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Abstract

We present Sparse Non-negative Matrix
(SNM) estimation, a novel probability estima-
tion technique for language modeling that can
efficiently incorporate arbitrary features. We
evaluate SNM language models on two cor-
pora: the One Billion Word Benchmark and
a subset of the LDC English Gigaword cor-
pus. Results show that SNM language models
trained with n-gram features are a close match
for the well-established Kneser-Ney models.
The addition of skip-gram features yields a
model that is in the same league as the state-
of-the-art recurrent neural network language
models, as well as complementary: combin-
ing the two modeling techniques yields the
best known result on the One Billion Word
Benchmark. On the Gigaword corpus further
improvements are observed using features that
cross sentence boundaries. The computational
advantages of SNM estimation over both max-
imum entropy and neural network estimation
are probably its main strength, promising an
approach that has large flexibility in combin-
ing arbitrary features and yet scales gracefully
to large amounts of data.

1 Introduction

A statistical language model estimates probability
values P (W ) for strings of words W in a vocabu-
lary V whose size can be in the tens or hundreds of
thousands and sometimes even millions. Typically
the string W is broken into sentences, or other seg-
ments such as utterances in automatic speech recog-
nition, which are often assumed to be conditionally
independent; we will assume that W is such a seg-
ment, or sentence.

Estimating full sentence language models (Rosen-
feld et al., 2001) is computationally hard if one

seeks a properly normalized probability model1 over
strings of words of finite length in V∗. A simple
and sufficient way to ensure proper normalization
of the model is to decompose the sentence prob-
ability according to the chain rule and make sure
that the end-of-sentence symbol </S> is predicted
with non-zero probability in any context. With
W = wN

1 = w1, . . . , wN we get:

P (wN
1 ) =

N∏
k=1

P (wk|wk−1
1 ) (1)

Since the parameter space of P (wk|wk−1
1 ) is too

large, the language model is forced to put the con-
text wk−1

1 into an equivalence class determined by a
function Φ(wk−1

1 ). As a result,

P (wN
1 ) ∼=

N∏
k=1

P (wk|Φ(wk−1
1 )) (2)

Research in language modeling consists of find-
ing appropriate equivalence classifiers Φ and meth-
ods to estimate P (wk|Φ(wk−1

1 )). Arguably the most
successful paradigm in language modeling uses the
n-gram equivalence classification, that is, defines

Φn-gram(wk−1
1 )

.
= wk−n+1, wk−n+2, . . . , wk−1

Once the form Φ(wk−1
1 ) is specified, only the prob-

lem of estimating P (wk|Φ(wk−1
1 )) from training

data remains.
In order to outperform the n-gram equivalence

class, one must find a way to leverage long-distance
context. This can be done explicitly, e.g. by combin-
ing multiple arbitrary features (Rosenfeld, 1994), or
implicitly as is the case for the current state of the art

1In some practical systems the constraint on using a properly
normalized language model is side-stepped at a gain in model-
ing power and simplicity, see e.g. Chen et al. (1998).



recurrent neural network language models (Mikolov,
2012). Unfortunately, either method comes at a
large computational cost which makes training and
evaluation on a large corpus impractical.

In this paper we present a novel probability esti-
mation technique, called Sparse Non-negative Ma-
trix (SNM) estimation. Although SNM estimation
is a general approach that can be applied to many
problems, its efficient combination of arbitrary fea-
tures makes it particularly interesting for language
modeling. We demonstrate this by training models
with variable-length n-gram features and skip-gram
features to incorporate long-distance context.

The paper is organized as follows: Section 2 dis-
cusses work that is related to SNM which is de-
scribed in Section 3. We then present a complex-
ity analysis in Section 4 and experimental results on
two English corpora in Sections 5 and 6. We end
with conclusions and future work in Section 7.

2 Related Work

2.1 Neural networks

Recently, neural networks (NN) (Bengio et al.,
2003; Emami, 2006; Schwenk, 2007), and in par-
ticular recurrent neural networks (RNN) (Mikolov,
2012; Sundermeyer et al., 2012) have shown ex-
cellent performance in language modeling (Chelba
et al., 2014). RNNLMs have two main advantages
over n-gram language models: 1) they learn a low-
dimensional continuous vector representation for
words which allows them to discover fine-grained
similarities between words; 2) they are capable of
modeling dependencies that span over longer dis-
tances, i.e. they can extend the context past the n-
gram window. Their main disadvantage however is
that they take a long time to train and evaluate.

2.2 Feature-based models

Another popular method to leverage long-distance
context is Maximum Entropy (ME) (Rosenfeld,
1994). ME is interesting because it can mix dif-
ferent types of features extracted from large context
windows, e.g. n-gram, skip-gram, bag-of-word and
syntactic features. Unfortunately it suffers from the
same drawback as neural networks, as we will see in
Section 2.4.

