ ¢ iff U,w ' —o.

Assume o = t. Tt follows that for some @ < X : (")« = t. We prove U, w =’ ¢
by induction on the structure of ¢:

o If o = P(t), then
t = P(7)" = lub< {P(t)")|a < \}
= lub<, {P(t))" |a < A}
= P(t)((w)o)

So € P*"" hence U,w =" P(7).

o If o =1 Awa, ¢ =) or Vz : 9 the proof is trivial.
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o If ¢ = K49, there is an a such that (Kv)(®)e = t, and by the
monotonicity of the truth valuation: (K 4v)(®)e+1 = t. Hence, for all
w € AWasi: g’ — ¢ (by Proposition 6.2.6). It now follows that for all
w" € AW " >, e = t. Since (") € A™e+1] this means that
that U, w"” E" ¢ for all w” € K4 and conclude that U,w " K g1.

o If p = Egt), ¢* =t follows directly from the fact that Egv is syntactic
sugar for A 4. 4 Ka® and the proof above.

o If ¢ = Cgt¥, we prove that (Cgy)¥ # wu. Since (Cqy)¥ =
glb< {(EEY)¥|k € No} it is sufficient to prove that (E&y)” # u for
all k € Ny. This follows from the induction hypothesis since Cp%(®) =t
implies that (E)™(®) £ u for all k € Ny, which implies that (E&)" =t
(by induction hypothesis) for all k.

O
Proposition 6.2.9. The formula ¢ = O 4—C'p is not satisfiable in a w-canonical

Kripke structure.

To prove this proposition, we introduce a graphical tree-representation of k-
worlds (k € N).

Definition 6.2.10. We define a graph Tree(w) for every k-world:

« For a 0-world: Tree(w) is a node with label w®%

o For a k-world: Tree(w) is a graph with the node with label w®% as
root and an edge to a node with label A for every agent A € A and an
edge from every newly created node with label A to Tree(w’), for every
w € A™.

We say a node representing A (A € A) is an agent node and a node representing
a structure is a non-agent node.

It is clear that this mapping is an isomorphism.

Proof. Assume for simplicity in notation a situation where we have one agent
A = {A} and a vocabulary ¥ = {p}. The proof does not depend on this
simplification.

We will prove that given the above valuation, the formula
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will be true in U, w with U the w-canonical Kripke Structure, and w any w-world.
So, towards contradiction, take a w-world w such that U, w = O 4—Cp. Then,
by Proposition 6.2.6:
AY = {u'|U,w" E' =Cp}
By Definition 6.2.5, we know that for every w’ € W,:
U,w' = —Cp iff for some k € N: U,w’ = ~Kkp

By Proposition 6.2.6
(RGP =

Consider the class of worlds {wg|k € N}, where wy is a k-world such that
Tree(wy) is a tree with a p in the root and in every node on the first k levels
(see Figure 6.4). Each wy, satisfies A,, K4p. And consider the class of worlds
{w}, 1|k € N}, where wy,_, is a (k4 1)-world such that Tree(wy) is a tree with
a p in the root and in every node on the first k levels and —p on level (k + 1)
(see Figure 6.5). Each wj,, satisfies A\, K4p but falsifies Kkt

~
©
-

—

-~
©
-

=

=

— > €— " — >

— > "nm— >

— P}

— {p} A

Figure 6.4: World wy l
{

Figure 6.5: World wj,,

Now consider for each k € N the set [A"], = {(w')x|w’ € A¥}. Since wj
satisfies ~Cp, it follows that wj , € [A"]x41. Hence, wy = R(w),,) €
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R[[A¥]k+1] = [A%]k+1. But then the sequence (wy)ren of refining precision
belongs to A*. However, clearly (wy)ren satisfies Cp.

Contradiction.

O

This is inherent to the approach with Kripke structures, with the accompanying
two-valued valuation function. Since we have to fix the set of worlds beforehand
we can only valuate formulas relative to the chosen set of worlds. This is in
contrast to the valuation that we will propose. The three-valued valuation
acknowledges when it "does not know" something.

A semantical structure in Belle and Lakemeyer, 2015

The key idea from the work in [Belle and Lakemeyer, 2015] was to propose
infinite sequences of structures, where each member of a sequence represents the
beliefs for a particular agent is compatible with the beliefs of its predecessor and
extends it to account for one additional level of nested beliefs, as an extension
to worlds with limited depth (as our k-worlds) they proposed in [Belle and
Lakemeyer, 2010]. This is an approach similar to our w-worlds, with some
technical differences. This approach does however suffer from similar issues as
shown in the last paragraph, as we will show in the example at the end of this
paragraph. First, we will introduce their structures and semantics for COL,,.
In between the definitions we will discuss the connection with our k-worlds,
w-worlds, epistemic states A", ...

In this section, we will denote W as the set of all possible objective worlds,
where a world is a set of ground atoms, as the authors defined it in [Belle and
Lakemeyer, 2015]. The set of agents will be denoted by I = {1,...,n} and is
fixed. We will also assume a domain D to be fixed throughout this section. We
first describe k-structures, an account for the beliefs of an agent.

Definition 6.2.11. Let £ > 0 and n > 0 the number of agents. Then define
£k as follows:

. 61 — 2W
o k= 2W><(Ek_1)n
An element of £F is referred to as a k-structure.

A 1-structure is of the form {w’,w”,...} and expresses what an agent believes
about the world but has no account on the views of that agent about the beliefs
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of others. A 2-structure is of the form {(w’, e}, e5,...), (w",ef,e5,...),...} and
expresses for example that the agent beliefs w’ to be a possible state of the
worlds, wherein he deems €] to be a possible belief for agent 1.

To relate with our constructs:

o A 1-structure {w,w’,w",...} is a set of objective structures, or 0-worlds.
Or put differently: a 1-structure e is the same as A" for A an agent and
w a 1-world.

o A 2-structure {(w,eq,es,...), (w' e}, e, ...),...} is a set of objective
structures, with for each objective structure, for each agent a 1-structure
(= a set of O-worlds). This is the same as a set of 1-worlds, or the
epistemic state A for an agent in a 2-worlds.

o In general, a k-structure is a set of (k — 1)-worlds, or a epistemic state
A"Y of some agent A in a k-world.

An epistemic state is used to determine the beliefs of all agents at all levels.

Definition 6.2.12. An epistemic state f is a function of the form I x N —
UL, &% such that for any i and [ > 1: f(i,1) € &~.

Such an epistemic state is reasonable only when an agent’s beliefs are consistent
across all levels. That is, each level extends the previous level by adding another
layer of (nested) beliefs about other agents’ beliefs, while keeping the set of
worlds an agent considers the same. They formalized this reasonability by
defining i-compatibility between k-structures, and proper epistemic states. It is
in these notions that the authors embedded assumptions about introspection
and knowledge, which we chose not to do.

Definition 6.2.13. An epistemic state e € £¥ and e’ € £€¥*1 are i-compatible

if:
e for k=1:
e = {w|(w,e1,...,€i,...,e,) €€} and e; = ¢;
o fork>1:
— {w|(w,e1,...,€5...,e,) €'} ={w|(w,€},...,e5 ... e,) €€} and
el =e
— for every (w,ef,...,el,...,el) €€ thereisa (w,e1,...,€;,...,€,) €

e such that e} and e; are j-compatible for all j # i.
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Definition 6.2.14. An epistemic state f is proper if for all 4, for all k£ > 0O:
f(i, k) and f(i,k + 1) are i-compatible.

To relate with our constructs:

o An epistemic state is a function that assigns a k-structure to an agent i
and a level k. So we can view it as a sequence s such that each element
(8)k in the sequence contains a k-structure for each agent (= A", for w a
k-structure). This is very similar to our w-worlds: a sequence s such that
each element (s)y in the sequence constains a k-world. An epistemic state
(as defined by Belle and Lakemeyer) is in fact the same thing, but is has
no account for the objective world in all these elements.

