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ABSTRACT
In this study we present a combination of time-series anal-
ysis tools and a machine learning algorithm (Gaussian Pro-
cess classifier) for the task of predicting the time frame in
which the minimal clinical conditions of stability to start
weaning of mechanical ventilation are reached. We per-
form a retrospective analysis of clinical data obtained from
a Patient Data Management System of 103 elective coro-
nary bypass surgery patients. Four hours of ICU data of 14
physiological variables, was used as input for five different
time-series analysis models. A Gaussian Process Classifier,
with the parameters of the calculated models as inputs, as-
signed to each patient a probability of belonging to the de-
fined classes for clinical stability: within the first 8 hours,
between 8 and 16 hours, between 16 and 24 hours, and after
24 hours. Including parameters of different types of time-
series models as a representation of the time-varying sig-
nals, we incorporate knowledge of the dynamical behaviour
of the patients. As a result we obtained aROCs above the
medical requirements of 0.8 for some of the classes and
above 0.7 for all classes. The use of the dynamics captured
by the model representations led to increased performance
in further ahead predictions.
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1. Introduction

In cardiac surgery, optimal use of intensive care unit (ICU)
and operating room (OR) capacity requires the prediction
of future availability of ICU beds. On the level of the
management of the department, a number of beds are re-

served for cardiac surgery patients. Each of these patients
needs intensive care for at least a few hours immediately
after surgery. Sometimes the clinical condition of these
patients necessitates a longer stay in the ICU of multiple
days, weeks or even months. It is clear that these patients
occupy a large portion of the available ICU capacity. Be-
fore a patient can be discharged from the ICU, he has to
be weaned off the mechanical ventilation. If they are still
ventilated, they cannot be sent to a normal ward, the bed
does not become available and the surgeon cannot operate
on new patients. So in order to manage the planning of
the intensive care unit and the operating theatre, it would
be of use to have a system that provides an early alert if
there is a high probability that a patient will or will not
be disconnected from ventilation during the next day. The
respiratory weaning protocol in the studied ICU defines the
following minimal conditions, before the sedative drugs ad-
ministered to the patients can be stopped: hemodynamic
and respiratory stability, absence of bleeding and normoth-
ermia. Many cardiac intensivists experience that the trends
of the vital parameters during the first hours of ICU stay
may be just as important as age, comorbidities and type and
duration of surgery to predict a short or prolonged length of
stay from early on. The health status of every critically ill
patient varies with time. Time-series models can capture
the dynamics of different physiological variables describ-
ing the evolution of an individual patients state. Machine
learning algorithms on the other hand can analyse data from
a collection of patients and can be trained to make predic-
tions on new previously unseen patients. Here we combine
the advantages of both approaches for the selected predic-
tion task, where the input data for the machine learning al-
gorithm is obtained from the time-series model representa-
tions of the patients state. Including parameters of different
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types of time-series models as a representation of the time-
varying signals, we incorporate knowledge of the dynami-
cal behaviour of the patients, which we show leads to better
predictive performances. The objective of this preliminary
study is to test whether time-series analysis tools, com-
bined with a machine learning algorithm (Gaussian Pro-
cesses Classifier), allow the prediction of the timeframe in
which the minimal clinical conditions to start weaning of
the mechanical ventilation are reached, based on standard
measured clinical variables in the first hours after ICU ad-
mission.

