
An LTI control toolbox -
simplifying optimal feedback controller design

Maarten Verbandt, Jan Swevers, Goele Pipeleers

Abstract— This paper presents a novel LTI control toolbox,
aiming at transparent optimal feedback controller design. It
provides a compact and intuitive syntax to model the con-
trol configuration and to formulate performance specifications
based on an H∞ criterion. Its core contains state-of-the-art
solvers which are able to handle unstable weights. Moreover,
improper weighting functions can be handled and state mea-
surements are exploited to reduce the controller order. On
account of these aspects, the synthesized controllers require
no post-processing. A comparison with Matlab’s robust control
toolbox shows a clear improvement regarding the expression of
controller specifications and the computation time.

I. INTRODUCTION

Imagining today’s industry without feedback controllers
is almost impossible. Typical control structures such as PID
controllers are applied, possibly with additional filters to
counteract resonances or anti-resonanses. Although these
building blocks have proven themselves useful, state-of-the-
art feedback controller design strategies have the potential
to outperform classical controllers as they provide more
degrees of freedom. Moreover, these advanced methods gain
industrial relevance as performance demands keep on in-
creasing. Take for instance motion control of wafer steppers.
The continuous demand for both higher throughput and
higher accuracy results in a more and more challenging
controller design. In order to meet the expectations, every
new generation becomes lighter. This causes flexible modes
to shift towards the region where tight control is necessary,
hereby complicating the controller design.

The H∞ design framework seems to be a promising al-
ternative to classical open loop shaping. It allows translating
performance specifications directly to the closed loop. These
can be either objectives, such as maximize bandwidth, or
constraints such as a bound on the sensitivity to sensor noise.
Despite their potential, practical difficulties such as the com-
plexity of controllers and the required expert knowledge, are
still overruling the benefits and hereby sustain the dominance
of standard PID control in industry.

Acknowledgement The authors would like to thank M. Dhadamus for
his implementation of mixedHinfsynMIMO.

This work has been carried out within the framework of projects Flanders
Make SBO ROCSIS: Robust and Optimal Control of Systems of Interact-
ing Subsystems and KU Leuven-BOF PFV/10/002 Centre of Excellence:
Optimization in Engineering (OPTEC). This work also benefits from the
Belgian Programme on Interuniversity Attraction Poles, initiated by the
Belgian Federal Science Policy Office (DYSCO) and FWO G.0915.14:
project G.0915.14 of the Research Foundation - Flanders (FWO - Flanders)

The authors are with the Faculty of Mechanical Engineering,
Division PMA, KU Leuven, BE-3001 Leuven, Belgium
maarten.verbandt@kuleuven.be

Traditionally, the difficulties regardingH∞ design occur at
two levels. First there is a lack of software support. Although
Matlab’s robust control toolbox contains a variety of func-
tions, they are all limited to either unconstrained optimization
or feasibility problems and require a high level of expertise
from the user. Second, post-processing is required before the
controller can be deployed, typically removing near pole-
zero cancellations and dynamics located outside the control
region. To overcome these difficulties, we have developed a
Matlab LTI Control Toolbox that provides a clear interface
to propose a control configuration and a set of requirements.
The implementation of state-of-the-art controller synthesis
tools allows the user to design various controllers such as
controllers with integrators and reduced order controllers. In
what follows, we synthesize reduced order H∞ controllers
by means of the LTI control toolbox which do not require
post-processing. These are obtained by choosing unstable
and improper weighting functions combined with a suitable
solver. By detecting direct state measurements, the order of
the controller can be reduced without losing performance.

This paper is organized as follows. Section II starts by
introducing recent developments in H∞ controller design
which form the basis of the controller synthesis. The fol-
lowing sections discuss the new LTI control toolbox and
provide a comparison with Matlab’s robust control toolbox.
This comparison is based on a mechatronic case study for
which we synthesize both a classic single input controller
and a reduced order multiple input controller. Section V
concludes the paper.

II. H∞ CLOSED LOOP SHAPING

Consider a controller design for which the closed loop has
to meet the following requirements:

|Ti (ω)| 6
∣∣∣∣ 1

Wi (ω)

∣∣∣∣ , ∀ω ∈ R, i ∈ {1, ..., N} (1)

where Ti (ω) represents the closed-loop transfer function on
which the bound W -1

i (ω) is requested. The H∞ framework
provides a way to directly synthesize a controller that meets
these constraints by means of an optimization problem.
Traditional H∞ methods only allow stacked objectives and
the minimization of one H∞ norm [1], for example Matlab’s
hinfsyn. Although it provides a way to obtain a stabilizing
controller that more or less satisfies the constraints, this way
of formulating the problem is far from transparent for a non-
expert.

