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Abstract

Momentum conservation and self-forces reduction are challenges for all Particle-
In-Cell (PIC) codes using spatial discretization schemes which do not fulfill
the requirement of translational invariance of the grid Green’s function. We
comment here on the topic applied to the recently developed Multi-Level
Multi-Domain (MLMD) method. The MLMD is a semi-implicit method for
PIC plasma simulations. The multi-scale nature of plasma processes is ad-
dressed by using grids with different spatial resolutions in different parts of
the domain.
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1. Introduction

Momentum conservation and self-forces reduction are challenges for all
Particle-In-Cell (PIC) codes [1] relying on non-uniform grids. Examples of
such grids are the adaptive ones generated in PIC Adaptive Mesh Refine-
ment (AMR) codes [2, 3], where the grid spacing is dynamically adjusted,
and unstructured grids [4], where the connectivity is irregular.
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We recently introduced the Multi-Level Multi-Domain method, a semi-implicit [5]
method for plasma PIC simulations which breaks the total domain into mul-
tiple grids resolved with different temporal and spatial resolutions [6, 7, 8].
Multiple resolution levels allow one to address the many scales emerging in
plasma processes at a reduced computing cost. The Implicit Moment Method
(IMM) is used at all grid levels. With the IMM, very different temporal and
spatial resolutions can be used at the different grid refinement levels while
satisfying the stability constraints of the method. The execution times may
be tens of times lower than those of comparable uniform mesh simulations in
2D3V scenarios where high resolution jumps between the levels are used [9].
This note intends to clarify two basic points of the MLMD method. First, it
addresses the issue of momentum conservation and self- forces generation, a
fundamental challenge for adaptive methods. Second, it clarifies one of the
implementation choices of the method, i.e. the use of the specific projection
operator described in Eq. 32-33 of Innocenti et al. [6] and recapitulated in
Eq. 12 here. These two basic points are deeply related, as shown in this note.
In Section 2, the textbook derivation for the temporal variation of momen-

tum ∆P is recalled, albeit in a simplified electrostatic case. In Section 3, the
derivation is extended to the coarse and refined levels of a MLMD system.
Conclusions are then drawn.

2. Momentum conservation

In the continuum, the electrostatic problem is posed via the Poisson’s
equation

∇2φ = −4πρ, (1)

where φ is the electric potential and ρ the charge, subject to the boundary
conditions (BC) φ∂V = φ0.
It is possible to split the total potential φ of Eq. 1 into a contribution φin due
to the inner charges in absence of external forcing and a boundary condition
term φBC . The Poisson’s problem is then recast to{

∇2φin = −4πρ

φin
∂V = 0

(2)

and {
∇2φBC = 0

φBC
∂V = φ0.

(3)
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The electric field E is then provided by the gradient of the potential. Con-
veniently for the discussion of momentum conservation, this operation is
written as

E(x) = −∇φ = EBC(x) +

∫
G(x− x′)ρ(x′)dx′, (4)

where G(x− x′) = 4π∇G(x− x′) and G(x − x′) is the Green’s function for
the electric potential.
The total electric field is expressed as the sum of the boundary condition
term (EBC(x) = −∇φBC) and of the contribution from the internal charge.
The discretization to a grid reads

Eg = EBC
g + Ggg′qg′ , (5)

with qg′ = ρg′Vg′ . ρg′ is the density in the cell g′ and Vg′ is the cell volume.
Ggg′ is the discretization of G(x− x′) to the grid. A generic labeling of grid
points as g is used, regardless of the problem dimensionality. The standard
convention that repeated indices are summed is assumed.
The temporal variation in momentum ∆P follows by summing the velocity
contribution of each particle and using the expression for the electric field
given above:

∆P =
∑
p

mp∆up = ∆t
∑
p

Epqp. (6)

up is the particle velocity, mp the particle mass and ∆t the time step. The
electric field acting on a particle is given by Ep = WgpEg, where Wgp is
the interpolation function (Eq. 7 of Lapenta et al. [10]) from grid to particle
quantities (gp). Substituting Eq. 5 into Eq. 6, one gets for ∆P the expression