The above-mentioned features can also be used in

other ways, e.g. Chelba and Jelinek (2000) use a left-
to-right syntactic parser to identify long-distance de-
pendencies (at sentence level), whereas approaches
such as Bellegarda (2000) leverage latent semantic
information (at document level). Tan et al. (2012) in-
tegrate both syntactic and topic-based modeling with
n-grams in a unified approach.

2.3 Skip-grams
The type of long-distance features that we incor-
porate into our SNMLMs are skip-grams (Huang
et al., 1993; Ney et al., 1994; Rosenfeld, 1994),
which can effectively capture dependencies across
longer contexts. We are not the first to highlight this
effectiveness; previous such results were reported
in Singh and Klakow (2013). Recently, Pickhardt
et al. (2014) also showed that a backoff generaliza-
tion using single skips yields significant perplexity
reductions. We note though that our SNMLMs are
trained by mixing single as well as longer skips,
combining both in one model. More fundamentally,
the SNM model parameterization and method of es-
timation are completely original, as far as we know.

In our approach, a skip-gram feature extracted
from the context wk−1

1 is characterized by the tuple
(r, s, a) where:

• r denotes the number of remote context words
• s denotes the number of skipped words
• a denotes the number of adjacent context words

relative to the target word wk being predicted. The
window size of a feature extractor then corresponds
to r + s + a. For example, in the sentence <S>
The quick brown fox jumps over the
lazy dog </S> a (1, 2, 3) skip-gram feature for
the target word dog is:

[brown skip-2 over the lazy]

For performance reasons, it is recommended to
limit s and to limit either (r + a) or both r and s.

We configure the skip-gram feature extractor to
produce all features F , defined by the equivalence
class Φ(wk−1

1 ), that meet constraints on the mini-
mum and maximum values for:

• the number of context words r + a
• the number of remote words r
• the number of adjacent words a
• the skip length s



We also allow the option of not including the ex-
act value of s in the feature representation; this may
help with smoothing by sharing counts for various
skip features. The resulting tied skip-gram features
will look like:

[curiosity skip-* the cat]

In order to build a good probability estimate for
the target word wk in a context wk−1

1 we need a way
of combining an arbitrary number of skip-gram fea-
tures, which do not fall into a simple hierarchy like
regular n-gram features. The standard way to com-
bine such predictors is ME, but it is computationally
hard. The proposed SNM estimation on the other
hand is capable of combining such predictors in a
way that is computationally easy, scales up grace-
fully to large amounts of data and as it turns out is
also very effective from a modeling point of view.

2.4 Log-linear models
Neural networks and ME are related in the sense that
for both models P (wk|Φ(wk−1

1 )) takes the follow-
ing form:

P (wk|Φ(wk−1
1 )) =

exp(ŷwk
)∑

t′∈V
exp(ŷt′)

(3)

where the ŷt′ are the unnormalized log-probabilities
for each potential target word t′ and depend on the
model in question. For a ME model with features F ,
they can be represented as follows:

ŷ = xTM (4)

where x is the word feature activation vector and M
is a |F|×|V| feature weight matrix. The ŷi of neural
networks on the other hand are computed as follows:

ŷ = g(xTH)W (5)

where g(·) is the activation function of the hidden
layer (typically a tanh or sigmoid) and W and H
are weight matrices for the output and hidden layer
respectively. Feed-forward and recurrent neural net-
works differ only in their input vectors x: in a feed-
forward neural network, x is a concatenation of the
input features whereas in a recurrent neural network,
x is a concatenation of the input word with the pre-
vious hidden state. Because of their shared log-
linearity, training and evaluating these models be-
comes computationally complex.

Although log-linear models have been shown to
perform better than linear models (Klakow, 1998),
their performance is also hampered by their com-
plexity and we will show in the rest of the paper that
a linear model can in fact compete with the state of
the art when trained with variable-length n-gram and
skip-gram features combined.

3 Sparse Non-negative Matrix Estimation

3.1 Linear model
Contrary to neural networks and ME, SNM language
models do not estimate P (wk|Φ(wk−1

1 )) in a log-
linear fashion, but are in fact linear models:

P (wk|Φ(wk−1
1 )) =

ŷwk∑
t′∈V

ŷt′
(6)

where ŷ is defined as in Eq. (4).
Like ME however, SNM uses features F that are

predefined and arbitrary, e.g. n-grams, skip-grams,
bags of words, syntactic features, ... The features
are extracted from the left context of wk and stored
in a feature activation vector x = Φ(wk−1

1 ), which
is binary-valued, i.e. xf represents the presence or
absence of the feature with index f .

In what follows, we represent the target word wk

by a vector y, which is a one-hot encoding of the vo-
cabulary V: yt = 1 for t = wk, yt = 0 otherwise. To
further simplify notation, we will not make the dis-
tinction between a feature or target and its index, but
rather denote both of them by f and t, respectively.

