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Abstract—Due to computational restrictions, energy-system
optimization models (ESOMs) and generation expansion planning
models (GEPMs) frequently represent intra-annual variations in
demand and supply by using the data of a limited number of
representative historical days. The vast majority of the current
approaches to select a representative set of days relies on
either simple heuristics or clustering algorithms and compari-
son of different approaches is restricted to different clustering
algorithms. This paper contributes by: (i) proposing criteria
and metrics for evaluating representativeness, (ii) providing a
novel optimization-based approach to select a representative
set of days and (iii) evaluating and comparing the developed
approach to multiple approaches available from the literature.
The developed optimization-based approach is shown to achieve
more accurate results than the approaches available from the
literature. As a consequence, by applying this approach to select
a representative set of days, the accuracy of ESOMs/GEPMs can
be improved without increasing the computational cost. The main
disadvantage is that the approach is computationally costly and
requires an implementation effort.

Index Terms—Energy-system planning, Generation expansion
planning, Power system modeling, Wind energy integration,
Power system economics

NOMENCLATURE

A. Abbreviations

CE Correlation error
DC Duration curve
ESOM Energy-system optimization model
GEPM Generation expansion planning model
IRES Intermittent renewable energy sources
LP Linear programming
MILP Mixed integer linear programming
NRMSE Normalized root-mean-square error
RDC Ramp duration curve
REE Relative energy error
RLDC Residual load duration curve

B. Sets

B (index b) Set of bins
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C (index c) Set of duration curves
D (index d) Set of potential representative days
M (index m) Set of medium-term periods
P (index p) Set of original time series
T (index t) Set of time steps

C. Parameters

Ac,b,d Share of the time of day d during which the
lowest value of the range corresponding to
bin b of duration curve c is exceeded

Lc,b Share of the time during which the values
of a time series with corresponding duration
curve c exceed the lowest value of the range
corresponding to bin b

Nrepr Number of representative periods to select
Ntotal Total number of repitions required to scale up

the duration of a single representative period
to one year

D. Variables

errorc,b Error in approximating duration curve c at
the bottom of bin b

ud Binary selection variable of day d
wd Weight assigned to day d, i.e., the number of

times the representative period is assumed to
be repeated within a single year

I. INTRODUCTION

BOTTOM-UP energy-system optimization models
(ESOMs), such as TIMES [1] and MESSAGE [2],

and generation expansion planning models (GEPMs), such
as LIMES-EU [3] and ReEDS [4] are used frequently to
underpin energy policy by performing scenario analyses
for the transition of the energy/electricity system. In such
models, investment and operational decisions are optimized
simultaneously given certain exogenous parameters, e.g., the
projected evolution of fossil fuel prices.

Due to the fact that ESOMs and GEPMs typically cover
a time horizon of multiple decades, are technology rich
and span a large geographical area, solving these models
is computationally demanding. To maintain tractability, these
models typically use a low level of temporal and geographical
detail. However, due to the highly variable, unpredictable
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and location-specific characteristics of intermittent renewable
energy sources (IRES), such as solar PV panels and wind
turbines, using a high level of temporal and geographical detail
becomes increasingly important. In this regard, Pfenninger et.
al. [5] identify resolving details in time and space as the main
challenge for this group of models.

Traditionally, large-scale ESOMs represent seasonal and
diurnal variations in demand and supply by disaggregating
a year into a limited number of so-called time slices (e.g.,
[4], [6], [7]). For each variable time series (e.g., the load or
wind speed), the value assigned to a specific time slice thus
corresponds to the average value of that part of the time series
corresponding to the specific time slice. While such a stylized
representation of the temporal dimension achieves a reasonable
accuracy for systems with a low penetration of IRES, several
authors have recently shown that for systems with a high
penetration of IRES, this approach leads to an underestimation
of the variability of IRES, and hence to an overestimation of
the potential uptake of IRES, an overestimation of the use of
baseload technologies and an underestimation of the value of
flexible technologies [8]–[10].

Multiple ways to improve the modeling of the temporal
dimension have recently been developed. The current literature
mainly focuses on increasing the temporal resolution, i.e.,
increasing the number of diurnal time slices (e.g., [8], [9]).
Nevertheless, it has been shown that increasing the temporal
resolution is not sufficient to grasp the inherent variability of
IRES [8], [10]. Different approaches to model the temporal
dimension to account for the variability of IRES have been
analyzed in [10], where it is shown that using the data of a
well-chosen set of historical days to represent an entire year
can be a suitable approach. However, a justified selection of a
representative set of historical periods is not straightforward.
Nevertheless, several planning models make use of some sort
of representative periods to reduce the computational cost.
Well-known examples are a.o. the US-REGEN model devel-
oped by the Electric Power Research Institute (EPRI) [11],
the POTEnCIA model recently developed by The Institute
for Prospective Technological Studies (IPTS) of the European
Commission’s Joint Research Centre [12] and the LIMES-EU
model developed by the Potsdam Institute of Climate Impact
Research [3]. Other examples can be found in [13], [14].

The literature contains various approaches to select a rep-
resentative set of historical periods. Nevertheless, frequently a
set of representative days (also referred to as typical days or
type-days) is used in planning models without documenting
how these days are selected, e.g., [15], [16]. In other work,
the set of representative days is obtained by using simple
heuristics, e.g., [17]–[20], sometimes supplemented by ran-
domly selecting some additional days, e.g., [14], [21]. As
pointed out by de Sisternes [22], a consistent criterion to select
these representative periods or to assess the validity of the
approximation is lacking. In general, the idea behind most
of these simple heuristic approaches is to select a number of
periods with different load and/or meteorological conditions in
order to capture a variety of different events. As an example,
to select three representative days, Belderbos et al. [18] select
the day that contains the minimum demand level of the year,

the day that contains the maximum demand level and the day
that contains the largest demand spread in 24 hours.

