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Abstract The present paper proposes a mathematical model and algorithm for
optimizing cost-effectiveness in a stochastic manpower planning system under con-
trol by recruitment. More specifically, we suggest a multi-objective model that
simultaneously addresses two objectives, namely minimizing the cost and maxi-
mizing the desirability degree of the attained personnel structure. In a stochastic
environment, the uncontrollable parameters of the manpower model (i.e. internal
transitions and wastage) are random variables. We suggest a scenario approach in
order to cope with this uncertainty. The optimization problem under study is for-
mulated as a mixed integer program. Further, in order to decrease the computing
time in solving the optimization problem, we show that the optimal recruitment
strategy has some properties that enable narrowing the solution space.
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1 Introduction

The operations research literature presents a variety of mathematical models
and methods to support organizations in several domains of personnel planning
(Khoong 1996). In the domain of personnel rostering, optimization methods are
developed to assign the available personnel to work shifts, subject to legal con-
straints, contractual agreements and/or personal employees preferences (Bilgin
et al. 2012; Burke et al. 2004; Ernst et al. 2004; Smet et al. 2014). In the domain
of staffing, on the other hand, methods are suggested to determine the personnel
level that is required to cover the organization’s workload (Komarudin et al. 2013;
Ozcan 2009). Staffing decisions determine the personnel that will be available for
rostering. However, staffing does not include providing personnel strategies that
ensure that eventually the desired personnel is available. Instead, this problem is
covered in the domain of manpower planning.

An extensive body of research on quantitative models for manpower planning
is based on Markov theory (Bartholomew et al. 1991; De Feyter & Guerry 2011;
Ugwuowo & McClean 2000; Vassiliou 1997). In Markov manpower planning mod-
els, the employees are classified into exclusive subgroups based on work-related
and/or personal characteristics (De Feyter 2006). The personnel structure repre-
sents the number of employees in each of the subgroups. The objective of Markov
manpower planning is to attain a desired personnel structure whereby the dynam-
ics of the personnel system is regulated by recruitments, internal flows between the
subgroups and wastage. These employee flows are the parameters of the manpower
models.

In prior work, many descriptions of the Markov manpower planning problem
exist, differing in the assumptions on the model parameters. On the one hand,
models can be distinguished based on the parameters that are considered as de-
cision variables. The evolution of the personnel structure can be controlled by
recruitment and/or by internal flows (Bartholomew et al. 1991; De Feyter 2007;
De Feyter & Guerry 2011; Guerry & De Feyter 2011; Nilakantan & Raghavendra
2005). Wastage, on the other hand, is generally assumed to be uncontrollable,
because, for example, voluntary wastage is a free choice of the employee and is
therefore not under control of management. In this way, the desired personnel
structure objective is accompanied by hard constraints on the uncontrollable pa-
rameters of the model. On the other hand, models can be distinguished based
on the time-dependency of its parameters. Manpower systems can be modeled
by time-homogeneous, non-homogeneous and semi-Markov approaches (McClean
1991; McClean et al. 1997; Papadopoulou & Vassiliou 1994; Vassiliou 1981; Vas-
siliou 1982; Vassiliou & Papadopoulou 1992; Yadavalli et al. 2002).

Early academic contributions studied the manpower planning problem by math-
ematically describing the set of attainable personnel structures, given some model
constraints (Bartholomew 1977; Davies 1975; Georgiou & Vassiliou 1992; Tsantas
& Georgiou 1997; Vassiliou & Tsantas 1984; Vassiliou & Georgiou 1990; Vassiliou
et al. 1990). Each personnel structure of this set is attainable by means of at least
one personnel strategy. This way, the set of attainable personnel structures defines
the solution space in which there can be searched for the most suitable personnel
structure and a related personnel strategy. However, previous work shows that the
desired personnel structure is not always attainable, given the model constraints
(Davies 1982; Guerry 1993; Guerry & De Feyter 2012).
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An obvious approach to deal with this problem is allowing constraint violations
and constructing an optimization model that includes the objective of minimizing
the constraint violations. Unfortunately, since promotions are a specific type of
internal transitions, this approach is not always preferable in real-world applica-
tions. More specifically, in manpower systems under control by recruitment, and in
which the internal flows originally were not considered as control variables, chang-
ing the promotion opportunities may lead to employees’ job dissatisfaction (Klehe
et al. 2011).

Another approach for coping with unattainable desired personnel structures
is opting for a personnel strategy that respects the model constraints and re-
sults in a personnel structure most similar to the desired one (Komarudin et al.
2015; Guerry 1999). This approach corresponds to a maximization problem with
a certain similarity measure as objective function, whereby the solution space
is defined by the region of attainable personnel structures. In interesting work
by Dimitriou et al. (2013) and Georgiou & Tsantas (2002), such an optimization
problem was extended by including cost minimization as supplementary objective.
Because such a problem is multi-objective, the solution might not be necessarily
the cheapest possible personnel strategy. Nevertheless, we consider the solution to
be cost-effective, because it balances the goals of minimizing operational costs and
attaining the desired personnel structure to cover the organization’s workload as
good as possible.