2. Materials and Methods

2.1 Data Generation

An ICU is a very data rich environment. Patients are con-
nected to patient monitors, gathering and displaying physi-
ological measurements such as heart rate, blood pressures,
temperature, cardiac output, etc. Therapeutic devices such
as the patient’s mechanical ventilator, or infusion pumps
used to administer drugs and intravenous fluids, are also a
source of data. Laboratory analysis of the patient’s blood
and urine is performed in a central laboratory or at bedside
by point-of-care testing. Doctors, nurses or other health
care professionals chart other data manually. A Patient
Data Management system (PDMS), is a software package
where all these patient related data can be collected and
stored in one patient file, regardless of the data source or
sampling rate [1]. The data used in this study was obtained
from the Patient Data Management System (Metavision R©,
iMD-Soft R©) of the ICU of the university Hospital Leu-
ven, Belgium. A copy of the original PDMS database was
created for the purpose of this study. For reasons of pri-
vacy, all data referring to the identity of the patients was
removed from this database copy. Ethical Committee ap-
proval for this retrospective non-interventional study was
obtained, and the need for informed consent was waived. A
total of 103 non-urgent (elective) coronary bypass surgery
patients were selected from this database. For each of these
patients, 14 physiological variables were used as inputs for
developing the models in this study (Table 1). Most vari-
ables were stored every minute from the patient monitor or
respirator while blood-loss was manually recorded approx-
imately once every hour and blood gas analysis was per-
formed at least once every four hours (providing the partial
oxygen tension in arterial blood (PaO2) and Serum Lactate
measurements).

2.2 Modeling Analysis

2.2.1 Time series analysis techniques

MULTIVARIATE AUTOREGRESSIVE MODELS: A time se-
ries is a sequence of observations taken sequentially in
time. Most time series consist of elements that are serially

dependent. This means that a coefficient or a set of coeffi-
cients can be estimated that describes consecutive elements
of the series from previous elements [2]. The general equa-
tion of a multivariate autoregressive model (MAR) can be
written as

Y (t) =
M∑

m=1

A(m)Y (t−m) + E(t) (1)

Every observation is made up of a linear combina-
tion of M prior observations (the order of the model) and a
white noise term. Y (t) = [y1(t), ..., yK(t)]

′ is the vector of
simultaneous measured values at time t for K variables and
E(t) = [e1(t), ..., eK(t)]′ is a prediction error vector. The
matrices A(m) are the MAR coefficients and are estimated
using a stepwise least squares algorithm. In this study, the
coefficients of matrix A are used for further analysis.

MULTIPLE INPUT/MULTIPLE OUTPUT AR MODELS:
The relationship between inputs and outputs of a given sys-
tem can be modeled as follows [3]:

Y (t) =

M∑
m=1

A(m)Y (t−m) +

N∑
n=1

B(n)U(t− n) + E(t)

(2)
where Y (t) = [y1(t), ..., yK(t)]

′ is the vector of K simul-
taneously measured outputs at time t, similarly U(t) =
[u1(t), ..., uL(t)]

′ is the vector of simultaneously measured
inputs, and E(t) = [e1(t), ..., eK(t)]

′ is a prediction error
vector. This model is called an ARX model, where AR
refers to the autoregressive component and X to the extra
exogenous input U . The coefficients of A(m) and B(n)
are also computed using a stepwise least squares estima-
tion method. The K × K coefficients of the estimated A

matrix and the K×L coefficients of the estimated B matrix
are used in further analysis.

CEPSTRAL COEFFICIENTS: Cepstrum analysis is a
nonlinear signal processing technique. The cepstrum is
defined as the inverse Fourier transform of the short-time
logarithmic amplitude spectrum [4] and can be used to an-
alyze time series data. The distance between the cepstral
coefficients of different time series can be used as a sim-
ilarity measure between these time series. On the basis
of autoregression coefficients from linear models the lin-
ear predictive coding (LPC) cepstrum can be calculated.
The LPC cepstral coefficients for an univariate time series
of length N can be obtained from the autoregressive coef-
ficients from equation 1 as follows [4]:

cn =

⎧⎨
⎩

a1 if n = 1

an +
∑n−1

m=1

(
1− m

n

)
amcn−m if 1 < n ≤M∑

M

m=1

(
1− m

n

)
amcn−m if M < n

(3)

The parameters ai are the coefficients of the calcu-
lated MAR models. The ci (i = 1, ..., N) , are the cepstral
coefficients.
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Table 1. Physiological Variables

VAR PHYSIOLOGICAL VARIABLE UNIT SAMPLING
FREQUENCY

1 Heart rate bpm 1 / min
2 Arterial Blood Pressure, systolic mmHg 1 / min
3 Arterial Blood Pressure, diastolic mmHg 1 / min
4 Arterial Blood Pressure, mean mmHg 1 / min
5 Pulmonary Artery Pressure, systolic mmHg 1 / min
6 Pulmonary Artery Pressure, diastolic mmHg 1 / min
7 Pulmonary Artery Pressure, mean mmHg 1 / min
8 Central Blood Temperature ◦C 1 / min
9 Peripheral Skin Temperature ◦C 1 / min

