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A 90 nm CMOS, 6 μW Power-Proportional Acoustic 

Sensing Frontend for Voice Activity Detection 

Abstract – This work presents a sub-6 µW acoustic front-end for speech/non-speech 

classification in a voice activity detection (VAD) in 90 nm CMOS. Power consumption of the 

VAD system is minimized by architectural design around a new Power-Proportional sensing 

paradigm and the use of machine-learning assisted moderate-precision analog analytics for 

classification. Power-Proportional sensing allows for hierarchical and context-aware scaling of 

the frontend’s power consumption depending on the complexity of the ongoing information 

extraction, while the use of analog analytics brings increased power efficiency through switching 

on/off the computation of individual features depending on the features’ usefulness in a 

particular context. The proposed VAD system reduces the power consumption by 10X as 

compared to state-of-the-art systems and yet achieves an 89% average hit rate for a 12 dB signal 

to acoustic noise ratio in babble context, which is at par with software based VAD systems.        

I. INTRODUCTION 

     Technological innovations are changing the way we interact with electronic devices. 

Interactions like voice control and gesture recognition are rapidly gaining popularity. Such 

natural interactive systems do not only need many integrated sensors, but also always-awake, 

reactive sensor frontends. These frontends generate large amounts of raw signals that state-of-the 

art (SotA) frontends immediately digitize for processing on a DSP. This very robust approach is 
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not power efficient, as not all raw sensor signals are equally relevant. The net information 

content of a sensed signal is quite often significantly smaller than the Nyquist rate [1-7]. Existing 

works such as Information-Rate processing [1,2], Analog to Information conversion [3-5] and 

Compressed Sensing [6,7] show power savings by extracting or compressing the information 

from signals before digitizing the data. However, as these schemes operate in a static way, the 

compression or extraction parameters are set beforehand. Yet, the information content in raw 

signals and its application relevance dynamically varies depending on the operating context. 

Operating such systems efficiently hence requires a dynamic system adaptation depending on the 

context or signal information content. Existing systems do not perform such fine grain adaptive 

behavior, which severely limits their power savings as shown by solid line in Fig. 1.  

     We propose a self-scalable, Power-Proportional sensing paradigm which gracefully scales the 

system’s power consumption with the amount and complexity of extracted information, i.e. the 

power consumption for such a system increases only as the task of information extraction gets 

more complex. To this end, in this paper we propose key enablers for Power-Proportionality and 

apply them to a proof of concept acoustic frontend for voice activity detection (VAD).  

     VAD systems distinguish speech from non-speech in different background noise contexts for 

varying signal to acoustic noise ratios (SANR). SotA VAD systems [8-10] extract complex 

features like Mel-Frequency Cepstral Coefficients, DCT etc. to differentiate speech from non-

speech. The high computational complexity of such features results in large power consumption, 

typically about 50 - 100 µW [8-11] in addition to the power consumption of the required active 

microphone. Such a continuous large power consumption is unacceptable for battery powered 

always-on sensor frontends. This work exploits our new Power-Proportional sensing paradigm 

along with moderate-precision, computationally-inexpensive, analog feature-extraction, coupled 
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with an embedded mixed-signal classifier to save more than 10X power consumption over SotA 

without compromising on the classification accuracy. 

     The outline for this paper is as follows. Section II discusses insights into the design principles 

for Power-Proportional sensing and explains the rationale behind the analog feature-extraction 

instead of the commonly used digital scheme. Section III describes the architecture and 

specification set for VAD while the detailed implementation is discussed in Section IV. 

Measurement results for the chip and for the full VAD system are discussed in Section V. 

II. KEY PRINCIPLES FOR POWER EFFICIENT SENSING  

     This section details the two key principles that allow our always-on sensing system to scale its 

power consumption with the information extracted saving 10X power over SotA VAD systems.   

A. Power-Proportional Sensing 

The core premise for Power-Proportional sensing is that power consumption of the sensing 

system scales proportionally with the complexity of the sensing task. The sensing process with 

the target of information extraction can increase in complexity along two dimensions: 

     First, the amount of information extracted from the incoming signal can scale in complexity. 