In the present paper, we propose a mathematical model and algorithm for opti-
mizing cost-effectiveness in a manpower planning system under control by recruit-
ment. In real-world applications, the uncontrollable model parameters regarding
wastage and internal flows are often subject to uncertainty (Chattopadhyay &
Gupta 2007; De Feyter & Guerry 2009; Papadopoulou & Tsaklidis 2007; Shapiro
et al. 2009; Vassiliou & Gerontidis 1985). Therefore, in contrast to similar pre-
vious work (Dimitriou et al. 2013; Georgiou & Tsantas 2002), we consider the
stochastic nature of the manpower planning problem. In practice, to cope with
uncertainty, decision makers often consider several possible scenarios for the un-
known parameters in the decision model (Komarudin et al. 2016; Shapiro et al.
2009). Likewise, in comparing the cost-effectiveness of recruitment strategies, we
suggest a scenario approach that takes into account a wide range of possible sce-
narios for internal flows and wastage. In Section 2, we introduce two measures
that can serve as objectives to evaluate the cost-effectiveness of a recruitment
strategy. The cost-effectiveness of a recruitment strategy is expressed analytically
by the cost ratio and the desirability degree. In Section 3, we present an opti-
mization model and algorithm to find the most cost-effective recruitment strategy.
The scenario approach allows us to formulate the problem under study as a mixed
integer program. To identify the solution space, we could rely on the results in
prior work (Bartholomew et al. 1991), which mathematically describe the set of
attainable personnel structures and the related personnel strategies, given the hard
constraints in our model. In Section 4, however, we show that the optimal solution
of the mixed integer program has some interesting additional properties that allow
us to further narrow the solution space. In this way, we are able to tighten the
mixed integer program. Our illustration, in Section 5, shows that those properties
enable us to significantly decrease the computation time in solving the optimiza-
tion problem for cost-effectiveness.
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2 Cost-effectiveness of a recruitment strategy

Consider a stochastic manpower system under control by recruitment and assume
that the personnel of the organization is divided into k subgroups. The personnel
structure n(t) = (ni(t)) is the row vector of which the i-th component ni(t) refers
to the number of employees in subgroup i ∈ {1, ..., k} at time t. Let R = (ri) be a
non-negative row vector of which the i-th component ri is referring to the number
of personnel recruited in subgroup i at time t. The aim is to evaluate recruitment
strategy R, taking into account the uncertainty about the wastage and internal
flows between the subgroups in time interval [t− 1, t).

Let fij(t) be the number of employees that move from subgroup i to subgroup j
in time interval [t−1, t) and let pij be the transition probability from subgroup i to
subgroup j in a unit time interval. We denote by f̄ij(t) the expected flow from sub-
group i to subgroup j in the same time interval. In stochastic manpower planning,
it is well known that f̄ij(t) is given by ni(t − 1)p̂ij , with p̂ij being the maximum
likelihood estimation of the probability for an employee to move from subgroup i at
time t− 1 to subgroup j at time t (Bartholomew et al. 1991; De Feyter & Guerry
2009). The transition probabilities p̂ij (for i, j ∈ {1, ..., k}) are usually gathered
into the internal transition matrix P̂ = (p̂ij). Since the transition probabilities pij
are unknown, previous work suggests to estimate P = (pij) and its probability
distribution, based on historical data of internal transitions (Bartholomew 1977;
Bartholomew et al. 1991; De Feyter 2006; De Feyter & Guerry 2009).

In evaluating the cost-effectiveness of a recuitment strategy, our model takes
into account S possible scenarios for the unknown internal transition matrix F(t) =
(fij(t)). Each scenario s ∈ {1, ..., S} is characterized by a flow matrix Fs(t) =
(fsij(t)). Remark that the wastage (as unknown model parameter) is included in
the scenario for the internal transitions. Because a member of subgroup i at time
t − 1 has either left the organization at time t or made an internal transition to
subgroup j ∈ {1, ..., k} during time interval [t− 1, t), a scenario s, characterized by
the flow matrix Fs(t) = (fsij(t)), by definition implies a wastage scenario.