Recent advances in the field do not require the weighted
transfer functions to be stacked [2]. Therefore objectives

and constraints can be rigorously separated, resulting in an
optimization problem of the form:

minimize
K

∑
i

αi ‖WiTi‖∞

subject to ‖WjTj‖∞ 6 1

(2)

The weightsWj implicitly limit the magnitude of the closed-
loop transfer functions Tj . This provides a way to restrict the
peak sensitivity to improve damping of the closed-loop poles
or to put a bound on the complementary sensitivity to ensure
robustness. Since the design is formulated as an optimization
problem, the remaining freedom in controller parameters can
be exploited to minimize some function. This is in general
expressed by a weighted sum over the several objectives,
‖WiTi‖∞, by means of αi. This is used to for instance
minimize the actuator effort or maximize the bandwidth.

Although appealing, these H∞ methods suffer from im-
practicalities due to mathematical reasons, as described in
the following paragraphs.

A. Unstable weights: enforcing integrators in the controller

Typically only stable weights, W , can be applied in (1)
and (2) since the generalized plant has to remain stabilizable.
This prohibits including pure integrators in the weights in
order to enforce integrators in the controller. The usual work-
around consists of transforming the desired weight into a
stable alternative with low frequency poles. This results in
a controller that displays integrator-like dynamics, which
are converted to a real integrator in a post-processing step.
Recently, [3] proposed a way to deal with unstable weights
by enforcing a pole-zero cancellation using the controller’s
dynamics. This allows the user to directly create an integrator
in the controller avoiding post-processing.

B. Improper weights: enforcing roll-off in the closed-loop

Traditional methods rely on the state-space description of
the generalized plant. Since the state-space description only
exists for proper plants, weights are typically chosen to be
proper. Improper weights can however be desirable as they
enforce roll-off on the weighted channel. In order to mimic
their result, the weight is augmented with high frequency
poles, rendering the weight proper. However this results in an
needless increase of the controller order and additional higher
order dynamics that should be removed in an additional post-
processing step.

If the channel, T , has a relative degree, n, an improper
weight W up to relative degree −n will not result in an
improper weighted channel, WT . In this case, traditional
methods offer a solution.

However, if the weighted channel becomes improper, one
has to resort to the descriptor form:

Eẋ = Ax+Bu

z = Cx+Du
(3)

In this case E is rank deficient. A promising approach
to handle a rank deficient E is proposed in [4] where a
pole-zero cancellation at infinity is enforced by inserting

the required dynamics in the controller. This results in
an impulsive-free descriptor system for which H∞ design
methods exist [5].

C. Order reduction

Classic H∞ design methods synthesize a controller of
the same order as the generalized plant. This assumption
allows the controller synthesis problem to be reformulated
as a convex optimization problem [6]. However, since a
H∞ controller can be seen as the combination of a state
estimator and state feedback [7], direct state measurements
can be exploited to reduce the order of the controller. Such
technique is explained in [8].

III. LTI CONTROL TOOLBOX

H∞ controller synthesis typically follows a fixed pro-
cedure. First the plant and the control configuration are
modeled. Second the specifications are formulated as an
optimization problem, e.g. as suggested by Eq. (2). The
combination of systems and weights yields the generalized
plant which is then used by a suitable solver to synthesize a
controller.

The developed LTI control toolbox1 supports the user
in these modeling steps by providing a clear syntax to
formulate both the control configuration and requirements
in an intuitive way. Behind the scenes, the corresponding
generalized plant is constructed and the design problem is
transferred to an appropriate solver.

The following subsections show the structure of the tool-
box and the syntax to define the control configuration and
the control requirements formulation.

A. Control configuration

The control configuration consists of all dynamic systems
and the connections between their inputs and outputs. In
order to easily connect all systems, a signal-based Matlab
syntax has been developed. As an example, the plant in Fig. 1
is described by Code example 1.

K G

S

r e u y

-

Fig. 1: Schematic representation of the example control
configuration. G and S are dynamic systems which together
form the plant. K indicates the controller which eventually
closes the loop.

