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ABSTRACT
BACKGROUND: Neuroplastin cell recognition molecules have been implicated in synaptic plasticity. Polymorphisms
in the regulatory region of the human neuroplastin gene (NPTN) are correlated with cortical thickness and intellectual
abilities in adolescents and in individuals with schizophrenia.
METHODS: We characterized behavioral and functional changes in inducible conditional neuroplastin-deficient mice.
RESULTS: We demonstrate that neuroplastins are required for associative learning in conditioning paradigms, e.g.,
two-way active avoidance and fear conditioning. Retrograde amnesia of learned associative memories is elicited by
inducible neuron-specific ablation of Nptn gene expression in adult mice, which shows that neuroplastins are
indispensable for the availability of previously acquired associative memories. Using single-photon emission
computed tomography imaging in awake mice, we identified brain structures activated during memory recall.
Constitutive neuroplastin deficiency or Nptn gene ablation in adult mice causes substantial electrophysiologic
deficits such as reduced long-term potentiation. In addition, neuroplastin-deficient mice reveal profound physiologic
and behavioral deficits, some of which are related to depression and schizophrenia, which illustrate neuroplastin’s
essential functions.
CONCLUSIONS: Neuroplastins are essential for learning and memory. Retrograde amnesia after an associative
learning task can be induced by ablation of the neuroplastin gene. The inducible neuroplastin-deficient mouse model
provides a new and unique means to analyze the molecular and cellular mechanisms underlying retrograde amnesia
and memory.

Keywords: Associative memory, Knockout mouse model, Learning impairment, Neuroplastin, Retrograde amnesia,
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Learning and memory, in particular associative memories, deter-
mine successful interaction with the environment. Memory loss
(amnesia) characterizes dementias and other disorders of brain
function, e.g., posttraumatic stress disorder. Learning and
memory processes depend on synaptic architecture and plasti-
city. Cell adhesion molecules (CAMs) communicate extracellular
and intracellular events, and neuronal CAMs such as neuro-
plastins, neurexins, neuroligins, neural CAM, and L1 are involved
in synapse formation, modulation, and plasticity (1–4).

Neuroplastin isoforms (Np55 and Np65) are encoded by a
single gene. Polymorphisms in the regulatory region of the
human NPTN gene are correlated with cortical thickness and
intellectual abilities in adolescents (5) and individuals with
schizophrenia (6). Np55 shows widespread expression in
various organs and cell types, whereas Np65 is brain-specific
and restricted to neurons and undergoes trans-homophilic
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binding (1,7). Recombinant Np65- or Np65-specific antibodies
can block long-term potentiation (LTP) in the hippocampal CA1
and CA3 (1). Furthermore, kainate induced seizures or induction
of LTP increase Np65 in postsynaptic densities (1). Neuro-
plastins are binding partners of fibroblast growth factor recep-
tors (8) and gamma-aminobutyric acid type A (GABAA)
receptors (9). Np65 interacts with the GABAA receptor α2
subunit and neuroplastin-deficient neurons exhibit impaired
inhibitory transmission (9,10).

We generated inducible neuroplastin-deficient mice and
analyzed the dependence of learning and memory and syn-
aptic plasticity on neuroplastins. We show that neuroplastins
are required for associative learning and memory, LTP expres-
sion, and hormonal homeostasis. Furthermore, inducible
neuroplastin-deficient mice enabled us to elicit and investigate
molecular mechanisms of retrograde amnesia.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). 1
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METHODS AND MATERIALS

Statistical Analysis

Statview (SAS Institute, Inc., Cary, NC) and SPSS 19 (IBM
Corp., Armonk, NY) were used for analysis of variance, post
hoc analysis (Scheffé or Fisher’s protected least significant
difference), repeated-measures analysis of variance, and
t tests. p , .05 was considered significant.

Animals

Mice were kept with a 12-hour light/dark cycle and food and
water ad libitum. All procedures were in accordance with
institutional, state, and government regulations. For the gen-
eration of mutant mice see Supplemental Figures S1–S10,
Supplemental Tables S1 and S2, and Supplemental Methods.
Nptn1/– mice were backcrossed for more than 10 generations,
and Nptnlox/1 mice for more than five generations to C57BL/6-
Crl. Nptnlox/1 crossed with prion promoter CreERT mice (11)
were maintained by inbreeding Nptnlox/lox and Nptnlox/loxPr-
CreERT mice. CreERT was activated by daily intraperitoneal
injection of 200 mL tamoxifen (10 mg/mL medical oil, T 5648;
Sigma-Aldrich, St. Louis, MO) for 10 days.

Antibodies

Primary Antibodies. Polyclonal antisera against immuno-
globulin 1–3 and immunoglobulin 2–3 detecting Np65 and
Np55 are described (1). Purchased antibodies were rat poly-
clonal homer (Acris Antibodies GmbH, Herford, Germany);
rabbit polyclonal glucocorticoid receptor (Abcam, Cambridge,
United Kingdom); mouse monoclonal glucocorticoid receptor;
β-actin; glyceraldehyde 3-phosphate dehydrogenase (Santa
Cruz Biotechnology, Inc., Heidelberg, Germany); goat poly-
clonal Np65 isoform-specific; sheep polyclonal neuroplastin-
detecting Np65 and Np55 (R&D Systems, Minneapolis, MN);
mouse monoclonal microtubule-associated protein 2;
gephyrin; guinea pig polyclonal synapsin 1,2; vesicular GABA
transporter; rabbit polyclonal synaptophysin 1 (Synaptic Sys-
tems GmbH, Göttingen, Germany); and mouse monoclonal
pan-plasma membrane Ca21 adenosine triphosphatase
(PMCA) clone 5F10 (Abcam).