There are several possibilities for generating scenarios. From the estimated
internal transition matrix P̂, Monte Carlo methods can randomly generate S sce-
narios. However, the historical dataset can also be used for generating scenarios
based on bootstrapping (Rubinstein & Kroese 2008). Given scenario s and re-
cruitment strategy R, the number of members nsi(t) in subgroup i at time t is the
result of the sum of the internal flows fsji(t) into subgroup i and the recruitments
ri into subgroup i (Eq. 1).

nsi(t) =
∑k

j=1 fsji(t) + ri ∀i (1)

To evaluate the cost-effectiveness of a recuitment strategy, both costs and out-
comes should be taken into account. A cost-effective recruitment strategy is the
cheapest way to effectively cover the organization’s workload as good as possible.
Therefore, we propose two objectives that should be addressed simultaneously in
the pursuit of cost-effectiveness: minimizing the cost ratio and maximizing the
desirability degree.
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2.1 The cost ratio αs(R)

Following the related manpower planning literature (Dimitriou et al. 2013; Geor-
giou & Tsantas 2002; Georgiou & Vassiliou 1997; Vajda 1978), we consider two
kinds of costs to express the cost ratio related to recruitment strategy R: the op-
erational costs corresponding to the employment of the members of the personnel
system (e.g. wages) and the costs due to the employee flows. According to Eq. 1,
given personnel structure n(t−1) and internal transitions fsij(t), recruitment strat-
egy R results in a particular personnel structure ns(t) = (nsi(t)). Scenario s and
recruitment strategy R result in a cost that is composed of three components, i.e.
the cost of the personnel in correspondence with the number of members nsi(t),
the cost of the internal flows fsij(t) and the cost of the recruitment flows ri ac-
cording to strategy R. Remark that we assume that the costs regarding wastage
are implicitly included in the recruitment costs.

Regarding time interval [t−1, t), let cpi (t) be the cost of an employee of subgroup

i, cfij(t) be the cost of an internal transition of an employee from subgroup i to

subgroup j, and cri (t) be the cost of recruiting an employee into subgroup i. Then,
the total cost c(ns(t)) of personnel structure ns(t), corresponding to recruitment
strategy R, can be formulated as in Eq. 2.

c(ns(t)) =
k∑

i=1

cpi (t)nsi(t) +
k∑

i=1

k∑
j=1,j 6=i

cfij(t)fsij(t) +
k∑

i=1

cri (t)ri (2)

Let nc(t) be the personnel structure with i-th component nci (t) =
∑k

j=1 f̄ji(t).
Then, the total cost c(nc(t)) of the personnel structure nc(t) can be formulated as
in Eq. 3. Since nc(t) corresponds to the personnel structure at time t in the case
of no recruitments, it is the cheapest possible personnel structure for the expected
flows f̄ij(t).

c(nc(t)) =
k∑

i=1

cpi (t)nci (t) +
k∑

i=1

k∑
j=1,j 6=i

cfij(t)f̄ij(t) (3)

For a recruitment strategy R that results in a personnel structure ns(t), we
introduce the cost ratio αs(R) as the ratio of the cost c(ns(t)), related to the
personnel structure ns(t), to the cost c(nc(t)) related to nc(t). We formulate the
cost ratio αs(R) as in Eq. 4.

αs(R) =
c(ns(t))

c(nc(t))
(4)

2.2 The desirability degree βs(R)

The second objective in finding a cost-effective recruitment strategy is attaining at
time t a personnel structure that is as similar as possible to the desired personnel
structure. We denote the desired personnel structure at time t by nd(t). Based
on a fuzzy set approach, De Feyter & Guerry (2009) introduced the desirability
degree in order to express the discrepancy between a personnel structure n(t)
and the desired personnel structure nd(t). We denote the desirability degree of



6 Tim De Feyter, Marie-Anne Guerry and Komarudin

n(t) by δ(n(t)). With respect to subgroup i, the extent in which the number of
members ni(t) differs from the desirable number ndi (t) can be expressed by the
fuzzy triangular membership function δi(ni(t)) as in Eq. 5. We define this function
based on the lower and the upper limit of the number of personnel in subgroup i,
respectively denoted as nLL,i and nUL,i. This allows the decision maker to set a
maximum upward and downward deviation from the desired number of employees
in each subgroup i, as in Dimitriou et al. (2013) and Georgiou & Tsantas (2002).
We use the fuzzy min-operator to obtain the desirability degree of the vector
n(t) = (ni(t)) as in Eq. 6.

δi(ni(t)) =


0, if ni(t) < nLL,i or ni(t) > nUL,i
ni(t)−nLL,i

nd
i (t)−nLL,i

, if nLL,i ≤ ni(t) ≤ ndi (t)
ni(t)−nUL,i

nd
i (t)−nUL,i

, if ndi (t) ≤ ni(t) ≤ nUL,i

(5)

δ(n(t)) = min
i
δi(ni(t)) (6)

According to Eq. 1, given the personnel structure n(t − 1) and the internal
transitions fsij(t), the recruitment strategy R results in a particular personnel
structure ns(t). Therefore, for scenario s, the degree of desirability of R can be
expressed as equal to δ(ns(t)). Let us denote for scenario s the desirability degree
of recruitment strategy R as βs(R) satisfying Eq. 7.