1 G = LTIsys(G); %make G.in and G.out available
2 S = LTIsys(S);
3
4 lti_begin()
5 signal r
6
7 u = G.in; %define u as G’s input

1The developed LTI control toolbox is freely available on github:
https://github.com/maartenverbandt/lti toolbox

8 y = G.out; %define y as G’s output
9 e = r - S.out; %define the error

10 S.in == y; %connect S to G
11
12 K.in = e; %set controller input
13 K.out = u; %set controller output
14 lti_end

Code example 1: LTI control toolbox code to describe
the control configuration depicted in Fig. 1.

In order to make G and S available to the toolbox, they
need input and output signals assigned to them, which is
done in lines 1 to 2. In between the lti begin and lti end, the
configuration is defined. Since r is an external reference, it
is declared as a new signal. Next u and y are declared as
convenience variables for the input and output of G.e, the
error, is declared as r minus the output of S. Finally, G and
S are connected by making S.in and y equal. Lines 12 and
13 specify the inputs and outputs of the eventual controller.

Although this syntax is provided as a tool to ease the
declaration of the control configuration, it can also be used
to interconnect a series of systems in an arbitrary manner to
obtain a dynamic description of the whole.

B. Control requirements

The control requirements reflect the wishes of the designer
regarding the controller’s performance. In an H∞ frame-
work, this is done by specifying bounds, Wi, on the closed-
loop transfer functions, Ti, which may also be minimized.
Since Eq. (1) can be rewritten as:

‖WiTi‖∞ 6 1 (4)

Wi can be regarded as a weight for the closed-loop transfer
function. The LTI control toolbox provides a natural way
of stating these specifications in terms of weighted transfer
functions. Consider as a design problem the case where
the actuator effort needs to be minimized given a minimal
bandwidth w.r.t. tracking error rejection. These specifications
can be reformulated in terms of two weights, WU and WS ,
and the following optimization problem:

minimize
K

wwwWU
u

r

www
∞

subject to
wwwWS

e

r

www
∞

6 1
(5)

Code example 2 shows the equivalent declaration using
the LTI control toolbox. The design starts by declaring WU

and WS . The class Weight has been implemented to provide
standard weights such as low and high frequency roll-off
weights or a DC weight. The actual control problem specifi-
cation is done in the ctrl begin() .. ctrl end() environment. It
accepts minimize and subject to to specify the objective and
constraints respectively. The syntax allows an almost exact
copy of the previously stated optimization problem (Eq. 5).

1 % unity weight
2 WU = LTIsys(Weight.DC(0));
3 % order 1 unstable weight with w0 Hz BW
4 WS = LTIsys(Weight.LF(w0,1));
5
6 lti_begin()

7 %% ... %% plant declaration
8
9 ctrl_begin(’my_controller’)

10 minimize(WU*(u/r))
11 subject to
12 WS*(e/r) <= 1
13 ctrl_end
14 lti_end

Code example 2: LTI control toolbox code to design the
controller as described by problem (5).

In order to compare multiple controller designs at once, the
toolbox allows multiple ctrl begin() .. ctrl end() statements.
This results in a set of controllers for the same plant whose
performance is readily compared.

The toolbox contains multiple LMI-based solvers all han-
dling different convex problems. mixedHinfsynMIMO is
our own implementation of state-of-the-art functionality as
touched upon in section II. It can handle unstable weights and
synthesizes reduced order controllers by means of additional
state feedback.

C. Structure
Fig. 2 displays the structure of the LTI control toolbox.

The structure rougly represents the aforementioned design
steps: the configuration, i.e. the modeling of the plant,
and the requirement specification, i.e. formulating an op-
timization problem using weighted transfer functions. The
configuration can be regarded as a plant building problem.
Several dynamic systems and adders are being connected
through a set of signals. These are all stored in one class
which can be translated to a model of the entire plant. The
requirements class contains a series of weighted transfer
function norms which reflect the design specifications of the
user. Combined with the configuration object, the generalized
plant can be constructed. Each control specification object
also contains a solver object that processes the objectives
and constraints and calls a suitable solver.

LTI toolbox
Configuration

Requirements

Solver

Requirements

Solver

Requirements

Solver
...

Fig. 2: Schematic representation of the LTI control toolbox’s
internal structure.