More advanced approaches to select a representative set of
historical periods can be divided into two groups. The first
and by far the largest group employs clustering algorithms
to cluster periods with similar load, wind speed and/or solar
irradiance patterns into clusters. For every resulting cluster,
either the cluster’s centroid or a single historical period from
that cluster is taken as the representative period for that cluster.
The weight assigned to each representative period, i.e., the
number of periods that are represented by this selected period,
corresponds to the number of periods that are grouped into its
parent cluster. Clustering approaches thus implicitly determine
the weight assigned to every selected representative period,
which allows to appropriately account for both common and
rare events. This is a major advantage compared to the heuris-
tic approaches discussed earlier. To perform the clustering,
different algorithms are employed which can be classified
into hierarchical and partitional clustering algorithms. A more
detailed overview of clustering algorithms is presented in [23].
The goal of all these algorithms is to minimize the sum of the
distances between every object (i.e., a period) and the cluster’s
centroid or median. For the GEPM LIMES-EU, Nahmmacher
et al. [24] use Ward’s hierarchical clustering algorithm. A
similar clustering technique is used in the US-REGEN model
to select additional representative periods, after having first
used heuristics to select a number of periods containing
extreme events [11]. Partitional clustering algorithms, such
as k-medoids [23] and k-means [25]–[27] are also frequently
used. The performance of the k-means, fuzzy C-means and
hierarchical Wards clustering algorithm are evaluated in [23],
but the differences between these algorithms were found to be
minor for the presented case. Besides clustering algorithms,
scenario reduction techniques following a similar philoso-
phy as the clustering approaches, such as the fast-backward
method, are also employed to select representative periods,
e.g., [28].

A second group of approaches aims to optimize the selection
of representative periods with respect to a predetermined, user-
defined criterion (external validity indices). In this approach,
the selection procedure is directly based on evaluating the full
set of representative periods using external validity indices,
whereas in the heuristic and clustering approaches, the se-
lection is based on the characteristics of individual histori-
cal periods or the ”similarity” between individual historical
periods; this is a clear fundamental distinction. To the best
of our knowledge, the only optimization-based approach in
the field of energy research is presented by de Sisternes
and Webster [22]. In their approach, the set of weeks which
best approximates the residual load duration curve (RLDC)
is selected by enumerating all possible combinations of a
predetermined number of representative weeks. While this
approach is shown to achieve good results, it has a number of
limitations. First, the number of combinations for selecting
k representative periods out of n candidate periods equals

n!
(k!(n−k)! , and thus strongly increases with both the number
of candidate periods and the number of periods to select. As
a consequence, enumeration is only computationally feasible
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for selecting up to 5 weeks out of 52. Therefore, using this
approach to optimally select a number of representative days
instead of weeks is computationally infeasible. Second, the
approach does not determine the optimal weights for each
selected period. Finally, the approximation of the RLDC is
used as a decision criterion, but the RLDC is dependent on
the investments in IRES. Therefore, the approach cannot be
used for models with endogenous investments in IRES.

Although multiple approaches to selecting representative
periods are available from the literature, there is no consistent
comparison of the quality of these different approaches. In
this regard, the current literature is restricted to comparing
different clustering algorithms. More complete information
on the quality of different approaches is vital for ESOMs
and GEPMs as a better selection of a representative set of
historical periods allows to improve the accuracy of these
models without increasing computational complexity.

Moreover, despite the multitude of different approaches to
select representative periods, there is not a single optimization-
based approach in the field of energy research that can be used
to select a sufficiently high number of representative periods.

The aim of this paper is to identify a sound approach
for selecting representative historical periods. To this end, (i)
criteria and metrics for representativeness are proposed, (ii) a
novel optimization-based approach is presented and (iii) this
approach is compared to different approaches available in the
literature in terms of both accuracy and ease of use.1

The remainder of this paper is structured as follows. Sec-
tion II discusses the different temporal aspects which are
important to capture in ESOMs and GEPMs, and derives
corresponding metrics to evaluate the representativeness of
the selected periods. Section III provides an overview of the
different approaches considered in this work and presents
our novel optimization-based approach. Next, the data and
assumptions are presented in Section IV, while the results of
the different approaches are discussed in Section V. In Section
VI, these different approaches are applied to a test case to
illustrate the value of a good selection of representative days.
Finally, the main conclusions are presented in Section VII.

II. TEMPORAL ASPECTS

Fig. 1 illustrates the concept of using a representative set of
historical periods (e.g., days or weeks) in ESOMs/GEPMs. As
is illustrated in this figure, the tool to select a representative
set of periods takes different time series as input, for instance
quarter-hourly load and wind generation data of multiple
years. The output is a representative set of periods and the
weights given to each of these representative periods, i.e.,
the number of times the representative period is assumed
to be repeated within a single year. In the ESOM/GEPM,
balance of generation (gen) and demand (DEM ) is imposed
in every time step t (e.g., quarter-hour) of every selected
period d. Power generation geng by every technology/plant
g is restricted by the installed capacity (capg). The fixed

1Ease of use comprises the required effort for implementing the approach,
the computational cost of executing the approach as well as the flexibility to
incorporate user-specific constraints.

Input time series

Wind PVLoad

Selection of representative periods

Energy system optimization model (ESOM) /
Generation expansion planning model (GEPM)

min
cap,gen

fixed cost+ variable cost,

s.t.:
fixed cost = FCg · capg

variable cost =
∑

d∈D′

(
wd ·

∑

g,t

(V Cg · geng,d,t ·∆t)
)

geng,d,t ≤ capg ∀g, d, t∑

g

geng,d,t = DEMd,t ∀d, t
. . .