βs(R) = δ(ns(t)) (7)

2.3 Cost-effectiveness

In order to evaluate the cost-effectiveness of a recuitment strategy, the aim is to
simultaneously consider the cost ratio and the desirability degree. Let w1 and w2

be the weights that denote the relative importance of respectively the cost and
desirability criterium. Then, for a given scenario s, the cost-effectiveness γs(R)
of recruitment strategy R can be expressed as in Eq. 8. For evaluating a recruit-
ment strategy, given the internal transitions fsij(t), Eqs. 2-8 provide measures to
evaluate the outcome of a particular R.

γs(R) = w1αs(R)− w2βs(R) (8)

Remark that the cost-effectiveness γs(R) is a function that simultaneously
incorporates two aspects, namely the cost and the desirability. Furthermore the
desirability degree βs(R) is expressed by a fuzzy membership function and conse-
quently takes values between 0 and 1. For that reason it is more appropriate to
consider besides the degree of desirability, the cost ratio αs(R) instead of the total
cost.

The cost ratio αs(R) as well as the desirability degree βs(R) depend on the
personnel structure ns(t). Since the personnel structure at time t is the result of
the recruitment strategy R and the internal transitions fsij(t) (see Eq. 1), both the
cost ratio and the desirability degree vary with the scenario for the internal flows.
To handle the uncertainty about the internal flows in a stochastic environment,
our model considers S possible scenarios, with each scenario s ∈ {1, 2, ..., S} being
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characterized by its own flow matrix Fs(t) = (fsij(t)). Therefore, the evaluation of
a particular recruitment strategy R should rely on the expected cost-effectiveness
E[γ(R)], which can be expressed as in Eqs. 9-11 .

E[γ(R)] = w1E[α(R)]− w2E[β(R)] (9)

E[α(R)] =
1

S

S∑
s=1

αs(R) (10)

E[β(R)] =
1

S

S∑
s=1

βs(R) (11)

3 Optimizing cost-effectiveness

In order to find a recruitment strategy that optimizes cost-effectiveness, we propose
a model and algorithm that simultaneously minimize the cost ratio and maximize
the desirability degree. An appropriate overall objective function to optimize cost-
effectiveness is given by Eq. 9. The aim is to minimize the function E[γ(R)].

The scenario approach allows us to formulate the optimization problem under
study as a mixed integer program (MIP), as presented in Eqs. 12-24. The model
consists of the overall objective function E[γ(R)], constraints on the cost ratio
αs(R) and the desirability degree βs(R) and some real-world restrictions on the
variables in the model.

1. The overall objective function E[γ(R)]
Eq. 12 expresses the goal of minimizing the overall objective function E[γ(R)]
that is considered to be the average of the cost-effectiveness γs(R) over the
different scenarios s ∈ {1, ..., S}. Since each scenario s is characterized by inter-
nal transitions fsij(t), Eq. 8 can be used to quantify γs(R) based on the cost
ratio αs(R) and the desirability degree βs(R). Then, for each scenario s, the
cost-effectiveness is expressed as in Eq. 13.

minimize E[γ(R)] =
1

S

S∑
s=1

γs(R) (12)

γs(R) = w1αs(R)− w2βs(R), ∀s (13)

2. Constraints on the cost ratio αs(R)
For scenario s ∈ {1, ..., S}, the number of members nsi(t) in subgroup i ∈
{1, ..., k} at time t is the result of the sum of the internal transitions fsji(t) into
subgroup i and the number of recruitments ri into subgroup i (as expressed by
Eq. 14). Let f̄ji(t) = nj(t− 1)p̂ji be the expected internal flow from subgroup
j to subgroup i. Then, by applying Eq. 2 for the internal transitions f̄ij(t) and
the number of recruitments equal to 0, the total cost c(nc(t)) can be expressed

as
∑k

i=1 c
p
i (t)nci (t) +

∑k
i=1

∑k
j=1,j 6=i c

f
ij(t)f̄ij(t) (Eq. 3). Eq. 4 can be used to

quantify αs(R). Eq. 15 expresses the cost ratio αs(R) for each scenario s.

nsi(t) =
∑k

j=1 fsji(t) + ri ∀s, i (14)
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Fig. 1 Fuzzy triangular membership functions δi(nsi(t))

αs(R) =
∑k

i=1 cpi (t)nsi(t)+
∑k

i=1

∑k
j=1,j 6=i c

f
ij(t)fsij(t)+

∑k
i=1 cri (t)ri∑k

i=1 cpi (t)nc
i (t)+

∑k
i=1

∑k
j=1,j 6=i c

f
ij(t)f̄ij(t)

∀s (15)