IV. COMPARISON WITH MATLAB ROBUST
CONTROL

This section provides a comparison of the newly developed
LTI control toolbox with the standard robust control toolbox
in Matlab. This comparison is based on a mechatronic case
study2 which is outlined in a first subsection. The second

2This case study is distributed along with the toolbox and can be found
as part of the standalone examples under ECC2016.

m1 m2

F
y1 y2

Fig. 3: Schematic representation of the mechatronic system
to be controlled. In between the two masses sits a spring-
damper system. Both positions are being measured while
only the first mass is actively driven by the input F .

subsection demonstrates the simplicity which the control
configuration and the optimization problem are defined with.
The third subsection compares the performance of the avail-
able solvers.

A. Mechatronic case study

The considered mechatronic system is depicted in Fig. 3.
A spring-damper system connects two masses of which the
first is driven by an input force, F . The positions of both
masses are being measured, y1 and y2. This results in the
2-by-1 system G, whose transfer function is depicted in
Fig. 4. Furthermore the multiplicative uncertainty bound on
the model is known and characterized by WT .

The control configuration is shown in Fig. 5. First we
consider a single input control design based on e (collocated
control configuration), indicated by the solid lines. Second a
3-input controller is synthesized using y1 and y2 additionally
(dashed lines).

In what follows, the transfer function r 7→ e will be
refered to as the sensitivity, S, and r 7→ y1 as the com-
plementary sensitivity, T . The purpose of the design is to
achieve optimal reference tracking of the first mass without
a steady-state positioning error, disregarding the response of
the second mass. This requirement dictates an integrator in
the controller. Since the first output of G already contains
two integrators, a weight on the sensitivity, WS , with triple
integral action is required to enforce an extra integrator in
the open loop. In order to prevent a large overshoot on the
step response the sensitivity should stay below 8dB. This
puts a constraint on the peak of the sensitivity function,
MS . Robustness is taken into account via the multiplicative
uncertainty w.r.t. the first output. This is done by demanding
the complementary sensitivity to stay below the uncertainty
boundWT . Fig. 6 depicts the selected weights. Dashed lines
indicate the classical weights which are proper and stable.
The solid lines represent their desired counterparts which
are traditionally avoided since an unstabilizable or improper
plant cannot be dealt with by the robust control toolbox.

B. Controller design

Reformulating the previously stated requirements as an
H∞ problem results in the following:

minimize
K

‖WSS‖∞
subject to ‖MSS‖∞ 6 1

‖WTS‖∞ 6 1

(6)

10
0

10
1

10
2

−50

0

50

|Y
1/F

| [
dB

]

10
0

10
1

10
2

−100

0

100

<
Y

1/F
 [°

]

10
0

10
1

10
2

−100

0

100

|Y
2/F

| [
dB

]

10
0

10
1

10
2

−200

−100

0

f [Hz]

<
Y

2/F
 [°

]

Fig. 4: Bode diagram of the plant, G.

K G
r e F y1

y2-

Fig. 5: Schematic of the control loop for both the single
and multi input configuration. The dashed lines indicate the
additional measurements being fed back to the controller.

10
−2

10
−1

10
0

10
1

10
2

10
3

−120

−100

−80

−60

−40

−20

0

20

f [Hz]

m
ag

ni
tu

de
 [d

B
]

1/WS

stable

1/WS
unstable

1/WT
proper

1/WT
improper

1/MS

Fig. 6: Selected weights for the H∞ controller design.
Dashed lines indicate classic weighting functions whereas
the solid lines mark their unstable and improper counterparts.
The maximum sensitivity weight remains unchanged.

Both the sensitivity and complementary sensitivity function
are bounded by respectivelyMS andWT . The bandwidth is
maximized by minimizing the infinity-norm of the weighted
sensitivity function WSS.

Using the LTI control toolbox, the required code looks
something like:
1 G = LTIsys(plant);
2 WS = Weight.LF(5,3);
3 MS = Weight.DC(8);
4 WT = Weight.HF(13,2);
5
6 lti_begin()
7 signal r
8
9 F = G.in;

10 y = G.out; %2x1 signal
11 e = r - y(1); %tracking error of y1
12
13 K.in = e; %[e;y] for additional state fb
14 K.out = F;
15
16 ctrl_begin(’controller’,options)
17 minimize(WS*(e/r))
18 subject to
19 MS*(e/r) <= 1
20 WT*(y(1)/r) <= 1
21 ctrl_end
22 lti_end

Code example 3: LTI control toolbox code to synthesize
the controller as stated in subsection IV-A. The first part
describes the control configuration whereas the second
part specifies the design requirements.