Before we can define their semantics, we need one more concept. A progression
of an epistemic state for an agent 7 in world w gives the view of agent ¢ from
world w.

Definition 6.2.15. Given an epistemic state f, its progression wrt an agent ¢
and a world w is defined as:

[ ={proper flfor all k> 0:if f'(1,k) =e1,..., [ (n, k) = ey,

then (w,e1,...,e,) € f(i,k+1)}
To relate with our constructs:

e A progression maps an epistemic state f, an agent i and a world w to a
set of epistemic states, such that f’ is in that set if f' represents the view
of agent i in world w in epistemic state f. This is very similar to our
definition of epistemic state for w-worlds in Definition 6.2.2.

Using this they define a semantics, by defining when a pair (f,w) is a model of
a formula.

Definition 6.2.16. The semantics are defined inductively:

e fLwEDpiff pew.

o fLwE-piff fwkF o

e fLwEYApiff ffwEyYand f,wE ¢.

o fLwEVx:iff f,wE Y[x/d] for each d € D.
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frwE K iff for all w’ € f(i,1), for all f € f*': f/,w' E .

o frwkE Eypiff ffwE Ko foralli e 1.

fowE Coiff f,wkE EFy for all k > 1.
o fowE Opiff for all w’ and f/,w' € f(i,1) and f € f*" IFF f w' E 1.

Given these definition we will show a translation of the example in Proposition
6.2.9, that exhibits the same issue for the semantics in [Belle and Lakemeyer,
2015]2.

Example 6.2.17. Given the semantics defined above, the following formula
can never be true:

Oi_‘Cp

for any agent i. Without loss of generalization, we will assume that agent to be
1.

To prove this, assume towards contradiction that there is a f such that

fEO01=Cp

Note that we omit the w in the semantics since the valuation of O;—-Cp is
independent of the objective world w. Now take f’ such that f’ = Kip A =Chp.
It is clear that this should exist. Since f = O;—-Cp, it follows that for each
9,0 : g,v = -Cpiff v e f(1,1) and g € f{. And since f' = Kip A =Cp it
follows that f'w’ = —~Cp for all w € W, and as such w’ € f(1,1) and f' € f*".
Note that this is true for every w € W, which means: W = f(1,1).

We assume f’ and f to be proper epistemic states, so from the fact that
f' e f*', we can derive that: f/(1,1) = f(1,1), or equivalently f(1,1) = W.
Since (1,1) C w|w |=p since ' | Kip, this leads to the conclusion that
Yw € W : w |= p, which is a contradiction.

6.2.2 \-worlds for COL,,

In this section we propose a semantics for COL,, with deeper worlds, that do
allow for valuation of formulas such as O 4—Chp.

Definition 6.2.18. Given a ¢ € COL,, and a p-world w, we define a three-
valued valuation function ¢ by structural induction with the rules of Definition

2] would like to thank Vaishak Belle for his assistance exploring this issue and for coming
up with the proof in this example.
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6.1.14, augmented with:

if w is a O-world

if 3w’ € W, such that ¥ =u
if Av = {w e WH|p¥ =t}
otherwise

(Oap)" =

These three-valued semantics are different from the semantics proposed in the
intermezzo. Intuitively, they differ in the sense that they admit that sometimes,
they do not know something. If a world is not deep enough to evaluate the
formula in the scope of the O operator, the valuation of the O operator will by
itself be unknown.

This valuation seems to satisfy all concerns expressed above. However, when
studying this in more detail, we noticed that proposition 6.1.18 (and by
consequence, all results afterwards) are not valid for COL,,, under this semantics.
Intuitively, the reason is that the O operator behaves completely different than
the other operators. If something is known (K 4¢), then adding more information
on a deeper level, does not make this “un-known”. This is different when talking
about what someone does not know (or by consequence, what someone only
knows). We give an example of what might go wrong:

Example 6.2.19. Consider the 1-world w and the 2-world w’ in Figures 6.6
and 6.7.

Clearly, it holds that w’ >, w. Yet it is easy to see that (O4(pV ¢))" = t, while
(Oa(pV q))* =f. So this means that while w’ >, w, it is not necessarily the
case that <pw, >p ¢v for any COL,, formula ¢.

Losing this property means that we can now have sequences of worlds of
increasing precision, where the truth valuation of some formula is not increasing
in precision. We can have a A-world w = (v1,...,0n,Vnt1,...), Where it is
possible that a formula O4 () is true in vy, but false in v,,11. This means that
we lose many important mathematical properties like Proposition 6.1.21. The
valuation of a formula is not always defined in a A-world, since the least upper
bound of {t,f} in the precision order is not defined in a three-valued setting.

In the next section we propose an alternative construct for the O4 operator
that states how deep an agent “only knows” something. This construct is
monotone for the truth valuation of the formulas. Using this, the goal is to
propose an operator that can only be resolved in worlds from a certain (fixed)
depth, but captures only knowing of all formulas that can be formed in COL,,.
This has been investigated in the context of Kripke-structures with the help
of characteristic formulas [Aucher and Belle, 2015]. We want to generalize
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{r}
{p}
\ 4
A
\ 4
A

\ 4
{p} {p.q} {a}
Y l l l
{p} {p.a} {a} A A A
Figure 6.6: World w, or R(w") l l l
{r} {r} {pr}

Figure 6.7: World w’

our semantics based on possible worlds, because of the shortcomings of a
Kripke-based approach that we discussed in the introduction of this chapter.

6.3 Limited Only-knowing

In this thesis, we analyze the monotonicity issue above by replacing the only-
knowing operator with a set of operators O%, intuitively stating: “I only know

. up until level a” (with until level «, we mean « nested references to an
agents knowledge).

Definition 6.3.1. Given a vocabulary >, an indexed set of agents A and an
ordinal v, we define the language CO7L,,, by structural induction with the rules
of Definition 6.2.1, with the last rule replaced by:

O%(w)  is a formula if o < v is an ordinal, ¢ is a formula and A € A

Definition 6.3.2. Given an ordinal v, a ¢ € CO7L,,, and a p-world w (u =0
or i a successor ordinal), we define a three-valued valuation function ¢¥ by
structural induction with the rules of Definition 6.2.18, with the last rule
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replaced by:

ifu=0o0ru<a

if 3w" € W,_1 such that v =u

if X,[AY] = X [{w € W1 |p¥" =t}]
otherwise

(O%¢)" =

- g

To illustrate, we look again at Example 6.2.19.

Example 6.3.3. In both w and w’, we have O} (p V ¢)* = (O4(pV q))* =t,
while (0% (pVq))™” = u, and (0% (pVq))” = f. For every k > 2: OF (pVq)¥ = u,
and O%(p Vv q)w, = u. As such, for each a, we have in this example that
05(pV a)* <p O%(pV a)"".

Definition 6.3.4. Given an ordinal v, the modal depth M D(y) of a formula
p € COVL,, is defined by induction on the structure of ¢, as in definition 6.1.22,
with the last rule replaced by:

MD(O%¢) = Max(MD(p) + 1,a)

Proposition 6.3.5. Given an ordinal v, any formula ¢ in COVL,,, then
MD(p) < MAX (w?,yw).

Proof. If v < w then every operator heightens the modal depth of a formula
by at most w, while if v > w: every operator heightens the modal depth of a
formula by at most . Since a formula is of finite length, it has to be the case
that M D(p) < MAX (w?, yw). O

The propositions and theorems from Section 6.1.3 are true for COVL,,, for any
ordinal  as the following propositions and theorems will show. The proofs are
very similar, so we will shorten them and only give the relevant parts.