Consider for example, the task of speaker identification v/s speech detection. The former task 

entails the later as a prerequisite first step, hence justifying the increase in power consumption. 

Enabling hierarchical operation for tasks of increasing complexity allows scaling of power 

consumption with complexity of information extraction. In such an architecture each processing 

stage extracts more complex information than the previous stage while consuming more power. 

This enables information extraction by necessity, as is shown on the horizontal-axis in Fig. 1. 

     Secondly, even if the amount of extracted information remains the same, distinguishing the 

useful information from the background noise (the context) is subject to varying levels of 
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difficulty. For this case consider the complexity of speech detection in a quiet office, in contrast 

to a noisy street environment. The amount of information needed is same in both cases, but in the 

latter case as the background noise maps directly onto the information spectrum, it creates in-

band interference on the desired signal. As such, distinguishing speech from non-speech 

becomes more complex, hence justifying the increase in power consumption. Context-awareness 

enables Power-Proportional sensing to scale power as the background noise context scales the 

complexity of information extraction, as shown in bold in Fig. 1. For the example above, 

context-awareness allows to use a much smaller discriminating feature subset in a low noise 

environment and a relatively larger subset for noisy background contexts, hence scaling power.          

     SotA sensing systems do not exploit the power scaling opportunity offered by the above 

scenarios, and typically operate constantly in full processing mode. This plateaus the on-state 

power consumption for SotA sensing systems independent of system utility as shown in Fig. 1.  

B. Power Efficiency through Analog Analytics 

     The Power-Proportional sensing paradigm as highlighted in previous paragraph needs 

complexity and precision dependent power scalable hardware blocks. Such power scaling with 

precision is very different for analog and digital implementations. Analog power consumption 

scales gradually for thermal noise limited system with low-to-medium precision, while digital 

has a logarithmic power v/s precision profile. As it has been shown in [12] and in Fig. 2, for a 

0.25 µm CMOS technology, analog computation is not only more power-efficient than digital for 

low-to-medium resolution processing, but also exhibits better scalability.    

     Reduction in supply voltage due to technology scaling allows more power efficient digital 

circuits and questions the beneficial analog behavior in advanced technologies. This is because 

with scaling, the cost of maintaining the same precision in analog increases as a larger bias 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

5

current is needed to reduce the noise-floor compensating for reduction in signal swing. Assuming 

that the supply voltage has scaled from 2.5 V for 0.25 µm to 0.9 V for a 40 nm technology, the 

active digital power has scaled down by 10log(2.52/0.92) ~ 9 dB while analog power 

consumption goes up by 4.5 dB [12] for subthreshold design. Contrasting effects of reduction in 

average capacitance per node and increase in subthreshold-leakage on digital power consumption 

are not considered here. The above discussion implies that while analog keeps its favorable 

scalability, the analog-digital efficiency crossover point moves towards the left by 2 bits. This 

renders analog computation cheaper than digital for up to 7 bits of precision as shown in Fig. 2.   

     Digital enhancements, such as machine learning and calibration, can restore some of the lost 

benefit of analog over digital computation for always-on sensing or classification tasks because 

these often do not need perfect signal reconstruction, but only need error resilient processing 

such as detection or classification. Specifically such tasks do not require accurate absolute 

computations, but only relative comparisons of the computed feature values to on-chip trained 

thresholds, as we will show in the design presented in this paper. Hence, absolute precision 

requirements for such systems are rather modest, and mismatches and offset impairments are 

automatically taken care of by the embedded trained classifier in the loop. As demonstrated by 

this work, as well as some existing works, machine learning assisted [13, 14] and/or digital 

calibration [15] can improve SNR by 6 – 10 dB for comparable power which pushes the 

efficiency crossover point in the rightward direction as shown in Fig. 2. These estimations 

support the use of analog computation for systems requiring scalability up to 8 bits of precision.   