3. Constraints on the desirability degree βs(R)
According to Eqs. 5 and 6, the degree of desirability βs(R) regarding scenario
s ∈ {1, ..., S} and recruitment vector R is expressed by a min-operator and
by fuzzy triangular membership functions δi(nsi(t)) with i ∈ {1, ..., k}. The
functions δi(nsi(t)) are piecewise linear. More specifically δi(nsi(t)) is linear on
each of the four segments: (1) nsi(t) < nLL,i (2) nLL,i ≤ nsi(t) ≤ ndi (t) (3)

ndi (t) ≤ nsi(t) ≤ nUL,i and (4) nsi(t) > nUL,i (see example in Figure 1). A situ-
ation in which, for an index i ∈ {1, ..., k}, the value of nsi(t) belongs to the first
or the fourth segment results in βs(R) = 0. The second segment corresponds
to the increasing part of the fuzzy triangular function, and the third segment
corresponds to the decreasing part of the fuzzy triangular function.
As in Williams (1999), we transform the piecewise linear membership function
into mixed integer constraints. To this end, let us introduce binary variables
qbsil (for l ∈ {1, .., 4}) and continuous variables qcsil (for l ∈ {1, .., 5}), in order
to describe βs(R) as mixed integer constraints. Eqs. 16-18 denote the relation
between qcsil and qbsil. Particularly, qcsil can only be greater than zero if qbsil = 1.
Eq. 19 ensures that only one segment can be active at one time. Eqs. 20-21
denote that the i-th component of the personnel structure, nsi(t), is a convex
combination of the variables nLL,i, n

d
i (t), nUL,i, and nUB

i . The notation nUB
i

refers to an upper bound for the number of members in the i-th subgroup.
Then, the degree of desirability as a result of the min-operator is represented
in Eq. 22. Eq. 23 expresses that the values of the continuous variables qcsil are
restricted to [0, 1] and that qbsil are binary variables taking the values 0 and 1.

qcsi1 ≤ q
b
si1 ∀s, i (16)

qcsil ≤ q
b
si,l−1 + qbsil ∀l ∈ {2, 3, 4}, ∀s, i (17)

qcsi5 ≤ q
b
si4 ∀s, i (18)

∑4
l=1 q

b
sil = 1 ∀s, i (19)
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nsi(t) = qcsi2nLL,i + qcsi3n
d
i (t) + qcsi4nUL,i + qcsi5n

UB
i ∀s, i (20)

∑5
l=1 q

c
sil = 1 ∀s, i (21)

βs(R) ≤ qcsi3 ∀s (22)

qcsil ∈ [0, 1]; qbsil ∈ {0, 1} ∀s, i, l (23)

4. Real world restrictions on the model variables
We require nsi(t) and ri to be integer numbers to enhance the accuracy of the
computations (Guerry 2008). Eq. 24 expresses the fact that the variables nsi(t)
and ri are restricted to the set N of integer numbers.

nsi(t), ri ∈ N ∀s, i (24)

4 Properties of the optimal recruitment strategy

In the previous section, we formulated a mixed integer program in order to si-
multaneously optimize the cost ratio and the desirability degree. In the current
section, we study the properties of the optimal solution, in order to decrease the
computation effort in solving the problem.

4.1 Determining an upper bound for the optimal value of the objective function

By calculating the value of the objective function for any arbitrary chosen recruit-
ment vector, we can obtain an upper bound for the optimal value of the overall
objective function E[γ(R)]. This enables us to tighten the solution space in which
there can be searched for the optimal solution. Since it concerns a minimization
problem, the optimal solution will result in a value of the objective function that
is smaller or equal to the value of the objective function for this arbitrary chosen
recruitment vector.

However, to determine an upper bound of the optimal value of the objective
function, we suggest not to use an arbitrary chosen recruitment vector. Instead,
an upper bound for the optimal value of the objective function E[γ(R)] can be
obtained by relaxing the formulation in Eqs. 12-24. In particular, instead of finding
an optimal recruitment vector R = (r1, ..., rl, ..., rk) regarding the k subgroups, we
can decompose the problem by considering the subgroups one-by-one. In this way,
the initial problem with k variables r1, ..., rl, ..., rk is first examined by focusing on
the variables rl one at a time.

Let personnel structure nl
s(t) be the result of rl recruitments in subgroup l and

no recruitments in the other subgroups, i.e. rh = 0 for h 6= l. According to Eq. 1,
given scenario s, for h 6= l, the h-th component of vector nl

s(t) equals nlsh(t) =∑k
j=1 fsjh(t) = nch(t) and the l-th component equal to nlsl(t) =

∑k
j=1 fsjl(t) + rl.