Proposition 6.3.6. For any p-world w, any ordinal v, and any formula in

COL,,:
()Ow Zp SDR(u))

Proof. We prove that for any arbitrary (u + 1)-world w and any formula
Y €COVLyy: % >, ™) For the same reasons as before, we only prove that
¥ =t follows from @) =t. We prove this by induction on the structure of

®.

o o =P@), o1 N2, o1 V2, ¢ = 0, p = Vo), ..., Ka¥, Egy, CY
the proof is the same as for Proposition 6.1.18.
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o If ¢ = O3% then

— We know that p+ 1 > p > o, since %) £ q,

— Assume there is a w’ € W,_; such that W"/ = u. Then wR(“’/) =u
following from contraposition of the induction hypothesis, and by
consequence: W) =y,

— To prove that (O%9)" = t, we prove
Xa[A"] = Xo[{w' € Wy = t}]
From ™) = (0%9)7") = t, we derive:
XallAR] = X,[{w” € W2 = 1)]
Since A%(W) = R[A*] and o < p — 1, we find:
XalA"] = Xal A" = Xo[{uw"” € WH2 19" = t}]
= Xal{uw"Ju” € ROV Ay = 1)

= Xal{R(w")Jw" € W Ay = t}]
Using the induction hypothesis, we find:
Xo[A"] = Xo[{uw"|w” € W A" = t})]

which was to be proven.

This proves that ¢ =t for all ¢ € COVL,,. O

Proposition 6.3.7. For any ordinal v, any p-world w and u'-world w' such
that w' >, w: for any formula ¢ in COVLy,: @ >, ¥

Proof. The proof is the same as the proof for Proposition 6.1.21. O

Theorem 6.3.8. Given an ordinal 7, a p-world w (1 an arbitrary ordinal) can
resolve every formula ¢ € COYVL,,, with MD(p) < u, i.e., o* is 2-valued for
every p-world w.

Proof. We prove that a u-world resolves all COYL,,, formulas with modal depth
< pe

First, assume that p is zero, or is a successor ordinal. Take a p-world w, and a
formula ¢ € COVL,,, with M D(p) < u. We prove that ¢* # u by induction
on the structure of .
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e fo=P(@), p1 N2, p1 V2, o = b, o =Vayh, ..., Kayp, Egip, C¢
the proof is the same as for Proposition 6.1.25.

o If p = O3, to prove that ¢" # u, we need to asses two cases:

— ¥ =uif p < a, but we know that p > MD(p) = max(MD(y) +
1,a) > a.

— % = u if there is a (u — 1)—world w’ such that ¢*" = u, which
cannot be, as we can derive from the induction hypothesis.

Now, assume g is a limit ordinal. Take a p-world w, and a formula ¢ € COVL,,,
with M D(p) < p. We know that M D(¢) < p and g is a limit ordinal. Define
a = MD(p) + 1, then a < p. Using the induction hypothesis, we find that
(e =£ u, and from the monotonicity of the valuation (Proposition 6.3.7) it
follows that

¢ = lub<, {p")|a < p} £ u

This proves that ¢* # u for all ¢ € COYL,,,. And by Proposition 6.3.7, it
follows that ¢ >, ¢". O

We define for every ordinal p the logic u-COYL,, as the logic with language
COYL,, and the valuation as defined above, using u-worlds.

Theorem 6.3.9. For any ordinal v, u-COYL,, has a (not necessarily strict)
larger set of satisfiable formulas than ' -COVLy, if p > p'.

Proof. Similar to the proof of Theorem 6.1.26. O

Consequence 6.3.1. For any ordinal v < w? it is the case that for any

w?-world w the valuation (-)¥ is 2-valued in COYL,y,.

Proof. Take ¢ € COVL,, and w € W,2. Since v < w? there is a k such that
v < kw. Now, by Proposition 6.3.5, we know that M D(¢) < MAX (w?, kw) =
w?. So, using Theorem 6.3.8: ¢ # u. O

Consequence 6.3.2. For any o < w?, there is no a-CO"L,,, logic with a strict
larger set of satisfiable formulas than w?-COVL,,.

Proof. Similar to the proof of Theorem 6.1.3. O
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Consequence 6.3.2 is an interesting result, as it fixes an ordinal u for each ~
such that u-COYL,, has a maximal set of satisfiable formulas. There is however
still some work left open. Naturally, we cannot find an p such that u-COYL,,
has a maximal set of satisfiable formulas, for any . We would however like a
result where we can define an O% operator, with a fixed a (and use O4 as a
shorthand for this operator), since choosing an « to explicitly write how deep
the only knowing is, is not natural. This is a technical aspect, not relevant for
a knowledge engineer.

A good choice for fixing o seems to be o = w?. This choice is motivated by
the fact there is nothing that can be expressed in CL,, that has a modal depth
> w?. Ideally, we would like to fix a to an ordinal  such that v-CO7L,, has a
maximal set of satisfiable formulas.

We have not found this 7. An hypothesis is that this v does not exist, since
fixing v < w? allows for writing formulas ¢ = C*y such that M D(p) > kwy
(and probably ¢¥ = u for a w € WH), while fixing p > w? allows for writing
formulas ¢ = O 40 4% such that M D(p) = 2u > p.

A partial solution we propose is to limit nesting of O operators. If we do not
allow nesting of O operators, we can fix o to w?, since the only formulas that
can occur within a O operator are of depth < w?. This means it makes sense
to fix a to w?, since CL,, formulas are the only kind of statement an agent can
or cannot know.

Definition 6.3.10. Gi\gen a vocabulary ¥ and an indexed set of agents A, we
define the language CO“" L,,, by structural induction with the rules of Definition
6.2.1, with the last rule replaced by:

O4(¥) is a formula if ¢ is a formula in C£L,, and A € A

Definition 6.3.11. Given a ¢ € cov” L, and a p-world w, we define a three-
valued valuation function ¢ by structural induction with the rules of Definition
6.2.18, with the last rule replaced by:

if § < w?
if 3w’ € W,_; such that ¥ =u
if X,2[A%] = X, [{w' € W' | = t}]

otherwise

(Oap)” =

Definition 6.3.12. The modal depth M D(y) of a formula ¢ € CO¥’ L, is
defined by induction on the structure of ¢, as in definition 6.1.22, augmented
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by:

MD(Oa¢) = Max(MD(p) + 1,w?)

Following propositions, theorems and consequences follow directly from the
corresponding propositions, theorems and consequences of COYL,,.

Proposition 6.3.13. Given any formula ¢ in CO“’ZEm, then M D(p) < 2w?.

Consequence 6.3.3. For any 2w?-world w the valuation (1) is two valued in

COL,,.

Consequence 6.3.4. There is no a-C(’)wzﬁm logic with a strict larger set of
satisfiable formulas than 2w?-COYL,,.

In [Aucher and Belle, 2015], the authors also use a similar limited only-knowing
construction. They have also defined a O4 operator without a index, stating
the depth. But different to our goal here, this operator does not capture lack of
knowledge of arbitrary depth. It is equivalent to our OY% operator.

6.4 Other extensions

6.4.1 CO¥L,,with positive introspection, negative introspec-
tion and/or (truthful) knowledge

As stated above, CO“’2£m does not satisfy many modal axioms by default.
However, this modification can easily be formulated, by simply requiring it and
defining the semantics over the appropriate subset. First we define what it
means to be introspective and what it means to be truthful (or informed).

Definition 6.4.1. We define a p + l-world w (@ > 1) to be positive
introspective if for all A € A and for each w’' € A":

A" C R[A"]
We define it to be negative introspective if for all A € A and for each
w' € AY: )

R[A¥] C A"
We define it to be informed if for all A € A:

R(w) € A®
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Definition 6.4.2. We define a A-world w to be positive introspective if for
all A € A and for each w’ € A¥:

Aw' C AW
We define it to be negative introspective if for all A € A and for each
w e Av: /

AW C AY
We define it to be informed if for all A € A:

we A%

We denote the subset of all positive introspective, negative introspective and
informed A-worlds as W', WY, respectively Wi™ and will also use shorthands
as Wf\"m for (for example) positive introspective informed worlds. We now
formally prove that the logics satisfy the relevant axioms.