Secondary Antibodies. Secondary antibodies were anti-
mouse horseradish peroxidase (Dako Cytomation, Hamburg,
Germany) and Cy5, anti-rabbit and anti-goat horseradish perox-
idase and Cy5, anti-guinea pig Cy3 and Cy5, anti-sheep Cy3
(Jackson ImmunoResearch Laboratories, Inc., West Grove, PA),
anti-goat Alexa Fluor 568, anti-rat and anti-mouse Alexa Fluor 488
(Molecular Probes Life Technologies Corporation, Grand Island,
NY), and anti-rabbit Cy3 (Abcam).

Protein Analysis

Dissected organs were homogenized and analyzed by sodium
dodecyl sulfate polyacrylamide gel electrophoresis and western
blotting as described elsewhere (12). Protein concentrations
were determined by amido black assay. Representative western
blots were reproduced more than five times with different
animals and in different laboratories.
2 Biological Psychiatry ]]], 2016; ]:]]]–]]] www.sobp.org/journal
Immunofluorescent Staining

Anaesthetized animals were perfused with phosphate-buffered
saline (PBS) (pH 7.4) followed by 4% paraformaldehyde (10
mL/min, 10 minutes). Brains were postfixed in 4% parafor-
maldehyde (41C overnight), serially incubated with 0.5 and
1 mol/L saccharose, frozen in methyl butane, and stored
at –801C. Free-floating cryostat sections (20 and 40 μm) from
four or more animals per genotype were blocked with 5%
bovine serum albumin or 20% horse serum in PBS, incubated
with primary antibodies (0.3% Triton [Serva, Heidelberg,
Germany], 10% horse serum in PBS, 36–48 hours, 41C),
washed, probed with secondary antibodies, washed, and
mounted using Mowiol (Sigma-Aldrich, Taufkirchen, Germany)
or Vectarshield (Vector Laboratories, Burlingame, CA) with
40,6-diamidino-2-phenylindole. Stainings were reproduced in
three or more sections per animal.
Corticosterone Enzyme-Linked Immunosorbent
Assay

Corticosterone concentrations were determined using an
enzyme-linked immunosorbent assay kit (DEV9922; Demedi-
tec Diagnostics, Kiel, Germany) according to the manufac-
turer’s instructions.

Behavior

Sex- and age-matched littermate Nptn1/1 mice served as
controls for Nptn–/– and Nptn1/– mice, and Nptnlox/lox mice as
controls for NptnΔlox/loxPrCreERT mice. The experimenter was
not aware of the genotype. For initial characterization of Nptn–/–

and NptnΔlox/loxPrCreERT mice, the following tests were con-
ducted sequentially during the light phase: neurologic exami-
nation, grip strength, rotarod, open field, O-maze, light/dark
avoidance, water maze, shuttle box, and startle–prepulse
inhibition, as described elsewhere (13–17). Grip strength was
measured with a force sensor (TSE Systems GmbH, Bad
Homburg, Germany). The latency to fall off the rotarod (TSE
Systems GmbH) was determined in two training sessions (3-
hour interval) with increasing speed (4–40 rpm, 5 minutes) and
4 days later at 16, 24, 32, and 40 rpm constant speed. Open-
field (50 3 50-cm) exploration for 15 minutes was analyzed for
path length, speed, and time spent in the center and corners
and at the walls (VideoMot2 software; TSE Systems GmbH).
Mice were placed in an O-maze (San Diego Instruments, San
Diego, CA) for 5 minutes. Entries, time, speed, and distance in
closed or open areas were analyzed (VideoMot2). For light/
dark avoidance behavior, mice were placed in an illuminated
compartment (250 lux, 25 3 25 cm) adjacent to a dark
compartment (12.5 3 25 cm). Time spent within compart-
ments and transitions between them were analyzed for 10
minutes. Reduced latencies entering the dark at a later
exposure (on the last day of behavioral experiments) indicate
long-term memory (15). Spatial learning was assessed in the
hidden platform Morris water maze as described elsewhere
(13) using VideoMot2 and Wintrack software (http://www.
dpwolfer.ch/wintrack//index.html) (18). Associative learning
was assessed by two-way active avoidance in a two-
chambered shuttle-box (TSE Systems GmbH) with 10 seconds
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of light as conditioning (CS) and electrical foot shock as
unconditioned stimulus (5 seconds, 0.5 mA pulsed) delivered
after the CS (80 trials/day, 5–15 seconds of stochastically
varied intertrial intervals for 5 consecutive days). Compartment
changes during CS were counted as conditioned avoidance
reactions. The acoustic startle response to a stimulus (50 ms,
120 dB) and its inhibition by prepulses (PPI) (30 ms; 100 ms
before startle stimulus with eight different intensities, 73–94
dB, 3-dB increments, 70 dB white noise background) was
analyzed in a startle-box system (TSE Systems GmbH).
Habituation (3 minutes) was followed by two startle trials and
in pseudorandom order by 10 startle trials and five trials at
each prepulse intensity with stochastically varied intertrial
intervals (5–30 seconds). The maximal startle amplitude was
measured by a sensor platform. Fear conditioning was con-
ducted as described elsewhere (19) using distinct cohorts of
mice. Mice were conditioned in an operant chamber (San
Diego Instruments) by exploration (2 minutes) and auditory cue
presentation (15 seconds), followed by a foot shock (2
seconds, 1.5 mA unpulsed) with one repetition. Twenty-four
hours later, mice were placed in the training chamber (context,
5 minutes) and then returned to their home cage. One hour
later, mice were placed in a novel environment (3 minutes) and
then the auditory cue (CS) was presented (3 minutes). Freezing
behavior (immobility) was recorded during all sessions. For
memory tests after Nptn ablation, the procedure described for
the second day was conducted again at 4 and 10 weeks after
induction. Social interactions were analyzed by the three-
chamber test as described elsewhere (20). Briefly, during three
test phases (10 minutes each), the mouse could explore all
compartments. In phase 1, the mouse was alone. In phase 2,
an unfamiliar C57BL/6Crl mouse (same sex, stranger 1) was
placed in one of the wire cups. In phase 3, another unfamiliar
C57BL/6Crl mouse (same sex, stranger 2) was placed in the
other cup. Time spent in each compartment, time in contact
with strangers, and transitions between compartments were
recorded. The tail suspension test was performed as
described (21) with mice secured at the distal part of the tail.
Duration of active struggling behavior (mobility time) was
scored for 6 minutes, not considering passive limb or head
movements or swinging motion as active struggling.