This design can be redone using Matlab’s robust control
toolbox. This results in Code example 4.

1 Ny = 1;
2 Nx = 9; %Nx is 5 for state fb
3 Nu = 1; %Nu is 3 for state fb
4 K = ltiblock.ss(’K’,Nx,Ny,Nu);
5 K.u = ’e’; %{e;y;ya} for additional state fb
6 K.y = ’u’;
7
8 WS.u = ’e’; WS.y = ’z1’;
9 MS.u = ’e’; MS.y = ’z2’;

10 WT.u = ’y’; WT.y = ’z3’;
11 G.u = ’u’; G.y = {’y’;’ya’};
12
13 sum_e = sumblk(’e=r-y’);
14
15 P = connect(G,K,WS,MS,WT,sum_e,...
16 {’r’},{’z1’,’z2’,’z3’});
17
18 ReqWS = TuningGoal.Gain(’r’,’z1’,1);
19 ReqMS = TuningGoal.Gain(’r’,’z2’,1);
20 ReqWT = TuningGoal.Gain(’r’,’z3’,1);
21
22 systuneOptions(’RandomStart’,5);
23 [CL] = systune(P,[ReqWS],[ReqMS;ReqWT]);

Code example 4: Robust control toolbox code to synthe-
size the controller as stated in subsection IV-A. There is
no clear separation between the control configuration and
the requirements.

Two main differences catch the eye when comparing Code
example 3 to 4. Whereas the robust control toolbox connects
systems via the systems’ input and output names, the novel
LTI control toolbox uses a list of input and output signals.
The latter has the advantage of providing a shorter way
of notation. Also the user is not obliged to specify signal
names in order to interconnect systems. Systems can be
interconnected directly via the systems’ signals e.g. G.in and
G.out.

The LTI control toolbox also allows a natural description
of the control requirements, lowering the necessary level of
expertise of the user. Therefore this toolbox clearly simplifies
the design procedure compared to the robust control toolbox.

C. Evaluation of the available solvers

Matlab’s robust control toolbox contains various solvers
aiming at H∞ controller design. Without a doubt hinfsyn is

the most famous. More advanced methods such as hinfstruct
and systune allow the user to design structured fixed order
controllers. Since they rely on a non-convex formulation of
the H∞ design problem [9], they risk getting stuck in a local
optimum.

As a first example, the closed-loop performance obtained
with various solvers for the classical full order design is
shown in Fig. 7. In this case, hinfstruct achieves a perfor-
mance comparable to mixedHinfsynMIMO. Due to its non-
convexity, systune gets stuck in a local optimum, resulting
in a lower bandwidth and poor compensation of the anti-
resonance-resonance pair.

Since mixedHinfsynMIMO can handle the unstable sen-
sitivity weight, it is possible to directly obtain the desired
integrator in the controller (Fig. 8). This is not the case when
using the built-in Matlab tools, resulting in the differentiator-
like characteristics at low frequencies.

10
−2

10
0

10
2

10
4

−160

−140

−120

−100

−80

−60

−40

−20

0

20

f [Hz]

S
en

si
tiv

ity
 [d

B
]

mixedhinfsynmimo
hinfstruct
systune

10
−2

10
0

10
2

10
4

−140

−120

−100

−80

−60

−40

−20

0

20

f [Hz]

C
om

pl
em

en
ta

ry
 S

en
si

tiv
ity

 [d
B

]
Fig. 7: Comparison of the closed loop performance when
using mixedHinfsynMIMO, hinfstruct and systune for the
single input controller design.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−50

0

50

f [Hz]

m
ag

ni
tu

de
 [d

B
]

mixedhinfsynmimo
hinfstruct
systune

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−400

−300

−200

−100

0

f [Hz]

ph
as

e
[°]

Fig. 8: Comparison of the controller when using mixed-
HinfsynMIMO, hinfstruct and systune for the single input
controller design.

Important to note is that contrary to mixedHinfsynMIMO
and systune, hinfstruct minimizes the stacked norm of all

exogenous outputs. This means that obtaining optimal per-
formance given a set of hard constraints is not possible in
a direct way. A workaround consists of altering the weights
based on mixedHinfsyn’s solution. This results in a controller
satisfying both the constraints and optimality conditions,
such that it is comparable to the other controllers.