Set of representative periods
d ∈ D′ with weights wd

Fig. 1. Schematic of the use of a set of representative historical periods in
ESOMs/GEPMs.

costs relate to the construction and fixed operations and
maintenance of this capacity. Variable costs, comprising fuel
costs, variable operations and maintenance costs and taxes
are related to the generation levels of every technology/plant
in the selected periods. The weights of each representative
period are used to scale the variable costs incurred in the
selected periods to an equivalent annual cost. Similarly, fuel
consumption and emissions during the selected periods can be
scaled to equivalent annual amounts. Thus, the representative
set of periods is used to endogenously determine a good
approximation of the amount of electricity that is generated by
different technologies/units and the associated costs, emissions
and fuel use without requiring to optimize the operations over
an entire year.

To effectively quantify the accuracy of approximating dif-
ferent time series (e.g., load, wind generation) by a set of
representative periods, appropriate metrics must be defined.
To this end, the different temporal aspects that impact the
results of ESOMs/GEPMs are identified. From the literature
[11], [24], [29], we synthesize the following list of temporal
aspects:

1) the annual load and average IRES capacity factors;
2) the distribution of values for each time series
3) the correlation between the different time series;
4) the variability of each time series.
First, the selected set of periods should preserve the annual

electricity demand and the average IRES capacity factors for
each model region. To evaluate the quality of the approxi-
mation in this respect, the average value (over all considered
time series p ∈ P) of the relative errors in approximating
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the average value of each time series is used as a metric, see
Eq. (1). Since for the case presented here, the relative error in
the average value of a time series is identical to the relative
error of the energy content of a time series, we refer to this
metric as the relative energy error (REEav) in the remainder
of this text. Note that we use |.| to refer to the absolute value,
while ‖.‖ is used to refer to the cardinality of a set.

Second, a more stringent requirement is that the distribution
of load and IRES generation levels, and their respective
frequency of occurrence correspond to the one observed in the
entire time series. Regarding the time series for IRES genera-
tion, it is crucial to account for both periods of very high IRES
generation, during which partial curtailment might be required,
and periods of near-zero IRES generation, which determine the
need for back-up capacity. Moreover, capturing the distribution
of IRES generation is required to account for the reduction in
operating hours of different types of dispatchable power plants.
Thus, by capturing the distribution of each time series, major
challenges related to the integration of IRES are accounted
for. Therefore, this criterion, which has also been used in
[24], [26], is considered to be the most important criterion
for evaluating a set of representative periods. The information
regarding the distribution of values and their respective fre-
quency of occurrence can be represented by the duration curve
(DC) of the time series.2 Therefore, the average normalized
root-mean-square error (NRMSE) of the approximation of the
DC of each time series is used as a second metric, to which
we refer as NRMSEDC

av (Eq. (2)). The approximation of the
duration curve, D̃Cp, can be constructed by sorting the data of
the selected periods from high to low while correcting for the
fraction of a year that each selected period represents. Below,
the index t ∈ T is used to refer to a specific time step of the
original time series (e.g., quarter-hourly or hourly interval).

REEav =

∑
p∈P

(∣∣∣∣∣

∑
t∈T

DCp,t−
∑
t∈T

D̃Cp,t∑
t∈T

DCp,t

∣∣∣∣∣

)

‖P‖ (1)

NRMSEav =

∑
p∈P

(√
1

‖T ‖ ·
∑
t∈T

(DCp,t−D̃Cp,t)2

max(DCp)−min(DCp)

)

‖P‖ (2)

Third, the correlation between different time series can
impact results. Within a single region, this correlation (e.g.,
between the load and solar PV generation) influences the
RLDC, and therefore the expected number of operating hours
of different thermal generation technologies. In addition, it
impacts the need for curtailment of IRES, as well as their
market value [30]. Moreover, the correlation between different
regions is important to account for geographical smoothing
effects of the load, solar PV generation, and particularly wind
generation, and the corresponding value of transmission grids
[29]. As a metric to quantify whether the actual correlation
is captured by the selected representative periods, the average
absolute difference between the correlation based on the data

2The DC is found by sorting the entire time series from high to low values.

of the entire time series, and the correlation based on the data
in the selected representative periods is used. This is referred
to as the average correlation error (CEav) in the remainder
of this text (Eq. (3)). The Pearson correlation coefficient is
used to quantify the correlation corrp1,p2

between two time
series p1, p2 ∈ P (Eq. (4)). Here, Vp1,t represents the value of
time series p1 in time step t. Moreover, V p1

and V p2
indicate

the mean value of time series p1 and p2 respectively. As the
Pearson correlation coefficient has a value of 1 in case of total
positive correlation, a value of 0 in case of no correlation and
a value of -1 in case of total negative correlation, the values
for CEav lie in the range [0,2].

CEav =
2

‖P‖ · (‖P‖ − 1)
·
(

∑

pi∈P

∑

pj∈P,j>i

∣∣corrpi,pj
− c̃orrpi,pj

∣∣
)

(3)

corrp1,p2
=

∑
t∈T

(
(Vp1,t − V p1

) · (Vp2,t − V p2
)
)

√∑
t∈T

(Vp1,t − V p1)
2 · ∑

t∈T
(Vp2,t − V p2)

2
. (4)

Fourth, the dynamics of fluctuating load and IRES genera-
tion time series can impact results. Short-term fluctuations, on
time scales of minutes up to hours, are important to account
for the limited flexibility of dispatchable power plants (e.g.,
maximum ramp rates, minimum up and down times), as well
as the potential of storage technologies. To quantify to what
extent the distribution of short-term fluctuations is captured,
we introduce the concept of a ramp duration curve (RDC).
The RDC for each time series is found by differentiating and
subsequently sorting the original time series. Accordingly, the
metric used is the average NRMSE of the approximation of
the RDC (NRMSERDC

av ):