Memory Assessment After Induced Nptn Ablation

Mice were trained in the water maze (5 consecutive days, 6 trails
per day, hidden platform, fixed position), the light/dark avoidance
paradigm, and the two-way active avoidance paradigm (80 trials
per day until they reached $75% performance). Then mice were
injected with tamoxifen for 10 days and were tested 8 weeks later
in the water maze (two trials), light/dark avoidance, and shuttle box
(80 trials). Mice analyzed by single-photon emission computed
tomography (SPECT) or for relearning were subjected only to the
two-way active avoidance paradigm.

Electrophysiology in the CA1 Region of Hippocampal
Slices

Preparation and methods applied were as detailed elsewhere
(22). Briefly, the right hippocampus of 3- to 5-month-old mice
(both sexes) killed by cervical dislocation was dissected out.
Transverse slices (400 mm) prepared from the dorsal area were
maintained at 32ºC continuously perfused with artificial cere-
brospinal fluid (ACSF) (2.2 mL/min, in mmol/L: NaCl, 124; KCl,
4.9; NaH2PO4, 1.2; NaHCO3, 25.6; CaCl2, 2; MgSO4, 2;
glucose, 10; saturated with 95% O2 and 5% CO2, pH 7.3–
7.4). A tungsten electrode was placed in the CA1 stratum
radiatum for stimulation. Evoked field excitatory postsynaptic
potentials (fEPSPs) were recorded with a glass electrode (filled
with ACSF, 3–7 MΩ). The descending slope of the fEPSP was
used as a measure of this potential. Stimulation strength,
adjusted eliciting a fEPSP slope of 35% of the maximum
(determined by input–output curves), was kept constant.
Paired-pulse facilitation was investigated applying two pulses
in rapid succession (interpulse intervals of 10, 20, 50, 100,
200, and 500 ms, respectively) at 120-second intervals. During
baseline recording, three single stimuli (0.1-ms pulse width;
10-second intervals) were measured every 5 minutes and
averaged. To induce strong LTP, theta-burst stimulation (10
bursts of four stimuli at 100 Hz, applied every 200 ms; pulse
width of 0.2 ms) was repeated three times every 10 minutes,
with evoked responses at 1, 4, and 7 minutes during the three
conditioning protocols. Thereafter, responses were recorded
every 5 minutes for 2 hours.

Postsynaptic currents from single CA1 pyramidal cells were
recorded in transverse vibratome slices (400 mm, Microm
HM650V; Thermo Scientific, Waltham, MA) from the medial
hippocampus placed for 90 minutes in an incubation chamber
containing ACSF and continuously perfused (95% O2/5%
CO2, room temperature). Whole-cell voltage clamp recordings
were performed at 32ºC (MultiClamp 700B patch-clamp
amplifier; Molecular Devices, Sunnyvale, CA). Data were
collected with pClamp software (Axon Instruments, Union
City, CA). Borosilicate glass recording electrodes were filled
with the following solution (in mmol/L): 135 CsMeSO4, 4 NaCl,
4 Mg–adenosine triphosphate, 0.5 ethylene glycol bis-2-
aminoethyl ether-N,N0,N″,n0-tetraacetic acid-Na, 0,3 Na–gua-
nosine triphosphate, 10 K–4-(2-hydroxyethyl)-1-piperazinee-
thanesulfonic acid, 5 QX-314; pH 7.3 (pipette resistance, 3–5
MΩ). Access resistance was 10–20 MΩ and then compen-
sated to 75%. If input resistance changed more than 25%, the
neuron was excluded.