Theorem 6.4.3. Given a p-world w (u > 2), an agent A and arbitrary formula
p, Y € COVL,,, following statements hold:

1. wE Kap AN Ka(p = ) = Katp (Rational agents)

2. IfweWr: w = Kap = KaKap (Positive Introspection)

3. Ifwe WL” cwlEKap = Ka—Kap (Negative Introspection)

4. Ifwe Wi w = Kap = ¢ (Knowledgeable)
Proof. We prove this by induction on p. Assume p is a successor ordinal.

1. Take w € W, and ¢,¢ € CO“"L,, such that w E Kap A Ka(p = 1)
arbitrarily. If w E Kap, then w’ E ¢ for all w' € A*. But since
wE Ka(p = 1), we also have that w’ E ¢. By consequence w’ E 4 for
all w' € A", or equivalently: w E K z1).

2. Take w € WP' and ¢ € CO%"L,, arbitrarily. If w F K 4, then w' E ¢

for all w' € A". But since A% C R[A"], we also have that w” k ¢ for
all w”’ € AY. Since w’ was arbitrarily chosen, we can conclude that
wFE KAKA(p.

3. Similar to 2.

4. Similar to 2.
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Now, assume g is a limit ordinal.

1. Take w € Wy, w' € A¥ and ¢, ¢ € CO‘*’2£m arbitrarily. Since

(W)a E Kap NKa(p =) = Kat

for each o < p by induction and
(Kap NEKap = 1)) = Kay)"” =

lub< {(Kap A Kalp = ) = Kah) ™ol < A}
it follows that w = (Kap A Ka(e = ¥) = Kav).

2. Take w € W, w' € A" and ¢,9 € C(’)“’zﬁm arbitrarily. From A C A
it follows that A(W)a C Ao for each a < A. This means that for each
a < A (w)y € WP and we can use the induction hypothesis to find that

(KAQO = KAKAQD)M =
lub< {(Kap = KaKap)")*la <A} =t

3. Similar to 2.

4. Similar to 2.

6.4.2 Public Announcements

Public announcements are modal propositions that produce common knowledge
of the announced proposition. In many epistemic riddles, public announcements
are essential because, as shown by the Coordinated attack problem [Gmy-
trasiewicz and Durfee, 1992], it is the only way to establish common knowledge
amongst a group of agents. Intuitively, w F [¢]1) means ¢ will be true in the
world w[y] obtained by publicly announcing ¢ in world w. The effect of this
is that for all agents A and worlds w’ € A¥, w' is deleted from A" if ¢ is not
knowledge in w’. Every agent adjusts his belief and filters out the worlds that
are not consistent with (. Since every agent also knows that other agents have
heard this announcement, he then recursively also filters the knowledge he has
on others. This filtering is recursively applied all the way down.

Syntactically, we define a language C(’)“’QEL, by adding an operator to the
syntax of cov’ Lo [@]Y: 1 is true after ¢ has been publicly announced.
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Definition 6.4.4. GiV%n a vocabulary ¥ and an indexed set of agents A, we
define the language CO¥” L} by structural induction with the rules of Definition
6.3.1, augmented with:

[ely is a formula if ¢, are formulas

To define the semantics, we will first define a function Confine that filters
epistemic states as discussed above. Given a set of worlds M and a world w,
it maps to a set of worlds W, where in every world, every agent’s belief is
consistent with M. With this function we can define the world w[y] obtained
by publicly announcing ¢ in w.

Definition 6.4.5. We define for each p > 0 a function Confine :
W, x oW W,

that maps a world w and a set of worlds M to a world Confine,, (w, M) such
that Confine,(w, M) is a singleton containing the world obtained by publicly
announcing in world w that all worlds outside M are impossible, or the empty
set if it is not possible in w that all worlds outside of M are impossible. We
define this by induction on pu:

e If u=0:
W={w}nM
e Ifp=p+1: ‘
W =M {(w,(Na)aca)}
where

Na= U Confine, (v, R[M])
vEAW

o If p is a limit ordinal,

Confine(w, M) = M N {(va)a<p|va € Confine,((w)a, Xo[M])}

We define Confine as the union of all Confine, functions.

Definition 6.4.6. We define for each p world w and formula ¢ such that
w E ¢ a world

wlg] = Confine(w, {w'|w’ € W, and v’ F ¢})
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We need to prove that w[y] is a consistent world, to show that it is well-defined.

Proposition 6.4.7. If w is a consistent p-world, and M a set of consistent
w-worlds, then all worlds in Confine(w, M) are consistent.

Proof. We proof this by induction on .

o Assume p =0, w € Wy and M CW,. Since Confine(w, M) = {w} N M,
this can only contain consistent worlds by definition.

o Assume p =y +1, w € W, and M C W, then Confine(w, M) =
M O {(w, (Na)aeca)}. Since M is a set of consistent worlds, we need
to prove that (w°%,(N4)aeca) is a consistent world. By definition of
consistency, this is the case if for all A: N4 is a set of consistent worlds,
which follows from the induction hypothesis.

e Assume p = A, w € Wy and M C W,. If Confine(w, M) is empty,
the proposition is trivially satisfied, so assume it is not empty. Then
it is a singleton, by construction, so take w’ the only element in
Confine(w, M). Since Confine(w, M) is not empty, it follows that
Confine,, (W), Xo[M]) is not empty for all & < A. Abusing notation, we
will write Confine,, ((w)q, Xo[M]) to denote the only element in that set.

Then w' = (Va)a<p, With vy = Confine((w)q, ([M])a). w' is consistent

— if (w')4 is consistent for all & < A, and

— if for each o <" < X (W) <p (W)arr.

Since (w'), is consistent for all & < A, we only need to prove the second.

We only prove that
R(”(x-&-l) = Vo

for an arbitrary o < A. The fact that for each a < o/ < A: vy <p Vo
then follows easily by induction as in the proofs before. By Lemma 6.4.8
(below):

R(vat1) = R(Confine((w)a+1, ([M])a+1))
= Confine(R((w)a+1); B(([M])at1))
= Confine((w)a, ([M])a)
= (W)a

This proves that Confine(w, M) is consistent.
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O

Lemma 6.4.8. For a (pn+ 1)-world w and a set of (u+ 1)-worlds M where
Confine(R(w), R[M]) # 0, then Confine(w, M) # 0 and:

R(Confine(w, M)) = Confine(R(w), R[M])
Proof. We define this by induction on pu:

e Assume p =0, w € Wy and M CW,;. Then:
{R(w)} N R[M] = R{w}] N R[M]

= R[{w} N M]

= R(Confine(w, M))

e Assume p = a+ 1, w € Wyq1 and M C Wyy1. Then define Wy =
Confine(R(w), R[M]) and Wy = R(Confine(w, M)). By assumption Wy #
0, so take w' € Wy. Then w' = (w7, (A" ) ac4), With

AV = Uypear) Confine(v, RIR[M]])
Since A(®) = R[A™], it follows by induction hypothesis that
AV = Uyeare) Confine(v, R[R[M]])
= UUER[A“’] Conﬁne(v, R[R[M]])
= Uyeaw COTLﬁTl@(R(’U), R[R[MH)
= Uveaw R[Confine(v, R[M])]
So w' € Ws.

e The proof when pu = A is similar.

Using this function, we define the semantics for CO*” Lh:

Definition 6.4.9. For every p + 1-world w and ¢ € cov’ L} we define that
w satisfies ¢ (notation w = ¢) by the structural induction from definition 6.3.2,
augmented with one rule:

u if ¥ =u
([ely)” = t if o =f
Pl otherwise
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This operator has the same reasonable properties from [Lutz, 2006] as cov’ ch
as defined in [Belle and Lakemeyer, 2015].

Proposition 6.4.10. Following properties are true for CO“’QE;Q, with worlds
we W, with p > MD(p):

©olp < (p=p) is valid

oo < (e=-lpla) is valid

(]
(]
[plan B < ([plan[e]B) is valid
(]
(]

Ol Kaa & (0=Ka(p = [pla)) is valid

oVea < Ve ([pla) is valid

Proof. We will only prove the first and fourth item, since the others can be
proven by induction on the structure of the formula in a similar way.

