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Preface - Dankwoord

Het dankwoord is zowat het meest gelezen deel van een doctoraat, vandaar
dat er dan ook het minste tijd in gestopt wordt. Indien u als lezer toch ietwat
geïnteresseerd bent, raad ik u aan om toch het abstract te lezen en misschien
zelfs de conclusie. Naast deze noot wil ik natuurlijk heel wat mensen bedanken
die me in de laatste 4,96 jaar (klinkt beter dan 5) gesteund hebben.

Allereerst, Lieve. Al 6 jaar mijn promotor. Zes jaar waarin je me heel wat
vrijheid liet, met af en toe een subtiele suggestie in de een of andere richting,
zodat mijn focus zeker zou leiden tot dit boekje. Ik heb me steeds door jou
gesteund en ondersteund gevoeld. Je geloofde soms meer in mijn werk dan
ikzelf, maar nu dit resultaat er is, kan ik dat geloof ook delen. Je toewijding,
correctheid en spontaniteit werken enorm inspirerend voor mij. En ook al zullen
we later misschien meer collega’s dan promotor en (doctoraats)student zijn,
voor mij zal je altijd een deel promotor blijven. Bedankt voor de kansen die je
mij bood en biedt. Ik kijk al uit naar onze verdere samenwerking.

I would like to thank the members of the jury for the thorough review of the
text and the interesting discussion during the preliminary defense. Dirk en
William, bedankt voor het mede begeleiden gedurende de afgelopen jaren en
het reviewen van onze papers. Jullie inbreng kwam de waarde van het werk
zeker ten goede. Geert, bedankt voor de suggesties om mijn tekst te verbeteren.
Gregor, thank you for the interesting cooperation on our paper and for the
help in applying for travel funds. I’m looking forward to an exciting stay at
your research group. Colin, thank you for the interesting debate during the
preliminary defense. Omer, bedankt voor de organisatie van de verdediging en
het geduld bij de videoconferentie met twee buitenlandse juryleden.

Dit werk was nooit in zijn huidige vorm tot stand gekomen zonder de substantiële
bijdrage van een aantal mensen. Kenneth B., bedankt voor onze boeiende
samenwerking. Ik heb heel veel van je geleerd, niet alleen over unit commitment
modellen, maar ook over deadlines stellen, lay-out, werkorganisatie, motivatie
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en zoveel meer. Daarnaast was je ook een zeer aangename collega zowel binnen
als buiten de werkuren. Alessia, embassador of Italy, I enjoyed our cooperation
and your general advice on life very much. Glenn and Christina, thank you both
for the nice cooperation. With your help, I could include the building stock in
my models, knowing it was based on decent work. I always enjoyed coming over
to building physics for our meetings. Erik, bedankt voor je kritische inbreng
en discussies, de ene keer over investeringsmodellen, de andere keer over het al
dan niet meegaan naar de alma.

Furthermore, I would like to thank the other members and former members of
the GOA project: Ritu, Juan, Hakan, Yves, Arne, Felix, Ronnie and Johan for
the meetings and discussions, which opened my eyes to other aspects of the
energy system.

Volgende op de lijst zijn mijn (ex-)bureaugenoten, die dag in dag uit mijn vele
lawaai moesten verduren. Damien, met vier jaar op de teller heb je veruit het
meeste tijd met mij doorgebracht. Vier jaar, wat vliegt de tijd. In die tijd heb
ik je zien trouwen (prachtig huwelijk) en vader worden. Bedankt voor de vele
pauzes samen. Verder ken ik je als een gedreven en correcte onderzoeker, en
ben ik er zeker van dat je een degelijk doctoraat zal afleggen. Clara, je hebt
me enorm geïnspireerd met je enthousiasme voor de goede zaak en ik vond het
fijn om je thesisstudent en bureaugenoot te zijn. Je hebt een heel stevige basis
gelegd voor dit werk en ik hoop dat ik er een even volwaardig deel aan heb
kunnen toevoegen. Brecht, ook al was je een parttime bureaugenoot, ik vond
het altijd aangenaam om je erbij te hebben. Onze discussies, over opslagvaten,
over je indrukwekkende verbouwingen en domotica en zoveel meer, vond ik heel
boeiend.

Verder had ik het geluk om deel uit te mogen maken van een zeer gedreven
en dynamische onderzoeksgroep, the sysi’s (thermal system simulators), ook
al ben ik nog steeds geen volledige voorstander van die afkorting. Stefan,
van thesisbegeleider naar collega, altijd even positief, opgewekt en sociaal. Je
observerende blik op alles wat er rond je gebeurde, gaf steeds aanleiding tot
leuke gesprekken. Jan, we zijn niet lang collega’s geweest, maar ik vond onze
praatjes zeer aangenaam. Maarten, je staat zo stevig in het leven en weet
altijd hoe of wat. Maar dat maakt je grapjes er zeker niet minder op. Roel, je
bent een zeer inspirerende collega en persoon met je rotsvaste overtuiging in
duurzaamheid. Ik heb enorm veel van je geleerd, zelfs Modelica (dat zegt al
veel), op heel veel vlakken. Ercan, I still remember our nice day in Copenhagen
and I hope you’re doing well. Mats, ik vond onze uitstapjes tot in de late
uren op conferenties en TME weekends altijd plezant, zelfs als dat zingen met
zatte Ieren inhield. Filip, je kennis en kunde vind ik echt indrukwekkend en ik
ben er zeker van dat je doctoraat en je huis in Mechelen zeer degelijk zullen
zijn. Arnout, ik vond je een zeer fijne collega en ik zie je zeker nog vaak in
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de toekomst. Bram, ik heb in jou een zeer betrouwbaar persoon leren kennen
met gevatte humor op onverwachte momenten. Verder wil ik ook nog Nicholas,
Anouk, Joachim, Igor, Muhannad en Edorta bedanken om zulke fijne collega’s
en mensen te zijn.

Naast een toffe onderzoeksgroep, maakte ik ook deel uit van een zeer leuke
divisie: TME. Tijdens ieder weekend, barbecue, fietstocht, happy hour, alma dag,
middageten en nachtelijke uitstap, blijkt er steeds een verborgen levensgenieter
in iedere TME-er te schuilen. Ik heb me dan ook als een vis in het water gevoeld
in deze groep. Ik zal altijd tevreden op deze periode terugkijken. Geert, je hebt
een groot hart en ik heb daar steeds mogen van genieten in onze vele gesprekken
en uitstappen. Joris, je hebt me geleerd dat er nog zoveel andere zaken zijn
naast het werk en ik bewonder je enthousiasme in alles wat je doet. Tijs, je
uitdagende pseudo-wetenschappelijke stellingen zorgden steeds voor boeiende
middaggesprekken, hetgeen nooit meer hetzelfde is geweest nadat je vertrok.
Kenneth Vdb, onze contactstop is niet ver geraakt, maar ik ben er zeker van
dat je je andere projecten en doelen tot een indrukwekkend einde zult brengen.
Je bent daarin zeker een voorbeeld voor mij. Ruben, je religieuze overtuiging
zal me blijven inspireren. Jeroen, ik vind je vele verhalen altijd boeiend en ben
steeds benieuwd naar je volgende bestemming. Juliana, so much fun you have
in everything, even in supporting for that team that’s beneath Belgium in the
FIFA ranking. Dries, je kan steeds scherp en grappig uit de hoek komen. Kris,
na het taakje voor ECMS, onverwacht collega geworden, ik apprecieer je humor
enorm. Pieter, nog nooit zo’n goede gesprekspartner gehad over sciencefiction
tot wielrennen. I won’t go into a full list of all people at TME. I enjoyed every
conversation with all of you, even if that was limited to a short ’hello’ in the
hallway sometimes. I hope that the nice atmosphere in TME continues to exist
just like I had the privilege of experiencing the last 5 years.

Verder wil ik ook Valérie en Kathleen bedanken voor de goede ondersteuning,
maar ook om zulke toffe vrouwen te zijn. Zo werd papierwerk een goed excuus
voor een leuke babbel op het secretariaat. Valérie, je uitgebreide kennis van
sciencefiction en fantasy blijft me verbazen. Kathleen, ik vond je humor steeds
fijn en ik hoop dat mijn kabouter Wesley cartoon je ook goed heeft kunnen
doen lachen.

Bij deze wil ik ook mijn ouders bedanken. Mama, papa, jullie hebben me steeds
alle kansen geboden, me beschermd en losgelaten waar nodig. Jullie liefde voor
elkaar en jullie entourage zijn steeds een voorbeeld voor mij. Thijs, ik weet dat
wij niet veel woorden nodig hebben, om onze appreciatie voor elkaar duidelijk te
maken. Jens, het doet me altijd zo’n plezier om je creativiteit en enthousiasme
te zien. Ellen en Yana, bedankt om zo goed voor m’n broers te zorgen. Emmy,
ik zal de kerstvakantie steeds met onze Donkey Kong avonturen associëren.



iv PREFACE - DANKWOORD

Meme, je hebt maar weinig van deze periode in m’n leven kunnen meemaken,
maar ik waardeer je als enorm rijke persoonlijkheid. Ik ben blij dat je toch
Véronique hebt leren kennen. Pepe, je hebt steeds gezegd dat je je eigen pad
moet kiezen, en ik probeer dat ook te doen. Meme, je bent zo’n intelligente
vrouw en ik ben trots je petekind te zijn. Alle nonkels en tantes, neven en
nichten, jullie zijn stuk voor stuk fantastische mensen en een inspiratie voor hoe
ik wil dat m’n familie eruit ziet. Tine, je hebt me zoveel geleerd en gesteund.

Tim en Kenneth, onze reizen en avonturen samen hebben me echt veranderd
en ik geniet nog steeds met volle teugen van onze momenten samen. Simon,
je bent er al heel m’n leven soms wat meer of minder, maar elke keer als we
samen zitten, lijkt het alsof het gisteren was. Maxime, Tuur en Valentine, ik
ben blij dat we met ons P&O groepje nog steeds samen komen. Maxime en
Tine, bedankt voor de vele uitnodigingen, ik kom steeds met plezier langs. Tuur
en Lien, wat een leuk koppel zijn jullie toch. Hopelijk spreken we in enkele
jaren toch via Trigger af. Valentine, we hebben al veel momenten gedeeld en ik
vind het steeds fijn als je er bij kan zijn.

Nathalie, Stefanie, Kristof, Hubert, Monique, Alice en Charles, bij jullie heb ik
een tweede familie gevonden en ik kom steeds met plezier af naar Moere.

Véronique, ik verwonder me nog steeds over hoe we elkaar zijn hebben leren
kennen en hoe dat het begin was van al vier fantastische jaren samen. Ik ben zo
blij dat we samen gaan afronden en zo samen die sprong naar Amerika kunnen
maken. Je steunt me enorm en ieder vrij moment samen, is altijd genieten. Ik
had nooit gedacht dat ik met zo’n fantastische vrouw zou samen zijn. Met jou
aan m’n zij, kan ik alles aan.

Dieter Patteeuw

Juli 2016



Abstract

Renewable energy sources (RES) will play a vital role in reducing the impact
of climate change. Solar and wind energy, captured by PV-panels and wind
turbines respectively, are two major RES that pose enormous potential but have
two important disadvantages: a limited predictability and variability. Demand
response (DR) is often put forward as part of the solution for variability, by
shifting electricity demand away or towards times of shortages or abundances of
RES respectively. One of the major technologies that pose significant potential
for DR are electrical heating and cooling systems. Within these systems, this
work focuses on the heating of residential buildings by means of a heat pump.
Residential buildings with heat pumps show potential for DR as the building
structure and domestic hot water tank can be used as thermal energy storage.
This allows a decoupling in time of the delivery of thermal comfort and the heat
pump electricity demand.

One of the factors hampering a widespread implementation of DR for heat
pumps is a thorough understanding of the potential benefits. To this aim,
this work presents an integrated modeling approach that captures both the
incentives for DR by explicitly modeling the electricity generation system as
well as the flexibility potential of residential buildings with heat pumps. In
contrast to the literature, a bottom-up representation of this flexibility potential
is developed, resulting in a linear optimal control problem (OCP). This linear
OCP of buildings with heat pumps is combined with a state of the art unit
commitment and economic dispatch model of the electricity generation system.
The added value of this integrated modeling approach is shown with respect to
typical other approaches in the literature. It correctly captures the maximal
potential for DR, weighs the thermal losses against the supply side incentives
and includes the feedback with the electricity generation system.

This integrated model is employed in a number of case studies to explore the
potential benefits of DR for residential heat pumps. In a first case study for
a Belgian context, it is shown that DR with residential heat pumps can shift
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electricity demand towards moments of curtailment in order to avoid electricity
demand later on when fuel fired power plants are running. In this case study,
half of the shifted electricity demand was directly lost due to thermal losses in
the residential buildings. In this manner, applying DR to residential heat pumps
allows reducing the CO2 emission further by an extra 15 % on top of the CO2
emission reduction of installing a heat pump. Furthermore, the contribution of
the electricity demand of residential heat pumps to the peak electricity demand
is almost one on one in case no DR is applied. With DR, well insulated buildings
can significantly shift their electricity demand away from the peak. Buildings
which are not well insulated are shown to be unattractive for installing heat
pumps, even with a DR implementation.

In a second case study, the monetary benefits of applying DR for residential
heat pumps are identified to go up to 150 EUR per participant per year from
operational savings and up to 300 EUR per participant per year by avoiding
peak electricity demand. These cost savings are shown to diminish as the
participation in DR rises. This discourages extreme configurations in the
residential buildings: high spreads on temperature set points or high domestic
hot water tank sizes pose little added value in case of higher DR participation.

The integrated model has potential for a practical implementation of DR with
residential heat pumps. It can be employed to anticipate, in a day ahead
setting, the reaction of residential heat pumps to incentives from the electricity
generation system. Residential heat pumps controlled by MPC are shown to
be very greedy to these incentives. In this manner, sending an electricity price
profile leads to poor performance when a high number of buildings, 100,000 in
this work, join in on DR. Sending an electricity demand profile for the residential
heat pumps to follow attains superior performance in this context.

Finally, this work combines the integrated model with a heating system design
optimization in order to investigate whether heating systems should be designed
differently in the light of high RES shares in the electricity generation system.
Two modeling additions towards this aim, temperature level and electricity
generation side modeling, show limited added value to the heating system
optimization but does allow a correct quantification of the CO2 emissions. From
the results it follows that a residential building is best equipped with a single
main heat production system. A storage tank for space heating and solar
thermal panels appear to be unattractive technologies. A large scale combined
heat and power unit is attractive but the CO2 emission strongly depends on
the CO2 emission calculation method. The combination of heat pump and PV
panel reduces the CO2 emission of the building with up to 2 ton per building
per year compared to typical fuel fired options for a limited extra cost.



Beknopte samenvatting

Hernieuwbare energie zal een grote rol spelen in het beperken van de klimaat-
opwarming. Zonnepanelen en windturbines, twee belangrijke hernieuwbare
energietechnologieën, vertonen een enorm potentieel maar hebben twee nadelen:
een beperkte voorspelbaarheid en variabiliteit. Vraagsturing wordt vaak
voorgesteld als een deel van de oplossing voor variabiliteit, door het deels
verschuiven van de elektriciteitsvraag om een betere overeenstemming te
bekomen met de elektriciteitsopwekking door zonnepanelen en windturbines. De
sector van verwarming en koeling met behulp van elektriciteit vertoont een groot
potentieel voor vraagsturing. Dit werk focust zich op residentiële gebouwen die
verwarmd worden met behulp van een warmtepomp. Deze gebouwen voorzien
vraagsturing door het benutten als thermische energieopslag van de gebouwmassa
en het warmwatervat. Dit laat toe om de vraag naar thermisch comfort los te
koppelen in de tijd van het elektriciteitsgebruik van de warmtepomp.

Een van de factoren die een wijdverspreide toepassing van vraagsturing voor
warmtepompen in de weg staat, is een grondige kennis van de mogelijke voordelen.
Om dit tegen te gaan, presenteert dit werk een geïntegreerde modellering die een
expliciete modellering combineert van zowel het elektriciteitsopwekkingssysteem
als de flexibiliteit in residentiële gebouwen met warmtepompen. In tegenstelling
tot de literatuur wordt er een bottom-up voorstelling van deze flexibiliteit
ontwikkeld dat voor te stellen is in een lineair optimaal controle probleem. Dit
lineair model wordt gecombineerd met een geavanceerd operationeel model
van het elektriciteitsopwekkingssysteem. De toegevoegde waarde van deze
geïntegreerde modelleringsaanpak wordt aangetoond tegenover andere klassieke
modelleringsmethodes in de literatuur.

Dit geïntegreerd model wordt toegepast in een aantal gevalstudies om de
mogelijke voordelen van vraagsturing voor residentiële warmtepompen te
verkennen. Een eerste gevalstudie in een Belgische context toont aan dat
de elektriciteitsvraag van de warmtepompen verschoven kan worden naar
momenten wanneer hernieuwbare energie te veel produceert en waarbij een deel
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zou ingeperkt worden. Deze aansturing zorgt ervoor dat op een later tijdstip, een
gasgestookte centrale minder elektriciteit dient op te wekken. Op deze manier
slaagt vraagsturing erin om de CO2-uitstoot van verwarming van residentiële
gebouwen met een extra 15 % te verminderen bovenop de vermindering in CO2-
uitstoot door het installeren van een warmtepomp. Bovendien kan vraagsturing,
vooral bij goed geïsoleerde gebouwen, de bijdrage significant beperken van de
elektriciteitsvraag van residentiële warmtepompen aan de piekvraag in de winter.
Minder goed geïsoleerde gebouwen zijn onaantrekkelijk voor het installeren van
warmtepompen, zelfs na implementatie van vraagsturing.

Een tweede gevalstudie onderzoekt de financiële voordelen van het toepassen
van vraagsturing voor residentiële warmtepompen. Er wordt aangetoond dat de
operationele besparingen kunnen oplopen tot 150 euro per deelnemer per jaar en
dat het vermijden van bijdragen aan de piekvraag een besparing kan opleveren
tot 300 euro per deelnemer per jaar. Verder toont deze gevalstudie aan dat
deze kostenbesparingen per deelnemer afnemen naarmate meer huishoudens
deelnemen aan vraagsturing. Dit fenomeen ontmoedigt een extreme configuratie
van het verwarmingssysteem in residentiële gebouwen, zoals een hogere spreiding
op de instellingen voor de binnenhuistemperatuur of een groter vat voor warm
water.