III. SYSTEM ARCHITECTURE AND SPECIFICATIONS  

     This section highlights the use of the aforementioned key principles in the developed VAD 

architecture [16] and derives the specifications for the analog/mixed-signal building blocks.  
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A. VAD System Architecture 

     The top-level block diagram of the proposed Power-Proportional VAD system is shown in 

Fig. 3. The main sub-blocks of the system are the threshold based wakeup block, the analog 

feature-extractor, the mixed-signal classifier and the microcontroller, which operate in the 

described Power-Proportional sensing fashion as follows:  

     An always-awake threshold-based wakeup block keeps checking the passive microphone for 

sound activity. When any signal – not necessarily useful – is detected, it wakes up the analog 

feature-extractor that translates the input signal into a set of features. The on-chip classifier uses 

these computed features to classify the incoming signal as speech/non-speech. If the signal is 

speech, the classifier wakes up the microcontroller for more advanced processing. 

     Such hierarchical activation of information extraction hardware allows the VAD system to be 

in the lowest power-mode possible, while still able to compute the necessary information. This 

allows scaling the power with necessary information as outlined in Section II.A.1. Also, as not 

all computed analog features carry information under all background noise contexts, machine 

learning based context-awareness allows dynamically disabling the computation of features that 

do not assist in classification. Such context-aware computing allows further power scaling 

depending on the number of useful features necessary as explained in Section II.A.2. The control 

of feature activation and classifier configuration is done by the embedded micro-controller. This 

microcontroller periodically wakes up to check for background noise context-changes and upon 

detecting a change, retrains the classifier and activates the required features for the new context. 

As further modelled in subsection B, considering that the analog feature-extraction blocks are in 

the loop during this training operation, all static analog impairments such as mismatch, gain 

errors, or offsets are absorbed in the trained feature thresholds and do not affect the classification 
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accuracy. This justifies the usage of low-precision analog analytics for feature computation, as 

discussed in Section II.B. Before detailing the design of individual sub-blocks in Section IV, 

subsection III.B derives specifications for the targeted VAD system. 

B. Specifications for VAD system 

     This section first derives the system level specifications and then the specifications for 

individual analog blocks. The system computes an analog feature-set for the acoustic signal by 

decomposing the signal into different frequency bands and then extracting the average value of 

the rectified signal in each frequency band. Mathematically, each analog feature ܽ ௜݂ is defined as  

ܽ ௜݂ ൌ ሻݐሺݔܣሾݏܾܽ ∗ ݄௜
஻௉ிሿ                                                      (1) 

where ݔܣሺݐሻ is the amplified acoustic signal, ݄௜
஻௉ி is the impulse response of band pass filter 

used to decompose the input signal into a smaller frequency band, ܾܽݏ,∗ and ݔ represent the 

absolute value, convolution, and averaging respectively. The features hence represent the 

average power present in every frequency band. It is therefore important to determine the 

required frequency range, number of observed frequency bands, and the necessary precision, as 

these parameters will strongly influence the classification accuracy as well as the system’s power 

consumption. Such system-specifications are evaluated based on a MATLAB model of the 

analog feature-extractor of VAD system based on equation (1). 

     Along the frequency axis, the bulk of energy for speech and acoustic noise is concentrated in 

the frequency range 100 Hz – 4 kHz [17]. The MATLAB model varies the number of computed 

features in the above frequency range by scaling the Q factor of the band pass filters. This 

ensures that the entire frequency range is always populated with filters, with an increasing 

frequency resolution as the number of computed features increases. The results of the above 

simulation are shown in Fig. 4(a). It can be seen that more features improve classification 
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accuracy, yet accuracy gains diminish beyond 16 features allowing us to limit our design to a 

maximum of 16 (individually (dis)activated) features. Further, the model also evaluates the 

impact of static analog impairments, for example by degrading the gain in the signal path, as 

seen in Fig. 4(b), as long as these occur within the training loop, they are absorbed in the 

thresholds learnt for classification and hence have no impact on classification accuracy. 