Take w an arbitrary u-world, we prove that w = [¢]p if and only if w = (¢=p).
We distinguish two cases:

o If w [~ @, then trivially satisfies both [p]p and (p=p).

o If w = ¢, we prove that w |= p implies that w[p] = p and vice versa. We
know that w = [p]p if and only if w’ |= p, with3

w' = Confine(w, {vjv € W, and v |= ¢})

= (W, (A"") aeal})

obj 10bj

and (p)¥ =p*¥  =p
w(g] = p.

w

. So this proves that w = p if and only if

This proves that w = ¢ — p if and only if w[p] = p.

Take w an arbitrary p-world, we prove that w = [¢]|Kpp if and only if w =
v=Kp(v = [¢]p). The fact that w | [p]|Kaa & (p=Ka(y = [p]a)) for
arbitrary formulas « can then be proven by straightforward induction on the
structure of a. As before, we can safely assume that w = ¢. We know that
w = [p]Kpp if and only if w’ | Kpp, with

w' = Confine(w, {vjv € W, and v |= ¢})

= (W, (A" ) aca})

3Since w | ¢, Confine(w, {v|v € W, and v |= ¢}) is not empty and can be identified with
a world w’, the only element in that singleton.
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where AY' = Uupeaw Confine(v, R[M]). We know that w' = Kpp iff for each
v € BY = Upeaw Confine(v, RIM]): v" = p. So, stated differently: w |=
[p]Kpp if for each v € A¥: Confine(v, R[M]) = p, or v [~ ¢. This is equivalent
with v satisfying ¢o=-[]p, as we have proven before. O

The propositions and theorems from Section 6.1.3 are true for CO‘“ZACZZL, as the
following propositions and theorems will show. The proofs are very similar, so
we will shorten them and only give the relevant parts.

Proposition 6.4.11. For any p-world w and any formula in C(’)“zﬁ;‘;:

(pw >p SDR(w)

Proof. We prove that for any arbitrary (u + 1)-world w and any formula
p € CO‘*’zﬁ,tL: v >, ™) For the same reasons as before, we only prove that
@™ =t follows from (") =t. We prove this by induction on the structure of

@Y.

° If(p:P(f)a P1 A P2, p1 V2, p = ﬂ/% QD:VZ"I/J, ceey KA'(/}, ECﬂ/% va
O% % the proof is the same as for Proposition 6.1.18.

o If ¢ = [p]t) then
— ¢" # u by induction,
— If ¢* = £, then " = t. So assume ¢* = t, then Confine(w, {w'|w’ €
W41 and w' |= ¢}) is not empty, so take w” € Confine(w, {w'|w" €
W, 41 and w' |= ¢}). We now prove that ¢ = t by proving that
w” 1. Since by Lemma 6.4.8:
R(Confine(w, {w'|w" € W, 11 and v’ |= ¢}))
= Confine(R(w), {R(w")|w" € W,41 and v’ |= ¢})
= Confine(R(w), {w'|w" € W, and v’ |= ¢})

it follows from the induction hypothesis that ¢* = t.

This proves that g% = t for all ¢ € CO¥" L. O

Proposition 6.4.12. For any p-world w and p'-world w' such that w' >, w:
for any formula formula ¢ in cov’ L ga“’/ >p v

Proof. This proof is similar to the proof for CO7L,,. O
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Theorem 6.4.13. A p-world w (u an arbitrary ordinal) can resolve every
formula ¢ € COVL,,, with MD(p) < p, i.e., * is 2-valued for every p-world
w.

Proof. We prove that a p-world resolves all CO7L,,, formulas with modal depth
< pe

First, assume that p is zero, or is a successor ordinal. Take a py-world w, and a
formula ¢ € COVL,,,, with M D(p) < u. We prove that ¢* # u by induction
on the structure of .

s If o =P), o1 Npa, o1 Vg2, o = 2, ¢ = Vaih, ..., Kah, Egi),
C,o = O% 9 the proof is the same as for Proposition 6.3.8.
o If o = [p]), to prove that ¢* # u, we need to asses two cases:

— % = u if ¥"¥ = u, but that is not possible due to the induction
hypothesis.

— % = uif Y*1®! = u, but that is also not possible due to the induction
hypothesis.

The proof when p is a limit ordinal is the same as in the proof of Theorem
6.3.8. 0

We define for every ordinal v and every ordinal p the logic /,L—CO‘*’QE,Jr as the

logic with language C(’)‘*’QL',,*;I and the valuation as defined above, using p-worlds.

Theorem 6.4.14. Given an ordinal vy, u-COYL,, has a (not necessarily strict)
larger set of satisfiable formulas than u'-CO“’QETJ;L if > .

Proof. Similar to the proof of Theorem 6.1.26. O
Consequence 6.4.1. For any 2w?-world w the valuation (-)¥ is two valued in
22-CO L.

Proof. Direct generalisation of Consequence 6.3.3. O
Consequence 6.4.2. There is no a—C(’)“zllj{T logic with a strict larger set of

satisfiable formulas than 2w? —CO“ZE;I.

Proof. Direct generalisation of Consequence 6.1.3. O
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6.4.3 Application: the muddy children puzzle

The muddy children puzzle brings out subtle changes to knowledge states of
a group of agents. Belle and Lakemeyer used this puzzle to illustrate their
logic. Since this work is an addition/improvement to the work in [Belle and
Lakemeyer, 2015], we will do the same. The symbols, problem statement and
nomenclature is also based on their chapter about this puzzle.

The puzzle is: Imagine n children playing together, after which they come home
and some of them have mud on their face. Each child can see all the faces of
the other children, but not its own. When the father sees the children, he says:
"at least one of you has mud on its forehead", thus expressing a fact already
known to the children. After this, he keeps asking "If you know you have mud
on your forehead, please take a step forward". If k children have mud on their
forehead, after k questions, all k children step forward.

To illustrate the logic CO“’ZLZ:;L, we model the muddy children puzzle with n
children, where all children have mud on their forehead. In this case:

Y ={my,ma,...,mu}
A:{Al,AQ,...,An}

There are n agents, the n children of the puzzle and the vocabulary contains n
elements, namely one m; for every agent A;, saying that child ¢ is muddy. The
theory is the union of the knowledge of all agents, where each agent’s knowledge
can be modelled by a theory T;:

T, = {0;( /\ m; \\Each agent only knows that all others are muddy
1#]

/\ K;m; vV /\ K;—m; \\All others know i'm muddy or not muddy.
1#] i#]

C (\/ m;) \\It is common knowledge that

at least one of us is muddy

)}

and T = |, (1.ny Li- We will shorten the unanimous denial of knowing that
they have mud on their forehead of all children as:

No = /\ _‘Kimi
ie{l..n}
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The puzzle is now to prove that after n unanimous denials of knowing that
they have mud on their forehead, they all know that they have mud on their
forehead.

For readability we will only prove this statement for n = 2, but the proof can
be generalized to n larger than 2.

Theorem 6.4.15. For every world w € Wg;zm such that w E /\ie{1 o) T and
w ET; for every i € 1,2 it is true that

w E [No| /\ K;m;
ie{1,2}

Proof. To prove this statement, take w such that the above hypothesis are
satisfied. In this case, w satisfies

wkE my Amg (6.1)
w E 01(m2 A (K2m1 vV Kg—\ml) A C(TFLQ vV ml)) (62)
w E Oz(m1 A (K1ma V K1—ma) A C(my V ma)) (6.3)

We will only prove that agent 1 knows he has a muddy forehead (w E [No]Kymy),
the proof for agent 2 is analogous. From (6.1) we derive that w® = ¥ =
{m1,ms}. From (6.2) we derive that:

obj w
{(w) 7w € A%} = {{m1,m2}, {m2}}
since mo is the only objective fact that agent 1 knows.