Based on reversal potential, miniature excitatory postsynaptic
currents (mEPSCs) and miniature inhibitory postsynaptic currents
(mIPSCs) were mostly measured consecutively from the same
neurons (23–25). First, mEPSCs were recorded at the reversal
potential for GABAA receptor-mediated events (260 mV); then
mIPSCs were recorded at the reversal potential for glutamatergic
currents (110 mV) with tetrodotoxin (1 mmol/L) present. Blocking
mEPSCs by 20 mmol/L 6-cyano-7-nitroquinoxaline-2,3-dione and
10 mmol/L d-aminophosphonovalerate verified their glutamatergic
nature. The mIPSCs were blocked by 100 mmol/L picrotoxin. Data
were low-pass filtered at 2 kHz and acquired at 10 kHz using
Digidata 1440 and pClamp 10 software (Molecular Devices). The
mEPSCs and mIPSCs offline analysis used MiniAnalysis software
(version 6.0.7; Synaptosoft, Decatur, GA).

SPECT Imaging

We used SPECT imaging of regional cerebral blood flow for
in vivo mapping of spatial patterns of neuronal activity in the
brains of awake behaving mice (26). Catheters were placed into
Biological Psychiatry ]]], 2016; ]:]]]–]]] www.sobp.org/journal 3
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the right external jugular veins 2 days before experiments (26). In
the shuttle box, mice were injected during habituation (3 minutes)
with saline, followed by 99mTc-hexmethylpropyleneamineoxime
(99mTc-HMPAO) (250 mL, 25 mL/min) during the initial 10 minutes
of the paradigm consisting of 80 trials. The average injected dose
was 67.5 MBq of 99mTc at 250 mL per animal. After the shuttle
box experiment, animals were anesthetized and scanned with a
four-head NanoSPECT/CT scanner (Mediso, Hungary) as
described elsewhere (26). The SPECT images were recon-
structed at an isotropic voxel size of 338 mm using the
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manufacturer’s software (HiSPECT; SCIVIS, Göttingen, Germany)
and aligned with a high-resolution magnetic resonance mouse
brain data set (27,28) (MPI-Tool 6.36; Advanced Tomo Vision,
Kerpen, Germany). The SPECT brain data were cut out of the
SPECT data in Osirix (64-bit, version 5.7.1; Pixmeo SARL,
Bernex, Switzerland) using a whole-brain volume of interest
made from the template by Ma and colleagues (27,28). Brain
SPECT data were global mean normalized using MPI-Tool
software. In the voxelwise analysis, unpaired t tests were made
to compare brain tracer distribution in NptnΔlox/loxPrCreERT (n = 7)
Figure 1. Characterization of
Nptn–/– mice and impaired corti-
costerone regulation. (A) Wes-
tern blot of membrane fractions
(20 mg protein per lane) from
brains of wild-type (Nptn+/+),
Nptnlox/lox (lox), and Nptn–/– mice.
Polyclonal antibodies against
immunoglobulin domains 1–3
(left) or 2–3 (right) of neuroplastin
detecting the Np65 and Np55
isoforms were used. (B) Western
blot of membrane fractions (20
mg protein per lane) from brains
of NptnΔlox/loxPrCreERT (Cre) or
control Nptnlox/lox mice (NoCre)
4 and 8 weeks after induction by
tamoxifen probed with antibo-
dies against immunoglobulin
domains 2–3 of neuroplastin
and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) as
loading control. (C) Immunohis-
tochemistry for anti-microtubule-
associated protein 2 (antiMAP2)
(green) and 40,6-diamidino-2-
phenylindole (DAPI) (magenta)
(top row), anti-neuroplastins
(antiNP) (cyan) (middle row), or
anti-neuroplastin 65 isoform
(antiNP65) (red) (bottom row) in
the hippocampus of wild-type
(Nptn1/1), Nptn–/–, and NptnΔlox/
loxPrCreERT (Nptnlox/loxCre) or
control Nptnlox/lox mice (Nptnlox/
loxNoCre) 8 weeks after induc-
tion by tamoxifen. (D) Elevated
morning serum corticosterone
levels in neuroplastin-deficient
mice (Nptn-/-) compared with
wild-type (Nptn1/1) analyzed by
enzyme-linked immunosorbent
assay. (E) After a dexametha-
sone challenge (Dex), serum
corticosterone levels are higher
in male neuroplastin-deficient
(Nptn–/–) mice. All data are pre-
sented as means 6 SEM; all
p values are derived from
Scheffé post hoc test after one-
way analysis of variance (*p, .05;
**p , .01; ***p , .001).

antiNP65

antiNP

antiMAP2 
DAPI

**

ptnlox/loxCre

NoCre Cre
x/lox

ptn+/+ Dex 
(n=11)

Nptn-/- Dex 
(n=9)

8 weeks after induction

www.sobp.org/journal


Neuroplastin Is Essential for Learning and Memory
Biological
Psychiatry
versus Nptnlox/lox control mice (n = 9) using MagnAn software
(version 2.4; BioCom, Uttenreuth, Germany). Following common
procedures in small-animal radionuclide imaging (29–31), uncor-
rected p values were used. Results were illustrated using Osirix
and Photoshop (version CS4; Adobe Systems Software, San
Jose, CA).
RESULTS