The ŷt′ in SNM are computed in the same way as
ME, using Eq. (4), where M is a |F| × |V| feature
weight matrix, which is sparse and non-negative.
Mft is indexed by feature f and target t and de-
notes the influence of feature f in the prediction
of t. Plugging Eq. (4) into Eq. (6), we can de-
rive the complete form of the conditional distribu-
tion P (y|x) = P (wk|Φ(wk−1

1 )) in SNMLMs:

P (y|x) =
(xTM)wk∑
t′∈V(xTM)t′

=

∑
f ′∈F xf ′Mf ′wk∑

t′∈V
∑

f ′∈F xf ′Mf ′t′

=

∑
f ′∈F xf ′Mf ′wk∑

f ′∈F xf ′
∑

t′∈VMf ′t′
(7)



As required by the denominator in Eq. (7), this
computation also involves summing over all the
present features for the entire vocabulary. However,
because of the linearity of the model, we can pre-
compute the row sums

∑
t′∈VMf ′t′ for each f ′ and

store them together with the model. This means that
the evaluation can be done very efficiently, since the
remaining summation involves a limited number of
terms: even though the amount of features |F| gath-
ered over the entire training data is potentially huge,
the amount of active, non-zero features for a given
x is small. For example, for SNM models using
variable-length n-gram features, the maximum num-
ber of active features is n; in our experiments with a
large variety of skip-grams, it was around 100.

Notice that this precomputation is not possible for
the log-linear ME which is otherwise similar, be-
cause the sum over all features does not distribute
outside the sum over all targets in the denominator:

P (y|x) =
exp(

∑
f ′∈F xf ′Mf ′wk

)∑
t′∈V

exp(
∑
f ′∈F

xf ′Mf ′t′)
(8)

This is a huge difference and essentially makes SNM
a more efficient model at runtime.

3.2 Adjustment function and meta-features
We let the entries of M be a slightly modified or
adjusted version of the relative frequencies:

Mft = eA(f,t)Cft

Cf∗
(9)

where A(f, t) is a real-valued function, dubbed
the adjustment function (to be defined below), and
C is a feature-target count matrix, computed over
the entire training corpus T . Cft denotes the co-
occurrence count of feature f and target t, whereas
Cf∗ denotes the total occurrence count of feature f ,
summed over all targets t′.

An unadjusted SNM model, where A(f, t) = 0,
is a linear mixture of simple feature models P (t|f)
with uniform mixture weights. The adjustment func-
tion enables the models to be weighted by the rela-
tive importance of each input feature and, because it
also parameterized by t, takes into account the cur-
rent target. The function is computed by a linear
model on binary meta-features (Lee et al., 2007):

A(f, t) = θ · h(f, t) (10)

where h(f, t) is the meta-feature vector extracted
from the feature-target pair (f, t).

Estimating weights θk on the meta-feature level
rather than the input feature level enables similar in-
put features to share weights which improves gener-
alization. We illustrate this by an example.

Given the word sequence the quick brown
fox, we extract the following elementary meta-
features from the 3-gram feature the quick
brown and the target fox:

• feature identity: [the quick brown]
• feature type: 3-gram
• feature count: Cf∗
• target identity: fox
• feature-target count: Cft

We also allow conjunctions of (single or multi-
ple) elementary meta-features to form more com-
plex meta-features. This explains the absence of the
feature-target identity (and others, see Appendix A)
in the above list: it is represented by the conjunc-
tion of the feature and target identities. The result-
ing meta-features enable the model to share weights
between, e.g. all 3-grams, all 3-grams that have tar-
get fox, etc. Although these conjunctions may in
theory override Cft/Cf∗ in Eq. (9), keeping the rel-
ative frequencies allows us to train the adjustment
function on part of the data (see also Section 3.4).

We apply smoothing to all of the count meta-
features: since count meta-features of the same order
of magnitude carry similar information, we group
them so they can share weights. We do this by
bucketing the count meta-features according to their
(floored) log2 value. As this effectively puts the
lowest count values, of which there are many, into
a different bucket, we optionally introduce a sec-
ond (ceilinged) bucket to assure smoother transi-
tions. Both buckets are then weighted according to
the log2 fraction lost by the corresponding rounding
operation. Pseudocode for meta-feature extraction
and count bucketing is presented in Appendix A.

To control memory usage, we employ a feature
hashing technique (Langford et al., 2007; Ganchev
and Dredze, 2008) where we store the meta-feature
weights in a flat hash table θ of predefined size.
Strings are fingerprinted (converted into a byte ar-
ray, then hashed), counts are hashed, and the result-
ing integer is mapped to an index in θ by taking its



value modulo the pre-defined size(θ). We do not
prevent collisions, which has the potentially unde-
sirable effect of tying together the weights of differ-
ent meta-features. However, as was previously ob-
served by Mikolov et al. (2011), when this happens
the most frequent meta-feature will dominate the fi-
nal value after training, which essentially boils down
to a form of pruning. Because of this, the model
performance does not strongly depend on the size
of the hash table. Note that we only apply hashing
to the meta-feature weights: the adjusted and raw
relative frequencies are stored as SSTables (Sorted
String Table).