NRMSERDC
av =

∑
p∈P

(√
1

‖T ‖ ·
∑
t∈T

(RDCp,t−R̃DCp,t)2

max(RDCp)−min(RDCp)

)

‖P‖ (5)

Medium-term fluctuations, comprising weekly and seasonal
fluctuations, are important to account for the limited energy
storage capacities of different storage technologies. For exam-
ple, longer periods of low wind speeds and solar irradiance,
during which stored energy might be exhausted, can determine
the need for firm back-up capacity. To what extent medium-
term fluctuations are captured depends mainly on the input
parameters used for selecting representative periods, rather
than the used approach in itself. These input parameters are
closely related to the temporal structure of the ESOM/GEPM.
Examples of such input parameters include the time interval
to which the approach for selecting representative periods
is applied (e.g., representative periods can be selected for
each month, season or year) and the choice of the duration
of each individual selected period (e.g., representative hours,
days or weeks). As this paper focuses on approaches to
select representative periods rather than the temporal structure
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of ESOMs/GEPMs, no metric is introduced for capturing
medium-term dynamics.

III. METHODOLOGY

A. General overview

Different approaches to select representative days are evalu-
ated by comparing all four metrics presented in Section II. The
results of this evaluation will be shown for an increasing num-
ber of representative days (Nrepr). The following approaches
to select representative days are evaluated:

1) Heuristics (H);
2) Ward’s hierarchical clustering algorithm (CA);
3) Random selection (RS);
4) MILP optimization model (OPT);
5) Hybrid approach: random selection followed by optimal

weighting (HYB).
The simple heuristics (H) employed in this work are presented
in Tab. I. The total number of days selected is presented in
the utmost left column. These days are obtained by selecting
for every period (indicated in the second column), the days
corresponding to the criteria presented in the third to fifth
column.

The clustering algorithm (CA) used is Ward’s hierarchical
clustering algorithm. Some information was provided in Sec-
tion I, for a full description of the algorithm, we refer to [24].

The third approach is to repeatedly select a random subset
of days (RS), and retain from all these subsets the subset
which obtained the lowest errors. This approach is closely
related to the enumerative approach used to select a set of
representative weeks proposed in [22]. However, calculating
the error metrics for all possible subsets of days from a single
year is computationally infeasible if the cardinality of the
subset exceeds 3. Therefore, the number of randomly selected
subsets of days is restricted to 50 000.

The fourth approach (OPT) is a newly developed approach
that employs a MILP optimization model to identify which
days are selected (binary variables) as well as the weight
assigned to each day (linear variables). The model formulation
is presented in Section III-B.

Finally, another new and novel, hybrid, approach (HYB)
that combines features of the RS and the OPT approach is
developed. In this approach, a number of random subsets of
days are taken and for each subset, the weight given to each
day is optimized. The set of weighted days that achieves the
lowest errors is retained. Again, 50 000 randomly selected
subsets are taken.

B. Optimization model formulation

1) Basic model: As discussed in Section II, primarily, the
set of representative days should accurately represent the DC
of each time series. An optimization model should therefore be
capable of selecting a set of representative days (and associated
weights), construct the approximation of the DC based on
the selected days and corresponding weights, and calculate
a metric for the approximation error that can be minimized.
Note that the number of steps of the approximated DC depend

TABLE I
OVERVIEW OF THE SIMPLE HEURISTIC USED TO SELECT A NUMBER OF

REPRESENTATIVE DAYS.

Nrepr Period Load Wind PV

2 Year Highest peak,
lowest valley

- -

4 Year Highest peak,
lowest valley

Highest and
lowest avg.
generation

-

8 Summer,
Winter

Highest peak,
lowest valley

Highest and
lowest avg.
generation

-

12 Summer,
Winter,

Intermediate

Highest peak,
lowest valley

Highest and
lowest avg.
generation

-

24 Spring,
Summer,

Fall, Winter

Highest peak,
lowest valley

Highest and
lowest avg.
generation

Highest and
lowest avg.
generation
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Fig. 2. Visualization of the error term errorc,b. The duration curve is divided
into 10 bins. The error at the bottom of the bin is displayed for bin b = 8.

on the number of days selected and the resolution of the data
of each day. For example, the approximated DC displayed in
Fig. 2 is constructed by selecting 2 representative days with a
2-hourly resolution, resulting in a total of 24 steps. However,
obtaining the approximation of the DC requires sorting the
values of the selected days which is difficult to integrate in a
single optimization framework.

Nevertheless, it is possible to get a clear view on what the
approximated DC looks like which does not require sorting the
data of the selected days. To this end, each DC c ∈ C is divided
into a number of bins b ∈ B, as visualized by the dashed lines
in Fig. 2. Each bin thus corresponds to values within a specific
range (the highest values belong to the first bin, the lowest
values correspond to the last bin). As the original time series
is known, the share of time during which this time series has
a value greater than or equal to the lowest value in the range
corresponding to bin b is known (marked by a in Fig. 2). For
a DC c ∈ C, this value is represented by the parameter Lc,b.
Similarly, for every potential representative day d ∈ D, the
share of time in day d during which the time series exceeds the
lowest value of the range corresponding to a bin b is known.
This information is represented by the parameter Ac,b,d. A
graphical representation of this parameter for Belgian load data
of 2014 and a number of bins equal to 10 is shown in Fig. 3.
This figure shows that, as can be expected, in every day, the
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load levels exceed the lowest value of the range corresponding
to the last bin in 100% of the time. In contrast, only during a
small fraction of the time of some winter days, electricity load
values exceed the lower value corresponding to the first bin.
This figure also clearly illustrates seasonal and weekly trends.
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Fig. 3. Graphical representation of the parameter A for the Belgian load
during all days of 2014 and a number of bins equal to 10. The color scales
indicate the share of time of each day during which the lowest value of the
range corresponding to the different bins is exceeded.