10 Positive End Expiratory Pressure (PEEP) mbar 1 / min
11 Fraction of Inspired Oxygen (FiO2) 1 / min
12 Partial Oxygen Tension in Arterial Blood (PaO2) 1 / 4 h
13 Serum Lactate mmol/L 1 / 4 h
14 Blood loss mL 1 / h

2.2.2 Gaussian Processes for Classification

Given a training set {X, t} comprised of N training in-
put vectors (X = x1, ...,xN ) and their corresponding N

binary class labels (t = t1, ..., tN) , such that ti = +1 if
xi belongs to a given class C and ti = −1 if xi does not
belong to the class. In a probabilistic binary classification
task the objective is to determine for an unlabeled test in-
put vector (x∗) the probability of belonging to the class
C: πC (x∗) = p (t∗ = +1|x∗) . From this, the probabil-
ity of it not belonging to the class can also be computed:
p (t∗ = −1|x∗) = 1 − πC (x∗) . In the remainder of this
text the input vectors to the classifiers (X) will be referred
to as examples.

Gaussian Processes, a type of kernel method, are ma-
chine learning techniques that have been successfully used
to model and forecast real dynamic systems because of
their flexible modeling abilities and their high predictive
performances. They allow multi-dimensional inputs and
they assign a confidence value to their predictions. The
main advantage of using a Gaussian Process Classifier over
other kernel method classifiers is that it produces an out-
put with a clear probabilistic interpretation [5]. In Gaus-
sian Process binary classification, a Gaussian Process over
a function f(x) is defined and then transformed through a
logistic function σ() so that its outputs lie in the [0, 1] in-
terval. This way they can be interpreted as probabilities:
πC (x∗) = p (t∗ = +1|x∗) = σ (f(x)) . Conditioning
the predictive distribution πC() on the training data allows
for a probabilistic prediction on a test input example [6].
The Gaussian Process prior over the function f(x) takes
the form f ∼ N(0,K(X,X)) , with a zero mean function
and a covariance function given by a positive semi-definite
kernel function k (xi,xj) . The kernel function thus deter-
mines the similarity between the input examples xi and xj .
Inference of the predictive distribution requires the solution
to integrals which are analytically intractable, a problem

that is solved either by resorting to Monte Carlo sampling
or analytical approximations to the integrals. In this study
we follow the latter approach through the use of expecta-
tion propagation [5].

2.3 Protocol

The task considered is the prediction of the time frame in
which the patients fulfill the clinical criteria for stability
that will lead to weaning from mechanical ventilation. Pa-
tients are considered stable if they satisfy the following cri-
teria:

• Hemodynamical stability:

– Dobutamine rate ≤5 μg/kg/min
– Noradrenaline rate ≤ 0,2 μg/kg/min
– Serum lactate < 2 mmol/L

• Respiratory stability:

– PaO2 ≥ 75 mmHg
– FiO2 ≤ 0,5
– PEEP ≤ 8 mbar

• Temperature stability:

– Blood temperature > 36 ◦C
– Peripheral skin temperature > 30 ◦C

• Blood loss stability:

– Sum of blood loss of all drains < 100 ml/h

Dobutamine is a drug used to support the function of
the heart by increasing heart rate and forcing contractions.
Noradrenaline is a drug used to support blood pressure by
increasing vascular tone. Serum Lactate is a waste product
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of metabolism in the absence of oxygen and is used as a
marker for insufficient tissue perfusion.

These criteria should be met for at least 30 consec-
utive minutes in order for patients to be considered suffi-
ciently recovered from their cardiac surgery so as to start
the weaning from mechanical ventilation. To enable future
comparisons with predictions performed by intensivists,
the considered task is restated as follows: Predict in which
of the following time frames (classes) the patient will begin
to satisfy the stability criteria.