3.3 Model estimation

Although it is in principle possible to use regularized
maximum likelihood to estimate the parameters of
the model, a gradient-based approach would end up
with parameter updates involving the gradient of the
log of Eq. (7) which works out to:

∂ logP (y|x)

∂A(f, t)
= xfMft

(
yt
ŷwk

− 1∑
t′∈V

ŷt′

)
(11)

For the complete derivation, see Appendix B. The
problem with this gradient is that we need to sum
over the entire vocabulary V in the denominator. In
Eq. (7) we could get away with this by precomput-
ing the row sums, but here the sums change after
each update. Instead, we were inspired by Xu et al.
(2011) and chose to use an independent binary pre-
dictor for each word in the vocabulary during esti-
mation. Our approach however differs from Xu et al.
(2011) in that we do not use |V| Bernoullis, but |V|
Poissons2, using the fact that for a large number of
trials a Bernoulli with small p is well approximated
by a Poisson with small λ.

If we consider each yt′ in y to be Poisson dis-
tributed with parameter ŷt′ , the conditional proba-
bility PPois(y|x) is given by:

PPois(y|x) =
∏
t′∈V

ŷ
yt′
t′ e
−ŷt′

yt′ !
=
∏
t′∈V

ŷ
yt′
t′ e
−ŷt′ (12)

2We originally chose Poisson so we could apply the model
to tasks with outputs yt > 1. More recent experiments using a
multinomial loss can be found in Chelba and Pereira (2016).

and the gradient of the log-probability works out to:

∂ logPPois(y|x)

∂A(f, t)
= xfMft

(
yt
ŷwk

− 1

)
(13)

For the complete derivation, see Appendix C.
The parameters θ of the adjustment function are

learned by maximizing the Poisson log-probability,
using stochastic gradient ascent. That is, for each
feature-target pair (f, t) we compute the gradient in
Eq. (13) and propagate it to the meta-feature weights
θk by multiplying it with ∂A(f, t)/∂θk = hk. At
the N th occurrence of feature-target pair (f, t), each
weight θk is updated using the propagated gradient,
weighted by a learning rate η:

θk,N ← θk,N−1 + η∂N (f, t) (14)

where ∂N (f, t) is a short-hand notation for the N th

gradient with respect to θk.
Rather than using a single fixed learning rate, we

use AdaGrad (Duchi, 2011) which uses a separate
adaptive learning rate ηk,N for each weight θk,N :

ηk,N =
γ√

∆0 +
∑N

n=1 ∂n(f, t)2
(15)

where γ is a constant scaling factor for all learn-
ing rates and ∆0 is an initial accumulator constant.
Basing the learning rate on historical information
tempers the effect of frequently occurring features
which keeps the weights small and as such acts as a
form of regularization.

3.4 Optimization and leave-one-out training

Each feature-target pair (f, t) constitutes a training
example where examples with yt = 0 are called
negative and others positive. Using the short-hand
notations T = |T |, F = |F| and V = |V|, this
means that the training data consists of approxi-
mately TF (V − 1) negative and only TF positive
training examples. If we examine the two terms
of Eq. (13) separately, we see that the first term
xfMft

yt
ŷwk

depends on yt which means it becomes
zero for all the negative training examples. The sec-
ond term −xfMft however does not depend on yt
and therefore never becomes zero. This also means
that the total gradient is never zero and because of



this, the vast amount of updates required for the neg-
ative examples makes the update algorithm compu-
tationally too expensive.

To speed up the algorithm we use a heuristic that
allows us to express the second term as a function
of yt, essentially redistributing the updates for the
numerous negative examples to the fewer positive
training examples. Appendix D shows that for batch
training this has the same effect if run over the entire
corpus. We note that for online training this is not
strictly correct, sinceMft changes after each update.
Nonetheless, we found this to yield good results as
well as seriously reducing the computational cost.
After applying the redistribution, the online gradient
that is applied to each training example becomes:

∂ logPPois(y|x)

∂A(f, t)
= xfytMft

(
1

ŷwk

−
Cf∗
Cft

)
(16)

which is non-zero only for positive training exam-
ples, hence making training independent of the size
of the vocabulary.

One practical way to further prevent overfitting
and adapt the model to a specific task is to use held-
out data, i.e. compute the count matrix C on the
training data and estimate the parameters θ on the
held-out data. Unfortunately, since the aggregated
gradients in Eq. (16) tie the updates to the counts
Cf∗ and Cft in the training data, they can’t differ-
entiate between held-out and training data, which
means that the meta-feature weights can’t be tuned
specifically to the held-out data. Experiments in
which we tried to use the held-out counts instead
did not yield good results, presumably because we
are violating the redistribution heuristic.

Rather than adding a regularizer on the meta-
feature weights, we instead opted for leave-one-out
training. With the notation A(f, t, Cf∗, Cft) reflect-
ing the dependence of the adjustment function on
feature and feature-target counts, the gradient under
leave-one-out training becomes:

xfyt

(
(

1

ŷ+wk

− 1)M+
ft −

Cf∗ − Cft

Cft
M−ft

)
(17)

where M−ft, M
+
ft and ŷ+wk

are defined as follows:

M−ft = eA(f,t,Cf∗−1,Cft)
Cft

Cf∗ − 1

M+
ft = eA(f,t,Cf∗−1,Cft−1)Cft − 1

Cf∗ − 1

ŷ+wk
= (xTM+)wk

The full derivation can be found in Appendix E.
We note that in practice, it often suffices to use
only a subset of the training examples for leave-one-
out training, which has the additional advantage of
speeding up training even further.