Het geïntegreerd model vertoont potentieel voor een praktische implementatie
van vraagsturing met residentiële warmtepompen. Dit model kan gebruikt
worden om een dag op voorhand te anticiperen op de reactie van deze vraagstu-
ring op financiële prikkels. Bij een groter aantal deelnemende huishoudens aan
vraagsturing, zwakt de performantie van een elektriciteitsprijsprofiel af. Het
sturen van een elektriciteitsvraagprofiel, dat gevolgd dient te worden door de
warmtepompen, leidt tot betere resultaten.

Uiteindelijk wordt het geïntegreerd model ook gecombineerd met een ontwerpop-
timalisatie van het verwarmingssysteem, om te onderzoeken of dit ontwerp anders
dient te gebeuren in de context van een hoog aandeel van hernieuwbare energie
in het elektriciteitsopwekkingssysteem. Twee methodologische uitbreidingen
hiertoe, het toevoegen van temperatuursniveaus en het modelleren van het
elektriciteitsopwekkingssysteem, vertonen een beperkte toegevoegde waarde
maar laten wel een nauwkeurige bepaling van de CO2-uitstoot toe. Een
opslagtank voor ruimteverwarming en een zonneboiler blijken onaantrekkelijke
technologieën te zijn. De combinatie van een warmtepomp met vloerverwarming
en zonnepanelen kunnen de jaarlijkse CO2-uitstoot van een woning tot 2 ton
per gebouw per jaar verminderen in vergelijking met een gasboiler, aan een
beperkte meerkost.
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Abbreviations

ACH Air changes per hour
ACHP Air coupled heat pump
CCGT Combined cycle gas turbine
CHP Combined heat and power
CGB Condensing gas boiler
COP Coefficient of performance
DHW Domestic hot water
DR Demand response
DRR Demand recovery ratio
DSM Demand side management
EAC Equivalent annual cost
ED Economic dispatch
ERH Electric resistance heater
Fh Floor heating
GCHP Ground coupled heat pump
GHG Greenhouse gas
HOB Heating oil boiler
HP Heat pump
HS Heating system
ICT Information and communication technology
IM Integrated model
LP Linear programming
MILP Mixed integer linear programming
MO Merit order
MPC Model predictive control
NZEB Nearly zero energy building
OCGT Open cycle gas turbine
OCP Optimal control problem
OPEX Operational expenditure
PEF Primary energy factor
PP Power plant
PV Photovoltaic
Rad Radiator
RES Renewable energy sources



ABBREVIATIONS xi

RMSE Root mean square error
ROM Reduced order model
SH Space heating
SPF Seasonal performance factor
SR Spinning reserve
STC Solar thermal collector
TES Thermal energy storage
TOU Time of use
TSO Transmission system operator
UC Unit commitment
UK United Kingdom
US United States of America
VGM Virtual generator model





Nomenclature

Indices

b Building index
i Power plant index
j Time step
l Temperature level
t Time period

Symbols
For clarity reasons in the nomenclature, the indices of the symbols are omitted.
The proper index of each symbol follows from the context throughout the text.

A,B,C,D General state space matrices
Ash,Bsh State space matrices of building structure thermal behavior
a Investment annuity
Astc Area of the STC providing heat [m2]
ACCO2 CO2 abatement cost [EUR/ton]
bd General boolean decision variable
bdem DHW demand boolean
C Thermal capacitance [J/K]
Crad Thermal capacitance of a radiator [J/K]
cp Specific heat capacity [J/kgK]
cf Fuel cost running PP at minimum power level [EUR]
CO2 Annual CO2 emission [ton/year]
co2t Cost stemming from CO2 price [EUR]
co2p CO2 price [EUR/ton]
COP dhw Coefficient of performance while delivering DHW
COP sh Coefficient of performance while delivering space heating
ct CO2 emission running PP at minimum power level [ton]
cur Curtailment factor

xiii
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cost General cost function
costfix Fixed investment cost component [EUR]
costvar Variable investment cost component [EUR/x]
∆max,down Maximum ramping down of a power plant [MW/h]
∆max,up Maximum ramping up of a power plant [MW/h]
∆t Time step duration [s]
∆T layer Layer temperature range [ ◦C]
dhp Heat pump electricity demand [MW]
dhp,fix HP electricity demand not participating in DR [MW]
dhp,var HP electricity demand participating in DR [MW]
dtrad Traditional electricity demand [MW]
dcccgt Dynamic cost of operating a CCGT [EUR]
dT aux Auxiliary heater influenced DHW tank temperature [ ◦C]
ε Price elasticity
EAC Equivalent annual cost [EUR/year]
eq General equality constraints
η0,k1,k2 Technical parameters STC
ηcgb Condensing gas boiler efficiency
ηchp,el Electrical efficiency CHP
ηchp,th Thermal efficiency CHP
η̄egs Mean electricity generation system efficiency
ηnetwork Efficiency district heating
fdem Demand side model
fgen Electricity generation system model
Ḟ cgb Rate of fuel input to the CGB [W]
Ḟ chp Rate of fuel input to the CHP [W]
fc Fuel cost from power plant [EUR]
gccgt Electricity generation by CCGT [MW]
gchp Electricity generation by CHP [MW]
gmax Maximum generation level of a power plant [MW]
gmin Minimum generation level of a power plant [MW]
gnuc Electricity generation by nuclear power plants [MW]
gocgt Electricity generation by OCGT [MW]
gpp Electricity generation by a power plant [MW]
gres Electricity generation by renewable energy sources [MW]
grPV,b Electricity by residential PV to the building [MW]
grPV,g Electricity by residential PV to the grid [MW]
i Discount rate for annuity calculation
iz Component investment decision (binary decision variable)
ineq General inequality constraints
Inv Investment cost [EUR]
mdt Minimum down time of a power plant [h]
mf Marginal fuel cost above minimum power level [EUR/MW]
mt Marginal CO2 emission above minimum power [ton/MW]
M tes Size of TES [kg]
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mut Minimum up time of a power plant [h]
n Number of years for annuity calculation
nb Number of buildings
O Heating system component operational aspect
OPEX Operational expenditures [EUR/year]
p Electricity price [EUR/MWh]
P aux Auxiliary heater electricity consumption [W]
P aux,max Auxiliary heater maximum electricity consumption [W]
pdr Share of heat pumps participating in DR
Php Heat pump electricity consumption [W]
Php,dhw HP electricity consumption dedicated to DHW [W]
Php,sh HP electricity consumption dedicated to SH [W]
P int,hp,sh Integer HP electricity consumption for SH [W]
Pmax,hp Maximum HP electricity consumption [W]
Pmin,hp,sh Minimum HP modulation for SH [W]
P pump,emi Electricity consumption of circulation pump [W]
PEF Primary energy factor
priceG Price profile from electricity generation system [EUR]
priceI Price profile from integrated model [EUR]
q̇sol Solar irradiation per square meter [W/m2]
q̇stc Useful heat flux STC [W/m2]
Q̇aux,dhw DHW provided by the auxiliary heater [W]
Q̇cgb Heat provided by the condensing gas boiler [W]
Q̇dem Heat loss through DHW demand [W]
Q̇emi Heat provided through emission system [W]
Q̇hp,dhw DHW provided by heat pump [W]
Q̇hp,sh Space heating provided by heat pump [W]
Q̇int Internal heat gain [W]
Q̇sol Heat gain by solar irradiation [W]
QTES Energy content of TES [kWh]
Q̇stc Heat by solar thermal collector [W]
Q̇toDem Heat to demand (SH or DHW) [W]
Q̇toTes Heat to TES [W]
Qdem,year Heat demand of a building for a full year [kWh]
ρ Density [kg/m3]
R Thermal resistance [K/W]
rc Expenditure on power plant ramping [EUR]
raco Ramping cost of a power plant [EUR]
S Heating system component size
sc Expenditure on power plant start-ups [EUR]
SPF Seasonal performance factor
stco Start-up cost of a power plant [EUR]
T cold Cold tap water temperature [ ◦C]
T dem Desired DHW tap water temperature [ ◦C]
T e Ambient (outside) temperature [ ◦C]
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T f Floor temperature [ ◦C]
T fi Internal floor temperature [ ◦C]
T g Ground temperature [ ◦C]
Thp Heat pump influenced DHW tank temperature [ ◦C]
Thp,max Heat pump maximum supply temperature [ ◦C]
T i Indoor air temperature [ ◦C]
T level Temperature of a level [ ◦C]
T rad Radiator temperature [ ◦C]
T roof Roof temperature [ ◦C]
T sh Space heating state vector [ ◦C]
T sh,max Maximum indoor air temperature [ ◦C]
T sh,min Minimum indoor air temperature [ ◦C]
T̄ source Mean heat pump source temperature [ ◦C]
T surr DHW tank surroundings temperature [ ◦C]
T tank Average DHW tank temperature [ ◦C]
T tank,max Maximum allowed DHW tank temperature [ ◦C]
Twe Exterior wall temperature [ ◦C]
Twi Internal wall temperature [ ◦C]
u General input vector
UArad Thermal conductance from radiator to zone [W/K]
UAtank Thermal conductance of the tank exterior [W/K]
v Start-up of a power plant (binary decision variable)
V tank Volume of a DHW tank [m3]
w Shut-down of a power plant (binary decision variable)
wls Weighing factor load shaping
wt Rescaling factor of a time period to a year
x General state vector
y General output vector
zdhw Heat pump able to supply DHW (binary decision variable)
zhp,dhw Heat pump commitment to DHW (binary decision variable)
zhp,sh Heat pump commitment to space heating (binary decision variable)
zpp Commitment status of a power plant (binary decision variable)
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Chapter 1

Introduction

1.1 Context and motivation

On 22 April 2016, 175 countries signed the Paris agreement, stating as one
of the main goals to keep the increase in global average temperature below
2 ◦C above pre-industrial levels [168]. To attain the 2 ◦C limit, the energy
related greenhouse gas (GHG) emissions in 2040 should be less than the GHG
emissions in 1990, while the global economy is expected to grow more than
twofold [21, 128], a major challenge. Residential and commercial buildings make
up a quarter of these energy related GHG emissions [103] and hence represent
an important sector in this context.

In the European Union, the European Commission has set out a roadmap for the
building sector to reduce its GHG emissions by about 90 % in 2050 compared to
the year 1990 [59]. First, this goal is being pursued by setting rigorous efficiency
standards, as the obligation that all new buildings from 2020 onward should be
“nearly zero energy buildings” (NZEB) and by stimulating major renovations in
existing buildings [63]. Second, the remaining energy demand should to a large
extent be covered by local renewable energy [63] or by shifting energy demand
towards low carbon electricity by means of heat pumps [59].

The present work focusses on the second step: the use of low carbon electricity
by means of heat pumps in the building sector, and more precisely, in the
residential building sector. As outlined in multiple future energy scenarios
[21, 46], electricity stemming from PV-panels and wind turbines will play a
vital role in achieving this low carbon electricity. These two renewable energy
sources (RES) show numerous advantages, such as a vast potential, decreasing
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investment cost [29] and zero marginal operational cost and GHG emissions. The
two main drawbacks of these RES are its limited predictability and variability,
which can cause curtailment and hence can lower the value of these RES. In
an electricity system where demand and supply must be balanced at all times,
these two drawbacks pose great challenges. The current work focuses on the
issue of variability and hence does not consider limited predictability.

In order to gain a better match between electricity demand and electricity
generation by variable RES, demand response (DR) will play an important
role [164]. Demand response is defined by the U.S. Federal Energy Regulatory
Commission as “changes in electric use by demand-side resources from their
normal consumption patterns in response to changes in the price of electricity,
or to incentive payments designed to induce lower electricity use at times of high
wholesale market prices or when system reliability is jeopardized”. Technically,
demand response will be attained as an application of the so-called smart
grid: the integration of information and communication technology (ICT) with
the electric system [65]. In a residential context, the typical electricity-driven
applications that can participate in demand response are electric vehicles, white
good appliances and thermostatically controlled loads such as heat pumps
[52]. These applications can shift their electricity demand in time without
compromising the delivery of their service.

The presented work investigates the application of demand response on heat
pumps in a residential context and its potential in tackling the challenges of
variable electricity generation by PV-panels and wind turbines. Heat pumps in
residential buildings show potential for demand response since they translate a
heat demand into an electricity demand, and thermal energy storage (TES) can
be exploited in the building structure [153, 81], domestic hot water tank [174]
or by installing a dedicated tank for TES [6]. This TES allows decoupling in
time of the electricity demand from the thermal demand, in order to tackle the
aforementioned challenges without compromising thermal comfort. As stated
by Strbac [164], one of the main factors hampering the application of demand
response, is a thorough quantification of the benefits associated with DR.

1.2 Goal and research questions

The main goal of this work is to investigate the potential of residential heat
pumps in demand response and the potential benefits for the electricity generation
system. The Belgian context typically serves here as a case study for the potential
studies. The goal of this work can be translated in following research questions:



OUTLINE 3

• How should the interaction between residential heat pumps and the
electricity generation system be modeled?

• What are the maximum attainable benefits from applying DR to residential
heat pumps?

• How could DR with residential heat pumps be realized in practice?

• Will the residential heating system be designed differently in order to
benefit from the DR potential?

In order to answer these research questions (see Figure 1.1), this work features
the development of a bottom up representation of the flexibility potential of
residential buildings with heat pumps. The resulting linear model is combined
with an electricity generation model into an integrated model. Furthermore, this
integrated model is applied to a number of case studies in order to answer the
above mentioned research questions. Finally, the integrated model is combined
with a heating system design optimization to answer the last research question.

1.3 Outline

Figure 1.1 illustrates how the research questions formulated above are addressed
in the following chapters.

Chapter 2 provides the major concepts and definitions used throughout this work.
Furthermore, this chapter describes in depth the most important boundary
conditions in this work: the residential buildings and the central electricity
generation system. Both boundary conditions are explicitly modeled throughout
this work.

Chapter 3 provides a literature review on modeling approaches towards demand
response with heat pumps. Furthermore, this chapter develops the integrated
model which combines the operational aspects of the residential buildings,
heat pumps and electricity generation system. In order to allow this system
integration, a bottom-up model of the residential buildings with heat pumps is
developed.

Chapter 4 shows the added value of the integrated modeling approach with
respect to typical other approaches in the literature, which typically study the
perspective of either the building owner or the electricity generation system.

Chapters 5 and 6 apply the integrated model to case studies. In chapter 5, a
wide range of different building types and heating system types are compared
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Figure 1.1: This thesis studies the interaction between heating systems in
residential buildings (resid. build.) and the electricity generation system (elect.
gen.). Chapters 2 and 3 develop the integrated model, which is used for a
number of studies in chapters 4 to 8. In Chapter 8, this integrated model is
combined with design optimization of the heating system.

based on their CO2 emissions, investment cost and potential for peak shaving,
which is summarized in a CO2 abatement cost. In chapter 6, the sensitivity
of the DR potential is investigated towards market penetration, temperature
setpoints and size of the domestic hot water tank.

Chapter 7 explores how the benefits of applying DR to residential buildings
with heat pumps, can be realized in practice. Two typical approaches based
on either price information or load profile information are compared as well as
hybrid approaches. Here, the integrated model serves as an upper bound to
which savings are attainable.

Chapter 8 combines heating system design optimization with the integrated
model. Hence, it investigates whether the residential heating system design will
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reap financial benefits from the DR context. Does complementing a heat pump
with other heating system components, such as a back-up gas boiler, a thermal
energy storage tank for space heating, solar thermal panels or rooftop PV,
present added value in terms of equivalent annual cost and/or CO2 emissions?

Finally, chapter 9 summarizes the conclusions of the different chapters and
provides an outlook on future research.

1.4 Main assumptions

As with all research, assumptions were made in order to keep the problem size
feasible. What follows are the main assumptions used throughout this work.

First, the electricity transmission and distribution grid are assumed to be a
copper plate: they do not pose any congestion problems and do not show
losses. This work only considers the interaction with the electricity generation
system, which entails that supply and demand of electricity must be balanced
at all times. The inclusion of electricity grids, with all their characteristics, is
recommended as a research topic within the electrical engineering field. Also,
considering the grid as a copper plate nullifies the difference between rooftop
and large-scale PV systems. Only Chapter 8 considers the difference between
both.

Second, there is no competition from other technologies in performing demand
response. Hence, electric vehicles, flexible industrial processes and white good
appliances all operate as if there were no incentives to modify their electricity
demand. Also competition with import and export of electricity is neglected.
From this, it follows that at a moment where electricity generation by RES
exceeds the electricity demand, this overproduction is either used by the heating
systems or it is curtailed. However, the methodological framework allows
extension to these competitive technologies.

Third, the DR potential is regarded from a systems perspective: there is perfect
competition between all involved parties and their total cost is minimized. The
influence of imperfect market operation could be a topic for further research.

Finally, the presented operational models employ perfect predictions of all
disturbances involved. Hence, on an electricity generation level, the capacity
and imbalance markets are not studied and the uncertainty related to imperfect
predictions of the demand side is neglected.
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Modeled v v x v v

Control v (v) x v (v)

Design (v) x x v x

Power RES Grid Heating Building

plants system

Figure 1.2: Summary of the focus of this thesis.

1.5 Focus

Figure 1.2 summarizes the focus of this thesis. The electricity generation
side, consisting of dispatchable power plants and RES, is explicitly modeled
to set the correct monetary incentives in dealing with the variability of RES.
This variability is tackled by altering the control of heat pumps in residential
buildings.

In terms of control, the studied control actions are: the commitment and
dispatch of power plants, the curtailment of RES and the control of the heat
pump in supplying space heating and domestic hot water. Low-level building
controllers are not considered.

Considering design in the electricity generation system, only the investment
in peak power plant capacity is studied. On the residential building level, the
heating system design in this context is studied extensively in Chapter 8.