∆P = ∆tEBC
g Wgpqp + ∆tqpWgpGgg′qg′ . (7)

Particle density is accumulated to grid points as

qg = Wpgqp. (8)

Therefore, under the critical assumption that the same interpolation function
is used from grid to particle quantities and vice versa (Wgp = Wpg), Eq. 7
becomes

∆P = ∆tEBC
g Wgpqp + ∆tqgGgg′qg′ . (9)
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If the boundary condition term can be neglected, the remaining term is re-
sponsible for the generation of self-forces, i.e. the spurious forces that parti-
cles impart on themselves as a result of the discretization scheme used [11]. Bird-
sall and Langdon [12] remark that they go to zero under two conditions: if 1)
Wgp = Wpg, used earlier in the derivation, and if 2) the Green’s function for
the grid is translationally invariant, i.e. Ggg′ = −Gg′g, so that qgGgg′qg′ = 0.
Since these conditions are easily broken in non uniform grids, corrective ac-
tions are often required: Colella and Norgaard [13] introduce a new charge
deposition scheme to reduce self-forces close to the grid refinement bound-
aries of an AMR code, where they are stronger. Bettencourt [14] subtracts off
the self-forces caused by the particles at the various nodes of an unstructured
grid.
In the next section, we will try to understand how much momentum non-
conservation and self-forces generation affect the MLMD system and if cor-
rective actions need to be undertaken.

3. Momentum conservation in MLMD methods

In the definition of momentum conservation in the MLMD system, it is
considered that particles are simulated at all grid levels, the coarse and the
refined one. According to Eq. 9, particles experience self-forces as a result of
the interaction with the grid they live in. The analysis of momentum conser-
vation is therefore carried separately on the refined and on the coarse grid.
Eq. 9 is applied to the refined (∆Pl1) and to the coarse grid (∆Pl0). The ex-
tra terms appearing in ∆Pl0 as a result of grid interaction are then discussed
in depth. A simple MLMD system is examined: only two resolution levels, a
coarse (l0) and a refined (l1) level, are considered, with a refinement factor
RF between the two defined as RF = dxl0/dxl1. The same time step is used
on both levels, dtl0 = dtl1 = ∆t.
Before proceeding, it is useful to recall a difference between the MLMD
method in its current implementation and dynamically regridding methods,
i.e. methods where the grid frequently changes adaptively in response to local
conditions. In the latter cases, in presence of sharp gradients, a large per-
centage of the simulated domain may be bordering areas where the resolution
changes. Consequently, a large area of the simulation may need correction
for self-forces effects. In the current implementation of the MLMD method,
instead, regridding is not employed: the refined grid position and resolution
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are decided at the beginning of the simulation. Also, even if the refined grid
area may be large, the boundaries between the different resolution areas cover
a small fraction of the simulated domain. Fig. 1 depicts a sketch of a MLMD
system. In the case of the refined grid, the boundaries between the coarse
and the refined grid (in red) and the neighboring area (in orange) affect a
very small number of cells with respect to the total number of refined grid
cells simulated. The overlap area, i.e. the coarse grid area simulated with
both resolutions (light blue in Fig. 1), extends for a fraction 1/RF 2 of the
total domain. This is a very low number of coarse grid cells, especially if a
high RF is used. In the 2D3V magnetic reconnection simulations presented
in Beck et al. [7], Innocenti et al. [9], RF = 12 and RF = 14. In these two
cases, less than 1 % of the coarse grid area belongs to the overlap area. The
refined grid area superimposes to larger portions of the coarser grid when
different problems are simulated, see for example Innocenti et al. [6].
Both the grids are, by themselves, structured and translationally invariant.
On each grid, the same interpolation function is used to interpolate between
grid and particle quantities and vice versa. This is true also on the refined
grid: the particles at its boundaries are generated according to information
interpolated from coarse grid particles (Eq. 37 to 39 in [6]), but with a shape
function that matches the local grid size. Particle moments are interpolated
to the grid using the usual interpolation function having as support the local
cell size.