Assuming that a subset of representative days D′ ⊂ D
is selected and a weight wd is assigned to each selected
representative day d ∈ D′, the share of the time during which
the approximated DC has a value greater than or equal to the
lowest value in the range corresponding to bin b is also known,
i.e.,

∑
d∈D′

wd

Ntotal
· Ac,b,d (indicated by a in Fig. 2). Here,

Ntotal reflects the total number of times a single representative
period has to be repeated to scale up to an entire year, e.g.,
Ntotal equals 365 in case representative days are selected and
52 in case representative weeks are selected). Now, if the
weight wd assigned to a day d ∈ D can only be non-zero
if the day is selected (i.e.,d ∈ D′), the expression can be
replaced by

∑
d∈D

wd

Ntotal
·Ac,b,d.

The difference between the original and the approximated
DC in the share of the time that the lowest value in the
range corresponding to bin b is exceeded is taken as an error
metric (errorc,b). This error term is defined in Eq. (7) and
visualized in Fig. 2. Hence, by classifying the data points (e.g.,
quarter-hourly or hourly values) of all potential representative
days into a number of bins, the need to sort the data of the
selected days within the optimization in order to obtain a
measure for the quality of the approximation is eliminated.
The optimization model minimizes the sum of the errors terms,
for all considered DCs c ∈ C and bins b ∈ B by selecting a
single set of representative days and corresponding weights,
as shown in Eq. (6):

min
ud,wd

(
∑

c∈C

∑

b∈B
errorc,b), (6)

subject to:

errorc,b = |Lc,b −
∑

d∈D

wd

Ntotal
·Ac,b,d|, ∀c ∈ C, b ∈ B, (7)

∑

d∈D
ud = Nrepr, (8)

wd ≤ ud ·Ntotal, ∀d ∈ D, (9)∑

d∈D
wd = Ntotal, (10)

ud ∈ {0, 1}, ∀d ∈ D; wd ∈ R+
0 , ∀d ∈ D. (11)

Equation (8) imposes that the number of selected periods
corresponds to the predefined number of representative periods
Nrepr. Equation (9) restricts non-zero weights to selected
periods, by using a binary variable ud which indicates whether
day d is selected or not. Moreover, the maximum weight that
can be assigned to a single selected period is restricted to
the number of repetitions required to scale the duration of a
single representative period to one year (Ntotal). The weight
from all selected periods can therefore be chosen freely, which
is important to efficiently account for both common and rare
events. Finally, Eq. (10) guarantees that the total duration of
the weighted set of representative periods corresponds to one
year.

Note that in the HYB approach, the variables ud are fixed
in correspondence to the randomly selected subset, such that
only the weights wd are optimized.

2) Extended model: To explicitly account for short-term
dynamic aspects in the optimization, the RDC of each time
series can be constructed and appended to the set of duration
curves c ∈ C that need to be approximated. Thus, the
model formulation (Eq. (6)-(11)) remains unchanged. The only
difference with the basic model is that the set C not only
comprises the DC of each time series, but also the RDC of
each time series.

To account for medium-term fluctuations (e.g., seasonal
fluctuations), the original time series can be split up into
a number of medium-term periods m ∈ M, where each
medium-term period has its own DC. A first option is to select
a number Nrepr,m of representative periods d ∈ Dm for each
medium-term period individually. Correspondingly, the total
weights of the days representative for this medium-term period
equals Ntotal,m. Thus, the optimization (Eq. (6)-(11)) would
have to be repeated |M| times. An alternative approach would
be to add additional constraints to the optimization problem to
restrict the approximation error in each medium-term period
m ∈M.

Up to now, the model does not account for the correlation
between different time series. It is important to note from
the definition of the sample correlation corrp1,p2 (Eq. (4))
that both factors in the denominator of the definition of the
sample correlation are already approximated implicitly by
approximating the DC of time series p1 and p2 (as done by
the basic model). That is, a set of representative periods which
result in a good approximation of the duration curve of a
time series p1, will also provide a good approximation of∑

t∈T (Vp1,t − V p1,t). However, this does not hold for the
numerator of Eq. (4). Therefore, an additional time series
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(Vp1,t−V p1,t)·(Vp2,t−V p2,t) is created. Positive values of this
time series correspond to times with a positive correlation, i.e.,
both Vp1,t and Vp2,t are either above or below their average
value, whereas negative values correspond to times with a
negative correlation. Again, a duration curve of this time series
can be constructed, and added to the set of duration curves that
need to be approximated. The model will then select a set of
representative days to not only account for the distribution of
each DC, but also to approximate the duration curve of this
“correlation duration curve”.

Fig. 4 presents a schematic of the different steps involved
in the presented approach.

Unless specifically stated, the results of the OPT and HYB
approach, to be presented in Section V, correspond to the basic
model, i.e., without extending the model with additional RDCs
or time series to improve approximating the correlation.

IV. DATA AND ASSUMPTIONS

A. Data

The original time series used include a time series for the
electricity demand, a time series for onshore wind generation
and a time series for solar PV generation. All data corresponds
to the Belgian electricity system in the year 2014, and is
provided by the Belgian transmission system operator on a
15-minute resolution [31]. As one cannot simply assume that
the year 2014 is a representative year for the different time
series, it is advised to use multiple years of data to construct
the different DCs. However, as the goal in this work is to
analyze to what extent the different approaches are capable of
selecting representative periods to approximate a given original
time series, it is reasoned that the size of the original time
series will not significantly influence the presented results.