The added value of this thesis lies in five points. First, a bottom-up heating
system model is developed that fits in an integrated model. This integrated
model studies the interaction with the electricity generation system and the
flexibility in residential buildings. Second, this work shows the added value of
this integrated model with respect to other approaches in the literature. Third,
the potential of demand response for residential heat pumps is studied. Fourth,
ways of practically employing this integrated model to attain DR are studied.
Finally, the impact of RES variability on residential heating system design is
illustrated.



Chapter 2

Concepts and boundary
conditions

The aim of this chapter is twofold. First, Section 2.1 presents the main concepts
and definitions employed in this dissertation, in order to avoid repetition
throughout the text. Second, Section 2.2 illustrates how this work is at the
crossroad of two different research fields: electric power system operational
research (Section 2.3) and building performance simulation (Section 2.4). Finally,
Section 2.5 concludes this chapter.

2.1 Concepts and definitions

This section describes a number of concepts and definitions which are used
throughout the thesis, in the fields of optimal control (Section 2.1.1) and demand
side management (Section 2.1.2)

2.1.1 Optimal control

Consider a physical system for which the state at a discrete time step1 j can be
fully described by a state vector xj containing a set of physical properties of
that system. When controlling this system, some inputs uj can be manipulated

1In this work, the words ’time step’ and ’time instant’ generally mean the same, except in
the context of modeling of thermal energy storage.

7
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in order to get a desired set of outputs yj . Given that the dependencies between
these states, inputs and outputs are first order differential equations, this system
can be represented by a linear state space model:

∀j : xj+1 = A · xj + B · uj (2.1)

∀j : yj = C · xj + D · uj (2.2)

with A, B, C and D the time-invariant real matrices depending on the
parameters of the system. Disturbances are assumed to be perfectly known
throughout this work and can thus be included in the inputs vector uj .

Given that there is a cost cost(xj , uj) associated with operating this linear
system over a number of jmax time steps, this cost can be minimized by solving
the optimal control problem (OCP):

min
jmax∑
j=0

cost(xj , uj) (2.3)

subject to

∀j : xj+1 = A · xj + B · uj (2.4)

∀j : ineq(xj , uj) ≥ 0 (2.5)

∀j : eq(xj , uj) = 0. (2.6)

The aforementioned state space model hence becomes a set of equality constraints
in the optimization, assuring that the dynamics of the system are respected.
Note that the system output and the associated output equation (Eq. 2.2) are
typically omitted in an OCP, since all states are explicitly known. Additional
operational inequality ineq(xj , uj) and equality eq(xj , uj) constraints can be
added to make sure that the system behaves properly. If these constraints and
the cost functions are linear operations of xj and uj , the optimization problem
(Eq. 2.3 - Eq. 2.6) is a linear programming (LP) problem. Throughout this
work, the optimization software package CPLEX is generally used to solve this
LP problem, solving a problem with 105 variables in the order of seconds.

The other type of OCP in this study is an extension of Eq. 2.3 - Eq. 2.6 with
boolean decision variables bdj which are either 0 or 1 in time step j. This
variable denotes whether a certain component in the system is on or off. The
OCP is hence:

min
jmax∑
j=0

cost(xj , bdj , uj) (2.7)
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subject to

∀j : ineq(xj , bdj , uj) ≥ 0 (2.8)

∀j : eq(xj , bdj , uj) = 0. (2.9)

In this type of OCP, the state space notation is less common. The dynamical
constraints are incorporated in the equality constraints. Including boolean
decision variables makes the optimization problem (Eq. 2.7 - Eq. 2.9) a mixed
integer linear programming (MILP) problem. Again, CPLEX is used to solve the
optimization problem throughout this work. The MILP problem is much harder
to solve than the LP problem: an optimization could take hours up to days
without reaching a desirable solution. Typically, the optimization problem is
terminated when a certain user-determined optimality gap is reached or when a
certain maximum calculation time is reached. When solving the MILP problem,
the solver first determines the best attainable linear solution by relaxing all
boolean decision variables to real variables between 0 and 1. The difference
between this relaxed linear solution and the best attained solution with a certain
combination of boolean decision variables, is defined as the optimality gap.

2.1.2 Demand side management

According to Strbac [164], demand side management (DSM) groups a range
of measures aimed at a more efficient use of existing electricity generation,
transmission and distribution infrastructure as well as improving the balance
with variable RES. In the case of an existing infrastructure, the aim is generally
to reduce electricity demand at times of high peak demand and grid congestion,
which would otherwise need expensive infrastructure investments. In the case
of improving the balance with variable RES, this entails the temporary increase
or decrease in demand when RES generation is very high or low respectively.
Additionally, Gellings [71] also includes in the concept of DSM the strategic
conservation of energy, stimulated by utilities. This is performed in order
to address shortages in generation capacity, fuels or strained hydro resources.
Finally, Warren [184] notes that DSM in the form of energy efficiency is also
pursued by policy makers, driven by environmental and economical concerns.

Palenski and Dietrich [129] identified the range of DSM measures as: energy
efficiency, time of use tariffs (TOU), spinning reserve (SR) and demand response
(DR) (Figure 2.1). Energy efficiency implies the permanent reduction in
electricity demand, which could coincide with times of peak electricity demand.
The other measures are aimed towards shifting the electricity demand in time,
instead of an overall reduction. Time of use tariffs aim at reducing the demand
at typical peak periods throughout the day (17h-19h) or shift a large fraction
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Figure 2.1: Overview of the different measures that fall under demand side
management. Figure from Palensky and Dietrich [129].

of the demand to the night to increase the share of base load power plants. An
electrical load could also be employed to provide spinning reserves, where it
aids in maintaining the correct frequency of the electrical grid. This is typically
performed in time scales within one hour.

In this thesis, the focus is on demand response. Here, demand response entails
the preheating of the building structure or domestic hot water tank, in order to
avoid electricity demand later on. This is done to avoid costs for the electricity
generation system, while maintaining thermal comfort. This work does not
consider the cost savings for the consumer. In practice, part of the cost savings
for the electricity generation system will trickle down to the consumer through
certain compensation schemes. The typical time scale of preheating in this work
is one hour (the smallest time step considered) to one week (the longest OCP
horizon considered). The term DR is used to describe this, while a large variety
of terms are used throughout the literature, which in some cases mean the same
thing:

• Market and physical DR [129] where market DR is stimulated by
economical incentives while physical DR refers to automated grid support.

• Automated demand response (e.g. www.openadr.org) which is an open
communication standard to realize DR in a practical setting.

• Active and passive DR where active DR is basically the same as the
definition used for DR in this thesis while passive DR attains a demand
reduction without consumer interaction, for example through rolling black-
outs.
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Figure 2.2: An integrated model is developed which combines elements from
power system operational research and building performance simulation.

• Load shaping [88] involves the change of electricity demand in time in
order to obtain a desirable load profile throughout time.

• Load shifting [71] entails the shifting of electricity demand from peak
periods to non-peak periods. In the buildings context, the demand is
shifted to before the peak periods in order to maintain thermal comfort.

2.2 General boundary conditions

In order to study the potential of performing demand response with residential
heat pumps in tackling the variability of RES, two different systems need to
be considered. On the one hand, there is the electric power system, which
consists of electricity generation, transmission and distribution. This scale
creates the incentives for demand response: operational cost savings for electric
power plants (see Section 2.3). On the other hand, there is the building scale
which defines the load shifting potential of buildings equipped with heat pumps
(see Section 2.4). In this work, both scales are merged in an integrated model
(Figure 2.2).

Electric power system Regarding the electric power system, the main interest
of this work is to investigate the potential of DR in decreasing costs associated
with the variability of RES. Towards this aim, the dynamic aspects and costs of
electricity generation from RES and central power plants are explicitly modeled.
This is described more in detail in Section 2.3. DR could also contribute
to providing reserves as shown by Bruninx [25]. In a case study, Bruninx
illustrated that providing reserves with residential heat pumps increases the
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total operational cost savings for the electricity generation by 1 % on top of the
6 % cost savings attained by load shifting.

DR can also decrease costs associated with grid congestion, but this is not
considered in this thesis. As such, the transmission and distribution grid are
assumed to be a copper plate and pose no congestion problems or losses. The
distribution grid can be a significant bottleneck for local PV [13], electric
vehicles [33] and heat pumps [146]. This poses opportunities for local DR, for
example by preheating DHW storage tanks [40] or altering load schedules for
electric vehicles [32]. Congestion on the transmission grid can also present
opportunities for DR, where it can aid in avoiding high local electricity prices
[23]. Congestion might limit the DR potential of residential heat pumps studied
in this work. For example, a coordinated electricity demand due to DR in
response to curtailment of RES, could not be attainable for the electric grid.
Furthermore, Belgium is electrically regarded as an island: no import or export
of electricity is considered2. As identified by Tröster et al. [167], investing in
the order of tens of billions EUR in the European transmission grid capacity
can roughly half the curtailment of RES, but this potential is not studied in
this work.

Throughout this work, no competition in providing flexibility from industry,
electric vehicles, pumped hydro storage and energy storage is considered. In
practice, these flexibility providers can be complementary to residential heat
pumps, as shown in a case study with pumped hydro storage [25]. However, the
combination of having both flexibility in the electricity demand of residential
heat pumps and in one of the competing flexible demands, can also lead to
cost savings which are lower than the sum of both separately, as shown for the
combination of heat pumps and electric vehicles in [130].

Given these assumptions, when electricity generation from RES exceeds the
electrical demand there are only two choices: either to increase the electricity
demand of the heat pumps or to curtail this generation. Hence, in this study,
curtailment of RES is driven by the electricity generation system and not by
grid congestion. The main occurrence of curtailment stems from electricity
generation from RES overshooting electricity demand. Finally, power plant
outages and costs associated with maintenance of the electricity generation
system are not taken into account.

Building and heating system On the building scale, the dynamics of the
building and heating system are explicitly modeled in order to accurately
represent their flexibility. The dynamics of the building structure are modeled

2This is in sharp contrast with the current reality for Belgium, where about a quarter of
the electricity was imported during 2015 [54].
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in order to represent its load shifting potential offered by its thermal capacity.
A detailed description of these dynamics is given in Section 2.4. Furthermore,
the heating system is included, which consists of a heat pump, heat emission
and domestic hot water tank. A model is developed for the heating system
which is fully described in Chapter 3.

This work focuses on single family residential buildings, hence no apartment
complexes or tertiary buildings are included in this study. The vast size of some
tertiary buildings make these buildings interesting for DR as altering the control
of a few appliances can already unlock the flexibility in the order of megawatts.
The DR potential of these building types has already been thoroughly studied
in the literature [73, 83, 105] and will not be considered in this work.

Moreover, the low level controls of ventilation, solar shading and heat emission
are not included. These controllers are typically more focused on increasing
energy efficiency, such as in [53, 144], than in performing DR. Another
assumption in this work is that the building is regarded as one or two thermal
zones. Furthermore, it is assumed that there is no feedback from the occupants
on the control actions taken.

The resulting model equations of the integrated models are presented in Section
3.7. Section 3.8 provides examples of the output of this model.

2.3 Electric power system operational research

There are numerous modeling approaches for the electricity generation system,
depending on the goal and scope. As this thesis focuses on CO2 emissions and
operational cost savings, the electricity generation system is modeled as a unit
commitment (UC) and economic dispatch (ED) problem. A UC model aims
to schedule the most cost-effective combination of power plants to meet the
demand for electric power. The ED model determines the production levels of
each unit on the basis of the least cost usage of the committed assets. Using the
classification of Delarue [43], this approach assumes perfect competition and a
single node electrical network. The model focuses on short term operational
aspects which are translated in a single objective: total system operational cost.
There is no elasticity of demand considered, except for the heat pump demand
which is discussed in Section 3.7.

The resulting equations used throughout this study are based on Van den Bergh
et al. [169]. The resulting model is a MILP problem implemented in GAMS
24.4 and MATLAB 2015b, using the MATLAB–GAMS coupling as described by
Ferris [68] with CPLEX 12.6 as solver. This Unit Commitment and Economic
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Dispatch model is presented in Section 2.3.1. A simplified version of this model
is the Merit Order model, presented in Section 2.3.2.

In this work, the typical power plant types considered for electricity generation
are nuclear power plants, coal-fired power plants and to a minor extent oil-fired
power plants. Furthermore, gas-fired power plants are considered which are
split up between combined cycle gas turbines (CCGT) and the less efficient
open cycle gas turbine (OCGT).

2.3.1 Unit Commitment and Economic Dispatch model [169]

The optimization criterion is to minimize total operational cost of the electricity
generation system composed of electric power plants with index i and over all
time steps with index j:

min
∑
i

∑
j

fci,j + co2ti,j + sci,j + rci,j . (2.10)

Towards this aim, the main optimization variables are the generation level (gppi,j)
and commitment status (binary variable zppi,j) of each power plant with index i.
These determine the fuel cost (fci,j), CO2 cost (co2ti,j), start-up cost (sci,j)
and ramping cost (rci,j):

∀i,∀j : fci,j = cfi · zppi,j +mfi · (gppi,j − gmini · zppi,j) (2.11)

∀i,∀j : co2ti,j = co2p · [cti · zppi,j +mti · (gppi,j − gmini · zppi,j)] (2.12)

∀i,∀j : sci,j = stcoi · vi,j (2.13)

∀i,∀j : rci,j ≥ racoi · (gppi,j − g
pp
i,j−1 − vi,j · g

max
i ) (2.14)

∀i,∀j : rci,j ≥ racoi · (gppi,j−1 − g
pp
i,j − wi,j · g

max
i ) (2.15)

in which the binary variables vi,j and wi,j respectively denote a start-up or
shut-down of power plant i in time step j. The parameter cfi is the fuel cost for
running the plant at its minimum power level (gmini ) and mfi is the marginal
cost for the generation level on top of the minimum power level. The CO2
emissions also consist of an emission cti at minimum power level and a term
accounting for the marginal emissions (mti). The CO2 cost is then determined
via a CO2 price co2p. Furthermore, stcoi and racoi respectively denote the
start-up cost and ramping cost of power plant i. In determining the ramping
cost, the maximum power level (gmaxi ) is conditionally subtracted in order not
to allocate ramping costs to a start-up or shut-down of a power plant.
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In each time step, the sum of the generation levels of the power plants and
the electricity generation from RES (gresj ) must equal the traditional electricity
demand (dtradj ), which is expressed in the market clearing condition:

∀j : dtradj = curj · gresj +
∑
i

gppi,j (2.16)

∀j : 0 ≤ curj ≤ 1 (2.17)

with curj determining the curtailment of electricity generation from RES.
Curtailment costs are assumed to be internal transfers within the model as this
study employs a system perspective. Hence, curtailment costs are not explicitly
modeled. The only net cost perceived by the system is the opportunity cost
of not using the zero-cost RES power available. Finally, each power plant is
submitted to a series of technical constraints:

∀i,∀j :gppi,j ≤ gmaxi · zppi,j (2.18)

∀i,∀j :gppi,j ≥ gmini · zppi,j (2.19)

∀i,∀j :gppi,j ≤ g
pp
i,j−1 + ∆max,up

i (2.20)

∀i,∀j :gppi,j ≥ g
pp
i,j−1 −∆max,down

i (2.21)

∀i,∀j :1− zppi,j ≥
j∑

j′=j+1−mdti

wi,j′ (2.22)

∀i,∀j :zppi,j ≥
j∑

j′=j+1−muti

vi,j′ (2.23)

∀i,∀j :zppi,j−1 − z
pp
i,j + vi,j − wi,j = 0. (2.24)

The maximum ramping-up (∆max,up
i ) and maximum ramping-down (∆max,down

i )
values are derived from the maximum ramping rates of the power plants. The
minimum up-time and down-time of power plant i is denoted by muti and mdti
respectively.

2.3.2 Merit Order model

In this thesis, the simulations with the UC and ED model usually take hours to
solve. To avoid these long computation times, a simplification is in some cases
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employed, namely a Merit Order (MO) approach. A full comparison between
both approaches is performed in Section 4.3.5. In this approach, all dynamic
constraints and associated start-up costs and ramping costs are neglected. The
equations of the Merit Order model are:

min
∑
i

∑
j

fci,j + co2ti,j (2.25)

subject to:

∀j : dtradj = curj · gresj +
∑
i

gppi,j (2.26)

∀j : 0 ≤ curj ≤ 1 (2.27)

∀i,∀j : fci,j = cfi · zppi,j +mfi · (gppi,j − gmini · zppi,j) (2.28)

∀i,∀j : co2ti,j = co2p · [cti · zppi,j +mti · (gppi,j − gmini · zppi,j)] (2.29)

∀i,∀j : gppi,j ≤ gmaxi · zppi,j (2.30)

∀i,∀j : gppi,j ≥ gmini · zppi,j . (2.31)

Hence, in each time step the generation level and commitment status are
determined in order to meet the market clearing condition. This is determined
regardless of what happens in other time steps. The minimum operating points
of the power plants are still respected, which necessitates the integer decision
variable of the commitment status. The MO model is hence still a MILP
problem, but only takes of the order of minutes to solve.

2.4 Building performance simulation

Regarding building performance simulation, Spitler [162] states that:

Simulation of building thermal performance using digital com-
puters has been an active area of investigation since the 1960s, with
much of the early work focusing on load calculations and energy
analysis. Over time, the simulation domain has grown richer and
more integrated, with available tools integrating simulation of heat
and mass transfer in the building fabric, airflow in and through
the building, daylighting, and a vast array of system types and
components.



BUILDING PERFORMANCE SIMULATION 17

In this work, only the elements that appear relevant for studying the flexibility
of heat pump operation were taken from building performance simulation.
As such, the thermal dynamics of the building structure (Section 2.4.1) are
considered along with the most relevant boundary conditions: the occupant
behavior (Section 2.4.2) and weather conditions (Section 2.4.3). The dynamics
of the heating system are described in Chapter 3.

2.4.1 Building structure

The heating demand of a building depends on the heat transfer in the building
structure by transmission and ventilation losses. Given the heat capacity of
the indoor air, furniture and building materials, this heating demand will be a
dynamic phenomenon. This dynamic behavior can be modeled using different
levels of detail.