Class 1: earlier than 8 hours
Class 2: between 8 and 16 hours
Class 3: between 16 and 24 hours
Class 4: later than 24 hours
A binary probabilistic classifier is learned for each of

the four classes. In the test cohort, a patient is assigned to
the class for which it has the largest probability. Training
examples for each classifier are labeled positive (t = +1) if
the moment when the patient becomes stable starts within
the corresponding time interval and are labeled negative
(t = −1) otherwise.

Prior to the analysis some preprocessing was per-
formed on the data obtained from the PDMS. This included
the removal of outliers and the filling-in of missing values
(a rare occurrence) through linear interpolation.

Data from each patient collected at different moments
during ICU stay is used to generate the different time-series
models. The parameters of these models are used in a next
step as training examples for the classifiers. The data from
the first 4 hours of ICU stay is used to generate a first ex-
ample, to which the appropriate class label is assigned as
is shown in Figure 1. A second example is generated from
the same patient by sliding the 4-hour window of used data
(the gray area of Figure 1) to 30 minutes after admission,
the class-membership thresholds (vertical dashed lines) are
displaced by 30 minutes accordingly, but the moment when
the stability criteria are met (solid vertical line) remains the
same. Further training examples are generated by sliding
the 4-hour window (and thresholds) in 30-minute steps, and
assigning to each the appropriate class label. The last train-
ing example that can be generated from one patient uses the
4-hour window of data that ends just before the moment of
stability takes place.

The different time-series analysis techniques de-
scribed above, were applied to each of the 4-hour intervals
of data in order to generate the examples used as inputs for
the Gaussian Process Classifier. The interval duration of
four hours was chosen since time intervals of shorter du-
ration led to non-stable time-series models. The types of
examples (input vectors) used to train the Gaussian Process
classifiers in our experiments are explained below.

1. Signal Average: Each example is a 56 dimensional
vector containing four values for each of the 14 physiolog-
ical variables of Table 1. Each of the four values is an av-
erage over a one-hour interval of the measured time series
signal.
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Figure 1. Gray area corresponds to 4-hour interval of data
used to generate the example. Dashed vertical lines de-
pict the 8 and 16 hour class-membership thresholds and the
solid vertical line indicates the moment when the patient
satisfies the stability criteria. The example generated from

this data is labeled as belonging to Class 2.

2. MAR coefficients: Each example is a 64 dimen-
sional vector containing the aij coefficients of the first-
order MAR model for eight variables of one sample per
minute, namely signals 1 to 8 from Table 1. Signals 9 to 10
are excluded from this and the remaining time-series mod-
els because their low sampling rate or slow varying dynam-
ics did not yield stable models.

3. ARX coefficients: Each example is a 48 dimen-
sional vector containing the coefficients of the A and B ma-
trices of an input/output model with two inputs (variables
1 and 8 from Table 1 ) and six outputs (variables 2 to 7
from Table 1). Taking human physiology into account, the
input-output selection was deemed relevant for this study.

4. Cepstral coefficients (CEP): Each example is an 80
dimensional vector containing the 10 first cepstral coeffi-
cients of variables 1 to 8 from Table 1 computed directly
from the time-series.

5. Cepstral coefficients from ARX models
(CEPARX): Each example is an 80 dimensional vector con-
taining the 10 first cepstral coefficients of variables 1 to 8
from Table 1 using equation 3.

What follows is a description of the procedure to com-
pute the predicted probabilities of belonging to each of the
4 classes for each patient. This procedure is repeated for
each type of time-series model previously described.

All examples generated for all N patients from one
type of time-series model and their corresponding class la-
bels are collected in one dataset. From this dataset those
examples generated from patient Pi are removed and the
one generated from the first 4 hours of ICU stay is used as
test example (x∗i). The data from the remaining patients is
sampled such that there are an equal number of positive and
negative labeled examples, and will be used as training set
{Xi, ti} for the Gaussian Process classifier. Once the clas-
sifier has been trained, the predicted probability of belong-
ing to a class C, πC (x∗i) is recalibrated to compensate for
the effects of learning on the artificially balanced training
set so that it applies to the original (non-sampled) distribu-
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Table 2. Classifier Performance for Different Models