The number of recruitments rl only affects the l-th component of the personnel
structure nl

s(t), being nlsl(t). The extent in which the number nlsl(t) differs from the
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desirable number ndl (t) is expressed by δl(n
l
sl(t)) as defined in Eq. 5. The resulting

cost ratio, on the other hand, is denoted by E[α(rl)] and is defined as in Eq. 25
based on the recruitment vector Rl, with l-th component equal to rl and all the
other components equal to 0:

E[α(rl)] = E[α(Rl)] (25)

For each subgroup l, we can find the best possible value r∗l for rl by enumer-
ation as in Eq. 26. The enumeration of rl is restricted to integer valued numbers.
Consecutively, an upper bound E[γ(R)]UB for the optimal value of the objec-
tive function E[γ(R)] can be determined by considering the recruitment vector
R∗ = (r∗l ) that has for each subgroup l the best possible value r∗l .

E[γ(R)]UB = E[γ(R∗)]
with r∗l = arg min

rl
(w1E[α(rl)]− w2E[βl(rl)])

E[α(rl)] = 1
S

∑S
s=1

∑k
i=1 cpi (t)nl

si(t)+
∑k

i=1

∑k
j=1,j 6=i c

f
ij(t)fsij(t)+crl (t)rl∑k

i=1 cpi (t)nc
i (t)+

∑k
i=1

∑k
j=1,j 6=i c

f
ij(t)f̄ij(t)

E[βl(rl)] = 1
S

∑S
s=1 δl(n

l
sl(t))

(26)

4.2 Valid inequalities to enhance the MIP

In Section 4.2, we propose some valid inequalities on the number of recruitments
ri that restrict the feasible region without loosing the global optimal solution, and
that therefore can be used to tighten the MIP.

We present several valid inequalities in order to tighten the MIP in Eqs. 12-
24. The valid inequalities are used to exclude some recruitment vectors R from
the solution space that are off-interest or proven to be not optimal. As a result,
the solution space becomes smaller and the efficiency of searching the optimal
recruitment vector is improved.
In what follows, the valid inequalities are classified into three classes and are
formulated in the properties 1 to 3.

1. The lower and upper bound for the variable ri based on the lower and upper
limit of the fuzzy triangular function:
According to Eqs. 6-7, for R = (ri) the desirability degree βs(R) is defined

as min
i
δi(nsi(t)) with nsi(t) =

∑k
j=1 fsji(t) + ri. We derive a lower and upper

bound for the number of recruitments ri based on the lower and upper limit
of the fuzzy triangular function δi. A recruitment strategy with a desirability
degree equal to 0 for all scenarios is off-interest. For this reason valid inequal-

ities are examined for the values of ri that satisfy δi

(∑k
j=1 fsji(t) + ri

)
> 0

for at least one scenario s. In other words, we cut-off the number of recruit-
ments ri that results in δi(nsi(t)) = 0 for all scenarios. This may neglect an
optimal value of E[γ(R)], but those corresponding recruitment vectors R are
off-interest since they have a desirability degree equal to zero. The resulting
valid inequalities are formulated by Eq. 27 in Property 1.
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Property 1 A recruitment vector R = (ri) with non-zero desirability degree
satisfies the following:

rLB1

i ≤ ri ≤ rUB1

i

with rLB1

i = min {ri|∃s ∈ {1, .., S} with δi

(∑k
j=1 fsji(t) + ri

)
> 0}

rUB1

i = max {ri|∃s ∈ {1, .., S} with δi

(∑k
j=1 fsji(t) + ri

)
> 0}

(27)

The upper bound rUB1

i can be used to tighten the value of nUB
i in Eq. 20 by

nUB
i = max

s

∑k
j=1 fsji(t) + rUB1

i .

2. The lower and upper bound for the variable ri based on E[γ(R)]UB :
When we have the value of E[γ(R)]UB from Eq. 26, we can derive additional
lower and upper bounds for ri. In particular, we cut-off the number of recruit-
ments ri that are not potential in minimizing E[γ(R)]. This can be achieved by
excluding the number of recruitments ri that have for w1E[α(ri)]−w2E[βi(ri)]
a value greater than E[γ(R)]UB . The inequalities are described by Eq. 28 in
Property 2.

Property 2 A recruitment vector R = (ri) that potentially minimizes E[γ(R)],
satisfies the following:

rLB2

i ≤ ri ≤ rUB2

i

with rLB2

i = min {ri|w1E[α(ri)]− w2E[βi(ri)] ≤ E[γ(R)]UB}
rUB2

i = max {ri|w1E[α(ri)]− w2E[βi(ri)] ≤ E[γ(R)]UB}
(28)

Indeed, a recruitment strategy R = (ri), which has for at least one subgroup i

a value for w1E[α(ri)]−w2E[βi(ri)] greater than E[γ(R)]UB , can not minimize
E[γ(R)] since it satisfies:

E[γ(R)] = w1E[α(R)]− w2E[β(R)] ≥ w1E[α(ri)]− w2E[βi(ri)] > E[γ(R)]UB

(29)
The reason that Eq. 29 holds is twofold: (1) The computation of E[α(ri)] (ac-
cording to Eq. 25) is based on the recruitment vector Ri, with i-th component
equal to ri and all the other components rj equal to 0. Furthermore the cost
ratio increases when rj (for j 6= i) increases and therefore E[α(ri)] ≤ E[α(R)].
(2) For each scenario s the value of βs(R) corresponds with the minimum
over the subgroups i of δi(nsi(t)) (according to Eq. 6). Besides E[βi(ri)] =
1
S

∑S
s=1 δi(n

i
si(t)) (according to Eq. 26) and consequently E[βi(ri) ≥ E[β(R)].