In this work, the highest level of detail in the dynamics of the building structure
is based on models available in the IDEAS library in Modelica, described by
Baetens et al. [13]. The building structure is modeled using a finite volume
method of all components and this is complemented by a detailed radiative heat
transfer model. This modeling environment has been verified and validated
using the BESTEST methodology [91]. In the remainder of this text, a building
model developed according to this approach will be referred to as “emulator
building model". However, this modeling approach features highly non-linear
equations, which are impractical for the envisioned integrated model.

By applying system identification using the emulator building models, Reynders
et al. [152] deduced linear models of the building structure. Figure 2.3a shows
an example of such a linear model with five states. These five states are the
indoor air temperature T i and the temperature of inner walls Twi, roof T roof ,
floor T f and exterior walls Twe. These states are lumped in the vector T shj
where index j represents the time step. The thermal capacities and heat transfer
coefficients associated with these states have the same indices. Inputs to the
model are the ambient air temperature T ej , ground temperature T g and the
heat gains due to solar irradiation Q̇solj , internal gains Q̇intj and heat emission
Q̇emis,j . This model shows a root mean square error (RMSE) error of only 0.3 ◦C
on a two day ahead prediction of the indoor air temperature of the detailed
physical model. Figure 2.3b shows the comparison between both models. The
linear model can be translated in the following state space equations:

∀s, j : T shj+1 = Ash · T shj + Bsh · [Q̇emij , T ej , T
g
j , Q̇

sol
j , Q̇intj ] (2.32)

with state space matrices Ash and Bsh based on the thermal capacities and
resistances shown in Figure 2.3a.
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(a) Linear building model (b) Comparison of indoor temperature for linear (Grey-box)
and detailed physical (White-box) model

Figure 2.3: The linear model (left) comprises of five thermal capacities and
hence five states is able to approximate the behavior of the detailed physical
model (right). Figure from Reynders et al. [152]. Heat transfer coefficients are
denoted by h and U , while A represents surface area and C thermal capacitance.

In a later stage, Reynders et al. [151] also developed a more detailed linear
model of the building (Figure 2.4). In contrast to the model of Figure 2.3a
which considers the building as one thermal zone, the building is now split up in
two thermal zones. The first zone is the “day zone" which contains all rooms in
which the occupants are active by day. The second zone, “night zone", consists
of the bedrooms and all other rooms. Both zones typically have different comfort
requirements regarding temperature setpoints.

Both linear models are used throughout this text. The one zone model (Figure
2.3) is employed in the two following chapters (Chapter 3 and 4). The two zone
model (Figure 2.4) is used in the remaining chapters (Chapters 5 to 8).

2.4.2 Occupant behavior

Another factor that influences a buildings heating demand is the occupancy
behavior, which determines the setpoints for the indoor air temperature and the
demand for domestic hot water (DHW). Since the heat demand is calculated
dynamically, also the time schedules of these setpoints and DHW demand are
important. In this work, these setpoints and DHW demand profiles are fixed,
predetermined profiles. These profiles were based on the work of Richardson et
al. [154] and Baetens and Saelens [14] and are shown in Figure 2.5.
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Figure 2.4: The structure of the reduced order building model as developed by
Reynders et al. [151]. The day zone consists of 5 states: the temperatures of
the indoor air (T i), internal walls (Twi), external walls (Tw), ground floor (T f )
and floor connecting the day zone and night zone (T fi). The night zone also
has a state for this connection, along with a temperature for indoor air, internal
walls and a lumped state for external walls and roof (Tw). The parameters for
the different R and C values can be derived based on Protopapadaki et al. [147].
The ambient air temperature (T e) and ground temperature (T g) are boundary
conditions to the model. Figure from Reynders et al. [151]

Richardson et al. [154] provide profiles for occupancy through a Microsoft Excel
workbook. These profiles are generated by the Markov-Chain technique, based
on time-use survey data from the UK in 2000. These survey data only provide
information on when the occupants are present and awake. Hence, this data
can only be used when the building is regarded as one thermal zone. Based on
Peeters et al. [140], the lower temperature setpoint is 20 ◦C when the occupants
are present and awake and 16 ◦C when they are not. The upper bound for
thermal comfort is taken to be 24 ◦C. The domestic hot water demand is based
on Peuser et al. [143].

The “StROBe" model of Baetens and Saelens [12, 14] provides a more complete
data set for determining the heat demand of a residence. This includes the
temperature set points for aforementioned day and night zones along with
domestic hot water demand and internal heat gains. The profiles are generated
using survival models and are based on a Belgian time-use survey from 2005.
In previous work of the author [7, 137, 138], the profiles Baetens1 (see Figure
2.5) were employed. For the sake of uniformity, this work employs the profiles
Baetens2. This causes a difference in the results of the previous work and
Chapters 5 to 7. However, the trends in these results are identical, while the
change in the numerical values is less than 5 %.
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Figure 2.5: Average profiles derived for the lower temperature set point from
Richardson et al. [154] (Richardson) and DHW demand from Peuser et al. [143]
(Peuser). The same data is shown from Baetens and Saelens [154] (Baetens1
and Baetens2).

The temperature set points determine the minimum (T sh,minj ) and maximum
(T sh,maxj ) temperature bounds for the appropriate state of the state vector T shj :

∀j : T sh,minj ≤ T shj ≤ T
sh,max
j . (2.33)

This equation is a hard constraint on the indoor air temperature, which means
thermal comfort is always met in terms of minimum and maximum allowed
temperatures. Given the assumption of perfect predictions of all disturbances
and temperature setpoints, it is always possible to attain this thermal comfort
throughout this work. Hence, it is not necessary to make a trade-off between
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Figure 2.6: Comparison between meteo data and RES production data,
respectively on the x and y axis. The meteo data on direct solar irradiation
and the wind speed can be correlated to Belgium’s PV production (Figure 2.6a)
and wind power production (Figure 2.6b) respectively.

thermal comfort and energy cost in this work, as is typically done in studies on
model predictive control such as [123, 178].

2.4.3 Weather

The last crucial factor determining the heat demand is the weather, primarily
the solar heat gains and ambient air temperature. It is important that these
weather profiles are taken from the exact same period as the disturbances to
the electricity generation model, being fixed electricity demand and electricity
generation from RES. As a consequence, it is not possible to take a standard
year for the weather, as is often done in building simulation. The year 2013
in Belgium is chosen, as it is the first year for which the Belgian transmission
system operator (TSO) Elia [54] provides full year data on electricity generation
from RES.

For the building model, weather measurements in the Belgian city Uccle are
taken. In this data set, the average temperature is 10.2 ◦C, the minimal
temperature −9.3 ◦C and with respect to a reference indoor temperature of
16 ◦C, the number of heating degree days is 2474. The consistency between the
weather data and the RES generation is shown in figure 2.6. The PV and wind
production are not fully correlated to respectively the direct solar irradiation
and the wind speed in the weather measurements as these do not have the same
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spatial diversification. For PV, the coefficient of determination (R2) is 0.614 for
a linear fit. For wind, R2 is 0.678 for a third order polynomial fit. The data of
RES production is based on thousands different sites throughout Belgium, while
the data from the Belgian meteorological institute is based on measurements
on one particular location (Uccle).

2.5 Conclusion

This chapter sets the scene for this thesis by defining the main concepts and
boundary conditions. These boundary conditions are explicitly modeled in this
study, for which the author acknowledges the work of colleagues listed in the
bibliography. The main methodological contributions of this thesis to these
boundary conditions are presented in the following chapter that describes the
development of the integrated model.



Chapter 3

Integrated model
development

Parts of this chapter are based on:
PATTEEUW, D., and HELSEN, L. Residential buildings with heat pumps, a
verified bottom-up model for demand side management studies. In International
Conference on System Simulation in Buildings Edition 9 (Liège, Belgium,
December 2014), pp. 498–516.

3.1 Introduction

This chapter presents an integrated modeling approach to investigate the DR
potential of residential buildings with heat pumps. As noted by Strbac [164],
this potential assessment is one of the factors hampering a large scale roll-out of
flexible demand side technologies. In order to quantify the effects of introducing
DR programs, the interaction between the electricity supply (the electricity
generation system) and demand side (the residential buildings with heat pumps)
is of paramount importance. Many models however still fail to incorporate the
interactions between demand and supply in DR programs. Figure 3.1 shows a
conceptual schematic of the interdependence of the demand side and the supply
side. The electricity price profile, typically the result of a supply side model, is a
necessary input to the demand side model. Similarly, the demand for electricity,
an output of the demand side model, is a necessary input of the supply side
model. In short: the electricity prices change with the demand for electricity

23
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Figure 3.1: Conceptual schematic of the interaction between the supply side,
the electricity generation system typically represented via unit commitment
and economic dispatch models, and the demand side, heat pumps in this thesis
typically studied via building simulation models with optimal control systems.

and vice-versa. In light of this challenge, an integrated model is presented in
this chapter.

In the literature on DR, often the supply side or the demand side are represented
simplistically, as discussed in Section 3.2. When the focus is on electricity
generation, most researchers employ typical unit commitment models and
economic dispatch models, extended with an aggregated representation of the
flexibility in demand. Two typical representations of the flexible demand side
are considered in this work: price-elasticity models [23, 41, 42, 98, 158] and
so-called virtual generator models [47, 93, 165, 166]. In contrast, in studies
which are focused on the energy demand of buildings, researchers often take the
supply side of electricity into account by considering a (fluctuating) electricity
price [2, 83, 113, 120, 149, 179]. Although all of these modeling techniques have
proven their merits, they are inadequate to study the true interaction between
the demand side and the supply side under DR, especially when storage-type
customers are involved. Recently, some authors [28, 80, 132, 133, 134, 181, 182,
185] proposed integrated models of both the supply and demand.

The integrated model developed in this chapter falls in this last category. This
approach merges two optimization problems (Figure 3.2). The first is the optimal
control problem of a residential building with a heat pump fdem. The objective
function is typically to minimize the heat pumps’ electricity consumption. The
second is a unit commitment and economic dispatch model of the electricity
generation system fgen, which optimizes the operation of power plants in order
to minimize overall system cost. Combining both optimization problems leads
to the following optimization problem, called "integrated model" (IM) in this
work. A simplified form of this integrated model is given by the following



INTRODUCTION 25

Integrated model
operational optimization (MILP)

heat 
pump 

d j
trad

d j

hp

Figure 3.2: Overview of the integrated model, which combines the operational
optimization of an electricity generation system and a set of residential buildings
with heat pump.

equations:

min
∑
i,j

cost(gppi,j) (3.1)

subject to

∀j : dtradj + nb · dhpj = curj · gresj +
∑
i

gppi,j (3.2)

∀i, j : fgen(gppi,j) = 0 (3.3)

∀j : dhpj = fdem(Tb,j). (3.4)

Combining both optimal control problems allows for the explicit modeling of the
flexibility in the electricity demand of the heat pumps. This explicit modeling
allows for a correct representation of the potential of DR for buildings with
heat pumps, as shown in Chapter 4.

In this integrated model, electricity can be delivered by power plants gppi,j or by
curtailable (by factor curj) renewable energy sources gresj . The total cost of this
electricity generation cost(gppi,j) is minimized, given that the electricity demand is
met at all times. This electricity demand consists of two parts, the first of which
is the traditional electricity demand dtradj encompassing all electricity demand
except that of the heat pumps. As no competition in providing flexibility is
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Figure 3.3: This chapter deduces a reduced order model for a set of residential
buildings with heat pump by starting from an emulator model. Furthermore,
an aggregation methodology is proposed towards user behavior. Finally, this
bottom up model is combined with the unit commitment and economic dispatch
model to form the “integrated model”.

assumed (Section 2.2), this traditional demand is a fixed profile. The second part
of the electricity demand stems from heat pumps dhpj and can be chosen freely
as long as the thermal comfort within the residential buildings is guaranteed. A
limited number of buildings, with index b, are explicitly modeled (fdem(Tb,j))
in order to represent the building flexibility. The demand is scaled up by a
factor nb in order to represent a higher number of buildings equipped with heat
pumps and to have a significant impact on the electricity generation system.

The purpose of this chapter is to build up and illustrate the integrated model
of the electricity generation system and residential buildings with heat pumps.
Section 3.2 presents the other typical modeling approaches taken in the literature.
The added value of the integrated model with respect to these other approaches
is thoroughly assessed in Chapter 4. What follows is a gradual build up of the
integrated model, starting from a detailed emulator model (Figure 3.3). Section
3.3 presents the emulator model for the demand side for which a reduced order
model fdem is proposed in Section 3.4 and verified in Section 3.5. In Section
3.6, an aggregation methodology is proposed and assessed which aggregates a
large number of similar buildings with different user behavior. This bottom
up aggregated model is then combined with the electricity generation model
from Section 2.3 in the integrated model. Section 3.7 provides a full overview of
this integrated model. Finally, some examples of typical output of this model is
provided in Section 3.8.
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3.2 Review of demand response with heat pumps:
integrated models

Demand response with heat pumps is typically studied from the supply side or
demand side perspective of the electricity market. In this section, a review of the
state-of-the-art models is presented showing models with a focus on the supply
side (Section 3.2.1), models with a focus on the demand side (Section 3.2.2) and
models with an integrated approach, taking into account the physical behavior
of demand side technologies together with the techno-economic characteristics
of the electric power system (Section 3.2.3). The focus is on the literature in
which thermostatically controlled loads are subjected to demand response.

3.2.1 Models with focus on the supply side

To study electric power system-wide effects of flexible consumers, most
researchers employ typical unit commitment and economic dispatch models,
extended with an aggregated representation of the flexibility in demand. Two
main representations of the flexible demand side can be identified: price-
elasticities and so-called virtual generator models (VGM).

The price-elasticity is a measure of the change in demand in response to a change
in the price of electricity. The assumed range of elasticities used in these models
typically stem from analyses of historical data [41, 69], sometimes combined
with a simulation model [17]. Among others, De Jonghe et al. [41, 42] developed
an elasticity-based operational and investment model to determine the optimal
generation mix. Sioshansi and Short [158] employed an elasticity-based model,
comparable to that proposed in [41], to study the effect of real-time pricing on
the usage of wind power. Kirschen and Strbac [98] proposed a general scheme to
incorporate the short-term elasticity in generation scheduling and price setting.
Bompard et al. [23] studied the effect of demand elasticity on congestion and
market clearing prices via a linear price-elasticity model combined with an
optimal power flow formulation.

Virtual generator models are typically used when a modeler wants to include the
technical limitations of the demand side technology. The demand is modeled
as an electricity generating or storage unit with a negative output. Demand
reductions and shifts can be constrained in e.g. amount, time and ramping
rate. Energy storage and possible losses can be incorporated (e.g. via a demand
recovery ratio; see Section 4.3.3). The constraints can be based on observations
or detailed physical models. The VGM is dispatched similarly as a conventional
power plant and therefore often used in the setting of direct load control [41].
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These VGM have been used in various studies, e.g. to investigate the impact
of DR on the marginal benefit for consumers [165], the effect of DR on reserve
markets [166], the impact of DR in electric power systems with large wind power
penetrations [47] and the benefits of demand side participation in the provision
of ancillary services [93].

However, in both cases a modeler cannot assess the benefit of the studied DR
scheme for the consumer based on these aggregated representations. Moreover,
the feasibility of the resulting demand can be questioned, as one has no guarantee
that the resulting electric power demand profile will be sufficient to ensure the
required thermal comfort for the end-consumer.

3.2.2 Models with focus on the demand side

Kosek et al. [102] give an overview of the possibilities of implementing DR.
The approach taken in that paper is that of predictive and direct load control.
Assuming perfect predictions and no model mismatch, this is the best case
scenario for DR, and hence ideal for impact studies. Thermal energy storage is
often investigated in the literature as a demand side technology. E.g., Hewitt
[84] studied the use of the thermal inertia of the built environment as a TES, in
the case of a heat pump delivering space heating and domestic hot water. Hewitt
found that both the building and the hot water tank are possible candidates
for DR and, in order to assess the benefits for the consumers and generators
under DR, he highlighted the necessity of taking into account the dynamics of
both the demand and supply side. However, when assessing the potential of a
thermal system for DR, most authors start from a fixed electricity price profile
[2, 83, 113, 120, 149, 179] to determine the electrical load pattern modification.
The authors typically conclude how much the electricity cost can be reduced for
the owner of the system, but do not consider a feedback of the shifted electrical
load pattern on the electricity price.

Based on such models, one can only draw conclusions for a single, small consumer.
As of a certain number of consumers participating in the studied DR program,
their modified behavior would start affecting the price. This feedback of user
behavior on the price of electricity is not taken into account in these models.

3.2.3 Integrated operational models

Recently, a number of authors have developed integrated models. Both the
demand side and the supply side are represented by physical models and jointly
optimized. A group of researchers at the university of Victoria (Canada) have
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recently published a number of papers [132, 133, 134, 181, 182, 185], inspired by
the model of Callaway [28], closely related to the objective of this work. They
studied comfort-constrained distributed heat pump management and intelligent
charging of electric vehicles as balancing services, with a particular focus on
balancing wind power, as a spinning reserve resource and as a voltage stabilizing
measure. The physical models of the heat pumps and electric vehicles are
integrated in a linear programming representation of the electric power system.
Hedegaard et al. [80, 81] developed an integrated model, including different
types of TES and emission systems, to assess the potential of DR to balance
wind power. However, some aspects of the thermal system were represented too
simplistically in the model. E.g., the heat pump COP (coefficient of performance)
is not temperature dependent and the solar transmission through the windows
is not taken into account. Dallinger and Wietschel [39] assessed the electric
vehicles potential for balancing the fluctuations of renewable energy sources,
while representing the generation side by a MO model.