To prove that w E [No]K;my it is enough to prove that Vv € AY such that
v E aKimq A ~Kaoms it is true that v E my. Indeed, since

{{v|v € A} and v F =Kym; A =Kamsa}}
= Confine(w, {w'|w’" E =Kimi A =Kama})
and since proving w E [No|K1m; is equivalent with proving
Confine(w, {w'|w" E No}) E Kymy
we will only prove the above statement.

Take a v € AY arbitrarily such that v E =Kymi A—Kamg . From (6.2) it follows
that Ko(mi V mg) (since mq V mso is common knowledge). With Theorem 6.4.3
(the agents are rational), we find that v £ ~Ks—m;. Indeed, because assume
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v E Ky—-my, then we can derive that v F Kams from Ks(my Vmsg) and Theorem
6.4.3, which cannot be true. Using theorem 6.4.3 with this knowledge and the
fact that w' E Komy V Ko—my (from (6.2)), we conclude that w’ E Komy or
equivalently, for every w € Ag“ :w F my. Since w' is a informed world, it
follows that w’ € AY" and as such that w' £ m1. This proves what was to be
proven. U

6.5 Conclusion

A standard approach in modal logics is to use Kripke structures. When using
Kripke structures, the set of potential worlds is fixed in advance and the logic is
valuated relative to this class of worlds, by defining an access relation for each
agent between the worlds. An agent knows something in a world w if it is true
in all worlds accessible from w. We have shown why fixing of worlds in advance
is a problem when we study only knowing. When evaluating only knowing, we
want to talk about all worlds satisfying a certain formula, so we cannot afford
to only talk about all worlds that are in the set of chosen worlds that satisfy
that formula.

Belle and Lakemeyer defined COL,, in [Belle and Lakemeyer, 2015]: the first
logic that studied the interaction between common knowledge and only knowing.
In this chapter we analyzed their approach and proposed a new semantics, based
on our findings. We proposed an improvement to the semantics, since we found
anomalies in the sense of sentences that can be written in COL,,, that should
be satisfiable, but are not in their approach. It is for example not possible to
define a epistemic state as defined in [Belle and Lakemeyer, 2015], where an
agent only knows that something is not common knowledge (O 4—Cp).

In this chapter we first proposed a subset of that logic, CL,,, accommodating a
K and C (common knowledge) operator and used this to introduce our new
proposal for a semantical structure. Key to this new proposal is to define
finite worlds as tuples, infinitely deep worlds as sequences of worlds, and deeper
worlds again as tuples, where agents can have such sequences as their possible
worlds. We defined important monotonicity properties for these sequences to
be well-defined and proved them.

We defined worlds that are deeper than w: for any arbitrary ordinal p we
defined worlds with depth u. By investigating two different approaches: one
using Kripke structures and the approach of Belle and Lakemeyer, we show why
these deeper worlds are necessary.

In our p-worlds, some monotonicity properties we have for CL,, are not



CONCLUSION 153

maintained for COL,,. The reason for this is the special nature of the only
knowing operator. To study this issue in more detail, we proposed limited only
knowing. Limited only knowing states explicitly what kind of knowledge is only
(or not) known and does have these monotonicity properties. We use this notion
of limited only knowing to define a logic cov’ L, that does have an “unlimited”
only knowing operator, but does not allow for nesting of this operator.

Other extensions to COL,, are defined afterwards: (positive or negative)
introspective cow’ L, informed CO“QEm and CO¥”* Lh: cow’ L., extending
with the notion of public announcements. The new logic cov’ L} is illustrated
using the muddy children puzzle (as in [Belle and Lakemeyer, 2015]), a subtle
puzzle pertaining the difference between common knowledge and everybody
knowing something, using only knowing.

Interesting future work would definitely be to further explore COL,,, COYL,,
and CO%’ L, to find a logic containing the O operator (without fixing a depth
1), that does not exhibit the issues in previous approaches, has the monotonicity
properties and can be nested without problems. Further, complexity results
have to be investigated as well as interesting inferences or a decision procedure
to use (fragments of) this logic for real-life applications.






7

Conclusion

The goal of the research presented in this thesis was to investigate the feasability
of using the KBS IDP to solve problems in different situations, ranging from
practical situations as executing database related tasks on a database containing
cars and planning reservations for rentals of those cars, and supporting an
interactive configuration system, to more theoretical situations where a group of
agents together decide who gets access to a resource by referring to each others
knowledge. As discussed in Chapter 1, a good KBS has a rich language that
can express a wide range of knowledge in a natural way and supports a large
set of reasoning tasks. On both fronts we did research to investigate the current
state of the IDP KBS and proposed extensions to the knowledge representation
language FO(-) to be able to express the relevant domain knowledge and new
inferences to support all needed reasoning tasks.

We studied multiple applications from different contexts such as interactive
configuration, Business Rules and Access Control and proposed new language
constructs and/or reasoning tasks for each of them.

e In Chapter 3 we studied interactive configuration and discussed why
solutions for interactive configuration problems are hard to develop using
standard (declarative) paradigms. We identified 8 different subtasks
relevant to interactive configuration and formalized these as logical
inferences on a knowledge base. Using this, a system was built with a
centrally maintained knowledge base containing all relevant configuration
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knowledge of the domain at hand and with support for the reasoning tasks.
We tested this as a proof of concept for a banking company. To evaluate,
ten other existing approaches were discussed and compared to our proposal
using a set of criteria used in knowledge-based configuration literature.
The proof of concept was very promising and opened perspectives for
future research. There are multiple language extensions, interesting for
representing configuration knowledge that can be formalized as extensions
of the FO(-) knowledge representation language. Some examples are
templates [Dasseville et al., 2015] that allow to create extra abstraction
layers, and reification which adds a meta level to reason about the symbol
instead of its interpretation (to for example assign a symbol to a class like
“Administrative” or “Technical”).

Another domain where we studied the feasability of the knowledge base
paradigm was the domain of Business Rules. We studied 2 usecases
of the EU-Rent Car Rental company: scheduling a set of reservations
and processing small database changes such as adding a new car to the
domain. Advantages of a logic based approach in the IDP KBS were
readability, maintainability and reusability, and for this application we
found another specific advantage: the inherent non-determinism of a logic
based approach allowed to select a more optimal solution for scheduling
then the deterministic rule-based solution. We proposed one new derived
inference and formalised a language extension: FO(-1), which extended
the notion of definitions and allows disjunctions and the “new”-operator
in the head, such that knowledge can be specified about situations where a
new domain element is created. This work was a first step of research, and
since then a lot of further work has been done. The new language FO(-)
has been further extended and explored and resulted in FO(C) [Bogaerts
et al., 2014c]. An interesting further research direction is developing
logical inferences to use with FO(C) theories and to implement those so
that they can be used in a KBS.

Motivated by an application of access control in a distributed setting
we developed dAEL: distributed autoepistemic logic, a generalisation of
autoepistemic logic (AEL). The syntax was formulated by replacing the
K operator in AEL by a set of K4 operators, one for each agent A.
Assuming the theories of the different agents to be characterizations of
there public commitments, we made dAEL a logic with full (positive and
negative) mutual introspection. This means that every agent can refer to
the knowledge (or equivalently in our framework: the consequences of the
commitments) of other agents and the lack thereof. Using approximation
fixpoint theory, we generalized 5 different semantics from the single agent
setting to dAEL. One possible future research direction is generalising
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more semantics that are studied in the context of AEL to the distributed
case. Other interesting future work (which we are currently doing in the
context of a journal publication on this subject) is studying a decision
procedure for dAEL(ID), so that it can be used for practical applications.

e COL,, is a multi-agent modal logic, that does not assume introspection
between agents and has operators for knowledge, only knowing and
common knowledge. It is a more general modal logic then dAEL, but
is also has a more complex semantics. In Chapter 6, we propose a new
semantical structure for COL,,,. The motivation behind proposing these
new semantics are anomalies we found in earlier approaches. We show
these anomalies and explain why they originate and show ideas how to
solve them. We also extend the language COL,, to a language COL;,
that can model public announcements and illustrate that logic using the
well-known muddy children puzzle. While we have a set of worlds that
can interpret every formula in CL,, (the set of all formulas in COL,,
not containing only knowing) and given a formula in COL,,, we have
a set of world that can interpret that formula: we do not have a set
of worlds that can interpret every formula in COL,,. This is important
future work, to be done in the near future. Another interesting direction
of future work is the study of other semantics, especially only knowing.
Using approximation fixpoint theory, we can study generalisations of for
example the well-founded and the stable semantics for COL,,. For this
language, no implementation of inferences has been made, so it might be
interesting to study the complexity of inferences for COL,, and implement
some inferences for (a subset of) COL,,.