Lox sites were introduced into the Nptn gene (Nptntmloxexon1lox

[Nptnlox]), allowing Cre-recombinase–mediated permanent or
inducible deletion of exon 1 encoding the start codon and the
signal sequence (Supplemental Figure S1). Constitutively
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neuroplastin-deficient mice (Nptn–/–) were generated by inter-
crossing heterozygous mice (Nptn1/–) obtained after germ line
excision of exon 1 (NptntmΔexon1) by a constitutively expressed
Cre-recombinase (32). In Nptn–/– mice, neuroplastins were
undetectable in the brain and other organs (Figure 1A, C,
Supplemental Table S1). Nptn–/– mice had a reduced life span
(Supplemental Figure S2), body size, and weight, and male-
specific incompetency to sire offspring (not shown). The gross
brain architecture was not affected and magnetic resonance
imaging morphometry showed normal anatomy of Nptn–/–

brains with no significant size abnormalities (Supplemental
Table S2, Supplemental Figure S3). Several endocrinologic
factors, e.g., blood glucose levels, insulin regulation, and
Figure 2. Behavioral deficits in
Nptn–/– mice. (A) Increased preference
for the center of an open field by
Nptn–/– mice compared with wild-type
(Nptn+/+) mice. (B) Reduced active
mobility time during the tail suspen-
sion test of male Nptn–/– mice. (C, D)
Impaired social interaction of Nptn–/–

mice in three-chamber assays. (C)
Social novelty recognition (interaction
with novel wild-type mouse of the
same sex vs. familiarized wild-type
mouse of the same sex). (D) Activity
in the compartment of the strange
mouse. (E) Reduced magnitude of
the startle response of heterozygous
(Nptn1/–) and Nptn–/– mice. (F) Inhibi-
tion of the startle response by pre-
pulses (PPI) with the given intensity as
percentage of the startle response for
Nptn1/1, Nptn1/–, and Nptn–/– mice
(one-way ANOVA for all prepulse
intensities: p , .001). (G) Reduced
context memory (% freezing time
shock minus neutral context) after fear
conditioning in Nptn–/– mice. All data
are presented as means 6 SEM; all p
values are derived from Scheffé post
hoc test after one- or two-way analy-
sis of variance (*p , .05; **p , .01;
***p , .001).
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thyroid (T3 and T4) and growth hormone levels were normal
(Supplemental Figure S4). However, Nptn–/– mice had altered
hypothalamic-pituitary-adrenal (HPA) axis correlates, namely
elevated corticosterone levels, both basal and after a dex-
amethasone suppression test (Figure 1D, E) and decreased
corticotropin-releasing hormone messenger RNA and gluco-
corticoid receptor levels in brain (Supplemental Figure S4).

Depression is associated with high cortisol levels, the analog
of mouse corticosterone, and HPA axis dysregulation (33).
Therefore, we tested Nptn–/– mice for core features of
depression-related behavior including stress resilience, anxiety,
social interaction, motivation, and despair. Nptn–/– mice displayed
less anxious behavior in open-field (Figure 2A, Table 1) and light/
dark avoidance tests (Supplemental Figure S5D) and higher
preference for a familiarized over an unfamiliar mouse, which
indicated altered social interactions (Figure 2C, D). Although male
Nptn–/– mice did not exhibit consummatory anhedonia in the
sucrose preference test (not shown), lack of motivation in the
alternating T maze (not shown) and higher immobility in the tail
suspension test indicated depressive-like behavior (Figure 2B).

While fundamental functions of the nervous system, e.g.,
reflexes and sensory abilities, appeared normal, neurologic
deficits were apparent in specific tests including reduced
motoric capabilities (grip strength and rotarod) (Supplemental
Figure S5C, D) and aberrant swimming behavior (diving) in the
Morris water maze. Furthermore, sensorimotor gating as
examined by the startle response and its PPI (Figure 2E, F),
associative learning as analyzed by fear conditioning
(Figure 2G), and active avoidance learning (Figure 3A) revealed
evident cognitive deficits in Nptn–/– mice.

These cognitive deficits suggested important roles of neuro-
plastins in learning and memory. To differentiate developmen-
tal from mature neuronal functions, we ablated neuronal
neuroplastin expression in adult Nptnlox/lox mice by activating
prion promoter-driven CreERT recombinase (11) with tamoxifen
Table 1. Behavior of Nptn–/– and NptnΔlox/loxPrCreERT Mice

Test Nptn–/–

Grip Strength Nptn–/– reduced (Supplemental Figure
S5A)

Not differe

Rotarod Nptn–/– reduced (Supplemental Figure
S5B)

NptnΔlox/lox

Figure S

Open Field Nptn–/– more in center (Figure 2A) Not differe

O Maze Not different (Supplemental Figure S5C) Not differe

Light/Dark Avoidance Nptn–/– more transitions, more time in
light (Supplemental Figure S5D)

Not differe

Light/Dark Avoidance
Memory

Not different (Supplemental Figure S5D) Not differe

Shuttle Box Two-Way
Active Avoidance

Nptn–/–, do not acquire task (Figure 3A) NptnΔlox/lox

Startle Response and
Prepulse Inhibition (PPI)

Nptn–/– reduced startle response,
reduced PPI (Figure 2E, F)

Startle not
reduced

Fear Conditioning Nptn–/– reduced context memory
(Figure 2G)

Social Interaction Nptn–/– less time, novel/familiar, and
distance (Figure 2C, D)

Not differe

Tail Suspension Nptn–/– less active mobility (Figure 2B)
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(NptnΔlox/loxPrCreERT). Immunoblot analysis showed about 65%
reduced neuroplastin levels in the brain 4 weeks after induc-
tion, which further decreased to just detectable levels after 2
months (Figure 1B). When the behavior of NptnΔlox/loxPrCreERT

mice was analyzed more than 4 weeks after induction, their
performance was similar to that of control mice without Cre
with respect to grip strength, social interaction, motor abilities,
and startle response (Supplemental Figure S6, Table 1). How-
ever, PPI of the startle response was slightly affected
(Supplemental Figure S6E). Significantly reduced startle
response and PPI in heterozygous Nptn1/– mice (Figure 2E,
F) indicated that 50% of less of neuroplastin expression, either
throughout life or after ablation in adulthood, affects PPI, a
candidate endophenotype of schizophrenia.