Typically, these integrated models start from a supply side perspective and
tend to oversimplify the building: a heat pump is often considered to have a
constant coefficient of performance (COP) while solar heat gains and thermal
energy storage in the building structure are often neglected. Regarding the
COP, only two studies could be found that have a more realistic representation
of the COP, namely by considering the COP either linearly [76] or non-linearly
[181] dependent on ambient air temperature. Solar heat gains are sometimes
indirectly included by considering these as part of the model’s white noise
[28, 92]. In order to shift a heat pump’s electricity demand in time without
compromising the users’ comfort, some thermal energy storage must be present
in the system. This can be either in storage tanks (active thermal storage) or in
the building structure itself (passive thermal storage). Some authors focusing
on active thermal energy storage in domestic hot water tanks [15, 101] or high
capacity space heating systems [106, 118] consider buildings as providers of
a fixed thermal energy demand profile, hereby neglecting the energy storage
potential of the building structure.

In order to determine the DR potential of passive energy storage, the building
structure is in some cases represented by two [139, 181] or three thermal
capacities [80]. In general though, only one thermal capacity is considered
[76, 81, 121]. Modeling the building structure as one thermal capacity allows
the use of statistical aggregation techniques in order to study the DR potential
of large sets of buildings [112, 92, 28]. Another advantage is that the model
becomes similar to that of other thermostatically controlled loads, such as
fridges and freezers, allowing similar modeling techniques [110, 115]. One could
argue that a higher level of detail is needed to describe the transient behavior
of a building. This is discussed in Section 3.5.
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These integrated models incorporate in some way both the dynamic behavior of
the supply side of the electric power system and the flexible electricity demand.
Such an approach offers a number of advantages when a sufficiently detailed
representation of the overall energy system is used. First, the electricity demand
from the thermal systems is closer to reality, since the occupants behavior is
taken into account, as well as the weather conditions and the thermal behavior
of the considered heating systems and dwellings. Second, all feedback effects of
the redistribution of the electrical load — on demand and supply side — are
represented correctly. For example, the thermal losses associated with load
shifting can be precisely determined. Third, it allows identifying the technology
that was used to perform the electric load shifting, thus comparing the impact
of multiple flexible demand side technologies. Last, it ensures the end-use
functionality of the demand side technology, while simultaneously guaranteeing
the availability of the balancing services provided by DR on the supply side.
However, those models are not devoid of disadvantages. First, the representation
of e.g. a realistic building stock and the stochastic behavior of the occupants
requires a detailed demand side model, which is difficult to set up and calibrate.
Second, these models are typically difficult to solve numerically, with a high
computational cost as a consequence.

3.3 Emulator building level model

In contrast to the aforementioned literature, this work features the development
of a bottom-up representation of residential buildings with heat pumps starting
from a detailed emulator model. This emulator model of the building is
developed using the IDEAS library in Modelica, described by Baetens et al.
[13]. This building model has been verified and validated using the BESTEST
methodology [91]. The parameters for the single zone building are taken from
Reynders et al. [152], who interpreted the parameters of a typical post 2005 built
Belgian dwelling as described in the TABULA project [38]. The building has a
floor surface of 270 m2 and a protected volume of 741 m3. The combination
of infiltration and ventilation cause 1.5 air changes per hour. The exterior
walls, roof and windows have a U-value of 0.4 W

m2K , 0.5 W
m2K and 1.4 W

m2K
respectively. In each cardinal direction, the building has an average of about
10 m2 window surface, resulting in a percentage glazing of 22%. The Belgian
climate is considered, based on the measurements in Uccle and distributed by
Meteonorm [119].

The heating system is also modeled using the IDEAS library. It consists of a
modulating air coupled heat pump supplying both warm water to a radiator for
space heating (SH) and a domestic hot water tank (Figure 3.4). All components
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Figure 3.4: Hydraulic scheme of the heating system [40]. A modulating air
coupled heat pump supplies heat for domestic hot water via a storage tank and
space heating via a radiator. Figure from De Coninck et al. [40]

are modeled by physical equations, while the parameters for these components
are determined from either manufacturer data or empirical correlations. A full
description of the heat pump model, along with a validation of the domestic
hot water tank model is presented by De Coninck et al. [40]. The model for the
radiator is described by Baetens et al. [13]. The heat pump and radiator are
sized to meet 80% of the design heat demand of 8900 Wthermal, in accordance
with the code of good practice in Belgium [127]. The heat pump has a rated
thermal capacity of 7200 W at a supply temperature of 45 ◦C and an outdoor
temperature of −10 ◦C. The back-up heater is an electrical resistance heater.

Table 3.1: Multiple buildings are considered having a different number of
occupants with each their own DHW tank for supplying domestic hot water.
The distribution of the household size is based on Belgium [70].

Household size [Persons] 1 2 3 4 5 6
# households (25 case) 8 8 4 3 1 1
# households (100 case) 32 32 16 12 4 4
DHW at 50 ◦C [liter/day] 62.5 125 162 200 237 300
DHW tank size [liter] 120 160 160 200 300 300
DHW tank UA [W/K] 0.117 0.098 0.098 0.085 0.085 0.077

Since the model is aimed to be scaled up in order to represent thousands of
buildings, also various numbers of occupants per house are considered. To this
aim, 25 buildings are considered, each having the same building structure, but
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with different number of occupants and different occupant behavior (Table 3.1).
For the aggregation method in Section 3.6, the aggregated model was compared
to 100 reduced order models, each having again the same building model but
different occupant behavior. The household size determines the daily DHW
demand, which is based on Peuser et al. [143]. This daily demand determines
the size of the DHW tank. The parameters of the tanks are based on the
Vitocell 100-W gamma of Viessmann.

3.4 Reduced order building level model

The reduced order model (ROM) describes the dynamic behavior of both
building and heating system with fewer equations and details than the emulator
model. This ROM is the set of linear equations (such as in Eq. 3.4) that still
has enough detail to describe the flexibility in electricity use provided by the
presented system. In order to evaluate how the ROM performs with respect to
the emulator model (Figure 3.6), the optimization problem (Eq. (3.1)-(3.4)) is
reduced to:

minimize
∑
j

costj · dhpj (3.5)

subject to ∀j : dhpj = fdem(Tb,j) (3.6)

in which costj is the electricity price at time step j (Figure 3.9a). Thus given a
specific electricity price profile, the optimization gives the resulting electricity
consumption and temperatures, which can be compared to the ones obtained
by the emulator model.

A linear model of the building was already developed by Reynders et al. [152]
and is described in Section 2.4.1 and Figure 2.3. This linear model reduces
the building structure to five temperature states, which describe the transient
behavior of the building. This model shows an RMSE error of only 0.3 ◦C on a
two day ahead prediction of the indoor air temperature of the emulator building
model.

This section mainly focuses on the reduced order model of the heating system.
Table 3.2 summarizes various aspects of the heating systems that can be modeled
in different ways. Section 3.4.1 describes in detail the multiple representations
for the heat pump. Section 3.4.2 focuses on the DHW tank and finally Section
3.4.3 describes the radiator model.
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Table 3.2: Component model description for the emulator model. Per component
two options for the reduced order model are considered. Tamb is the ambient
air temperature. Php is the electric power used by the heat pump.

Component Emulator model ROM option 1 ROM option 2
Heat pump interpolation of constant COP, COP from
COP manufacturer average from correlation,

data correlation function of Tamb
Heat pump interpolation of mixed integer linear in Php
modulation manufacturer formulation (Eq.3.11-3.14)

data (Eq.3.7-3.10) + post processing
DHW multiple layers fully mixed, mixed fully mixed with
tank with energy integer constraint linear constraint

balance equation (Eq.3.17-3.18) (Eq.3.19-3.24)
Radiator radiator formula no radiator linearized heat

and one thermal model transfer, 1 thermal
capacity capacity (Eq.3.25)

3.4.1 Heat pump model

In this thesis, the focus is on modulating heat pumps for which the performance
strongly depends on modulation, supply and source temperature. Verhelst et
al. [179] studied multiple representations of the heat pump COP based on
these variables, among which non-linear representations. In the case study by
Verhelst et al., the linear COP formulation lead to a cost increase of up to
16 %. However, since the ROMs discussed in this section are intended to be
combined with electricity generation system models, a non-linear representation
is out of the question. Hence only linear and mixed integer representations
of heat pump performance are allowed. The two remaining options for this
framework are thus a constant COP or a COP that is a function of the ambient
air temperature only. Note that, throughout this study, in the cases where a
constant COP is used, this COP is calculated based on the average supply and
source temperature during the considered optimization horizon. The adequacy
of this COP formulation will be tested in Section 3.5.

The heat pump integrated in the emulator model can supply warm water to
both space heating and domestic hot water, hence the decision variables are the
electric power of the heat pump to supply space heating Php,shj or domestic hot
water Php,dhwj at time step j. The most detailed mixed integer representation of
the heat pumps performance is the set of equations (3.7)-(3.10). The equations
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for the domestic hot water supply are analogous to (3.7)-(3.9).

∀j : Php,shj = Pmin,hp,shj · zhp,shj + P int,hp,shj (3.7)

∀j : 0 ≤ P int,hp,shj ≤ (Pmax,hp,shj − Pmin,hp,shj ) · zhp,shj (3.8)

∀j : Q̇hp,shj = COP i,shj · Pmin,hp,shj · zhp,shj + P int,hp,shj · (COP a,shj − COP i,shj )
(3.9)

∀j : zhp,shj + zhp,dhwj ≤ 1 (3.10)

This representation has the advantage of being directly convertible to control
signals for the heat pump and the pumps connecting the heat pump to the
DHW tank and space heating by means of the integer variables zhp,dhwj and
zhp,shj which can only be zero or one. It is also possible to take into account a
different COP at full load COP a,shj and at minimal modulation COP i,shj . The
power that the heat pump consumes does not violate the working constraints,
it is either off or between the maximal Pmax,hp,shj and minimal Pmin,hp,shj

modulating power. The integer power level P int,hp,shj is a dummy variable to
cope with these constraints. The disadvantage is the number of integers used,
since these are known to cause the calculation time to explode. Solvers for
mixed integer linear problems can typically handle problems with up to 105

integers, however when exceeding this order of magnitude, this becomes a lot
harder [100]. Considering a time horizon of 48 hours with two integers each
hour per house, this would limit the number of buildings in one optimization
problem to 104 buildings.

Another option to represent the heat pump is a linear model (3.11)-(3.14), in
which the electric power of the heat pump towards space heating or domestic
hot water can vary between 0 and Pmax,hpj , as long as the sum of the two
remains below Pmax,hpj . Linear optimization models are computationally very
efficient to solve, the optimization takes only some seconds on a regular laptop
while the mixed integer representation (3.7)-(3.10) can easily take minutes to
hours to solve. This linear model consists of the following equations:

∀j : Php,shj + Php,dhwj ≤ Pmax,hpj (3.11)

∀j : Php,shj , Php,dhwj ≥ 0 (3.12)

∀j : Q̇hp,shj = COP shj · P
hp,sh
j (3.13)

∀j : Q̇hp,dhwj = COP dhwj · Php,dhwj (3.14)
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The disadvantage of the linear optimization model is the extra effort needed
to derive control signals for the individual heat pump and circulation pumps,
respecting the lower modulation level of the heat pump. To this aim, a post
processing is applied in order to obtain feasible profiles for ’scheduled operation’
as explained by Kosek et al. [102]. Since multiple buildings are controlled
simultaneously, the electricity demand per building can be redivided among the
buildings, as long as the sum of these electricity demands remains the same.
In this way, some buildings that require less than the minimal modulation
of the heat pump, are switched off and this difference is compensated for in
other buildings. The buildings from which the heat pumps were switched off,
are compensated for this fact in a later time step. In this chapter, this post
processing consists of two steps.

A first step is needed to decide whether the heat pump will supply SH or DHW
during a time step, since the linear formulation allows the provision of both
at the same time. The approach taken here depends on the time step of the
optimization. In case of a quarter of an hour time step, priority is given to
DHW supply. The heat pump power to supply SH is then put to zero and will
be accounted for later in the post-processing. In case the optimization time
step is an hour, the first step is taken according to Table 3.3. The heat pump
then first provides SH for 40 minutes after which the DHW tank is heated for
20 minutes. If there is more DHW demand than SH demand in that hour, the
order is reversed. The division is performed in such a way that the same amount
of electrical energy is demanded in that hour.

Table 3.3: Rescheduling of heat pump power to SH and DHW when the
optimization time step is one hour or twenty minutes. The suffix ’hp’ was
omitted for clarity.

ROM output Minute 0 to 20 Minute 20 to 40 Minute 40-60
P shj > P dhwj > 0 P shj1 = 3

2P
sh
j P shj2 = 3

2P
sh
j P shj3 = 0

P dhwj1 = 0 P dhwj2 = 0 P dhwj3 = 3P dhwj

P dhwj > P shj > 0 P shj1 = 0 P shj2 = 0 P shj3 = 3P shj
P dhwj1 = 3

2P
dhw
j P dhwj2 = 3

2P
dhw
j P dhwj3 = 0

P shj = 0 P dhwj1 = P dhwj P dhwj2 = P dhwj P dhwj3 = P dhwj

P dhwj = 0 P shj1 = P shj P shj2 = P shj P shj3 = P shj

The second step of the post-processing deals with power demands lower or
greater than the minimum and maximum modulation respectively. The latter
case can arise after rescaling the powers according to table 3.3. Since 25 buildings
are considered simultaneously, the power demand during a specific time step can
be redivided among all these buildings. The procedure is illustrated in Figure
3.5. The power demand for DHW supply for instance can be lower or higher
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Figure 3.5: The power demand of a few houses before and after redividing the
loads. The full lines represent the actual power demand while the dotted line
represent an excess or deficit of power. An excess inherited from the previous
time step means a particular house received too much power up to that point in
time and a deficit vice versa. The redivision takes these quantities into account
and updates these afterwards.

than the minimal and maximal modulation level (Figure 3.5a). The redividing
of power then trims down the power demand which is too high and scales up
the power where it is too low. In order to get the exact electricity demand that
hour as predicted, some buildings are denied in scaling the power demand. This
procedure can cause a certain building to have received an excess or a deficit of
energy up to that point in time, which is taken into account by keeping track of
this quantity when redividing the power in the next time step. In Figure 3.5b,
the power is redivided: the heat pumps in all buildings receive a control signal
which they are able to follow.

3.4.2 Domestic hot water tank

The central component in the DHW model is the DHW tank. This tank can
either be modeled as perfectly stirred or perfectly stratified. In this work, the
tank is assumed to be a perfectly stirred water tank, meaning that all water
in the tank is at the same temperature T tankj at time instant j. The water
in the DHW tank can either be heated up by the heat pump during time
step j, Q̇hp,dhwj or by a back up electrical heater Q̇aux1,dhw

j . Heat is extracted
from the DHW tank through demand for hot water Q̇demj and heat loss to the
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surroundings. The discretized version of the energy balance for the DHW tank
leads to the following equation:

∀j : ρcpV
tank

T tankj+1 − T tankj

∆t = Q̇hp,dhwj + Q̇aux,dhwj − Q̇demj

− UAtank · (T tankj − T surrj )
(3.15)

with ρ and cp the density and heat capacity of water and V tank the volume of the
tank. With ∆t the length of the optimization time step, the time derivative of
T tankj is approximated as T

tank
j+1 −T tank

j

∆t . The term UA·(T tankj −T surrj ) determines
the heat loss to the surroundings, which is at temperature T surrj . The thermal
conductance UAtank is that of the insulation around the DHW tank, which is
the dominant resistance to heat transfer.

The temperature of the cold tap water T cold and the temperature of the
supplied DHW T dem are both assumed to be constant. A lower boundary for
the temperature of the water in the DHW tank stems from the demand for a
comfortable temperature of DHW. Since the tank is perfectly stirred, the whole
tank must be heated up to at least T dem when the occupants desire hot water.
In other time periods, the temperature of the water in the tank can get as low
as T cold:

∀j : T tankj ≥ T dem · bdemj + T cold · (1− bdemj) (3.16)

with bdemj a binary parameter which is 1 when hot water is demanded during
time step j and 0 when this is not the case. The water in the DHW tank can
be at a higher temperature than what is demanded, in which case a three way
valve is used to mix it with the cold water to the desired temperature. Given
the constant T cold and T dem and the fact that the whole tank is above T dem in
case of DHW demand, Q̇demj is independent of the tank temperature [136].

The heat pump can deliver heat up to a maximum temperature Thp,max,
typically 60 ◦C, which is lower than the maximum allowed temperature of the
DHW tank T tank,max, typically 90 ◦C. This difference introduces the need for
a boolean variable zdhwj and the following constraints

∀j : T tankj + ∆t
ρ · Vtank · cp

· Q̇hp,dhwj ≤ (1− zdhwj ) · Thp,max + zdhwj · T tank,max

(3.17)

∀j :
Q̇hp,dhwj

COP dhwj

≤ (1− zdhwj ) · Pmax,hp (3.18)
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When zdhwj is zero, the temperature of the DHW tank is lower than Thp,max
and the heat pump’s output is limited by either the temperature up to which it
can heat, Eq. (3.17), or by its maximal electric power, Eq. (3.18). In case zdhwj

is one, the temperature of the DHW tank is higher than Thp,max and the heat
pump’s output is zero through Eq. (3.18). In that case, Eq. (3.17) becomes an
upper constraint on the temperature of the DHW tank.

The boolean variable zdhwj makes the problem a mixed integer linear problem,
with the above mentioned problems. In this work, a linear alternative
for the model is developed. It defines the tank temperature T tankj as the
sum of a temperature which is influenced by the heat pump Thpj and a
temperature difference influenced by the auxiliary heater dT auxj (the latter
for the temperature range above 60 ◦C). The model hence becomes:

∀j : ρcpVtank
Thpj+1 − T

hp
j

∆t = Q̇hp,dhwj + Q̇aux1,dhw
j − Q̇hp,demj

− UAtank · (Thpj − T surrj )

(3.19)

∀j : ρcpVtank
dT auxj+1 − dT auxj

∆t = Q̇aux2,dhw
j − Q̇aux,demj − UAtank · (dT auxj )

(3.20)

∀j : Q̇hp,demj + Q̇aux,demj = Q̇demj (3.21)

∀j : Q̇aux1,dhw
j + Q̇aux2,dhw

j = Q̇aux,dhwj (3.22)

∀j : Thp,max ≥ Thpj ≥ T
dem · bdemj + T cold · (1− hdwj) (3.23)

∀j : (T tank,max − Thp,max) ≥ dT auxj ≥ 0 (3.24)

The heat demand Q̇demj for supplying DHW has to be extracted either from
the heat pump influenced temperature Q̇hp,demj or from the auxiliary influenced
temperature Q̇aux,demj . The heat pump can only heat up Thpj to Thp,max. The
auxiliary heater can supply heat to both the heat pump influenced temperature
(Q̇aux1,dhw

j ) and the auxiliary heater influenced temperature (Q̇aux2,dhw
j ).