     Fig. 5 histogram shows the relative relevance of each of the 16 analog features in the speech 

v/s non-speech classification for exhibition noise context with 0 dB SANR. It is clear that the 

middle-frequency features af5 to af12 are more commonly used. Hence we only pass these 

features to an on-chip classifier, while the full feature-set is passed on to a microcontroller only 

when needed for more complex tasks, such as context-change detection.  

      Another important group of parameters are the maximum input-referred noise and the 

necessary gain for the system. The specifications for input-referred noise and gain strongly 

depend on the input signal level, which depend on the type and make of the microphones used in 

the system. The active microphones used by SotA VADs consume 20 - 50 µW [18, 19] in 

addition to the power consumption of the VAD circuitry itself. This is unacceptably high for 

always-on sensing acoustic systems. Such systems hence necessitate the use of passive 

microphones in low power budget applications. Such passive microphones typically have a 

sensitivity down to – 60 dBV. This translates to an rms signal level of 30 µV @ 65 dB sound 

pressure level (SPL) for a nominal conversation at 1 m distance [20]. This limits the maximum 

allowable noise-floor to less than 30 µVrms and also decides the minimum gain necessary in the 

amplifier depending on the LSB size, being 45 dB to achieve 8 bit precision over 1V. This 

design has a gain-range from 20 to 80 dB in 20 dB steps to cover a wide range of input signals 

although we anticipate that only up to 60 dB would be necessary. Also the averaging time 
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depends on the frequency of classification which in a typical VAD system is every 10-16ms [8-

10]. This averaging is implemented as LPF with a f-3dB of 16 Hz. A summary of the VAD 

system-specifications is highlighted in Table 1.      

IV. SYSTEM IMPLEMENTATION 

     This Section details the implementation nuances of the individual system blocks discussed in 

the previous section: namely the wakeup detector, the analog feature-extractor and the embedded 

mixed-signal classifier. A further subsection discusses system training for the complete VAD 

system before discussing one-time calibration and measurement results in Section V.     

A.     Wakeup detector 

     The always-awake threshold-based wakeup detector acts as the system’s watch-dog that 

wakes up the analog feature-extractor only when a signal of sufficient strength is detected. A 

single bit of information indicating presence or absence of acoustic signal is needed. The wakeup 

detector is a low power 3-phase comparator and its schematic is shown in Fig. 6. As the input 

signal level for this comparator can be as low as 30 µV and the comparator reference Vrefcomp, is 

generated using 1.2 V, 8-bit DAC, at least 45 dB gain is necessary in the pre-amplifier to keep 

the signal swing greater than 1 LSB ~ 4.5 mV. 

      The preamplifier is a cascade of four single stage amplifiers. Each amplifier is a PMOS input 

source-coupled single-ended differential amplifier and can be turned on/off individually to save 

power depending on the microphone’s signal-level and is designed to provide a mid-band gain of 

20 dB. The f-3dB of the amplifier is limited to 2 kHz as only the speech envelope needs to be 

detected. The comparator Vrefcomp can potentially vary as per the ambient noise-level, but this is 

beyond the scope of this work. Measured power consumption of this block is 700 nW when all 

four amplifier stages are turned on, and excluding the external bias. 
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B. Analog feature-extractor 

     On receiving the wakeup signal from the threshold based wakeup detector, the analog feature-

extractor decomposes the input signal into the set of 16 features. The on-chip classifier evaluates 

whether the signal is potentially speech or background noise by comparing a feature subset to 

trained thresholds in a Decision Tree (DT) topology (see subsection C). This subsection first 

describes the flow of the acoustic signal through the analog feature-extractor, followed by the 

implementation details of the individual blocks that participate in feature-extraction.  

     Fig. 7 shows the detailed architecture for the analog feature-extractor. The signal from the 

passive microphone after low noise amplification is fed to 16 bands. Each band allows further 

amplification and does a BPF operation with exponentially spaced fc to mimic human hearing 

[21]. The output of each BPF filter is averaged by a rectification and LPF operation which results 

in 16 analog features af1 - af16, from which the subset af5 – af12 is used by the on-chip classifier.   