B. Assumptions

The discussion in this work is restricted to selecting days
as representative periods as days are more frequently applied
than e.g., hours or weeks. For the OPT and HYB approach, a
number of bins ‖B‖ equal to 40 is used for every DC. Every
bin is constructed such that the range of values for each bin
is identical. All OPT runs are performed with an optimality
gap of 1%, and a maximum solver time of 6 hours. All
runs are performed on a Intel R©CoreTMQuad CPU Q9550 @
2.83GHz×4, with a memory of 13.5GiB, and a 64-bit system.

V. RESULTS

A. Approximation accuracy

The results for all five approaches discussed in Section
III-A are presented in Fig. 5-8 and Fig. 10 for the different
error metrics. For the approaches based on randomly selecting
subsets of representative days (RS and HYB), the distribution
of the results of the 50 000 subsets is presented. The box
visualizes the median value as well as the 25th and 75th

percentiles, whereas the whiskers correspond to the highest
and lowest values obtained.

As discussed in Section II, the set of representative days
should primarily provide a good approximation of the DC

of each time series. The NRMSEDC
av obtained using the

different approaches is presented in Fig. 5. As can be seen,
the OPT approach obtains the lowest error for all number
of days considered. The approximation of the different DCs
using the OPT approach to select a varying number of
representative days is shown in Fig. 6. The errors obtained
using the hybrid approach are only slightly higher (except for
selecting 2 representative days, where an identical solution is
found). More surprisingly, the errors obtained by approach
RS are systematically lower than those obtained using the
clustering algorithm even though all days in the RS approach
are assigned equal weights. Finally, the errors obtained using
the heuristics are high. For all but for two days, more than 75%
of the randomly selected sets of days obtains lower errors than
those obtained using the heuristics. This is due to the fact that
the heuristics aim to account for different types of events, but
do not account for their frequency of occurrence.

These results imply that by using a better approach to select
a set of representative days, the accuracy of planning models
can be improved significantly without increasing the number
of time segments (and therefore the computational cost). Seen
from a different perspective, this also means that the number of
days can be reduced while maintaining a similar accuracy. This
can be seen very clearly in Fig. 5, where the OPT and HYB
approach using 2 days obtain a similar accuracy as the CA
when selecting 8 days. Similarly, the approximation obtained
by selecting 4 days using the OPT approach has a similar
accuracy than the approximation obtained using the CA to
select 24 days.

Fig. 7 displays the REEav for all approaches. For all but
the heuristic approach, the average relative energy error is well
below 5%. The fact that the heuristics do not properly account
for the frequency of occurrence of different events is reflected
in the high values for the REEav . As discussed in Section II,
approximating the DC of a time series is a more stringent
requirement than approximating its average value or energy
content. Therefore, sets of days with a low NRMSEDC

av also
have a low REEav . This can be seen in the inner box plots
for the RS and HYB approach, which show the distribution
of the REEav for the 1% subsets of days that obtained the
lowest NRMSEDC

av . Fig. 7 displays furthermore that for the
RS, OPT and HYB approach, the REEav is very small.
Therefore, the differences between these approaches are of less
importance, e.g., for 12 days, the REEav equals 0.21%, 0.12%
and 0.01% in the RS, OPT and HYB approach respectively.

The error in approximating the correlation between the
different time series is shown in Fig. 8. The CEav tends to
decline with an increasing number of days. Again, the range
of the CEav is high for randomly selected days. However,
differently from the REEav , a low NRMSEDC

av does not
guarantee a low CEav . This can be seen in the inner box plots
which show the distribution of the CEav for the 1% subsets of
days that obtained the lowest NRMSEDC

av . As a consequence,
if the correlation is not explicitly accounted for in the OPT
and HYB approaches, the CEav for these approaches can be
relatively high. As discussed in Section III-B2, the correlation
can be accounted for in the OPT approach by approximating
an additional DC for every pair of time series for which the
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correlation is important to capture. However, this will lead to
a trade-off between the NRMSEDC

av and the CEav , as is
shown in Fig. 9. This figure illustrates that the CEav obtained
with the OPT approach can be greatly reduced with only
a minor increase in the NRMSEDC

av . In contrast, the CA
groups together days with similar conditions for all time series
and therefore already implicitly accounts to some extent for
the correlation between the considered time series. This is
reflected in the results shown in Fig. 8 where the CEav for
the clustering approach is consistently relatively low.

The errors for approximating the RDCs for all approaches
are presented in Fig. 10. A first thing that can be noted is that
these errors are significantly lower than for the approximation
of the DCs. Moreover, only a moderate decrease of this error
with the number of representative days can be observed.
Similarly to the CEav , a good approximation of the DCs (low
NRMSEDC

av ) does not imply a good approximation of the
RDCs (low NRMSERDC

av ). Nevertheless, there is some corre-
spondence between the NRMSEDC

av and the NRMSERDC
av .

This is because the probability distribution of the ramp of
a time series is dependent on the actual value of this time
series (e.g., at periods of very high load, it is unlikely that
the load will further increase). As a result, sets of days which
approximate the DC of each time series with a high accuracy,
have a higher probability of capturing the distribution of
ramps. To improve capturing the distribution of ramps in the
OPT approach, the RDCs can be added to the optimization,
as discussed in Section III-B2. This would again lead to
a trade-off between approximating the DCs and the RDCs.
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Fig. 6. Approximation of the DCs using the OPT approach to select a varying
number of representative days

Following the same reasoning as for the CEav , the clustering
approach already implicitly accounts for some dynamics of
the considered time series.