For example when the water in the tank is at 70 ◦C, Thpj is 60 ◦C and dT auxj is
10 ◦C. In this situation, the heat pump cannot heat up the tank any further.
When hot water is tapped, this can be supplied by both temperature levels,
but typically dT auxj will be depleted first. On the other hand, when the water
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in the tank is at 55 ◦C1, Thpj and dT auxj are 55 ◦C and 0 ◦C respectively. Now,
the heat pump can still heat up the tank further. Also, the hot water can only
be tapped from this temperature level. Note that summing Eq. 3.19 and Eq.
3.20 leads to obtaining Eq. 3.15 again.

In order for this linear representation to work properly, it was observed that
the lower temperature bound (Eq. (3.23) should only be set on the heat pump
influenced temperature. If this constraint was put on the sum of the two
temperatures, dT auxj always equals its upper bound.

3.4.3 Heat emission system

The heat emission system is a radiator, which is modeled as a thermal capacity
Crad at a temperature T radj :

∀j : Crad
T radj+1 − T radj

∆t = Q̇hp,shj + Q̇aux,shj − UArad · (T radj − T ij ). (3.25)

The thermal capacity of the radiator Crad is the sum of the thermal capacities
of the radiator’s dry mass and water content. The constant overall heat transfer
coefficient UArad is attained by linearising the radiator formula around the
design supply temperature.

3.5 Verification with respect to the emulator model

The reduced order model is verified with respect to the emulator model as
shown in Figure 3.6. For multiple electricity price profiles, the ROM is used
in the optimization (Eq. (3.5)-(3.6)) determining optimal system operation for
a time period of 48 hours. From this optimization, profiles for the electricity
consumption, indoor air temperature, COP, etc can be obtained. The verification
is done by imposing the emulator model to track this electricity consumption
profile with an intermediate post-processing in some cases. The resulting profiles
for indoor air temperature and hot water storage tanks are then compared,
as shown in Figure 3.7. In the ROM, the thermal comfort constraints are
always met, since these are hard constraints in the optimization. Thermal
comfort is not always met for the emulator model. As shown in Table 3.2, there
are multiple ROM options for all components. All these model options were

1The DHW demand is typically tapped at 55 ◦C while the COP of the heat pump supplying
DHW is typically calculated for a supply water temperature of 60 ◦C. The difference between
both denotes the temperature difference due to the heat exchanger in the DHW tank.
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Figure 3.6: The verification of the ROM is performed as follows: the outcome
of multiple ROMs is compared to the reference emulator model. The reference
emulator model tries to track the electricity consumption profile from the ROM
as closely as possible.

compared for three electricity price profiles, namely in the shape of a sine wave
with a mean value of 0.10EURkWh and an amplitude of 0.01, 0.02 and 0.05EURkWh .
The results for the three electricity price profiles did not show much difference
though, therefore the results of this section are only discussed for the electricity
price profile with a mean value of 0.10EURkWh and with an amplitude of 0.02EURkWh ,
as shown in Figure 3.9a.

Results reference case. As reference case, all model options 2 of Table 3.2
are chosen. So the reference ROM consists of a heat pump with a COP that is
a function of the ambient air temperature and has no modulation constraints.
The lack of modulation constraints is corrected by performing a post-processing
on the electricity demand profile as explained in Section 3.4.1. In the reference
model, the radiator is also included with a constant UA value and a thermal
capacity. Finally, this reference ROM has the linear, fully mixed model for
the domestic hot water tank. Figure 3.7 shows the indoor air temperature
and DHW tank temperature averaged over the 25 buildings with an identical
building structure and different user behavior as defined in Table 3.1. As can
be seen from the figure, these buildings react upon the price profile (Figure
3.9a), preheating the zone and DHW tank when the price is low.

The indoor air temperature of the ROM shows an almost constant deviation
from the emulator model. This is due to two factors, namely a deviation in
tracking the electricity consumption profile and losses in the distribution pipes.
First, the emulator model consumes 5% less electricity than the ROM, as shown
in Figure 3.9b. Second, the lack of a distribution pipe model in the ROM causes
an additional 5% difference in thermal energy supplied. Regarding the thermal



VERIFICATION WITH RESPECT TO THE EMULATOR MODEL 41

0 10 20 30 40 50
18

19

20

21

22

23

24

Time (hour)

T
em

pe
ra

tu
re

 (
°C

)

 

 
ROM
Emu

(a) Average indoor air temperature.

0 10 20 30 40 50
30

35

40

45

50

55

Time (hour)

T
em

pe
ra

tu
re

 (
°C

)

 

 
ROM
Emu
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Figure 3.7: Comparison of the average indoor air and DHW tank temperatures
over all 25 buildings in case of the ROM and the emulator (Emu) model. The
reduced order model approximates the detailed simulation model well, but there
is still a (steady-state) deviation between both models.

comfort in the reference ROM, only the temperatures in periods when thermal
comfort is demanded, are important. The distribution of indoor air temperature
in the emulator model when occupants are present is shown in Figure 3.8a. The
indoor air temperature drops regularly below the demanded temperature of
20 ◦C but rarely below 19 ◦C2. This deviation is clearly noticeable in Figure 3.7:
the indoor air temperature in the emulator model is between 0.5 ◦C and 1 ◦C
lower than in the ROM. This causes a substantial thermal discomfort in the
emulator model of 3.96Kh per building per day with respect to 20 ◦C. When
taking a reference temperature of 19.5 ◦C for thermal discomfort, this value is
1.04Kh.

For the DHW tank model, the error of the ROM tends to become larger in
time. This is mainly due to a small underestimation of the heat pump’s COP,
which tends to build up as the simulation time is longer. Figure 3.8b shows the
distribution of temperatures when the occupants tap DHW from the tank. As
can be seen from Figure 3.8b, the temperature at which the DHW is tapped
is never below 45 ◦C. For the emulator model, the total discomfort for DHW
with regard to the reference of 50 ◦C is 0.87Kh per building per day.

Another important aspect of the comparison between ROM and emulator model
is how good the emulator model is able to track the electricity consumption
profile as determined by the ROM. This tracking performs well (Figure 3.9b),
except when the electricity demand peaks significantly. The emulator model is

2Note that the aim of this figure is to illustrate the extent to which the emulator model
can attain 20 ◦C when this is attained by the ROM. These temperatures are fairly low in
terms of thermal comfort, but the lower bound in the ROM can easily be adapted to a higher
temperature.
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Figure 3.8: Histogram of indoor air and DHW tank temperature during comfort
periods summed over the 25 buildings in the emulator model. The indoor air
temperature should be above 20 ◦C (left). The temperature of the tapped
domestic hot water should be above 50 ◦C (right).
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Figure 3.9: The variation in electricity price (left) induces a reaction of the
reduced order model (right). The emulator model (Emu) is not always able
to attain the electricity consumption that the reduced order model (ROM)
determined.

not able to attain this electric power, especially when starting up. This causes
the total electricity consumption of the emulator model to be 4.8% lower than
that of the ROM.

Discussion reference case. Table 3.4 shows the deviation of various ROMs
compared to the emulator model with the first row representing the reference
case. The RMSE on the electric power is about 200W per building, which is
acceptable given the average power usage of 3500W per building when a heat
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pump is switched on. In the reference case, the deviation of the indoor air
temperature is about 0.8 ◦C. Do note that the deviation of the building linear
model with respect to the emulator model is already 0.3 ◦C [152] (Figure 2.3b).
The addition of a ROM for the heating system seems to increase the error on
the indoor air temperature. The DHW tank temperature in the emulator model
was usually about 2.7 ◦C lower than in the ROM, but this did not have a large
effect on DWH comfort.

Table 3.4: Four results of the verification, the first three being the RMSE
on electric power [W/building] -indoor air temperature [ ◦C] -DHW tank
temperature [ ◦C] and the last being the calculation time of the ROM
optimization [sec]. These quantities are shown for two selected time steps
(15 and 60 minutes).

RMSE
Electric Indoor DHW Calc.
power temp. temp. time

Time step (min) 15/60 15/60 15/60 15/60
Reference 208/375 0.80/0.71 2.75/3.50 8/1
No radiator 170/320 0.90/1.05 2.70/3.36 5/1
Constant COP 195/380 0.73/0.60 2.54/2.55 6/1
DHW tank integer 217/425 0.81/0.70 2.62/3.16 7200/7200
Switch SH/DHW 185/290 0.77/0.70 3.01/1.96 7200/7200
Modulation 210/(150) 0.71/(0.74) 2.80/(1.35) 7200/(20)

Results and discussion of comparison with other ROM options. Table 3.4
shows the deviation of various ROM options compared to the emulator model.
The cases presented are variations of some aspects of the ROM compared to
the reference. There are two other linear models, namely the ’No radiator’ case,
which eliminates the radiator model, and the ’Constant COP’ case, which takes
a constant COP instead of a COP as a function of the ambient air temperature.
The other cases include integer variables, leading to longer calculation times for
the ROM optimization. In the ’DHW tank integer’ case, the higher limit for
the DHW tank temperature is given by equations (3.17)-(3.18). The ’Switch
SH/DHW’ case introduces one integer variable to force the heat pump to supply
either SH or DHW during a time step. In the final ’Modulation’ model, the heat
pump model includes boundaries for minimal modulation as given by equations
(3.7)-(3.10). Table 3.4 shows that using a smaller time-step lowers the RMSE on
the electric power, but does not always lower the RMSE on the temperatures.

As radiators have a relatively small time constant compared to that of the
building structure, one could suggest to neglect it’s thermal capacity. Leaving
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Figure 3.10: The indoor air temperature in the case of the reduced order model
with (w) and without (w/o) a radiator model included. The ROM without
radiator overestimates the rate at which the indoor temperature can rise and
drop.

out the radiator lowers the error on the electric power but increases the error
on the indoor temperature significantly. As Figure 3.10 shows, this increase
is mainly due to a different dynamic behavior, which can be explained by the
absence of the thermal capacitance associated to the emission system. Hence
the radiator model is not negligible for the dynamic aspects of the model.

Figure 3.11 shows the COP of the emulator model as compared to that of
the ROM with variable or constant COP. Note the large peaks in COP of
the emulator model when the heat pump is switched on. This is because the
distribution pipes are still cold at this point in time, allowing a high thermal
power at condenser side. Part of this gain in COP is thus directly lost due to
intermittent heating of these distribution pipes. As can be seen in Table 3.4,
using a constant COP (3.8 for space heating and 2.4 for DHW) has an overall
positive impact compared to the reference case on the performance of the ROM
in terms of RMSE on the electric power and temperatures. This is because the
constant COP model approximates the COP of the emulator heat pump model
4% better than the reference case. Note that this constant COP is the average
of the COP in the reference case, which changes as a function of the ambient
air temperature. The results of the influence of the COP calculation are in
line with Verhelst et al. [179], who studied multiple COP formulations, from
which there were two linear representations: a constant COP and a COP that
is a function of the ambient air temperature only. When no electricity price
profile was considered, a constant COP formulation performed better, since this
formulation did not cause peaks in the electric power of the heat pump. When
an optimization towards minimal cost was considered, both COP formulations
performed equally.
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Figure 3.11: In the reference ROM, the COP is a function of the ambient
temperature (var). In the “Constant COP” ROM, this COP is constant (ct). As
the optimization sometimes chooses to operate the heat pump for only fifteen
minutes, the COP in the emulator model can become very high. However, a
part of this extra produced heat is lost when the heat distribution system cools
down again.

The cases with integer variables ’DHW tank integer’, ’Switch SH/DHW’ and
’Modulation’ do not show a significant improvement to the performance of the
reference ROM (Table 3.4). The far longer calculation time (in most cases the
maximum calculation time of 7200 seconds) is not worth the minor extra detail
these integer variables add. Another possible advantage of the ’Modulation’
case, namely the abolishment of a post-processing phase as the electricity usage
is conform with the real heat pump constraints, is questionable. The linear
reference model (8 seconds) with post processing as discussed in Section 3.4.1 (5
seconds) takes up 13 seconds in total, which is a lot faster than the ’Modulation’
model.

The results for the case ’Modulation’ with a time-step of 60 minutes are put
between brackets because it is a special case. When the heat pump would
operate at its lower modulation limit (30% of maximal power) for an hour to
supply hot water to the DHW tank, the temperature would exceed the upper
limit. So the solution attained is one in which the back-up electrical resistance
heater covers all DHW demand. As one can note from the table, the model for
this alternative heating performs well for the DHW tank temperature.

Throughout the rest of this thesis, the fully linear model with radiator model,
constant COP and linear formulation of heat pump modulation and DHW tank
constraint is employed (third row in Table 3.4) as it performs the best. Good
performance is proven by its favorable computation time and smallest deviation
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with respect to the detailed physical emulator model.

3.6 Aggregation with respect to user behavior

Aggregated model set up In order for a building model to represent thousands
of buildings, the same building model is considered multiple times, each time
with a different user behavior. The motivation to model multiple buildings
with different user behavior, is to attain a reasonable load diversity in order to
avoid an unrealistically high peak load. In the field of electricity distribution
systems, Kersting [95] concluded that considering the electricity demand of 70
residential buildings is enough to represent the load diversity of a much larger
cluster of buildings. In this section, some margin was taken and 100 buildings
were considered. The number of inhabitants in each building was chosen in
such a way that it represents the population structure in Belgium [70], see
Table 3.1. The presented aggregation methodology can be applied to any set of
occupancy schedule. For this chapter in particular, time profiles of how many
occupants are present and awake in the building were extracted from the model
of Richardson [154] and Peuser et al. [143] as described in Section 2.4.2.

A cluster of hundred building models, even if all these models are linear, is
still a large problem to solve. A method is thus needed to reduce the number
of buildings, namely by aggregation. In this section, a new methodology is
presented to aggregate building models which have the same physical parameters
but different user behavior. The distribution of the household size is given in
Table 3.1. This methodology is illustrated in Figure 3.12. Assume that the
32 households consisting of one person have the same building structure and
the same hot water storage tank. The models for these 32 households will be
similar, except for the fact that these will have different temperature setpoints
for the indoor air temperature and domestic hot water, along with different
internal heat gains in the building and different heat demand for domestic hot
water.

The aggregation principle is explained for the case of space heating in Figure
3.12, focusing on the lower thermal comfort bound. For each of the 32 buildings
with one occupant, the actual lower bound for the indoor air temperature
is determined. Thus not the setpoint is taken as a lower bound, but the
lowest temperature possible if thermal comfort is to be attained. This actual
lower bound is determined by taking into account the warm-up and cool-down
behavior of the building. This bound is thus dependent on occupant behavior,
ambient air temperature, building parameters and heating system parameters.
The aggregated model then consists of one building model for which the lower
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Figure 3.12: Concept of the aggregation. For multiple buildings with identical
building structure but different user behavior, the actual lower temperature
limits are determined from the occupant’s temperature setpoints. The
aggregated model then has the same building structure, but a lower bound for
the indoor air temperature which is the mean of the actual lower temperature
limits of the larger cluster of buildings.

temperature bound is the average of the 32 actual lower temperature bounds.
The internal heat gains are averaged over the 32 internal heat gain profiles. A
similar procedure is followed for domestic hot water: the actual lower bounds
for the storage tank temperatures are determined along with the average hot
water demand. As there are 6 cases of number of inhabitants, and hence 6
different hot water storage tanks, the aggregated model consists of 6 building
models that represent the 100 building models. But these 6 building models
could easily represent a thousand or more buildings, since the procedure is the
same.

Performance of aggregation The way to determine the accuracy of this
aggregated model in a DR context, is to examine whether it attains the same
total electricity cost with respect to an identical electricity price profile. Figure
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Figure 3.13: The total electricity cost and electricity use per dwelling in case
of the original model consisting of 100 buildings and the aggregated model
consisting of 6 buildings. The aggregation shows an increase in cost between
1% to 3.5% and an increase in energy use between 0.5 % and 4 % compared to
the larger cluster of buildings.

3.13a shows how the total electricity cost per dwelling changes with respect to a
higher amplitude of a sine wave electricity price profile around a mean price of
0.10EURkWh . As this amplitude increases, the building structure and DHW tank
are increasingly used as energy storage, lowering total electricity cost by shifting
electricity demand to time periods of low price. The aggregated building model
shows the same trend, and predicts this cost with an error between 1% and 3.5%.
This decrease in total electricity cost has the downside of increasing the energy
use, as Figure 3.13b shows since employing thermal energy storage generally
leads to higher thermal losses. The electricity consumption of the aggregated
model also shows the same trend, being between 0.5% and 4% higher than in
the original model.

The comparison between the 100 buildings model and the aggregated 6 buildings
model was also performed for random and wholesale market profiles. Figure
3.14 plots the relative difference in total electricity cost and mean indoor air
and DHW tank temperature between the aggregated and the original model.
The aggregated model overestimates the total electricity cost with about 1% to
3.5%, the indoor temperature with −2% to 2% and the DHW tank temperature
with 4% to 8%.

A check was also performed, whether the 100 buildings model would be able
to track the electricity use of the aggregated model. This was performed for
all price profiles, by minimizing the deviation given the constraints of the 100
buildings model. This check proved to be successful: the deviation on the profile
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Figure 3.14: Difference in total cost, indoor air temperature (SH) and DHW
tank temperature (DHW) in the aggregated case of 6 buildings compared to
that of the original model with 100 buildings. This comparison was done for
multiple price profiles with a certain amplitude and a shape based on a sine
wave (sine), random (rand) or wholesale market prices (WS).

is lower than 0.1%.