4 Complexity analysis

Besides their excellent results, RNNs have also been
shown to scale well with large amounts of data
with regards to memory and accuracy (Williams
et al., 2015). Compared to n-gram models which
grow huge very quickly with only modest improve-
ments, RNNs take up but a fraction of the memory
and exhibit a near linear reduction in log perplex-
ity with log training words. Moreover, a larger hid-
den layer can yield more improvements, whereas n-
gram models quickly suffer from data sparsity. The
problem with RNNs however is that they are compu-
tationally complex which makes training and evalua-
tion slow. A standard Elman network (Elman, 1990)
with hidden layer of size H trained on a corpus of
size T with vocabulary of size V has complexity

IT (H2 +HV ) (18)

where I indicates the number of iterations. Several
attempts have been made to reduce training time, fo-
cusing mostly on reducing the large factors T or V :

• vocabulary shortlisting (Schwenk and Gauvain,
2004)
• subsampling (Schwenk and Gauvain, 2005; Xu

et al., 2011)
• class-based (Goodman, 2001b; Morin and Ben-

gio, 2005; Mikolov et al., 2011)
• noise-contrastive estimation (Gutmann and

Hyvärinen, 2012; Chen et al., 2015)

However, these techniques either come with a se-
rious performance degradation (Le et al., 2013) or



do not sufficiently speed up training. The class-
based implementation for example, still has a train-
ing computational complexity of:

IT (H2 +HC + CVC) (19)

where C indicates the number of classes and VC the
variable amount of words in a class. Although this is
a significant reduction in complexity, the dominant
term ITH2 is still large. The same applies to noise-
contrastive estimation.

As was shown in Mikolov et al. (2011), a Max-
imum Entropy model can be regarded as a neural
network with direct connections for the features, i.e.
it has no hidden layers. The model uses the same
softmax activation at its output and its complexity
therefore also depends on the size of the vocabulary:

IT (F+V ) (20)

where F+ � F denotes the number of active fea-
tures. To achieve state-of-the-art results this model
is often combined with an RNN, which yields a total
complexity of:

IT (H2 +HV + F+V ) (21)

The computational complexity for training SNM
models on the other hand is independent of V :

TF+ + IT ′F+Θ+ (22)

where Θ+ is the number of meta-features for each
of the F+ input features. The first term is related
to counting features and feature-target pairs and
the second term to training the adjustment model
on a subset T ′ of the training data. If we com-
pare an SNMLM with typical values of F+ ≈ 100
and Θ+ < 40, to the RNNLM configurations with
H = 1024 in Chelba et al. (2014) and Williams et
al. (2015), we find that training comes at a reduced
complexity of at least two orders of magnitude.

A even more striking difference in complexity can
be seen at test time. Whereas the complexity of
a class-based RNN for a single test step is propor-
tional toH2+HC+CVC , testing SNMLMs is linear
in F+ because of the reasons outlined in Section 3.1.

5 Experiment 1: 1B Word Benchmark

Our first experimental setup used the One Billion
Word Benchmark3 made available by Chelba et al.
(2014). It consists of an English training and test
set of about 0.8 billion and 159658 tokens, respec-
tively. The vocabulary contains 793471 words and
was constructed by discarding all words with count
below 3. OOV words are mapped to an <UNK> to-
ken which is also part of the vocabulary. The OOV
rate of the test set is 0.28%. Sentence order is ran-
domized.

All of the described SNM models are initialized
with meta-feature weights θk = 0 which are up-
dated using AdaGrad with accumulator ∆0 = 1
and scaling factor γ = 0.02 over a single epoch of
30M training examples. The hash table for the meta-
features was limited to 200M entries as increasing it
yielded no significant improvements.

5.1 N-gram experiments
In the first set of experiments, we used all variable-
length n-gram features that appeared at least once in
the training data up to a given length. This yields
at most n active features: one for each m-gram of
length 0 ≤ m < n where m = 0 corresponds to an
empty feature which is always present and produces
the unigram distribution. The number of features is
smaller than n when the context is shorter than n−1
words (near sentence boundaries) and during evalua-
tion where an n-gram that did not occur in the train-
ing data is discarded.

When trained using these features, SNMLMs
come very close to n-gram models with interpo-
lated Kneser-Ney (KN) smoothing (Kneser and Ney,
1995), where no count cut-off was applied and the
discount does not change with the order of the
model. Table 1 shows that Katz smoothing (Katz,
1987) performs considerably worse than both SNM
and KN. KN and SNM are not very complementary
as linear interpolation with weights optimized on the
test data only yields an additional perplexity reduc-
tion of about 1%. The difference between KN and
SNM becomes smaller when we increase the size of
the context, going from 5% for 5-grams to 3% for
8-grams, which indicates that SNMLMs might be
better suited to a large number of features.