     The partitioning of the amplification between the shared LNA and the individual frequency 

bands allows a finer control over necessary amplification in each band. This contributes to 

Power-Proportional information extraction, as it allows turning off amplifier stages of unused 

features along with all other circuitry involved in individual feature computation. This enables 

context-aware power savings, as discussed in Section II.A.2. The sub-blocks of the analog 

feature-extractor are now explained in more detail.   

1) LNA & Amplifiers 

     The LNA is interfaced with a passive microphone and is designed to provide a mid-band gain 

of 20 dB up to a frequency range of 5 kHz while keeping the rms integrated input-referred noise 

smaller than 30 µV. The LNA is shared across all 16 bands as can be seen from Fig 7. Further 

amplification in each band is done through a cascade of four individually controllable single 
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stage amplifiers with each stage designed to provide 20 dB gain as in Fig. 7. A single stage 

amplifier topology was chosen for both LNA and in-band amplifiers for efficiency reasons, to 

avoid the power overhead of pushing non-dominant pole(s) beyond the unity gain bandwidth. 

The closed loop gain error introduced due to insufficient open loop gain is a static error and is, as 

discussed, absorbed in the training phase. 

     The pseudo resistive feedback fixes the output bias point of the amplifier as shown in Fig 8. 

As the area for the input transistors is large (80 µm X 10 µm) to reduce the flicker noise, gate 

leakage current up to 20 pA can shift the output bias point by as much as 50 mV due to voltage 

drop across the pseudo resistor. The inter-stage capacitive coupling however ensures the bias 

point shift is not cascaded to next stage.  

     As discussed next, the band pass filters across the bands have increasing center frequencies. 

To cover for this, the f-3dB of the amplifiers in each band also increases progressively from band 1 

to band 16. This is illustrated by the simulated magnitude response of the amplifiers in Fig. 9.  

2) Band Pass Filters 

     The amplifier output in each of the 16 bands is passed through a band pass filter (BPF) whose 

center frequency (fc) increases exponentially from 75 Hz in band 1 to 5 kHz in band 16. The fc 

for a second order gm–C filter (see Fig. 10) is scaled by varying the bias current across the 

bands. From the BPF frequency response in Fig. 11 it can be seen that stop-band attenuation for 

individual filters is better than –40 dB but the adjacent band rejection is only –1.5 dB. This adds 

redundancy in the extracted features, leading to a high correlation between features of adjacent 

channels. This makes the system tolerant to shifts in the center frequency of BPFs.     

3) Averaging circuit 

     The output of each BPF is averaged individually by first rectifying and then low-pass filtering 
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with a f-3dB of 16 Hz to result in 16 analog features (af1 – af16). The architecture of the current-

mode averaging is shown in Fig. 12. Normally-off transistors used for rectification (in dotted 

box) turn on based on the direction of current from the BPF. The current steering network makes 

the current direction unipolar and is read across the gm-based resistors. A first order gm - C LPF 

extracts the average value of this unipolar signal. Such normally-off transistors result in 

asymmetric rectification (dashed line) as in Fig. 13. This adds a dc-offset to the computed feature 

level shown by the averaged line (dot - dashed) in Fig. 13. Such offsets can be learnt during the 

training phase and do not affect classification accuracy. 

C.  Decision tree based classifier 

     The extracted feature subset, af5 - af12, is passed on to the on-chip classifier (Fig. 5) while the 

complete feature-set af1 - af16 can be passed on to an off-chip ADC for more complex 

information extraction, such as context-change detection and retraining the classifier as in [22]. 

In these cases, the Nyquist sampling rate for the features is only 16x2x16 = 512 Hz instead of 8 

kHz for audio. The external ADC is not needed for embedded speech/non-speech classification.   

     The implementation of the on-chip 7-node 3-level mixed-signal Decision Tree classifier is 

shown in Fig. 14. Each node of the decision tree can be configured to select one feature out of af5 

- af12. The selected feature (sfi) is then compared with a reference voltage (Vrefi) determined by  

a modified C4.5 machine learning algorithm [22], generating the output decision bi of each node: 

ܾ௜ ൌ ݏሾሺݎ݋ݔ ௜݂ ൐ ݁ݎܸ ௜݂ሻ,  ௜ሿ                                              (2)ݒ݊݅

where invi bit sets the comparison direction. The decision fusion logic shown in Fig. 14 

combines the outputs of all decision tree nodes.  