Strikingly, associative learning in the shuttle box was abolished
in induced NptnΔlox/loxPrCreERT mice (Figure 3B). Investigating
information acquisition, retention, access, and retrieval of memo-
ries, we first trained Nptnlox/loxPrCreERT mice in the shuttle box to
high performance (greater than 75% correct responses) before
inducing gene ablation. Two months after induction (Figure 3C),
tamoxifen-treated control mice (Nptnlox/lox without Cre-recombi-
nase) retained more than 50% of their previous performance,
whereas NptnΔlox/loxPrCreERT mice induced after training performed
as poorly as did naive mice, displaying complete retrograde
amnesia. Like naive induced NptnΔlox/loxPrCreERT mice, the amnes-
tic mice could not relearn the association even after extensive
training (Figure 3D). These results demonstrate that neuroplastins
are essential for learning and retention, and/or the retrieval of
associative memories. Similar results were obtained using white
noise instead of light as the conditioning stimulus (not shown),
which showed stimulus modality independence of the retrograde
amnesia. Furthermore, Nptn–/– mice displayed deficits in the
context memory after fear conditioning (Figure 2G), which sug-
gests that associative learning and memory are impaired task-
independently. In agreement with these findings, Nptnlox/loxPrCreERT
NptnΔlox/loxPrCreERT

Ablation Before Tests
NptnΔlox/loxPrCreERT

Ablation After Training

nt (Supplemental Figure S6A)

PrCreERT slightly improved (Supplemental
6B)

nt (not shown)

nt (not shown)

nt (not shown)

nt (not shown) Not different (Supplemental
Figure S7C)

PrCreERT, do not acquire task (Figure 3B) NptnΔlox/loxPrCreERT, retrograde
amnesia (Figure 3C, D)

different, NptnΔlox/loxPrCreERT, slightly
PPI (Supplemental Figure S6D, E)

NptnΔlox/loxPrCreERT reduced
context memory (Figure 3E, F)

nt (Supplemental Figure S6C)
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mice that are conditioned to fear before induction displayed
significantly less context memory 4 weeks after induction
(Figure 3E) but similar tone memory (Figure 3F) compared with
control mice. The same Nptnlox/loxPrCreERT animals trained in the
shuttle box had been trained in water maze and light/dark-
avoidance paradigms before induction. Interestingly, neuroplastin
ablation did not affect water maze performance or memory for the
dark compartment (Supplemental Figure S7), which demonstrated
the specificity of retrograde amnesia for associative memories.
Loss of memory retrieval capabilities might be associated with
alterations in activity patterns of relevant brain regions. Therefore,
we traced regional cerebral blood flow during memory recall in the
shuttle box by 99mTc-HMPAO infusion and analyzed it by SPECT
(26). Trained to 75% or greater correct responses before induc-
tion, at 8 weeks after induction NptnΔlox/loxPrCreERT and Nptnlox/lox

mice showed different activation patterns in the shuttle box
(Figure 3G, H). As a key finding, 99mTc uptake in the right primary
visual cortex of induced NptnΔlox/loxPrCreERT mice, compared with
Nptnlox/lox control mice, was significantly increased (p, .001). This
difference argues for an increased workload in processing of the
visual stimulus in the induced NptnΔlox/loxPrCreERT mice and might
reflect an increase in task difficulty for these mice and/or differ-
ences in familiarity with the stimulus.

In Nptn–/– mice, we previously observed about 30% less
excitatory synapses in the hippocampal CA1 region and the
dentate gyrus, areas with highest Np65 levels in wild-type mice,
whereas in CA3, which normally expresses less Np65, the
number of synapses was unaltered (10). Ultrastructurally, no
obvious abnormalities of synapses are observed in the hippo-
campal CA1 region of Nptn–/– mice (Supplemental Figures S8
and S9). Furthermore, the number of GABAergic synapses is not
affected by constitutive loss of neuroplastins (Supplemental
Figure S10). Therefore, part of the complex phenotype of
Nptn–/– mice may result from disbalance of excitatory gluta-
matergic and inhibitory GABAergic synapses. Two months
after inducible ablation of neuroplastin expression in adult
NptnΔlox/loxPrCreERT mice, we observed a slight increase in
inhibitory CA1 synapses but no loss or disassembly of excita-
tory synapses after establishment of neuronal connectivity
(Supplemental Figure S10).