INPUTS CLASS 1 CLASS 2 CLASS 3 CLASS 4
SIGAVG 0.81-0.58 0.57-0.56 0.62-0.55 0.67-0.61
MAR 0.64-0.51 0.59-0.50 0.55-0.51 0.66-0.52
ARX 0.60-0.50 0.57-0.51 0.68-0.60 0.62-0.50
CEP 0.66-0.50 0.72-0.56 0.57-0.58 0.66-0.58
CEPARX 0.73-0.55 0.64-0.52 0.85-0.66 0.70-0.63

tion. The described process is repeated for each patient Pi

where i = 1, ..., N , and for each class C ∈ 1, 2, 3, 4 so that
a probability of belonging to each class is assigned to each
of the N patients. If a hard-classification is required, each
patient is assigned to the class for which it has the highest
probability. The obtained probabilities allow for the com-
putation of an aROC for the classifier of each class.

Sampled examples are used to generate the training
set since it has been observed that learning from a balanced
dataset typically leads to more accurate models avoiding
over-fitted solutions that occur when learning from heavily
skewed distributions [6].

The kernel function used in the study is the squared
exponential with ARD (automatic relevance determination)
defined as follows:

k (xi,xj) = σ2

f exp

(
1

2
(xi − xj)

T
M (xi − xj)

)
(4)

where M = diag(l)−2 is a diagonal matrix and its di-
agonal elements l1, . . . , lD are characteristic length-scales
for each dimension of the input examples. Recall that each
example x corresponds to a vector obtained from the dif-
ferent time-series models. The values of the parameters of
the diagonal matrix M determine the relevance of the cor-
responding input dimension. The σ2

f parameter is the stan-
dard deviation of the process, which controls its magnitude.
During training, the parameters θ =

{
σ2

f , l1, . . . , lD

}
are

iteratively updated according to the expectation propaga-
tion algorithm so as to maximize the likelihood of the class
labels given the training data [5].

3. Results

The leftmost number in each entry of Table 2 corresponds
to the aROC (area under the receiver operating character-
istic curve) of the corresponding Gaussian Process proba-
bilistic binary classifier for each of the 4 classes. The right-
most number is the aROC obtained when using a logistic
regression model [7], included here as a baseline for per-
formance.

The Automatic Relevance Discrimination feature of
the selected kernel function for the Gaussian Process clas-
sifier, allowed us to select the 10 most relevant input dimen-
sions for each classifier. Using only these most relevant

Table 3. Classifier Performance for Most Relevant Dimen-
                       sions for Different Models

INPUTS CLASS 1 CLASS 2 CLASS 3 CLASS 4
SIGAVG 0.77-0.66 0.65-0.63 0.54-0.54 0.67-0.50
MAR 0.61-0.56 0.55-0.53 0.73-0.50 0.66-0.55
ARX 0.56-0.54 0.60-0.53 0.80-0.67 0.62-0.52
CEP 0.66-0.53 0.65-0.55 0.65-0.56 0.66-0.62
CEPARX 0.55-0.55 0.69-0.68 0.83-0.67 0.70-0.62

Table 4. Classifier Performance for Combinations of Most
            Relevant Dimensions for Different Models

INPUTS CLASS 1 CLASS 2 CLASS 3 CLASS 4
SIGAVG 0.76-0.62 0.64-0.65 0.74-0.54 0.60-0.58
MAR
SIGAVG 0.77-0.61 0.70-0.67 0.70-0.68 0.74-0.53
ARX
SIGAVG 0.75-0.60 0.68-0.60 0.82-0.62 0.63-0.57
CEP
SIGAVG 0.72-0.58 0.68-0.68 0.84-0.58 0.64-0.60
CEPARX

input dimensions, new classifiers were learned. This de-
crease in the number of dimensions used reduces the com-
putational time required for the models to be learned. Their
aROCs are shown in Table 3.

Combining the 10 most relevant dimensions of 2
types of time-series models led to 20-dimensional exam-
ples with performances as shown in the entries of Table 4.