Reducing the errors in capturing different temporal aspects
for a given number representative periods is particularly im-
portant for applications with a high computational cost. For
these applications, the OPT and HYB approaches are shown to
achieve the best results, closely followed by the RS approach.
However, for applications where the computational cost is
less stringent, other aspects, such as the effort required for
implementing, the computational cost of executing and the
flexibility of the approach can be decisive for the approach to
use.
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B. Ease of use

In terms of the implementation effort, the H and RS
approaches require the lowest effort, while the CA, OPT and
HYB approaches all require a more significant implementation
effort. In addition, the OPT approach requires the availability
of solvers for MILP problems. In an ongoing project funded by
the Energy Technology Systems Analysis Program3 (ETSAP),
the OPT approach is fine-tuned for direct application in com-
bination with the TIMES model generator. In this regard, the
implementation effort of the OPT approach will be eliminated.

The computational resources required to solve the MILP

3ETSAP is an implementing agreement of the International Energy Agency.
More information can be found on following website: http://www.iea-etsap.
org/web/index.asp.
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problem used in OPT are high. As mentioned in Section IV-B,
a relative optimality gap of 1% is applied but the solver
is stopped if no solution satisfying this criterion is found
within 6 hours. For all instances except for the case where
only 2 representative days were selected, the solver timed
out after 6 hours. In contrast, the clustering approach using
Ward’s hierarchical clustering algorithm can be solved within
a few minutes. Finally, both the RS and HYB approach face
a high computational cost. Despite the fact that the HYB
approach requires solving an additional LP model for every
randomly selected subset of days, the computational cost of
the RS and HYB approach is similar (as long as the same
amount of randomly selected subsets of days are used in both
approaches). More specifically, the computation time is on
average 1.27 seconds and 1.75 seconds for a single randomly
selected set of days in the RS and HYB approach respectively4.
The difference in time corresponds to the time needed to
optimize the weights. Hence, the time required to calculate the
error metrics for every subset of days dominates the calculation
time. Calculating the error metrics for the 50 000 subsets of
days is computationally demanding.

A trade-off between the accuracy of the solution and the
number of evaluated subsets of days can be made. This
trade-off is visualized in Fig. 11, which again shows the
approximation error of the DCs for the different approaches.
Suppose only 100 randomly selected subsets of days are used
in the RS and HYB approach, the resulting NRMSEDC

av

(i.e., the lowest NRMSEDC
av of these 100 subsets) depends

on which 100 subsets are taken. By repeatedly taking 100
random subsets, the distribution of the error obtained for the
best subset can be constructed. This cumulative distribution is
shown in Fig. 11 for both the RS and HYB approach and both
for the case where 100 and 10 000 subsets would be used. A
first thing to observe is that, even if the number of subsets
is reduced to 10 000 in the RS approach, the accuracy of this
approach is higher than for the CA approach with a very high
probability. For the HYB approach, this remains valid even

4For the results of the paper, the implementation of the RS and HYB
approach has been done in python 2.7.11. More advanced programming
languages, specified to do bulk computations on large datasets including
sorting algorithms, can lower the computation time.

http://www.iea-etsap.org/web/index.asp
http://www.iea-etsap.org/web/index.asp
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if the number of subsets would be reduced to 100. Another
interesting observation is that, for a low number of days, it is
mainly the number of subsets that determines the accuracy of
the result. However, as the number of days increases, the value
of using a high number of subsets decreases (i.e., the difference
between the full and dotted lines decreases). In contrast, the
value of optimizing the weights of the randomly selected
days (i.e., the difference between the blue and red curves)
is relatively low if a low number of days is selected, but
increases with the number of representative days. To conclude,
the number of subsets of days, and thus the execution cost,
can be significantly reduced without a big loss in accuracy if
a high number of representative days needs to be selected, and
more so in the HYB approach than in the RS approach.

The value of having an approach to more accurately select
a set of representative periods depends on the computational
restrictions of the ESOM/GEPM. In case there is a hard limit
on the computational cost, and hence, the number of represen-
tative periods that can be used, the OPT approach allows to
improve the accuracy of the ESOM/GEPM. In other cases, the
presented approach allows to reduce the computational cost of
the ESOM/GEPM by using a smaller number of better selected
representative days while achieving the same quality of model
outcome in terms of accuracy and representation of power
system characteristics. In these cases, it is up to the user to
make the trade-off between spending additional computational
resources on the approach to select representative periods, or
on the ESOM/GEPM. However, it is important to realize that
ESOMs/GEPMs are typically used for scenario analysis (and
additional sensitivity analyses). As a result, the ESOM/GEPM
needs to be solved numerous times. In contrast, the approach
to select a representative set of historical periods has to be

executed only once.
Finally, the flexibility to use the approach for different

applications is important. A frequently encountered case where
the flexibility of the approach is valuable is if the user
wants to force certain days into the solution (e.g., the day
containing the yearly peak in electricity demand). An efficient
implementation of this additional constraint of the problem is
straightforward in the RS, OPT and HYB approach, but less
so in the CA approach.

To summarize, a qualitative overview of the discussed
strengths and weaknesses of the different approaches is pre-
sented in Tab. II.

TABLE II
STRENGTHS AND WEAKNESSES OF THE CONSIDERED APPROACHES

Criterion H CA RS OPT HYB

Accuracy - - +- + ++ ++
Implementation cost ++ - ++ - - - -

Execution cost ++ + - - - -
Flexibility - - + ++ ++

VI. TEST CASE

This section presents a test case where the sets of represen-
tative days obtained by the different approaches are used in
a GEPM. The resulting capacity mix, costs and computation
time will be compared to a reference run using the entire time
series.

The GEPM used here is the LUSYM (Leuven University
SYstem Modeling) investment model. This model aims to min-
imize the total discounted system cost. This total system cost
comprises investment costs, fixed operations and maintenance
costs and the costs related to the operation of the power system
(consisting of fuel costs, costs related to carbon emissions
and start-up costs). For a comprehensive description of the
model, we refer to [13]. The GEPM is applied to determine
the cost-optimal capacity and generation mix to achieve a 35%
share of renewable electricity generation in a power system
loosely inspired by the Belgian one. In the presented case, it
is assumed that no existing generation capacity is present, i.e.,
the model is run in a ”greenfield” mode. It must be stressed
that the case presented here is highly simplified and serves
only as an illustration of the use and possible implications
of using different approaches to select a set of representative
days.