3. Scenarios that result in a same value nsi(t):
The scenario s is characterized by the matrix Fs(t) = (fsij(t)) of internal
transitions. When we consider S scenarios, there may be some scenarios that
result in a same value for nsi(t). In the situation that the number of scenarios
S is greater than nUL,i − nLL,i, there are two interesting situations: (1) some
scenarios can result in values for nsi(t) outside the interval determined by the
lower limit nLL,i and the upper limit nUL,i, and (2) some scenarios can result
in a same value for nsi(t). In the first situation, we can fix the value δi(ni(t))
to be zero. This is more or less similar to the first class of valid inequalities.
In the second situation, we can add some valid cuts that enforce the value of
some variables to be the same.
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Table 1 Historical dataset (De Feyter & Guerry 2009)

t n1(t) n2(t) n3(t) w1(t) w2(t) w3(t) n12 n13 n21 n23 n31 n32

1990 250 150 100 13 15 9 20 12 10 15 8 5
1991 243 163 118 10 20 14 22 14 10 19 5 8
1992 238 172 132 9 14 14 29 12 9 17 7 7
1993 236 179 145 14 16 11 22 13 8 18 7 8
1994 235 185 156 15 14 17 24 13 9 17 9 8
1995 235 190 165 16 15 13 20 15 12 19 5 8
1996 236 194 173 14 20 20 28 10 13 19 9 6
1997 237 198 179 11 22 16 28 10 15 18 8 7
1998 238 201 185 11 23 20 26 16 16 24 9 9
1999 240 204 190 10 20 20 24 18 11 20 9 10

Let Hsi = {v ∈ {1, ..., S} |
∑k

j=1 fsji(t) =
∑k

j=1 fvji(t)} be the set of scenarios
that result in a same value for nsi(t), the number of employees in subgroup i.
Then the valid cuts are represented in Eq. 30.

Property 3 For Hsi = {v ∈ {1, ..., S} |
∑k

j=1 fsji(t) =
∑k

j=1 fvji(t)}:

nsi(t) = nvi(t),∀v ∈ Hsi

qcsil = qcvil, ∀v ∈ Hsi, l ∈ {1, .., 5}
qbsil = qbvil, ∀v ∈ Hsi, l ∈ {1, .., 4}

(30)

In this way the number of variables in the model are reduced and the compu-
tation time will decrease.

5 Illustration

The data for the illustration in this section is adopted from De Feyter & Guerry
(2009). It concerns a stochastic manpower system with three subgroups of em-
ployees, i.e. k = 3. The historical dataset is provided in Table 1. The current
personnel structure is n(t̃−1) = (200 275 225) and the desired personnel structure
is nd(t̃) = (200 260 230). The matrix P̂ represents the maximum likelihood esti-
mations of the transition probabilities under Markov assumptions (Bartholomew
et al. 1991). The aim is to find a recruitment strategy R that optimizes cost-
effectiveness.

P̂ =

 0.791 0.102 0.056
0.062 0.739 0.102
0.049 0.049 0.802


In order to evaluate a particular recruitment strategy, we set the lower and

the upper limits of the number of employees in the three subgroups as (nLL,i) =
(195 255 225) and (nUL,i) = (220 280 250). The operational costs are given by(
cpi (t̃)

)
= (1 1.5 2). The costs due to the employee flows are as follows: cfij(t̃) = 0,

∀i, j ∈ {1, 2, 3} and
(
cri (t̃)

)
= (0.2 0.1 0.3). Further, we consider the cost and

desirability criteria as being equally important (w1 = w2 = 1).
In comparing the cost-effectiveness of recruitment strategies, we considered

1000 possible scenarios for the internal flows, generated by the bootstrapping
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method (Rubinstein & Kroese 2008). To construct a scenario Fs = (fsij), for
each subgroup i we randomly selected a time interval [t − 1, t) from Table 1 and

calculated the corresponding flows fsij = ni(t̃− 1)
nij(t−1,t)
ni(t−1) .