Second, we design a controller for the mutli input con-
figuration. Based on Fig. 9, all controllers show similar
performance. Since Matlab’s robust control toolbox does
not allow unstable weights, a pure integrator is not realiz-
able resulting in a non-zero sensitivity at 0Hz. With the
single input controller design, it was still easy to move
the controller’s low frequency poles to 0Hz in order to
obtain the integrator. This however is no longer the case for
the multiple input controller, emphasizing the relevance of
these unstable weights. Furthermore, the explicit partial state
feedback allows the synthesis of a reduced order controller,
going from a 7th to 5th order controller without loss of
performance.

10
−2

10
0

10
2

10
4

−160

−140

−120

−100

−80

−60

−40

−20

0

20

f [Hz]

S
en

si
tiv

ity
 [d

B
]

mixedhinfsynmimo
hinfstruct
systune

10
−2

10
0

10
2

10
4

−160

−140

−120

−100

−80

−60

−40

−20

0

20

f [Hz]

C
om

pl
em

en
ta

ry
 S

en
si

tiv
ity

 [d
B

]

Fig. 9: Comparison of the closed loop performance when
using mixedHinfsynMIMO, hinfstruct and systune for the
multi input controller design.

Table I lists the controller synthesis time and the total time
which is required to compute the controller and the closed-
loop transfer function. Thanks to the convex reformulation,
mixedHinfsynMIMO obtains a solution in a considerably
shorter time than the built-in Matlab tools. It is also possible
that the LMI solver benefits from the fact that the order
of the system is rather low, so one should be careful when
interpreting these results.

What also catches the eye is that although hinfstruct and
systune both rely on the same non-smooth optimization
methods, solving the constrained optimization problem with
systune is without a doubt faster than solving the stacked
optimization problem with hinfstruct.

V. CONCLUSION

Several issues prevent H∞ controller design to be applied
in industry. Obvious reasons are the lack of software sup-
port and the need for post-processing. The developed LTI
control toolbox simplifies the control problem formulation

single input mHinfMIMO hinfstruct systune
synthesis time [s] 1.06 12.42 6.31
total time [s] 1.49 12.51 6.33
multi input mHinfMIMO hinfstruct systune
synthesis time [s] 0.24 13.34 6.82
total time [s] 0.66 13.38 6.86

TABLE I: Computation times for the single and multi input
controller design for the tested solvers.

and synthesis considerably. A comparison of the LTI control
toolbox with Matlab’s robust control toolbox shows that
the former is more intuitive and that its routines handle
more complex problems such as constrained optimization
problems with unstable and improper weights. Moreover,
the considered case study shows the LTI control toolbox’s
potential to exceed the robust control toolbox in speed. By
means of the LTI control toolbox, it is possible to synthesize
a reduced order controller that is directly suited for operation.

REFERENCES

[1] T. Iwasaki and R. E. Skelton, “All controllers for the general H∞
control problem: LMI existence conditions and state space formulas,”
Automatica, Vol 30, No 8, 1994.

[2] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback
control via LMI optimization,” Automatic Control, IEEE Transactions
on, vol. 42, no. 7, pp. 896–911, 1997.

[3] H. Köroğlu and C. W. Scherer, “Generalized asymptotic regulation with
guaranteed H∞ performance: An LMI solution,” Automatica, vol. 45,
no. 3, pp. 823–829, 2009.

[4] Y. Feng and Z. Su, “H∞ control with output weights for descriptor
systems,” Proceedings of the 33rd Chinese Control Conference, 2014.

[5] I. Masubuchi, “Output feedback controller synthesis for descriptor
systems sastifying closed-loop dissiptivity,” Automatica,Vol 43, 2007.

[6] C. M. Agulhari, R. C. L. F. Oliveira, and P. L. D. Peres, “LMI
relaxations for reduced-order robust H∞ control of continuous-time
uncertain linear systems,” IEEE Transactions on Automatic Control,
vol. 57, no. 6, pp. 1532–1537, 2012.

[7] S. Skogestad and I. Postlethwaite, Multivariable feedback control:
analysis and design, vol. 2. Wiley New York, 2007.

[8] T. Asai and S. Hara, “Convex parametrization of reduced order con-
trollers for a class of problems under partial state measurements,”
Proceedings of the 36th IEEE Conference onf Decision and Control,
1997.

[9] P. Apkarian and D. Noll, “Nonsmooth H∞ synthesis,” Automatic
Control, IEEE Transactions on, vol. 51, no. 1, pp. 71–86, 2006.