Interestingly, we detected significantly reduced amounts
of PMCAs in both Nptn–/– and NptnΔlox/loxPrCreERT mice
Figure 3. Inducible reduction of neuroplastin disrupts associative learning and me
(Nptn1/1, n 5 13, black) and Nptn–/– (n 5 14, blue) mice analyzed in a shuttle box
Nptnlox/lox (n 5 9, black) or NptnΔlox/loxPrCreERT (n 5 11, blue) mice 8 weeks after tamo
(n 5 5, black) were trained for two-way active avoidance to 75% or greater correct
later. (D) Nptnlox/lox mice with prion CreERT (n 5 8, blue) or without Cre (n 5 6, black
and then induced with tamoxifen for 10 days, and retrained 2 months later. (E, F) Np
induction with tamoxifen were subjected to fear conditioning and analyzed for cont
days. At 4 and 10 weeks after onset of induction, context and tone memories were
derived from Scheffé post hoc test after one- or two-way analysis of variance (*p ,

mice were trained before induction to more than 75% correct responses to the light s
with tamoxifen for 10 days and retested 8 weeks later under intravenous injection with
the shuttle box. Single-photon emission computed tomography/computed tomograp
data set, and in voxelwise analysis unpaired t tests were made to compare brain tra
with Nptnlox/lox control mice increased significantly (p , .0001) in the right primary vi
cortex, left basolateral amygdala, right lateral posterior nucleus of the thalamus/do
decreased in the left motor cortex, ventromedial hypothalamus, and right ventral hipp
(20 mg protein per lane) from brains of wild-type (Nptn+/+), Nptn–/–, Nptnlox/lox (lox), an
plasma membrane Ca21 adenosine triphosphatases. As a control for equal loading, t
is indicated on the left.
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(Figure 3I). Because PMCAs restore normal Ca21 levels after
neuronal activation (34), fewer PMCAs may result in altered
Ca21 homeostasis and distribution in intracellular stores.
Indeed, extrusion of calcium is an effective regulator of
synaptic plasticity in neurons (35).

In the hippocampus of Nptn–/– mice, basal synaptic trans-
mission evaluated by fEPSPs was normal (Figure 4A). Analysis
of short-term plasticity revealed significantly increased paired-
pulse facilitation in Nptn–/– synapses at longer interpulse
intervals between 50 and 500 ms (Figure 4B). In agreement
with a reduced excitatory–inhibitory ratio resulting from fewer
glutamatergic synapses, LTP was impaired in Nptn–/– mice
(Figure 4C) and mEPSC amplitudes were reduced (Figure 4D).
The mEPSC frequencies showed a similar reduction; however,
they did not reach the level of significance owing to a higher
variance. No differences were found in mIPSCs (Figure 4E).

To differentiate developmental from mature neuroplastin
functions, we measured the same parameters after Nptn
ablation in adult NptnΔlox/loxPrCreERT mice (Figure 4F–J). Basal
synaptic transmission was normal (Figure 4F), but short-term
plasticity was significantly reduced at short interpulse intervals
between 10 and 50 ms (Figure 4G), which indicated affected
GABAergic inhibition and presynaptic functions. As for Nptn–/–

mice, LTP was significantly impaired (Figure 4H) and mEPSC
amplitudes and frequencies were reduced in NptnΔlox/loxPr-
CreERT mice, indicating presynaptic and postsynaptic changes
(Figure 4I). The resulting reduced charge transfer per time and
potential seems to be partially compensated by the slower
decay and broader half-width of mEPSCs in NptnΔlox/loxPr-
CreERT mice. Strikingly, mIPSCs showed similar changes, i.e.,
reduced amplitudes and frequencies but delayed decay and
increased half-width (Figure 4J). Neuroplastin ablation in
mature animals resulted in pronounced differences. For most
parameters a similar tendency, although weaker and mostly
not statistically significant, was observed in Nptn–/– mice. This
is most likely explained by interference with developmental
processes in Nptn–/– mice.
DISCUSSION

Constitutive Nptn–/– mice reveal essential functions of neuro-
plastins associated with pleiotropic effects on the animal.
mory with retrograde amnesia. (A) Two-way active avoidance learning of wild-type
with light as the conditioning stimulus. (B) Two-way active avoidance learning of
xifen induction. (C) Nptnlox/lox mice with prion CreERT (n 5 7, blue) or without Cre
responses and then induced with tamoxifen for 10 days, and retested 2 months
) were trained for two-way active avoidance to more than 75% correct responses
tnlox/lox mice with prion CreERT (n 5 8, blue) or without Cre (n 5 7, black) before
ext (E) and tone (F) memories (before). Then, tamoxifen was administered for 10
analyzed again. (A–F) All data are presented as means 6 SEM; all p values are
.05; **p , .01; ***p , .001). (G, H) Nptnlox/loxPrCreERT (n 5 7) and Nptnlox/lox (n 5 9)
timulus in the two-way active avoidance paradigm. Then these mice were induced
99mTc-hexmethylpropyleneamineoxime during 10 minutes of ongoing behavior in
hy images were aligned with a high-resolution magnetic resonance mouse brain
cer distribution. 99mTc brain uptake in induced NptnΔlox/loxPrCreERT mice compared
sual cortex, anterior olfactory nucleus, lateral septum, left primary somatosensory
rsal lateral geniculate nucleus, and right pedunculopontine tegmental areas, and
ocampus/amygdalo-hippocampal regions. (I) Western blot of membrane fractions
d NptnΔlox/loxPrCreERT (Cre) mice using polyclonal antibodies detecting all forms of
he blot was probed for actin (asterisk). Molecular mass (kDa) of protein standards
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Reduced life span, corticosterone elevation, disregulation of
the HPA axis, male infertility, less anxious behavior, motiva-
tional deficits, altered social interaction, increased despair-like
behavior, and learning deficits displayed by Nptn–/– mice are
potentially related to psychopathologic conditions such as
depression, autism, and affective disorders. The role of CAMs
in mediating chronic stress-induced signaling, for example, a
contribution of neural CAM and L1 in cognitive impairment
resulting from stress, has been discussed (36). However, CAM
deficiency resulting in chronically elevated corticosterone
levels and impaired feedback inhibition of the HPA axis has
not been reported. Nptn–/– mice display a disturbed balance
between excitatory and inhibitory synaptic transmission. Sim-
ilar imbalances have been implicated in stress-related pathol-
ogies including forms of major depression, chronic anxiety,
and posttraumatic stress disorder (37–40). Np65 interacts with
GABAA receptor subunit α2 and Nptn–/– neurons exhibit
impaired inhibitory transmission (9,10). Altered expression of
GABAA receptor subunits has been linked to depression,
mood disorders, and schizophrenia (41). Here, we show that
diminished neuroplastin expression (about 50% or less)
throughout life or after loss in the adult affects PPI of the
acoustic startle response, the candidate endophenotype of
schizophrenia. Interestingly, a neuroplastin promoter mutation
has been associated with schizophrenia (6). In addition, high
glucocorticoid levels and/or other components of the stress
response increase the risk of developing this disorder (42).