Discussion The model with 100 buildings has a slightly higher potential for
DR than the aggregated model: it can lower the electricity cost per building
and attains lower energy use in doing so. This is because the model with 100
buildings has more options to shift some energy demand, as there will always be
more opportunities to make a small change in very specific cases. Nevertheless
the aggregated model comes very close to the larger model. Since the aggregated
model always overestimates electricity cost and use, the aggregated model can
act as a lower boundary for the performance of the larger model. In other words,
the aggregated model always gives a small underestimation of the flexibility
potential and is hence on the conservative side.

3.7 Integrated model set up

The integrated model combines the unit commitment and economic dispatch
model of the electricity generation system model described in Section 2.3.1,
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based on Van den Bergh et al. [169], with the optimal control formulation of the
buildings with heat pumps developed in Section 3.4 to 3.6. The optimization
criterion is to minimize total operational cost over all time steps with index j:

min
∑
i

∑
j

fci,j + co2ti,j + sci,j + rci,j . (3.26)

For each power plant with index i, the generation level (gppi,j) and commitment
status (binary variable zppi,j) determine the fuel cost (fci,j), CO2 cost (co2ti,j),
start-up cost (sci,j) and ramping cost (rci,j):

∀i,∀j : fci,j = cfi · zppi,j +mfi · (gppi,j − gmini · zppi,j) (3.27)

∀i,∀j : co2ti,j = co2p · [cti · zppi,j +mti · (gppi,j − gmini · zppi,j)] (3.28)

∀i,∀j : sci,j = stcoi · vi,j (3.29)

∀i,∀j : rci,j ≥ racoi · (gppi,j − g
pp
i,j−1 − vi,j · g

max
i ) (3.30)

∀i,∀j : rci,j ≥ racoi · (gppi,j−1 − g
pp
i,j − wi,j · g

max
i ) (3.31)

in which the binary variables vi,j and wi,j respectively denote a start-up or
shut-down event of power plant i in time step j. The parameter cfi is the
fuel cost for running the plant at its minimum power level (gmini ) and mfi is
the marginal cost for the generation level on top of the minimum power level.
The CO2 emissions also consist of an emission cti at minimum power level and
a term accounting for the marginal emissions (mti). The CO2 cost is then
determined via a CO2 price co2p. Furthermore, stcoi and racoi respectively
denote the start-up cost and ramping cost of power plant i. Each power plant
is submitted to a series of technical constraints:

∀i,∀j : gppi,j ≤ gmaxi · zppi,j (3.32)

∀i,∀j : gppi,j ≥ gmini · zppi,j (3.33)

∀i,∀j : gppi,j ≤ g
pp
i,j−1 + ∆max,up

i (3.34)

∀i,∀j : gppi,j ≥ g
pp
i,j−1 −∆max,down

i (3.35)
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∀i,∀j : 1− zppi,j ≥
j∑

j′=j+1−mdti

wi,j′ (3.36)

∀i,∀j : zppi,j ≥
j∑

j′=j+1−muti

vi,j′ (3.37)

∀i,∀j : zppi,j−1 − z
pp
i,j + vi,j − wi,j = 0 (3.38)

with gmaxi the maximum power level. The maximum ramping-up (∆max,up
i ) and

maximum ramping-down (∆max,down
i ) values are derived from the maximum

ramping rates of the power plants. The minimum up-time and down-time of
power plant i are denoted by muti and mdti respectively.

The market clearing condition couples the electricity generation system model
and the optimal control formulation of the buildings with heat pumps:

∀j : dtradj + nb · dhpj = curj · gresj +
∑
i

gppi,j (3.39)

∀j : 0 ≤ curj ≤ 1 (3.40)

with curj determining the amount of curtailment of the electricity generation
(gresj ). As explained in Section 3.1, the traditional electricity demand dtradj

entails all electricity demand except that of the heat pumps. As no competition
in providing flexibility is assumed (Section 2.2), this traditional demand is a
fixed profile. To this traditional demand, the scaled up (with the number of
buildings factor nb) demand of the heat pumps (dhpj ) is added.

The demand from the heat pumps can be adherent to a DR-scheme (dhp,var
j ) or

can be fixed to a predefined profile (dhp,fix
j ):

∀j : dhpj = (1− pdr) · dhp,fix
j + pdr · dhp,var

j . (3.41)

The share of flexible and inflexible demand is controlled by the DR participation
parameter pdr. The demand from heat pumps adherent to a DR-scheme is
determined via the demand side model (Eq. (3.42)-(3.53)) explained below. The
same demand side model is used to determine the electricity demand of heating
systems not participating in a DR scheme (dhp,fix

j ) by minimizing the energy
needed to meet the required thermal comfort, not considering the interaction
with the supply side model.

The following equations present the optimal control formulation of the buildings
with heat pumps, as described in Section 3.4. The demand dhp,varj is the sum
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of the electricity demand of multiple buildings with index b:∑
j

dhp,varj =
∑
b

(
phpb,j + pauxb,j

)
(3.42)

and consists of the positive electricity demand of the heat pump php,varb,j and an
auxiliary electrical resistance heater pauxb,j . These positive demands are split up
over delivering space heating (suffix sh) and DHW (suffix dhw) and are limited
as follows

∀j : php,shb,j + php,dhwb,j ≤ php,max (3.43)

∀j : paux,shb,j + paux,dhwb,j ≤ paux,max (3.44)

with php,max the maximum electric power of the heat pump which is
predetermined and fixed each optimization horizon. Based on the results
of Section 3.5, the heat pumps can modulate perfectly. The maximum power of
the auxiliary heater (paux,max) is independent of the ambient temperature and
is hence always the same value. The state space model of the building, with
temperature states T shb,j+1 and state space matrices Ash and Bsh is:

∀b, j : T shb,j+1 = Ash · T shb,j + Bsh · [Php,shb,j , P aux,shb,j , T ej , T
g
j , Q̇

sol
j , Q̇intb,j ] (3.45)

and is submitted to the disturbances of ambient temperature (T ej ), solar heat
gain Q̇solj and internal heat gains Q̇intb,j . Some of the temperature states are
constrained by minimum (T sh,minb,j ) and maximum (T sh,maxb,j ) temperatures in
order to maintain thermal comfort

∀b, j : T sh,minb,j ≤ Tb,j ≤ T sh,maxb,j . (3.46)

The DHW tank is assumed to be a perfectly mixed storage tank. This tank
can be heated above the maximum temperature that the heat pump can attain
(Thp,max) by the auxiliary heater. In order to avoid the need for an integer
variable, Section 3.4.2 showed a linear alternative. This defines the tank
temperature T tankb,j as the sum of a temperature which is influenced by the
heat pump Thpb,j and a temperature difference influenced by the auxiliary heater
dT auxb,j (the latter for the temperature range above Thp,max, typically 60 ◦C).
The model equations are:

∀b, j : ρcpV tankb

1
∆t (T

hp
b,j+1 − T

hp
b,j ) =P aux1,dhw

b,j + copdhw · Php,dhwb,j

− Q̇hp,demb,j − UAtankb · (thpb,j − t
surr)

(3.47)
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∀b, j : ρcpV tankb

1
∆t (dT

aux
b,j+1 − dT auxb,j ) =P aux2,dhw

b,j

− Q̇aux,demb,j − UAtankb · (dT auxb,j )
(3.48)

with ρ and cp respectively the density and heat capacity of water. The time
step is denoted as ∆t. The COP for delivering DHW (copdhw) is predetermined
and assumed constant throughout the optimization horizon. The DHW tank in
each building with index b has a certain volume V tankb and thermal conductance
UAtankb . Further constraints are

∀b, j : Q̇hp,demb,j + Q̇aux,demb,j = Q̇demb,j (3.49)

∀b, j : P aux1,dhw
b,j + P aux2,dhw

b,j = P aux,dhwb,j (3.50)

∀b, j : Thpb,j ≤ T
hp,max (3.51)

∀b, j : Thpb,j ≥ T
dem · bdemb,j + T cold · (1− bdemb,j) (3.52)

∀b, j : (T tank,max − Thp,max) ≥ dT auxb,j ≥ 0. (3.53)

The heat demand Q̇demj for supplying DHW has to be extracted either from
the tank temperature influenced by the heat pump (Q̇hp,demj ) or from the
temperature difference influenced by the auxiliary heater (Q̇aux,demj ). The heat
pump can only heat Thpb,j to Thp,max. The auxiliary heater can supply heat to
both the tank temperature influenced by the heat pump (P aux1,dhw

b,j ) and the
temperature difference influenced by the auxiliary heater (P aux2,dhw

b,j ). Finally,
T tank,max denotes the maximum allowable DHW tank temperature, T cold the
temperature of cold tap water and T dem the minimum tank temperature needed
when occupants demand hot water (denoted by the boolean bdemb,j).

3.8 Typical output integrated model

Figure 3.15 illustrates a typical output of the integrated model in the case of
250,000 nearly zero energy, detached residential buildings and with the Belgian
electricity generation mix where RES is scaled up to provide 30 % of the
energy demand on a yearly basis. In case of no demand response, the average
temperatures in the day zone and domestic hot water tank remain close to
the lower temperature bound, in order to minimize the individual buildings
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(d) Mean temperatures, with DR

Figure 3.15: Illustration of the integrated model output for two days in case
of no demand response (Fig. 3.15a and Fig. 3.15b) and in case with demand
response (Fig. 3.15c and Fig. 3.15d) in an optimization towards minimal
operational costs.

electricity use (Fig. 3.15b). This heat pump control strategy causes the morning
peak, around 8h, of the electricity demand to rise (Fig. 3.15a). Moreover, the
electricity generation from RES is of that magnitude that some of the nuclear
power plants need to go in part load operation, around 3h the first day and 13h
the next day.

When demand response is allowed in the integrated model, the day zone of
the building and the DHW tank are preheated during the early morning and
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afternoon (Fig. 3.15d). For the electricity generation system (Fig. 3.15c), this
clearly leads to a lower operating cost. First, the more expensive peak power
plants generate less electricity in favor of the base load power plants. In this
example, this enables the nuclear power plants to operate at full load the entire
period. Next, the ramping of all power plants is clearly reduced as the demand
follows more the electricity generation from RES. Finally, the thermal losses in
the residential buildings are higher, as the average temperatures in the building
structure and DHW tank are higher.

3.9 Conclusion

This chapter presents and illustrates the integrated model for studying DR for
residential buildings with heat pumps. Starting from an emulator model available
in a building performance simulation tool, a verified, aggregated building stock
model is determined for a verification period of 48 hours. The mathematical
formulation of the model is chosen such that it can be combined with electricity
generation system models. Multiple reduced order models were studied, where
the fully linear model with radiator model, constant COP and linear formulation
of heat pump modulation and DHW tank constraint performed the best. This
good performance is characterized by its favorable computation time and smallest
deviation with respect to the detailed physical emulator model: 0.8 ◦C on the
indoor air temperature and 2.7 ◦C on the DHW tank temperature. Hence, this
reduced order model is employed in the remainder of this thesis. The output
of this fully linear model is convertible to control signals to be applied to the
physical emulator model or a real-life implementation by a post-processing
method. Note that the analysis in this chapter was performed for one specific
building type with radiators and represented by one thermal zone. The rest of
this thesis employs similar models, but it is assumed that the presented heating
system model is also applicable to other building and heating system types.
The verification of all these various types is outside the scope of this work.

Additionally, an aggregation method is developed and presented, which is
able to reduce the number of buildings needed in order to represent multiple
user behaviors. This aggregated model can act as a conservative case for the
performance of a large cluster of buildings, as it overestimates the costs with
1% to 4%.

The developed ROM and aggregation method are employed in the integrated
model, for which the full model equations are provided. The integrated model
output is illustrated by showing typical results.
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As opposed to the integrated models in the literature as discussed in Section
3.2, the models for the residential buildings with heat pumps are determined
based on detailed emulator models. This emulator model works as a reference
from which a linear reduced order model of the heating system is deducted.
Furthermore, the aggregation methodology allows for a slim representation of
a large set of buildings with diversity in the user behavior. Hence, a bottom
up representation of the flexibility of residential buildings with heat pumps is
deducted in this chapter. This representation is suitable for a direct integration
with a unit commitment and economic dispatch model. As Chapter 4 will
show, this is the correct way of assessing the flexibility potential in residential
buildings with heat pumps.



Chapter 4

Comparison integrated model
to other modeling approaches
in the literature

This chapter is based on a paper that was previously published as:
Patteeuw, D., Bruninx, K., Arteconi, A., Delarue, E., D’haeseleer, W., and
Helsen, L. Integrated modeling of active demand response with electric heating
systems coupled to thermal energy storage systems. Applied Energy 151 (2015),
306–319.

4.1 Introduction

The purpose of this chapter is to illustrate the relevance of using an integrated
model to study DR, involving the interaction between the supply side and the
demand side, building further on the work presented in [27]. To this end, a
methodological case study of the integrated model is presented which will act as
a reference. Using this methodological case study, the results from the proposed
integrated model are compared to those from models with focus on either
the supply side or the demand side. A comparison among several modeling
approaches with a different level of complexity is presented in this chapter.
Figure 4.1 shows schematically how the model detail and computational cost
depend on the complexity of the supply side model and the demand side model.
The analysis is performed starting from the integrated model representing in

57



58 COMPARISON INTEGRATED MODEL TO OTHER MODELING APPROACHES IN THE LITERATURE

Figure 4.1: Schematic representation of the various modeling options, in order
of ascending complexity and detail, in demand and supply side representations,
and the combinations discussed in this chapter.

detail both the supply side and the demand side (Chapter 3), and then reducing
step by step the complexity of the supply and the demand side representations
respectively. The integrated model represents the supply side by means of a
unit commitment and economic dispatch model and the demand side by means
of a physical state space model of the building and its heating system. Moving
along the reduced complexity of the demand side, the latter can be represented
by a VGM or by a price elasticity based model, while the supply side is still
represented via the unit commitment and economic dispatch model. Vice versa
going toward a simplification of the supply side model, a MO model or an
electricity price profile can simulate the supply side of the electricity generation
system, keeping the physical state space model for the flexible demand. In every
case the selected model is used in an optimization problem, with the purpose of
minimizing the overall operational costs. The models mentioned above were
selected because they are widely used in the literature. Note however that other
models and combinations of models may exist.

This chapter is organized as follows. Section 4.2 presents the methodological
case study on which the different approaches are tested. Results are first
presented for the integrated model (Section 4.3.1) in order to facilitate the
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interpretation of the shortcomings of other models. Subsequently, the challenges
in modeling DR via price-elasticity models (Section 4.3.2) and virtual generator
models (Section 4.3.3) for the demand side or price profile (Section 4.3.4) and
merit order models (Section 4.3.5) for the supply side are illustrated. Based
on these results, general conclusions for the use of these modeling approaches
are formulated in Section 4.3.6. Throughout this investigation, the integrated
model remains the reference model, used to validate other approaches.

4.2 Methodological case study

In this chapter, the integrated model as presented in Section 3.7 is employed. In
order to provide numerical results for the comparison of different DR modeling
approaches, a methodological case study is presented.

Table 4.1: Assumed electricity generation system mix and parameters. The fuel
prices (per MWh of primary energy, MWhpr) or (per MWh electrical energy,
MWhel) are based on [136] and references therein).

Power plant type # units Max. generation Cost
Nuclear 1 1200 MW 7 EUR/MWhel
Coal 5 4000 MW 12 EUR/MWhpr
CCGT 10 4000 MW 25 EUR/MWhpr
OCGT 5 500 MW 25 EUR/MWhpr
Oil-fired 5 500 MW 35 EUR/MWhpr

Table 4.1 gives an overview of the assumed power plants on the supply side of
the electricity generation system in this chapter. It is assumed that RES-based
electrical energy accounts for 20% of the generated electrical energy over the
simulated period. A carbon price of 30 EUR

ton CO2
is assumed, in line with the

projected carbon price by 2030 according to IEA [171]. Note that this high
carbon price increases the variable cost of coal-based generation above that of
gas-based generation with CCGTs (see Figure 4.5). The fixed demand profile
dfix
j is scaled to represent a certain fraction of the total demand for electrical

energy on the considered optimization horizon and to ensure that the peak
demand does not exceed 90% of the installed conventional capacity. The fixed
demand and RES-based electricity production profiles used are based on hourly
data for Belgium1 for 2010 [54].

1Note that the electricity generation system assumed in this case study is in no case
representative for Belgium, in contrast to the fixed demand and RES profiles.
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Twenty five identical buildings, with a different user behavior and number of
users based on the demographic structure of Belgium [70], are considered (see
Table 3.1). The degree to which the heating systems participate in DR (pDR)
is varied throughout the chapter, while the number of buildings nb is chosen
in such a way that the heat pumps electricity demand represents 25% of the
total electricity demand. For the building structure, the state space model
with 5 states as presented by Reynders et al. [151] in Figure 2.3 is used. The
building considered has a floor surface of 270 m2 and a protected volume of 741
m3. Infiltration and ventilation combined cause 1.5 air changes per hour. The
exterior walls, roof and windows respectively have a U-value of 0.4 W

m2K , 0.5 W
m2K

and 1.4 W
m2K . The building has an average of about 10 m2 of window surface

in each cardinal direction. Each building is equipped with an air coupled heat
pump, with an electric capacity of 4 kWel during the considered time period.
Flexibility is available via thermal energy storage in the building shell [151]
and the hot water storage tank (120 to 300 liters, depending on the number of
occupants, see Table 3.1). The constraints on the thermal comfort required by
the occupants is based on Richardson et al. [154] and Peuser et al. [143], as
described in Section 2.4.2. This results in constraints on the electricity demand
and on the flexibility offered to the supply side. For comparative purposes
in this chapter, only 48 hours of a typical winter period are retained in the
evaluation. Thorough testing with longer time horizons revealed that this period
is sufficient to capture the thermal behavior of the chosen thermal systems and
to illustrate the advantages and disadvantages of the various models. Cyclic
boundary conditions are enforced during optimization.