To conclude, I feel that the knowledge base paradigm is a strong approach and
the IDP system is becoming a mature implementation of it. The knowledge
base paradigm has many advantages over other software development paradigms
(both imperative and declarative) and there are a lot of applications where these
advantages are really clear and important, as we have shown in this thesis. The
time is near to start solving real-life applications, not only as a prototype or
proof of concept, but to build real applications based around a central knowledge
base. Especially in the context of applications such as interactive configuration
we studied in this thesis, the knowledge base paradigm can really contribute and
is mature enough for real applications, as we have shown. For the multi-agent
applications in this thesis, the research and work done was more theoretical,
and while these approaches are also promising, there is more research needed
before these languages are ready for real applications. We studied them from a
theoretical point of view, and our main goal was to develop semantics for these
new logics. However, when inferences for these logics are implemented, they
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will fit perfectly in a KBS and will open a whole new field of applications for
the IDP KBS to be applied in.



Appendix

A.1 Proofs for Section 5.2

In order to prove Theorems 5.2.12 and 5.2.16 we first need to define some
additional notions and prove some lemmas.

Recall that we use the following notational conventions: ¢ denotes a dAEL
formula over ¥ , ¢ denotes an AEL formula over X', I denotes a Y-structure,
and J denotes a Y/-structure. We defined every 7, (z € {p, T, J,Q, B}) as a
translation function, with a subscript z identifying what it translates to. For
example: 7; translates a indexed family Z = (I4)aca of structures to a ¥’
structure J.

Definition A.1.1. Given a X/-structure (in dAEL) J and an agent A, we write
J 4 for the (AEL) Y-structure defined by s/4(dy,...,d,) = s/ (d1,...,dn, A) =
(s4)” for every s € X.

A Y structure J represents a state of affairs of the world, from the view of all
agents. J4 is a projection of this representation to the state of the world from
the view of agent A.

Next lemma states that the this projection is an inverse to the translation of
distributed possible world structures: the conservative view of agent A in a dbp
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is equal to the projection to agent A of the the translation of all conservative
views.

Lemma A.1.2. When a distributed belief pair B is universally consistent:
{JA/|J S TQ(BC)} = le

for each A’ € A.

Proof. We prove the equality by proving the subset relation in both directions.

Let J' € 7q(B°). Then there is an indexed family (14)ae.a s.t. 14 € BS for each
Ae Aand J' = 7;((I4)aca). Then for each interpretation f7a’(dy, ... dy) =
7 (dy, ..., dn, A) = flar(dy,...,dy). So J)y, = T4 and Ia € BY,, as required.

To prove the other direction, let I € BY,. Since B¢ is universally consistent
there is some indexed family (fa)aca s. t. 1a € BG forall A€ Aand I4 = 1.
Define J' := 7;((La)aca. Then J), = I4 = I, as required. O

The following lemma says that the mapping is faithful to the valuations of AEL
and dAEL formulas:

Lemma A.1.3. For an agent A, a formula ¢ € Ly, a universally consistent
distributed belief pair B and a X' -structure J,

(A, ¢) BT = ¢B 74,

Proof. We prove the lemma by induction over the structure of ¢.

o Assume ¢ = P(ty,...,t,). Then 7,(A, P) BB = tif (t1a,. .. tna, A) €
P7 which is by definition of the translation of structures the same as
(tf,...,t2 A) € P’4. Analogously, we find 7, (¢, ¢)™2 B/ = f iff pB7/a =
f.

o Assume ¢ = —¢p. Then 7,(t,¢)™2B)7 = =7, (t,4)™2®B)/ and the result
follows by the induction hypothesis.

o If ¢ = ¢p1 A g or ¢ = (Vx)1), the proof is similar.
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o Assume ¢ = K 41, then 7, (4, $)™2B)J = t if and only if (KT, (A, Y))™BB)T =
t, and

T4, )P BT = ¢ & (K (A, 0) ) = ¢
& for each J' € 7 (B°): mo(A', ) BB —¢
(Definition 5.2.4)
& for each J' € 7(B°): ¢4 =t
(by the induction hypothesis)
& for each I € BS: 51 =t
(by Lemma A.1.2)

o Bl =t
O

The following lemma states that the dAEL approximator D3 is mapped to the

AEL approximator D:T(TV when restricted to universally consistent distributed
belief pairs:

Lemma A.1.4. For every distributed theory T and every universally consistent
distributed belief pair B,

78(D7(B)) = D7, (1) (78(B))-
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Proof. 75(D:-(B))
= (1q(({T | $"" =t for each ¢ € Ta})aca),
7Q(({I | ¢° # £ for cach ¢ € Ta})aca))
= ({J| ¢®74 =t for cach A € Aand ¢ € Ta},
{J | $%74 #£ £ for each A € Aand ¢ € Ts})
= ({J | 7p(A, )" B)7 =t for each A € A
and ¢ € Ty},
{J | 7p(A, )BT L f for each A € A
and ¢ € T4}) (by Lemma A.1.3)
= ({J | ¢7#B)) =t for each p € 77(T)},
{J] 8B £ £ for each ¢ € 70(T)})

= D7, (78(B)) O

The following lemma is a restriction of Lemma A.1.4 to the conservative
operators DS and Dér:

Lemma A.1.5. For every distributed theory T and all universally consistent
DPWS’s Q and @',

7Q(D7(Q, Q) = D7, (1) (10(Q), 0 (Q))-
Proof. Trivial by Lemma A.1.4. O

The mapping maps the dAEL knowledge revision operator Dy to the
corresponding AEL knowledge revision operator Dr:

Lemma A.1.6. For every distributed theory T and every DPWS Q,
7Q(D7(Q)) = Dry(1)(7(Q))-

Proof. Follows from Lemma A.1.4 and the fact that D>(Q, Q) = (Dr(Q), Dr(Q))
for each Q. O
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The mapping is faithful to the (universal) consistency of (distributed) possible
world structures:

Lemma A.1.7. A DPWS Q is universally consistent iff (1q(Q))a # 0 for any
Ac A

Proof. Trivial. O
The following lemma states that the restriction of 7 to universally consistent
DPWS’s is injective:

Lemma A.1.8. If Q and Q' are DPWS’s such that Q is universally consistent
and 1g(Q) = 19(Q’), then @ = Q.

Proof. By Lemma A.1.7, Q' is universally consistent too. By symmetry, it is
enough to show that Q4 C Q4 for all A € A.

So let 14 € Qas. Given that Q is universally consistent, we can choose an
Ip € Qp for every B € A\ {A'}. Then 7;((1a)aca) € 7(Q) = 170(Q'), so

I4 € Q),, as required. O
The same holds for 75 on universally consistent distributed belief pairs:
Lemma A.1.9. If B and B’ are DPWS’s such that B is universally consistent
and 1q(B) = 1q(B'), then B=1B'.

Proof. Similar to proof of Lemma A.1.8. O

The mapping is faithful to the knowledge order:
Lemma A.1.10. If Q <k Q’, then 7¢(Q) <k 10(Q’).