Our previous work confirmed that the differential expression
of neuroplastins in the hippocampus could confer circuit
specificity (10). Furthermore, neuroplastins exert multiple
effects on glutamatergic and GABAergic synapses, resulting
in altered electrophysiologic properties of inhibitory and
excitatory synapses in Nptn–/– and NPTNΔlox/loxPrCreERT, mice
as demonstrated by whole-cell recordings of hippocampal
CA1 neurons in this study. Inducible neuron-specific loss of
neuroplastins, unlike the constitutive deficiency, did not affect
the number of glutamatergic synapses, but both result in
electrophysiologic deficits. This indicates that neuroplastins
directly affect synaptic transmission that is distinguishable
from developmental functions. Thus, neuroplastin deficiency
may be regarded as a synaptopathy, a term recently coined for
diseases and syndromes caused by synaptic malfunctions
including some forms of autism and schizophrenia (43).
Figure 4. Synaptic transmission and short-term and long-term synaptic plast
synaptic transmission (evoked field excitatory postsynaptic potentials [fEPSP]) d
(filled circles, n 5 7). (B) Short-term plasticity as evaluated by paired-pulse facilit
(filled bars, n 5 6) compared with wild-type mice (Nptn1/1, open bars, n 5 7) (e
variance [ANOVA]). (C) Long-term potentiation induced by triple theta burst
mice (p 5 .017, repeated-measures ANOVA). (D) Nptn–/– mice displayed a signific
(n 5 10 per genotype; p 5 .029, t test) and a similar trend in mEPSC frequenc
mEPSC and miniature inhibitory postsynaptic currents (mIPSCs) were not chang
synaptic transmission (fEPSPs) was virtually the same in NptnΔlox/loxPrCreERT mice
(G) Paired-pulse facilitation in NptnΔlox/loxPrCreERT (Cre, blue bars) was significantly
F1,24 5 4.383; p 5 .047, repeated-measures ANOVA). (H) Long-term potentiation
(F1,13 5 7.084; p 5 .0196, repeated-measures ANOVA). (I) In NptnΔlox/loxPrCreER

significantly reduced compared with Nptnlox/lox (NoCre, black bars, n 5 9) (ampl
charge transfer per time and potential seemed to be partially compensated by a
(tau: p 5 .0430; half-width: p 5 .0461, Welch test). (J) Strikingly, similar respons
and frequencies for NptnΔlox/loxPrCreERT (Cre, blue bars, n 5 9) compared with Nptn
Welch test), but delayed decay and increased mIPSC half-width (tau: p 5 .0370
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Neuroplastin deficiency, both constitutive and induced,
affects specifically associative learning and memory, e.g.,
acquisition and retention or retrieval of learned associations,
but does not impair all forms of memory. Retrograde amnesia
after ablation of neuroplastins was consistently observed
specifically for associative memory in the active avoidance
and fear conditioning paradigms, but spared other memories.
Our data suggest that circuits with highest neuroplastin
expression, e.g., involved in nonspatial (associative) memo-
ries, are more strongly affected by ablation than are circuits
with lower expression, e.g., involved in spatial memories (44),
thus altering information processing affecting association-
related but not all forms of memory.

Retrograde amnesia of an associative learning task after
induced ablation of the neuroplastin gene is a remarkable
phenotype not yet reported for any other gene. Although
amnesia is a central pathologic trait common to various
psychopathologic disorders, the underlying molecular mech-
anisms are still unknown. The inducible neuroplastin-deficient
mouse model clearly singles out one neuronal protein as
indispensable for recalling a previously learned associative
task. To date, we cannot distinguish retrograde amnesia
caused by loss of the memory trace (retention/storage deficit)
or the inability to access the memory (retrieval deficit). Hence,
brain region or neuron type–specific inactivation of neuro-
plastin may identify specific loci for associative memories and
disentangle molecular mechanisms underlying amnesia. Our
data identify neuroplastins as a novel therapeutic target for
memory modulation after traumatic experiences and in post-
traumatic stress disorder.
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