We used the CPLEX solver for solving the mixed integer program, as formu-
lated in Section 3 (Eqs. 12-24), but the solver could not obtain a feasible solution
in one hour computation time. By using the bounds for the values of the objective
function as well as the valid inequalities, as presented in Section 4 (Eqs. 27-30),
the solver was able to find the optimal solution within 210 seconds. We obtain the
optimal recruitment vector R = (17 28 16). For this solution, the expected cost
ratio E[α(n(t̃))] = 1.105, the expected desirability degree E[β(n(t̃))] = 0.338 and
the overall degree E[γ(n(t̃))] = 0.767. Recruiting 17 employees in subgroup 1, 28
in subgroup 2 and 16 in subgroup 3 results in optimal cost-effectiveness.

6 Discussion and conclusions

The present paper introduces a mathematical model to optimize cost-effectiveness
in a stochastic manpower planning system under control by recruitment. For evalu-
ating the cost-effectiveness of a recruitment strategy, we propose to simultaneously
consider two goals. On the one hand, the recruitment strategy should result in a
personnel structure as similar as possible to the desired structure. On the other
hand, we aim for cost minimization. To this end, we analytically formulated two
criteria, on which alternative recruitment strategies should simultaneously be eval-
uated, i.e. the cost ratio and the desirability degree. The values on both criteria
depend on the resulting personnel structure, which in turn is influenced by the
wastage and internal flows in the manpower system. In a stochastic environment,
those model parameters are unknown. Consequently, in taking recruitment deci-
sions, our model evaluates the expected values of the cost ratio and the desirability
degree. To estimate those expected values, as in real-world applications, we suggest
to take a scenario approach. Our method considers a number of possible scenarios
for the internal transitions in the manpower system. The scenario approach al-
lows us to formulate the multi-objective optimization problem as a mixed integer
program. Further, we showed that the optimal recruitment strategy satisfies some
properties, which are interesting to decrease the computation effort. Our experi-
ments show that using those properties is helpful in quickly finding a solution for
a problem that otherwise could not be solved within a reasonable time.

Since the focus is on cost-effectiveness, our model and optimization algorithm
can be valuable for a manpower planner who, in the current economic environ-
ment, is faced with high competition and the accompanying pressure for cost re-
duction. Further, our contribution helps decision makers to face the uncertainty in
employee workplace behavior (Ugwuowo & McClean 2000). As in most previous
work in Markov manpower planning, our model assumes wastage to be an un-
controllable model parameter, which is subject to uncertainty. Although in other
fields, like work and organization psychology and business management research,
many efforts are made to understand and control employee workplace behavior,
voluntary wastage still depends in a great extent on internal and external factors
beyond management control, like the complexity and dynamics on the current la-
bor market. Next to wastage, our model assumes internal personnel flows to be
random variables beyond management control. Indeed, depending on the way in
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which the subgroups in the manpower system are defined (De Feyter 2006), in-
ternal flows are to a greater or lesser extent uncertain and beyond management
control. As explained in the introduction, there are indeed important arguments
against changing existing internal transition patterns.

The scenario approach, used in the current paper, offers a flexible tool for the
decision makers to cope with the stochastic nature in current manpower planning.
It allows the decision maker to take into account a (high) number of possible
outcomes for the unknown model parameters. On the one hand, the manpower
planner can identify (likely) scenarios based on his or her expectations of manage-
ment interventions, explicit and tacit knowledge or even intuition. On the other
hand, to develop scenarios, the decision maker could rely on stochastic methods.
As illustrated in this paper, on the basis of an historical dataset, scenarios can
be generated by the bootstrapping method. Also Monte Carlo methods can be
used to randomly generate scenarios (Rubinstein & Kroese 2008), on the basis of
maximum likelihood estimations for the transition probabilities in stochastic man-
power systems (Bartholomew et al. 1991). Furthermore, based on previous work
(Bartholomew 1975; De Feyter & Guerry 2009), in evaluating the expected cost-
effectiveness of a recruitment strategy, it is even possible to consider probability
distributions on the generated scenarios.

Although voluntary wastage is indeed strongly beyond management control,
in practice, layoffs can also be part of organizations’ personnel strategy. Besides
recruitment, future work could consider layoffs to optimize cost-effectiveness. Like-
wise, recent previous work (Komarudin et al. 2015; Komarudin et al. 2016) suggests
to allow but minimize changes to the internal transition patterns. Consequently,
also internal flows partly become decision variables. Future work could integrate
this idea in a stochastic model for optimizing cost-effectiveness.

Another interesting avenue for further research is considering a multiple pe-
riod time frame in manpower planning. The optimization problem considered in
the current paper is restricted to identifying the most cost-effective recruitment
strategy for one single manpower planning period. Nevertheless, a manpower plan-
ner might want to take a long term perspective. The current recruitment strategy
indeed strongly affects the cost-effectiveness in subsequent time periods. Future
work could extend our model by incorporating desired personnel structures in sub-
sequent time periods as objectives on the one hand, and personnel strategies in
subsequent time periods as decision variables on the other hand. Such a multiple
period optimization problem could be solved as a dynamic program, in which, in
each step, the problem can be formulated as a mixed integer program.
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