3http://www.statmt.org/lm-benchmark

http://www.statmt.org/lm-benchmark


n-gram order
Model 5 6 7 8
KN 67.6 64.3 63.2 62.9
Katz 79.9 80.5 82.2 83.5
SNM (proposed) 70.8 67.0 65.4 64.8
KN+SNM 66.5 63.0 61.7 61.4

Table 1: Perplexity results on the 1B Word Benchmark
for Kneser-Ney (KN), Katz and SNM n-gram models of
different order.

Model PPL
SNM5-skip (no n-grams) 69.8
+ n-grams = SNM5-skip 54.2
+ KN5 56.5
SNM5-skip + KN5 53.6

Table 2: Perplexity (PPL) results comparing two ways of
adding n-grams to a ‘pure’ skip-gram SNM model (no
n-grams): joint modeling (SNM5-skip) and linear inter-
polation with KN5.

5.2 Integrating skip-gram features

To incorporate skip-gram features, we can either
build a ‘pure’ skip-gram SNMLM that contains no
regular n-gram features (except for unigrams) and
interpolate this model with KN, or we can build a
single SNMLM that has both the regular n-gram fea-
tures and the skip-gram features. We compared the
two approaches by choosing skip-gram features that
can be considered the skip-equivalent of 5-grams,
i.e. they contain at most 4 context words. In particu-
lar, we configured the following feature extractors:

• 1 ≤ r ≤ 3; 1 ≤ s ≤ 3; 1 ≤ r + a ≤ 4
• 1 ≤ r ≤ 2; s ≥ 4 (tied); 1 ≤ r + a ≤ 4

We then built a model that uses both these features
and regular 5-grams (SNM5-skip), as well as one
that only uses the skip-gram features (SNM5-skip
(no n-grams)). In addition, both models were inter-
polated with a KN 5-gram model (KN5).

As can be seen from Table 2, it is better to incor-
porate all features into one single SNM model than
to interpolate with a KN 5-gram model (KN5). This
is not surprising as linear interpolation uses a fixed
weight for the evaluation of every word sequence,
whereas the SNM model applies a variable weight
that is dependent both on the context and the target

word. Finally, interpolating the all-in-one SNM5-
skip with KN5 yields almost no additional gain.

5.3 Skip-gram experiments
The best SNMLM results so far (SNM10-skip) were
achieved using 10-grams, together with skip-grams
defined by the following feature extractors:

• s = 1; 1 ≤ r + a ≤ 5
• r = 1; 1 ≤ s ≤ 10 (tied); 1 ≤ r + a ≤ 4

This mixture of rich (large context) short-distance
and shallow long-distance features enables the
model to achieve state-of-the-art results. Table 3
compares its perplexity to KN5 as well as to the fol-
lowing language models:

• Stupid Backoff LM (SBO) (Brants et al., 2007)
• Hierarchical Softmax Maximum Entropy LM

(HSME) (Goodman, 2001b; Morin and Ben-
gio, 2005)
• Recurrent Neural Network LM with Maximum

Entropy (RNNME) (Mikolov, 2012)

Describing these models however is beyond the
scope of this paper. Instead we refer the reader
to Chelba et al. (2014) for a detailed description.
The table also lists the number of model parame-
ters, which in the case of SNMLMs consist of the
non-zero entries and precomputed row sums of M.

When we compare the perplexity of SNM10-skip
with the state-of-the-art RNNLM with 1024 hidden
neurons (RNNME-1024), the difference is only 3%.
Moreover, this small advantage comes at the cost of
increased training and evaluation complexity. Inter-
estingly, when we interpolate the two models, we
have an additional gain of 20%, which shows that
SNM10-skip and RNNME-1024 are also comple-
mentary. As far as we know, the resulting perplex-
ity of 41.3 is already the best ever reported on this
corpus, beating the optimized combination of sev-
eral models, reported in Chelba et al. (2014) by 6%.
Finally, interpolation over all models shows that the
contribution of other models as well as the additional
perplexity reduction of 0.3 is negligible.

5.4 Runtime experiments
In this Section we present actual runtimes to give
some idea of how the theoretical complexity analy-
sis of Section 4 translates to a practical application.



Model Params PPL
KN5 1.76 B 67.6
SNM5 (proposed) 1.74 B 70.8
SBO 1.13 B 87.9
HSME 6 B 101.3
SNM5-skip (proposed) 62 B 54.2
SNM10-skip (proposed) 33 B 52.9
RNNME-256 20 B 58.2
RNNME-512 20 B 54.6
RNNME-1024 20 B 51.3
SNM10-skip + RNNME-1024 41.3
KN5 + SBO + RNNME-512 + RNNME-1024 43.8
ALL 41.0

Table 3: Number of parameters and perplexity (PPL) results on the 1B Word Benchmark for the proposed models,
compared to the models in Chelba et al. (2014).