The capacity mix resulting from the run using the entire
time series and the runs using 2 representative days selected by
the different approaches are presented in Fig. 12. Deviations
with respect to the reference case can be observed. For the
OPT, RS and CA approach, these differences are relatively
minor. In contrast, if the days are selected using the simple
heuristics, these differences are very large. Relatively small
differences can be observed in the conventional generation
mix. It must be noted that, in order to ensure an adequate
system, the GEPM has a constraint for the minimum level
of dispatchable capacity. The differences in the amount and
type of IRES required to meet the renewable energy target
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series, and for the runs using 2 representative days selected by the different
approaches.

are more pronounced. This is related to how well the sets of
days approximate the wind and solar generation time series.
As can be seen in Fig. 13, the days selected by the OPT
approach provide a relatively good approximation of the wind
and solar generation DCs. In contrast, the days selected by the
CA and the H approach have significantly higher deviations,
particularly for solar PV generation. Both the CA and H
approach underestimate solar generation, leading to fewer
investments in solar PV generation and a higher dependence
on wind turbines to meet the renewable energy target.
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Fig. 13. Approximation of the duration curves for 2 representative days
selected by the different approaches.

By using only a limited set of historical days, the GEPM
has imperfect information regarding the annual cost related to

operating any given system. Therefore, the GEPM aiming to
minimize the total system cost comprising of both investment
and operational costs will not be able to find the global opti-
mum. This is reflected in Fig. 12 by the investment decisions
deviating from the investment decisions in the reference case.
To evaluate this sub-optimality, the cost of operating a system
with the capacity mix resulting from each model run is re-
evaluated using the entire time series. The projected and re-
evaluated total system costs are presented in Table III. The
sub-optimality is the difference between the re-evaluated cost
and the cost in the reference case, and is presented between
brackets as a percentage of the total system cost in the
reference case. The results show that by using 2 representative
days selected by the OPT approach, this sub-optimality equals
a mere 0.29% for the presented case. For the best randomly
selected combination of days, this sub-optimality increases to
0.72%, while for the days selected by the clustering algorithm,
the deviation increases to 2.57%. Using the simple heuristics,
this sub-optimality is significantly higher.

In general, by having a better selected set of days, the model
has more accurate information regarding the annual cost of
operating any given power system, and is therefore more likely
to find a solution close to the global optimum. However, it
is important to note that having better information does not
necessarily lead to better decision making in every single case.
For this reason, the results presented in this test case should not
be seen as an attempt to quantify the value that can be added
by a better selection of representative days, but rather as an
illustration of how the selection of a set of representative days
can impact the accuracy of the results and the computation
time of ESOMs/GEPMs.

In terms of the computational cost, this increases non-
linearly with the number of time steps considered in the
GEPM. For the presented test case, the runs using 2, 4 and 8
representative days took on average 2.7, 9.3 and 22.0 seconds
respectively. In contrast, the reference case took over 50,000
seconds (almost 14 hours).

TABLE III
OVERVIEW OF THE TOTAL SYSTEM COSTS IN THE DIFFERENT RUNS

Approach Nrepr Projected cost
[Me/a]

Re-evaluated cost
[Me/a]

Orig. 365 7071 7071
OPT 2 7221 7092 (+0.29%)
RS 2 7043 7122 (+0.72%)
CA 2 7389 7253 (+2.57%)
H 2 10041 9441 (+33.51%)

VII. CONCLUSIONS

To limit the computational complexity of energy-system op-
timization models (ESOMs), intra-annual variations in demand
and supply are typically modeled by using a low number
of time segments. Capturing the challenges related to the
integration of intermittent renewable energy sources in this
low number of time segments is challenging. The recent
literature shows that using the data of a limited number of
well-chosen representative historical periods is an approach
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that allows doing so without having to drastically increase the
number of time segments. In generation expansion planning
models (GEPMs), the level of temporal detail is typically
somewhat higher than in ESOMs. Nevertheless, these models
also face computational restrictions which could be alleviated
by using a small, but representative set of historical periods.
For these reasons, numerous well-known and state-of-the-art
ESOMs/GEPMs do already make use of a set of representative
historical periods to represent variations in demand and supply.

To select a representative set of historical periods, multi-
ple approaches are described in the literature. However, the
literature regarding the comparison of different approaches
is restricted to comparing different clustering algorithms.
Moreover, there is not a single optimization-based approach
available in the literature that can be employed to select a large
set of representative periods.

In this paper, a new and novel optimization-based approach
relying on mixed integer linear programming (MILP) and a
derived hybrid approach are presented. The results of these
approaches are compared to different approaches available in
the literature. Different temporal aspects which can impact
the results of ESOMs/GEPMs were identified and appropriate
metrics were proposed to assess how well these aspects are
represented by a set of representative periods.

The novel optimization-based approach and the derived
hybrid approach are shown to obtain more accurate results
than the approaches available in the current literature. The
significance is that by applying the novel approaches to select a
set of representative periods, the accuracy of ESOMs/GEPMs
can be increased without increasing the computational cost.
This is illustrated in a simplified test case aiming to determine
the cost-optimal capacity mix to obtain a target share of
renewable electricity generation in a system inspired by the
Belgian power system.

While the focus in this work is on selecting a set of represen-
tative days for application in ESOMS/GEPMs, the developed
approach can be applied to various applications. In addition, as
the developed approaches rely on MILP or LP, they are highly
flexible to incorporate user-specific constraints. However, the
developed approaches also have the disadvantage that solving
these approaches themselves can be computationally costly
and require some implementation effort.
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