D. VAD System training 

     The decision tree configuration and the individual feature activation is done using machine 
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learning which selects the most discriminative features between speech and the current 

background noise context. To this end, the on-chip decision tree classifier is trained with our 

modified C4.5 algorithm with 160 s of labeled data from the standardized NOIZEUS database 

[23]. The traditional C4.5 algorithm selects a feature-set to maximize the total information-gain. 

Our modification to C4.5 maximizes the information-gain/watt and therefore outputs a resource-

efficient model that maximizes the information capture while minimizing the power [22]. This is 

enabled as each feature extracts information from a higher frequency band so that the power cost 

increases from af1 to af16. This maximization of information-gain/watt furthers Power-

Proportionality by increasing power consumption only for more (complex) information. The 

training runs on the microcontroller to generate a discriminating feature subset and reference 

levels for the comparison in the DT. The training results of the past context are not stored but 

dynamically learnt, as context-change is detected [22].  

V. MEASUREMENT SETUP AND RESULTS 

     The proposed system has been implemented on a 2 mm2 chip in 90 nm CMOS as shown in 

Fig. 15. This section details the measurement results for the chip and for complete VAD system.  

A. Chip performance results 

          This subsection first discusses the measurement results for the LNA and some individual 

blocks in the 16th feature band in the chip followed by measurement results for complete bands.  

     The input-referred noise for the LNA is shown in Fig. 16. The noise has been measured at the 

LNA output over a frequency range of 10 Hz to 10 kHz. The rms input-referred integrated noise 

over the range of 75 Hz to 10 kHz is 32.5 µV. The total input-referred noise is expected to be 

15% larger as this does not include the contributions from subsequent amplifier stages. For 3% 

and 5% THD, dynamic range is measured to be 40.2 dB and 45.4 dB respectively at 1 kHz.  
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     Frequency responses of the individual blocks in the 16th feature band are shown in Fig. 17. 

Compared to simulation the mid-band gain of the LNA is reduced by 4 dB, which is estimated to 

be due to insufficient open loop gain. The large signal frequency response for the complete bands 

is shown in Fig. 18. As the fc of the BPFs increase across bands, each band progressively 

processes higher frequency content to compute a feature, hence for a constant capacitive load the 

power consumption increases from band 1 to band 16 as it can be seen from Fig. 19. As already 

mentioned in section IV (D) this allows a power-aware learning to enable efficient classification. 

Finally, the measured rms noise at the output of each band is less than 2 mV. For an output 

signal range of 400 mV, this gives 7.5 bits of precision. 

B. System measurement results 

     The chip is integrated with the microcontroller using external level-shifters and DACs, to 

form the complete VAD. Fig. 20 shows a one-time calibration to characterize for mismatch in 

the ADC and DAC paths. This subsection also displays the classification accuracy results for the 

complete VAD system and illustrates the achieved Power-Proportionality.  

     Receiver operating characteristic (ROC) curves characterize the classifier systems and depict 

hit-rates (HR) for the variables under observation [24]. Fig. 21 ROC curve shows that 

classification accuracy of our on-chip classifier is on-par with software based VAD systems of 

[8, 9, 25]. Further Fig. 22 validates the classification capacity over multiple contexts with 

different background noise conditions. Table 2 illustrates the Power-Proportional sensing in our 

VAD system by showing the gradual increase in system power consumption with the sensing 

task complexity. The power consumption for signal detection is measured to be below 1 µW, 

whereas power consumption for classification varies depending on complexity of the operating 

context and has an upper bound of 6 µW. The power consumption for background context-
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change detection and relearning the DT is estimated to be 57 µW on a cortex M4 

microcontroller. It is predicted that the VAD system will be 80% of the time in detection mode, 

15% in classification mode and about 5% of time performing complex tasks, such as re-learning 

the context or decision tree training. The resulting duty-cycled power consumption is 3.8 µW for 

babble noise context. Further, the estimated power overhead for generating on-chip (currently 

off-chip) reference voltages for the comparators is leakage limited and is estimated to be less 

than 50 nW per reference value [26] as the reference voltage needs to drive only the gate nodes 

at near dc speed. Table 3 compares our work to SotA VADs [8-10, 25] and similar systems [27]. 