More specifically, we compare the training runtime
(in machine hours) of the best SNM model to the
best RNN and n-gram models:

• KN5: 28 machine hours
• SNM5: 115 machine hours
• SNM10-skip: 487 machine hours
• RNNME-1024: 5760 machine hours

As these models were trained using different archi-
tectures (number of CPUs, type of distributed com-
puting, etc.), a runtime comparison is inherently
hard and we would therefore like to stress that these
numbers should be taken with a grain of salt. How-
ever, based on the order of magnitude we can clearly
conclude that SNM’s reduced training complexity
shown in Section 4 translates to a substantial reduc-
tion in training time compared to RNNs. Moreover,
the large difference between KN5 and SNM5 sug-
gests that our vanilla implementation can be further
improved to achieve even larger speed-ups.

6 Experiment 2: 44M Word Corpus

In addition to the experiments on the One Billion
Word Benchmark, we also conducted experiments
on a small subset of the LDC English Gigaword cor-
pus. This has the advantage that the experiments are
more easily reproducible and, since this corpus pre-
serves the original sentence order, it also allows us
to investigate SNM’s capabilities of modeling phe-
nomena that cross sentence boundaries.

The corpus is the one used in Tan et al. (2012),
which we acquired with the help of the authors
and is now available at http://www.esat.
kuleuven.be/psi/spraak/downloads/4.
It consists of a training set of 44M tokens, a
check set of 1.7M tokens and a test set of 13.7M
tokens. The vocabulary contains 56k words which
corresponds to an OOV rate of 0.89% and 1.98%
for the check and test set, respectively. OOV
words are mapped to an <UNK> token. The large
difference in OOV rate between the check and test
set is explained by the fact that the training data
and check data are from the same source (Agence
France-Presse), whereas the test data is drawn from
CNA (Central News Agency of Taiwan) which
seems to be out of domain relative to the training
data. This discrepancy also shows in the perplexity
results, presented in Table 4.

All of the described SNM models are initialized
with meta-feature weights θk = 0 which are up-
dated using AdaGrad with accumulator ∆0 = 1
and scaling factor γ = 0.02 over a single epoch of
10M training examples. The hash table for the meta-
features was limited to 10M entries as increasing it
yielded no significant improvements.

With regards to n-gram modeling, the results are
analogous to the 1B word experiment: SNM5 is
close to KN5; both outperform Katz5 by a large mar-

4In order to comply with the LDC license, the data was en-
crypted using a key derived from the original data.

http://www.esat.kuleuven.be/psi/spraak/downloads/
http://www.esat.kuleuven.be/psi/spraak/downloads/


gin. This is the case for the check set and the test set.
Tan et al. (2012) showed that by crossing sen-

tence boundaries, perplexities can be drastically re-
duced. Although they did not publish any results
on the check set, their mixture of n-gram, syntac-
tic language models and topic models achieved a
perplexity of 176 on the test set, a 23% relative re-
duction compared to KN5. A similar observation
was made for the SNM models by adding a feature
extractor (r, s, a) analogous to regular skip-grams,
but with s now denoting the number of skipped sen-
tence boundaries </S> instead of words. Adding
skip-</S> features with r + a = 4, 1 ≤ r ≤ 2
and 1 ≤ s ≤ 10, yielded an even larger reduction of
26% than the one reported by Tan et al. (2012). On
the check set we observed a 25% reduction.

The RNNME results are achieved with a setup
similar to the one in Chelba et al. (2014). The main
differences are related to the ME features (3-grams
only instead of 10-grams and bag-of-words features)
and the number of iterations over the training data
(20 epochs instead of 10). These choices are related
to the size of the training data. It can be seen from
Table 4 that the best RNNME model outperforms the
best SNM model by 13% on the check set. The out-
of-domain test set shows that due to its compactness,
RNNME is better suited for LM adaptation.

7 Conclusions and Future Work

We have presented SNM, a novel probability esti-
mation technique for language modeling that can ef-
ficiently incorporate arbitrary features. A first set
of empirical evaluations on two data sets shows that
SNM n-gram LMs perform almost as well as the
well-established KN models. When we add skip-
gram features, the models are able to match the
state-of-the-art RNNLMs on the One Billion Word
Benchmark (Chelba et al., 2014). Combining the
two modeling techniques yields the best known re-
sult on the benchmark which shows that the two
models are complementary.