4. Discussion

These initial results, with aROCs below the desired 0.8 for
medical standards of discrimination, for classes 2 and 4,
corroborate the difficulty of the selected prediction task.
Depending on the interval when the patient becomes sta-
ble, different inputs are more predictive for the task. For
example, the further ahead the stability criteria are met,
the higher the relevance of the dynamics of the physio-
logical variables for prediction. This can be seen in the
high performance of the CEPARX-input classifier for the
third class (Table 2). For the prediction within the first 8-
hour interval, the Signal Average model results in a high
performance with an aROC above 0.8 (Table 2), revealing
that for early on predictions the dynamics are not as pre-
dictive as the actual signal values. The results in Table 3
closely follow those of Table 2 but the overall performance
of the classifiers decreases because of the information-loss
from the discarded dimensions. The information reduction
does not have such a strong impact on the CEPARX for
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class 3, revealing that the information contained in the se-
lected significant cepstrum coefficients is still predictive.
Different models can be combined to yield learning exam-
ples that contain information of both the absolute signal
measurements and their dynamics. The results of a first at-
tempt are shown in Table 4. Using the information of the
complete models would result in examples of prohibitively
large dimensions in terms of computation time, therefore
only the 10 most relevant dimensions of each model were
used. When compared to their single-model counterparts
(Table 3) the combined models result in an overall increase
in performance, although only for Class 4 do we obtain a
combined-model that results in a higher aROC. As a gen-
eral remark, it can be seen that the Gaussian Process clas-
sifier outperforms the Logistic Regression classifier. For
some cases however, such as for Class 2 in table 4, the re-
sults of both classifiers are nearly identical indicating that
there is not sufficient information in the representations for
the Gaussian Classifier to exploit its non-linear flexibility
to improve on the performance of a linear model. Analysis
of the dimensions that are found to be more relevant for the
different models could potentially lead to discovery of do-
main knowledge in the prediction task. The cepstral coef-
ficients that are most predictive for classes 1, 2 and 3, both
in the CEP and in the CEPARX case, are derived from the
heart rate signal. Other relevant coefficients in these first
three classes differ, with blood temperature being the least
relevant. For the prediction of the 4th class, the systolic
arterial blood pressure is more relevant than the heart rate
for the CEP case; while for the CEPARX case, arterial and
pulmonary pressures are the most relevant and none of the
heart rate coefficients appears as one of the 10 most rele-
vant. Amongst the physiological variables found to be most
relevant for prediction of class 1 with the Signal-Average
input model were PaO2, FiO2 and blood loss. These sig-
nals were excluded from the remaining time-series analy-
sis because they led to unstable models, and their absence
could explain their poor performance in predicting the first
class.

5. Conclusion

In this study we have shown a first step at automatically
determining the future course of elective coronary bypass
surgery patients, by predicting the moment when the clini-
cal stability criteria is met that results in weaning from me-
chanical ventilation. Prediction was performed using data
only from the first 4 hours of a patients ICU stay. The re-
sults show the complexity of the prediction task with differ-
ent physiological variables and different representations of
their dynamics becoming more relevant depending on the
moment when the stability criteria are met. Slow-varying
signals with low sampling rates appear more predictive for
patients that meet the stability criteria early on, while the
dynamics of various signals appear more predictive when
stability occurs at later stages of the patients ICU stay. We
obtained aROCs above 0.7 for all four predicted classes,

and for two of them, above the medical desired value of
0.8.

6. Future work

The development of a definite model for the prediction of
respiratory weaning, would benefit from including other
non-dynamic variables that are known to be predictive for
ICU length of stay after cardiac surgery. To improve on the
generalization capabilities of the classifiers it would also
be of use to increase the number of patients used during
training. This increase both in the number of physiological
variables and patients will however require more complex
implementations of the algorithms presented such that they
are able to cope with the data increase while still remaining
computationally tractable. Possible variants of the Gaus-
sian Process classifier include the use of sparse methods,
aggregation, dimensionality reduction techniques and the
inclusion of more specialized kernels that better incorpo-
rate the available prior knowledge. The information ob-
tained from the calculations done in this research should be
combined in one algorithm that predicts in which class a
given patient belongs. In order to do so, also other time se-
ries analysis that describe relationships between different
variables could be included if they are found to increase
predictive performance.
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