With these premises, Eq. 9 reduces to

∆Pl1 = ∆tEBC
g Wgp,l1qp. (10)

in the refined grid, where Wgp,l1 is the interpolation function having as sup-
port the refined grid cell size. Eq. 10 is equivalent to the level of spurious
forcing imparted in a single grid simulation by the application of boundary
conditions. Therefore, since the MLMD method does not affect momentum
conservation in the refined grid with respect to single level simulations, no
correction activities are put in place in the refined grid. In the coarse grid,
momentum conservation cannot be dismissed as easily due to the field projec-
tion operation (blue arrow in Fig. 1) which is undertaken for grid interlocking
purposes. After projection, the electric field EP,g on the coarse grid is:

EP,g = EBC
N,g + Ggg′qg′ + α℘g [−Ggg′qg′ + Pgl1→gl0(EN,gl1)] , (11)
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Figure 1: a sketch of a two level MLMD system. Grid interlocking operations (exchange
of field and particle boundary conditions and field projection) are highlighted by red and
blue arrows respectively. The areas potentially more severely affected by momentum non
conservation are marked in colors: the refined grid boundaries and the neighboring area
(red and orange) and the coarse grid overlap area (light blue).

Notice that, from now onwards (if not explicitly indicated), both the inter-
polation function and the discretized Green’s function are assumed relative
to the coarse grid, even if no labeling is used for the sake of readability. ℘g

is a coarse grid operator identifying the overlap area and defined as:

℘g =

∑
gl+1

Wgl

(
xgl − xgl+1

)
RFD

, (12)

where D is the spatial dimensionality of the grid. The operator ℘g has value
1 in the coarse grid (CG) nodes corresponding to the inner part of the refined
grid, 0 < ℘g < 1 in the CG nodes corresponding to the refined grid boundary
cells and 0 in the CG area simulated only with low resolution.
The first term in the right hand side (RHS) of Eq. 11 is the now usual
BC term (the notation N stands for native, i.e. calculated on the grid in
opposition to P , ”after projection” [6]). The second RHS term includes the
Green’s function on the entire coarse grid, i.e. the coarse grid contribution in
absence of feedback from the refined grid. The term in parenthesis accounts
for how the electric field is calculated in the overlap area. There, the electric
field solution is obtained by combining the ”native” coarse grid solution (first
term in parenthesis) and the refined grid solution ”projected” to the coarse
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grid through the projection operator Pgl1→gl0(EN,gl1) (Eq. (33) in [6]). We
focus on two particular cases. If α = 1 (”projection by substitution”), the
native electric field in the overlap area is completely substituted by the refined
grid solution. If α = 1/2 (”projection by average”), the refined and native
coarse grid fields are retained in equal parts.
Momentum variation on the coarse grid is then

∆Pl0 = ∆tEBC
N,gWgpqp + ∆tqgGgg′qg′+

α℘g∆t [−qgGgg′qg′ + Pgl1→gl0(EN,gl1)Wgpqp] ,
(13)

The second RHS term is equal to zero, because the entire coarse grid is
translationally invariant. The first term within parenthesis is however not,
since the summation over the grid points g is there restricted only to the
nodes where ℘g 6= 0. Notice, however, that the terms in parenthesis are op-
posite in sign and, presumably, close in absolute value, given the definition
of Pgl1→gl0(EN,gl1). A partial cancelation of the two is then expected. The
partial and not total cancellation is due to small inconsistencies in charge
distribution and in the electric fields across the levels, as discussed in Inno-
centi et al. [6], Sec. 6.3.
Also, the non conservation term may appear to be half in the case of pro-
jection by averaging with respect to projection by substitution. However,
the terms in parenthesis, even if formally equal, are not necessarily so when
α = 1 and α = 1/2. In fact, the field on the refined grid and the charge
on the coarse grid do not necessarily evolve exactly in the same way with
the two projection methods. It is thus necessary to compare the coarse grid
moment evolution in the two cases to satisfactorily evaluate if momentum
conservation really improves in the averaging case.
Fig. 2 shows the evolution in time of the coarse grid total momentum Pl0