On a smaller subset of the LDC English Gigaword
corpus, SNMLMs are able to exploit cross-sentence
dependencies and outperform a mixture of n-gram
models, syntactic language models and topic mod-
els. Although RNNLMs still outperform SNM by
13% on this corpus, a complexity analysis and mea-

PPL
Model check test
KN5 104.7 229.0
Katz5 124.1 292.6
SNM5 (proposed) 108.3 232.3
SLM - 279
n-gram/SLM - 243.0
n-gram/PLSA - 196.0
n-gram/SLM/PLSA - 176.0
SNM5-skip (proposed) 89.5 198.4
SNM10-skip (proposed) 87.5 195.3
SNM5-skip-</S> (proposed) 79.5 176.0
SNM10-skip-</S> (proposed) 78.4 174.0
RNNME-512 70.8 136.7
RNNME-1024 68.0 133.3

Table 4: Perplexity (PPL) results on the 44M corpus. On
the small check set, SNM outperforms a mixture of n-
gram, syntactic language models (SLM) and topic models
(PLSA), but RNNME performs best. The out-of-domain
test set shows that due to its compactness, RNNME is
better suited for LM adaptation.

sured runtimes show that the RNN comes at an in-
creased training and evaluation time.

We conclude that the computational advantages of
SNMLMs over both Maximum Entropy and RNN
estimation promise an approach that has large flexi-
bility in combining arbitrary features effectively and
yet scales gracefully to large amounts of data.

Future work includes exploring richer features
similar to Goodman (2001a), as well as richer meta-
features in the adjustment model. A comparison of
SNM models with Maximum Entropy at feature par-
ity is also planned. One additional idea was pointed
out to us by action editor Jason Eisner. Rather than
using one-hot target vectors which emphasizes fit,
it is possible to use low-dimensional word embed-
dings. This would most likely yield a smaller model
with improved generalization.
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Appendix A Meta-feature Extraction Pseudocode

// Meta-features are represented as tuples (hash value, weight).
// New meta-features are either added (metafeatures.Add(mf new)) or
// joint (metafeatures.Join(mf new)) with the existing meta-features.
// Strings are fingerprinted, counts are hashed.
function COMPUTE METAFEATURES(FeatureTargetPair pair)

// feature-related meta-features
metafeatures = {}
metafeatures.Add(Fingerprint(pair.feature identity), 1.0)
metafeatures.Add(Fingerprint(pair.feature type), 1.0)
log count = log(pair.feature count) / log(2)
bucket1 = floor(log count)
bucket2 = ceil(log count)
weight1 = bucket2 - log count
weight2 = log count - bucket1
metafeatures.Add(Hash(bucket1), weight1)
metafeatures.Add(Hash(bucket2), weight2)

// target-related meta-features
metafeatures.Join(Fingerprint(pair.target identity), 1.0)

// feature-target-related meta-features
log count = log(pair.feature target count) / log(2)
bucket1 = floor(log count)
bucket2 = ceil(log count)
weight1 = bucket2 - log count
weight2 = log count - bucket1
metafeatures.Join(Hash(bucket1), weight1)
metafeatures.Join(Hash(bucket2), weight2)

return metafeatures

Appendix B Multinomial Gradient

∂ logPmulti(y|x)
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Appendix C Poisson Gradient

∂ logPPois(y|x)
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Appendix D Distributing Negative Updates

Over the entire training set, adding Cf∗
Cft

Mft once on the target t that occurs with feature f amounts to the
same as traversing all targets t′ that co-occur with f in the training set and adding the term Mft to each:

Mft

∑
(f,t′)∈T

xf =
Cf∗
Cft

MftCft =
Cf∗
Cft

Mft

∑
(f,t′)∈T

xfyt′

Applying this to the second term of the Poisson gradient, we get:

∂ logPPois(y|x)

∂A(f, t)
= xfMft

yt
ŷwk

− xfMft = xfMft
yt
ŷwk

− xfytMft
Cf∗
Cft

= xfytMft
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1
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−
Cf∗
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)
Appendix E Leave-one-out Training

In leave-one-out training we exclude the event that generates the gradients from the counts used to compute
those gradients. More specifically, for each training example (f, t) we let:

Cf∗ ← Cf∗ − 1 if xf = 1

Cft ← Cft − 1 if xf = 1, yt = 1

which means that the gradients for the positive and the negative examples are changed in a different way.
Since Eq. (16) expresses the general update rule for both type of examples, we first have to separate it into
updates for negative and positive examples and then adapt accordingly.

In particular, the second term of Eq. (16), i.e. −xfytMft
Cf∗
Cft

is a distribution of Cf∗ − Cft negative and
Cft positive updates over Cft positive examples:

−xfytMft
Cf∗
Cft

= −xfytMft

(
Cf∗ − Cft

Cft
+
Cft

Cft

)
= −xfytMft

Cf∗ − Cft

Cft
− xfytMft

Furthermore, recall that the first term of Eq. (16), i.e. xfytMft

ŷwk
is non-zero only for positive examples, so

it can be added to the positive updates. We can then apply leave-one-out to positive and negative updates
separately, ending up with:

∂ logPPois(y|x)

∂A(f, t)
= xfyt

(
(

1

ŷ+wk

− 1)M+
ft −

Cf∗ − Cft

Cft
M−ft

)
where M−ft, M

+
ft and ŷ+wk

are defined as follows:

M−ft = eA(f,t,Cf∗−1,Cft)
Cft

Cf∗ − 1

M+
ft = eA(f,t,Cf∗−1,Cft−1)Cft − 1

Cf∗ − 1
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