While maintaining the same classification accuracy as compared to software VADs, our system 

reduces the power consumption by 10X. Although hierarchical information extraction adds a 

maximum latency of 100 ms to the VAD decision task, this does not cause significant 

information loss as this latency is smaller than the average duration of a spoken vowel [28].     

VI. CONCLUSIONS 

     This work demonstrates a power efficient acoustic sensing frontend for speech/non-speech 

classification in a voice activity detection system. The power efficiency is achieved by the use of 

machine learning assisted analog feature computation and by infusing the Power-Proportionality 

paradigm in various ways throughout the architecture. The use of analog features for information 

extraction allows individual turning on/off of features depending on the usefulness of a feature in 

a particular context while the Power-Proportionality concept controls the hierarchical activation 

of different sub-blocks depending on the complexity of the information extraction task. The idea 

of Power-Proportional sensing is demonstrated for an acoustic sensing system and can be 

extended to other systems such as motion and image sensing systems. 
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Fig. 1 Power-Proportional sensing in contrast with State-of-the-art sensing systems 

 

 

 

 

 

Fig. 2 Computation power scaling for analog (solid line) and digital (dashed line) implementations [12] and impact 
on efficiency cross over point due to voltage scaling and due to digital assistance by machine learning and / or 
calibration    



 

Fig. 3 System diagram of the Power-Proportional voice activity detector (left) and VAD Power scaling with sensing 
complexity (right)   

 

 

Fig. 4 (a) Impact of number of computed features (b) Impact of gain degradation on classification accuracy. The 
results are for exhibition background noise with 12dB and 0 dB SANR respectively  



 

Fig. 5 Histogram depicting average usefulness of computed features in exhibition background noise context for 
SANR of 0 dB 

 

Table 1 Highlight of important specifications for targeted voice activity detection system. 

 

 

 

 

Fig. 6 Schematics for threshold based wakeup detector 



 

Fig. 7 Schematic and design parameters of the analog feature extraction block 

 

 

Fig. 8 Amplifier schematic highlighting gate leakage through the input pair 

 

Fig. 9 Simulated frequency response for LNA and amplifiers in even bands showing increasing f-3dB 



 

Fig. 10 First order gm – C based band pass filter topology 

 

Fig. 11 Simulated frequency response for a constant Q = 1.3 BPF filters in even bands 

 

Fig. 12 Rectifier and LPF based averaging circuit 



 

Fig. 13 Simulated response of the averaging circuit for a sinewave input of 20mVpp amplitude and 500 Hz 
frequency  

 

 

Fig. 14 Architecture of (a) one node of DT classifier and (b) complete classifier 

 

 



 

Fig. 15 Measurement setup (top) and chip micrograph (bottom) with important blocks highlighted 

 

 

 

 

Fig. 16 Measured input referred noise at the LNA output. 



 

Fig. 17 Measured small signal magnitude response for LNA (a), amplifier with LNA (b), BPF with amplifier (c) in 
16th band 

 

Fig. 18 Measured large signal frequency response of complete bands for bands 3, 5, 7 and 10  

 

 

Fig. 19 Measured power consumption of LNA and of each band for gain setting of 01 and 11 



 

Fig. 20 Calibration scheme for ADC and DAC paths 

 

Fig. 21 Comparison of classification accuracy to STOA software VADs 

 

Fig. 22 Measured ROC curves depicting classification accuracy for multiple SANR in (a) Exhibition and (b) Car 
noise contexts 



Table 2 Measured power consumption variation with classification task complexity illustrating achieved Power-
Proportional operation 

 

 

Table 3 Comparison with State of the art VAD and similar systems 
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