Proof. Let J € 1¢(Q'), i.e., for every A € A, Jo € @/, as such J4 € Q4. So
J e TQ(Q). O

The following lemma states that the mapping is faithful to <g-least upper
bounds and greatest lower bounds:

Lemma A.1.11. For a set S of DPWS’s, 1g(lub<, (S)) = lub<, (1q[S]) and
7q(glb< . (8)) = glb< . (Tq[S])-
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Proof. We prove the first equality; the second one can be proven similarly.

First we show that 7o (lub(S)) is an upper bound of 74[S]: Let Q € 7¢[S].
Then there is a DPWS Q € S such that @ = 79(Q). Since Q <k lub S, Lemma
A.1.10 implies that Q <g 7o (lub(S)).

Now we show that for each upper bound Q' of 7¢[S], 7o(lub(S)) <k Q'
Suppose that for every Q € 79[S], Q <k @', i.e.,Q" C Q. We need to show
that 7o(lub(S)) <x @', i.e.,that Q" C 7o(lub(S)). Solet J € Q'. Let Q € S.
Then 7(Q) € 17¢[S], so Q' C 79(Q). Hence J € 179(Q), i.e.,J |a€ Q4 for
each A € A. Given that Q was an arbitrary element of S, we have that
J lae N{Q | for some Q € §,Q = Qa}. So J € 7o((N{Q | for some Q €
S,Q = Qa})aca) = 1o(lub(S)), as required. O

The mapping is faithful to <,-least upper bounds:

Lemma A.1.12. For a set S of distributed belief pairs, Tp(lub< (S)) =
lub< (75(S]).

Proof. This follows directly from Lemma A.1.10 and Lemma A.1.11. O

The following states that the stable revision of an element of the image of 7 is
itself in the image of 7¢:

Lemma A.1.13. For any DPWS Q, there is a DPWS Q' such that 7o(Q') =
D 1 (70(Q)).

'Proof. 'Let .oz'be such that D7 . (70(Q)) = D;T(T)(.,TQ(Q))Q(J_). .By
induction, it is enough to show that for each ordinal number «, there is a
DPWS Q' such that 7¢(Q') = D57 (-,70(Q))* (L)

For a =0, let Q" :=(L)aca. Then 7¢(Q') = (1) = Df—T(T)("TQ(Q))O(J‘>'

Suppose the result holds for «, i.e. there is a DPWS @' such that
7(Q) = DL, (1(Q)(L). By Lemma A.L5, 7o(D4(Q,Q) =
D5, ) (1(2),79(Q)) = D (1) (- 7(Q))* (L)

Let A be a limit ordinal such that the result holds for every a < A. Define
§:={Q | 1Q(Q) =D5, 1), 70(Q))*(L) for some a < A}. By Lemma A.1.11,

TT

7o (ub(8)) = lub(rg[8]) = D2, 1 (- 7o (Q)(L). O

The following lemma states that the mapping maps the stable dAEL knowledge
revision operator D! to the stable AEL knowledge revision operator Djt:
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Lemma A.1.14. For every universally consistent distributed theory T and
every DPWS Q,

D 1) (10(Q)) = 7(DF(Q)).

Proof. Let Q denote Df_tT(T) (10(Q)).

First suppose Q = (). We need to show that 7o (D5 (Q)) = 0, i.e.,that D5 (Q) =
Ifp(D5(+, Q)) is not universally consistent. For this it is enough to show that
every universally consistent DPWS is not a fixpoint of D5.(-, @). So suppose
Q' is universally consistent. Then 79(Q’) # 0, i.e.,7o(Q') <k Q. Since Q is
the least fixpoint of DﬁT(T)(-,TQ(Q)), DﬁT(T)(TQ(Q’), 170(Q)) # 179(Q’). So by
Lemma A.1.5, 7o(D$(Q’, Q)) # 10(Q'), i.e. DLH(Q’', Q) # Q', as required.

Now suppose @ # (). By Lemma A.1.13, there is a DPWS Q' such that
70(Q') = Q. Note that by Lemma A.1.7, Q is universally consistent. Q = 7¢(Q’)
is a fixpoint of DiT(T)(.jQ(Q)), ie. DiT(T)(TQ<Q/)>TQ(Q)) = 70(Q'). By
Lemma A.1.5, 7¢(D%(Q', Q)) = 79(Q’). By Lemma A.1.8, D$(Q/, Q) = O,
i.e. @ is a fixpoint of D5.(-, Q). Let Q" denote the least fixpoint of DL.(-, Q).
Then Q" <g @, so by Lemma A.1.10, 79(Q") <k 79(Q'). Additionally,
D5(Q",Q) = Q", so 1o(D5(Q", Q)) = 179(Q"), so by Lemma A.1.5, 7o(Q")
is a fixpoint of D7 7 (-, 7¢(Q)). Since Q = 7o(Q’) is the least fixpoint of
D5 (5 70(Q)), 7@(Q) <k 7q(Q"). Combining the two inequalities, we get
170(Q') = 79(Q"), so by Lemma A.1.8, Q' = Q". So Q" = lfp(D5.(-,Q)) =
D(Q), ie. Q = 1o(Q) = 170(D5(Q)), as required. O

Lemma A.1.15. If T is permaconsistent, then D3 (L, T) is universally
consistent.

Proof. If T is permaconsistent, then for each agent A € A and each theory T’
that can be constructed from T4 = (7) 4 by replacing any non-nested occurrence
of modal literals by t or f is consistent. Now, for each agent A, let T be
the theory constructed from T4 by replacing all non-nested occurrences of
modal literals by t if they occur in a negative context (under an odd number of
negations) and by f otherwise. This theory is clearly stronger than T,4. Since

T is permaconsistent, T7 is satisfiable, so let 14 be a model of 77%. In this case,
(L,T)1a

it holds that T’y =t (since T4 is weaker than T7).
From this, we find that for each agent A, {I | TIE‘L’T)’I} is non-empty and thus
that D3 (L, T) is indeed universally consistent. O

We are now ready to present the proofs of Theorems 5.2.12 and 5.2.16.
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Proof of Theorem 5.2.16.

Case 1: 0 = Sup: Suppose Q is a universally consistent DPWS. Q is a Sup-
model of T

iff Dr(Q) =Q

iff 7o(D7(Q)) = 79(Q) by Lemma A.1.8

iff D;,.(1)(1(Q)) = 7¢(Q) by Lemma A.1.6

iff 7¢(Q) is a Sup-model of 7 (T').

Case 2: g = PSt: Similar to Case 1, but using Lemma A.1.9 instead of Lemma
A.1.8 and Lemma A.1.14 instead of Lemma A.1.6.

Case 3: o = St: follows from Case 2 since St-models are two-valued PSt-models.
O

Proof of Theorem 5.2.12.
Case 1: o € {Sup, PSt, St}: follows by combining Theorems 5.2.16 and 5.2.17.

Case 2: ¢ = KK: The KK-model of T is the <p-least fixpoint of D7 and the
KK-model of 77(T) is the <,-least fixpoint of D:T(T). So by Lemma A.1.8,
it is enough to show that for each ordinal number o > 0, D5“((L, T)aca is
universally consistent and 75(D7%((L, T)aca) = D 5)“((L, T)). We prove
this by transfinite induction.

For oo = 1, this is follows from Lemma A.1.15.

Suppose it is true for a. Then
78(D7 (L, T)aca) = m8(DF(DF (L, T)aca))

=D}, () (78D ((L, T)aca)) by Lemma A.1.4

= DjT(T)“H((L, T)) by assumption about a.

Now suppose it is true for all @ < A. Then
7B(DF (L, T)aca))
= 7(lub({D7* (L, T)aca) | a <A}))
= lub(tg[{D5“((L, T)aca) | @ < A}]) by Lemma A.1.12

= 1b({D%, )" (L, T)) [ @ < AP

=D o) (L, T))
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Case 3: ¢ = WEF: Similar to Case 2, but using Lemma A.1.14 instead of Lemma
Al4. O
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