normalized to the initial value Pl0,0 and calculated by summing all particle
contributions. Three 1D3V cases are shown: a reference simulation (red line)
of a Maxwellian plasma with no projection from the refined grid, a MLMD
simulation with α = 1/2 (green line, AVE), and a MLMD simulation with
α = 1 (blue line, SUB). In all the cases, the coarse grid BCs are periodic
for fields and particles (the first term of Eq. 13 goes to zero). The other
simulation parameters are identical and the same as the simulations shown
in Innocenti et al. [6], Sec. 6.1: mass ratio mi/me = 1836, thermal velocity
vth/c = 0.2, with c the speed of light, in all directions and for all species,
coarse grid length Lx,l0/de = 84, with de the electron skin depth, coarse
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grid resolution dxl0/de = 0.3, time step ωpe∆t = 0.15, with ωpe the electron
plasma frequency. A low RF = 4 is used between the coarse and the refined
grid. Notice that the choice of the 1D dimensionality and of a low RF makes
the test more challenging than in a 2D, high RF case, since the overlap area
covers an higher percentage of the total coarse grid domain.
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Figure 2: Time evolution of the total momentum Pl0 normalized to the initial value Pl0,0

for the coarse grid of Maxwellian plasma simulations with (red line) no coarse-refined grid
interaction, (green line) projection by averaging and (blue line) projection by substitution.
ωpe is the electron plasma frequency.

In the case of projection by averaging (AVE) the momentum evolves in
time rather similarly to the reference simulation (REF), with oscillation of
controlled amplitude around the same average value. In the case of projection
by substitution (SUB), instead, the oscillations are larger and the average
value is higher.
Projection by average is thus shown to grant a significantly better momentum
conservation than projection by substitution. As already for the refined grid,
it is shown that the MLMD system (when projection by average is used)
does not significantly degrade the level of momentum conservation in the
coarse grid with respect to single grid simulations. Therefore, no correction
activities are implemented in the coarse grid also.

4. Conclusions

We have analyzed the issue of momentum conservation and self-forces
generation in the MLMD system, where the domain is simulated with dif-
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ferent grid levels using different spatial resolutions. Notwithstanding the
presence of different resolution levels, all grids are translationally invariant
and the same interpolation function is used for particle to grid quantities and
vice versa. We show that, on the refined grid, non conservation of momen-
tum only arises from boundary conditions, in a way similar to ”standard”
single grid simulations. Other terms are instead present on the coarse grid
due to the field projection operations needed to ensure proper grid inter-
locking. There, however, satisfactory conservation of momentum is achieved,
even in absence of specific correction activities, if projection is done by aver-
aging of the refined and coarse grid electric field information rather than by
completely neglecting the electric filed calculated locally on the coarse grid.
Projection by averaging also has another advantage over projection by sub-
stitution: it allows the different grids a certain level of independent evolution.
This means that the coarse and refined grid can more easily adjust to small
scale processes accessible to the refined grid but not to the coarse. The sim-
ulation of processes at different scales (e.g.: ion scale processes on the coarse
grid, electron scale processes on the refined grid) is the main achievement of
the MLMD method, as shown in Beck et al. [7], Innocenti et al. [9]. Projec-
tion by average is fundamental in obtaining these results because it achieves
two goals: the coarse and the refined grid solution are coupled and the coarse
grid solution maintains a good level of momentum conservation. This result
will be controversial in the larger context of AMR-type (local refinement)
methods, which hold as a basic tenet that refined-grid solutions should be
considered more accurate and thus should be used whenever possible. Such
a philosophy presumes a strong preference for projection by substitution, in
order that the coarse-mesh solution sees the full effect of the higher-accuracy
fine-mesh solution. Our conclusions here are at odds with that philosophy
because projection by averaging tends to act to limit the influence of the
fine-mesh solution when considering momentum conservation.
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