All alternative models, as discussed in Section 3.2.1 and 3.2.2, are simplifications
of the presented integrated model. For example, the use of a virtual generator
model to represent the demand side flexibility would abolish the need for the
linear state-space model, while leaving the supply side model unaffected. The
linear state-space model could be replaced by a simpler generic model of a
storage unit, with some constraints that ensure that sufficient electricity is
‘consumed’ to guarantee thermal comfort. Likewise, reducing the supply side
model to a merit order model would strongly simplify the unit commitment
model, while leaving the linear state-space model at the demand side unchanged.

4.3 Comparison of different modeling approaches

This section will show that the price-elasticity of storage-type consumers is
difficult to estimate ex-ante, limiting the usability of price-elasticity-based
models (Section 4.3.2). Furthermore, thermal energy storage losses, which are
typically non-linearly dependent on e.g. the state of charge, are shown to be
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difficult to capture in VGM-like models (Section 4.3.3). Section 4.3.4 illustrates
that price profile representations of the electricity supply neglect the possible
effect a changed demand profile may have on the electricity price. Finally, merit
order models, in combination with a physical model of the demand side, are
shown to allow approximating the operational performance of the integrated
model at a reasonable computational cost (Section 4.3.5). To facilitate the
interpretation of these results, the starting point of the presented analysis will
be the results obtained with the integrated model (Section 4.3.1), which will
act as a reference. To conclude this section, the most important results and
differences between the various models are discussed in Section 4.3.6.

4.3.1 Integrated model results

Figure 4.2a shows the residual electricity demand obtained from the integrated
model, calculated as the total electricity demand minus the RES-based
generation. The controllable demand from the electric heating systems was
assumed to participate to the DR program fully (pDR = 100% DR), partly
(pDR = 50% DR) or not at all (pDR = 0% DR). In the last two cases, (part
of) the consumers (is) are not exposed to the hour-to-hour variations of the
electricity price. The demand of these consumers is given by the predefined
electric heating demand profile dhp,fix

j . When the customers adhere to the
DR program, the demand is shifted to the hours of lower use, hence lower
electricity costs, and so-called ‘valley filling’ occurs. Load shifting however leads
to additional thermal losses, hence an increased overall energy use. From a
system perspective, the total operational cost however decreases as a result of
DR.

Figure 4.2b shows the electricity price profile obtained from the IM. For the
minimum energy demand scenario (pDR = 0% DR), the price shows some peaks,
corresponding to the peaks in demand, which leads to the activation of expensive
peaking units (OCGT in Figure 4.2). Increasing the participation of the electric
heating systems to the DR program flattens the price profile. The difference
between the case with no participation to DR (pDR = 0% DR) and the case
with a partial participation to the program (pDR = 50% DR) is evident, while
the difference is less pronounced between the latter and the case with total
participation to DR (pDR = 100% DR). This illustrates that after a certain
threshold the marginal effect of DR on the production side is reduced. These
observations are confirmed by the corresponding dispatch, shown in Figure 4.2,
and the residual electricity demand profile, Figure 4.2a. Moving from a 0% DR
participation to a 50% DR participation, the need for expensive peaking units
disappears completely due to the flattened demand. The same units, being the
CCGTs, set the price throughout the optimization period. As such, large price
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Figure 4.2: Illustration of results of the integrated model concerning the
electricity generation system.

differences between hours – the driving force behind the demand redistribution
under DR programs – disappear. Therefore, additional controllable heating
systems will not result in significant changes in demand, nor electricity prices, on
the level of the power system. Note however that, to obtain the same flexibility
on a system level, each individual consumer needs to shift his demand less and
the resulting thermal losses, thus additional energy use, per consumer will be
lower.

With respect to the demand side, Figure 4.3a shows the trend of the demand
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Figure 4.3: Illustration of results of the integrated model concerning the building
heating systems.

for space heating and domestic hot water of a building and its breakdown in
the principal contributions, being the thermal power provided by the electric
heating system (‘heating’ in Figure 4.3a) and the internal and solar gains due
to the interaction of the building with users and surrounding (‘gains’ in Figure
4.3a). Figure 4.3a shows that the contribution of the internal and solar gains,
especially in the afternoon hours of the day, represents an important share of
the thermal energy demand, reducing the thermal energy to be provided by
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the heating system. It is therefore crucial to take these gains into account and
neglecting them would lead to a considerable error in assessing the thermal
load of the heating system. Moreover, these gains are dependent on the outside
temperature and solar irradiation, as well as on the user behavior.

Figure 4.3b instead shows the electricity consumption pattern of the heating
system of a single building in different DR cases. With DR, the overall
operational system costs are minimized by exploiting the flexibility of the
electricity demand of the heating systems, offered by the storage capability
of the thermal loads, both in the building envelope and in the DHW storage
tank. Due to the availability of cheap generation capacity during the night, the
building is preheated compared to the case without DR participation (0% DR)
(Figure 4.3b). In fact, the electricity consumption is shifted to low price periods
and the energy is stored in the thermal mass of the building (Figure 4.3c) or
in the storage tank (Figure 4.3d). This causes more thermal losses and hence
a higher energy use, though the overall operational system cost is lower. As
a consequence, the inside temperature of whatever DR case, even if thermal
comfort is maintained, can be higher than the minimum energy case, in which
the temperature is as low as possible while maintaining thermal comfort (Figure
4.3).

The importance of a correct representation of the thermal losses at the demand
side technology is illustrated by the demand recovery ratio (DRR). The DRR is
defined as the ratio between the observed electrical energy used by the flexible
electric heating systems and the minimum electrical energy use of those heating
systems [41, 27]. DRR is therefore always greater than or equal to 100%.
Results obtained with the integrated model indicate that the DRR varies widely
depending on the share of variable demand and renewable energy in the system.
At a 50% DR participation, the DRR varies between 105% and 109%, while this
range reduces to 102 to 105% at a 100% DR participation rate. The DRR is
lower for a 100% DR participation, since less load shifting per house is necessary
when more customers are involved. Thus, the behavior of the flexible electric
heating systems is not only dependent on the consumers themselves, but also
on the boundary conditions under which they operate: the amount of renewable
energy in the system and the behavior of other consumers.

Although the presented results highlight many advantages of the integrated
modeling approach, it is not devoid of disadvantages. The most serious concern
is the computational cost of solving such an integrated model. In this particular
setting, solving the integrated model for 48 hours takes about 30 minutes on
a 2.8 GHz quad-core machine with 4 GB of RAM. Therefore, modelers often
resort to simplified models on the supply or demand side. This will be discussed
in the next sections.
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4.3.2 Unit commitment and economic dispatch models with
a price elasticity model on the demand side

As outlined in Section 3.2.1, many studies on demand side flexibility use a price
elasticity model to describe the price responsiveness of flexible customers. This
elasticity is defined as

εu,j = ∂du

∂pj
· p0,j

d0,u
(4.1)

with pj the price of electrical energy in hour j, and du the demand for electrical
energy in hour u. The index 0 refers to the initial or anchor electricity demand
and price levels, i.e. the reference demand and price levels to which the
elasticity will be related. If j equals u, the elasticity is referred to as the
own-elasticity of the demand. Cross-elasticities (j 6= u) indicate the change
in demand for electricity in hour u in response to a change in the price of
electricity in hour j. Cross-elasticities are needed as consumers are generally
not willing to reduce their demand, but are more likely to redistribute some
of their demand, shifting it away from peak price to low price periods. For
example, as shown above, the redistribution of demand may yield a higher
overall electricity consumption, which cannot be captured by own-elasticities
alone. Price elasticities are a powerful tool to capture the price responsiveness
of many customers. However, as shown below, these elasticities may not be
suited to describe the responsiveness of storage type customers when storage is
accompanied by losses not linearly dependent on the energy stored or on the
power supplied, such as thermal systems.

When a modeler intends to use price-elasticities to model the behavior of price-
responsive consumers, he needs to estimate these elasticities ex-ante. I.e., the
modeler needs to assume a certain (range of) price-elasticity values before
observing the reaction of the price-responsive customers. However, this is not a
trivial task for electric heating systems. Moreover, one might observe behavior
that cannot be captured via a linear relationship between price and demand.
To illustrate this, the integrated model is used to assess the mutual change
of price and demand induced by the modification of the RES profile. This is
equivalent to shifting the supply curve along the demand axis (Figure 4.4 and
4.5). 180 RES profiles were considered (wind power profiles, obtained from the
Belgian TSO, Elia, for the year 2013). Each of these profiles covers 20% of the
demand. Due to a change in the RES profile, the consumers will see different
electricity price levels as the supply curve changes. The thermal heating demand
(i.e. thermal comfort) remains unchanged in these simulations. The electricity
reference price as seen by the electric heating systems is here calculated as the
marginal value of the market clearing condition (Eq. (3.39)) in the integrated
model (Figure 4.4).
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Figure 4.4: Schematic representation of the partly elastic, partly inelastic
demand, simulated in this chapter. The intersection of the demand and supply
curves yields the anchor points (p0, d0) for the elasticity calculation [165].

From these simulations, one can obtain the price-demand couples for each of the
respective hours. Figure 4.5 shows the resulting price-demand couples for hour
30, in which the demand for thermal services is significant (Figure 4.3b). Similar
effects are observed at other time steps. If a price-elasticity could describe
the change in demand in response to changes in the cost or price of electricity,
the price-demand couples would form a straight, downward sloping line, as
schematically illustrated in Figure 4.4. However, as shown in Figure 4.5, this
is not the case. First, one can observe some atypical increases in demand in
response to an increase in the marginal cost of electricity generation. This would
correspond to a positive own-elasticity, which is uncommon in the electricity
sector [41]. Second, different demand levels appear optimal for the same price
level. A(n) (own) price-elasticity does not allow capturing these effects. These
results show the difficulty of correctly predicting the elasticity ex-ante, needed
to study DR via an elasticity-based model, when storage-type customers are
involved.

4.3.3 Unit commitment and economic dispatch models with
virtual generator models on the demand side

A flexible demand can be modeled through a virtual generator model (see
Section 3.2.1). In essence, the demand is described as a generating or storage
unit with a negative output and a set of constraints on this output. A generic
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Figure 4.5: The resulting price-demand couples in hour 30, indicated by the
black dots in the figure above, indicate that the price-responsiveness of thermal
systems cannot be captured via an own-price elasticity. The solid line illustrates
the supply curve, the dashed line indicates the inelastic part of the demand.
The supply curve shown above is a simplified merit order-representation of
the supply side of the electricity generation system. For illustrative purposes,
the dotted line shows a demand curve characterized by an own elasticity of
−1. The RES-based generation in hour 30 varies between 346 and 4,099 MW.
The difference in the price-demand couples stems from different part-load and
start-up behavior of the marginal power plant.

description of any storage unit can be formulated as follows:

Ej+1 − Ej
∆t = −L̇j − Ḋj + İj + Ġj (4.2)

The state of charge of any storage system at a certain time j (Ej), is typically
modeled based on the energy content at the next time j+1 (Ej+1), and the
withdrawal and the addition of energy during that time step ∆t. In this
equation, Ej stands for the energy content of the virtual storage unit, L̇j for
the (thermal) losses of this unit, Ḋj for the energy demand (i.e. the amount of
energy one extracts from the storage, the output), İj for the power supplied
to the storage and Ġj for any other gains. Constraints on each term in Eq.
(4.2) can be imposed to ensure that the technical constraints of the demand
side technology and the comfort constraints of the consumers are respected.
Again, the constraints and interaction terms, such as the loss term L, must be
quantified by the modeler ex-ante.

When this modeling approach is used to simulate a flexible storage type customer
with electric heating system as demand side technology, the limits on the output
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of the virtual generating unit (electric power demand) can easily be deducted
from the nameplate capacity of all electric heating systems involved on the
demand side. Ramping limits are not required in this case as the heat pumps
can ramp up and down well within the time step of 1 hour. A similar reasoning
applies to the limits of on- and off-times. Constraints are also required on the size
of the ‘storage’ unit, which typically consist of minimum and maximum energy
limits for the storage capacity combined with a loss term (or efficiency, L). The
thermal losses, L, and the gains, G, in Eq. (4.2) capture the interaction of such
a thermal system with its surroundings. These parameters, which can usually
be easily quantified for some flexible loads such as electric vehicles, become
rapidly more complex to estimate for thermal energy storage systems. Indeed,
the thermal losses and gains are not only temperature and time dependent, but
they are also dependent on user behavior (consumption of hot water, occupancy
profiles), weather conditions (ambient air temperature, solar heat gains) and
the building structure (wall thickness, ventilation rate [153]). The importance
of solar and internal heat gains has been highlighted previously in Section
4.3.1 (Figure 4.3a), where it has been shown that they represent a considerable
share of the building thermal demand. Neglecting these gains in the model
would yield a significantly lower state of charge, which in turn may result in an
overestimation of the electricity demand via a VGM. Thus, in reality, this may
lead to a violation of the comfort constraints on the consumers side. In addition,
the DRR, which by its definition can be interpreted as a measure for the loss
term L, shows an erratic behavior with varying the RES and DR share, that is
clearly difficult to be estimated ex-ante. Likewise, time-dependent limits on the
state of charge of the storage system could be used to represent the thermal
comfort requirements of the occupants. Similar to the thermal losses and gains,
these limits are highly dependent on the user behavior and weather conditions.
In conclusion, the representation of a demand side thermal energy storage system
and its interaction with the supply side of the electricity generation system
requires detailed knowledge of the temperatures and disturbances imposed on
that storage system. In a VGM it is necessary to estimate these interactions
ex-ante, which can affect the reliability of the results.

4.3.4 State-space models with a price profile-model on the
supply side

A price profile is often considered as a possible way of representing the electricity
wholesale market in a DR model focused on demand responsive consumers.
Typically a fixed electricity price profile is assumed to represent the supply side,
while a detailed physically based model is used for the demand side in order
to determine the electricity demand profile that yields the minimum energy
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cost for the customer. This approach however fails to identify the feedback or
reaction of the supply side of the electricity generation system to a change in
the demand side behavior. In fact, if one consumer shifts his electricity demand
to a moment with lower electricity price, this will not affect the electricity price
at that moment. If thousands of consumers shift their electricity demand to
that moment, this can increase the electricity price at that moment, making
load shifting less interesting.

Since in the reference case presented above, the flexible electricity demand
has been assumed to be 25% of the total electricity demand, it is likely that
changes in the demand profile of these electric heating systems have an impact
on the electricity price. Neglecting this interaction between demand and supply
side may have a severe effect on the validity of the obtained results, as shown
below using the context of the methodological case study. Towards that end,
the state-space demand side model and the unit commitment and economic
dispatch supply side model are used separately, as illustrated in Figure 3.1. In a
first iteration, the demand side model starts from a flat electricity price profile
and determines the electricity demand resulting in minimal total energy cost
for the owners. This corresponds to minimizing the energy use on the demand
side. The supply side model starts from the fixed electricity demand profile,
augmented with the demand profile of the electric heating systems determined
by the demand side model in the previous iteration. This model determines the
unit commitment and dispatch that minimizes the total operational cost for
the system. The resulting price profile2 is then passed on to the demand side
model. Iteratively, the demand side model is used to calculate a new electricity
demand in response to this new electricity price profile, which then is used as
an input for the supply side model.

When this iterative process was performed, it soon diverged. The demand side
model tends to overreact to differences in electricity price. This results in large
peak demands, which can be higher than the generation capacity, when the
price is low. A possible way of fixing this issue is by putting an extra constraint
on the possible changes in the resulting electricity demand profile between
iterations, e.g. by limiting the changes in the electricity demand in each hour to
a certain percentage of the electricity demand profile in the previous iteration.
Figure 4.6 shows the trajectory of the total operational cost of the electricity
generation system in case of a maximum 10% deviation of the demand profile
from the previous iteration. The operational costs shown in Figure 4.6 are the
total operational costs obtained with the unit commitment model, considering

2Note that in this chapter, the electricity price for the demand side model is solely
determined by the electricity generation system. Hence, the electricity price for the building
owners is not augmented with a fixed tariff for electricity generation and distribution, as is
typically the case in practice.
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Figure 4.6: Evaluation of the total electricity production cost with the price
profile demand model using the iterative procedure. The integrated model (IM)
results for pDR equal to 0% and 100% are indicated as reference (dashed lines).

the fixed demand and the demand profile from the electric heating systems as
obtained from the demand side model. In the first iteration, the model yields
the same result as if the electric heating systems would not adhere to any DR
program. The following iterations show the reaction of the demand side model
to a changing electricity price profile. The resulting decrease in operational
costs is about one third of the total possible operational cost reduction due to
DR as calculated with the IM3.

However, 25 iterations result in a total calculation time in the same order of
magnitude as the integrated model. Similarly, when looking at the costs for
the building owners, an erratic oscillation of the solution is noted compared to
the corresponding solution of the IM. The energy costs for the building owner
are calculated as the demand profile of the electric heating systems times the
electricity price profile used in the demand side optimization.

In conclusion, these results show that conclusions based on models in which the
supply side is represented via a fixed price profile are biased if changes in demand
affect those electricity price profiles. This interaction can be integrated in such
a modeling approach to some extent. However, such an iterative approach may

3In this case, the IM reduces the total cost with about 1.8%, which is significantly higher
than the 0.1% optimality gap imposed on the optimization. Note that these figures account
only for operational costs and were obtained for this particular setting. E.g., investment costs
are not taken into account. These numbers should not be interpreted as a comprehensive
evaluation of the full possible benefits of DR.
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not yield results of the same quality as an integrated model, but will require
the same computational effort. Moreover, the same level of detail is needed in
both models.

4.3.5 State-space models with a merit order model on the
supply side

As an alternative to the iterative approach suggested in Section 4.3.4, a modeler
focusing on demand side results could consider a merit order representation
of the supply side of the electricity generation system, in combination with a
physical model of the demand side. As explained below, this model allows to take
into account the effect of a change in the demand profile on the electricity price
profile directly, abolishing the need for iterative procedures. This MO model
is computationally less intensive than a unit commitment model. Moreover, it
requires far less detail on the supply side and is thus easier to set up.

This simplified model consists of a mere ranking of the different power plants in
an ascending order of average operational production costs (Figure 4.5). These
costs consist of fuel and carbon costs. The intersection of the demand and the
merit order curve yields the electricity price in each hour. The objective function
of this model is similar as in the IM, namely minimize the total operational costs.
Furthermore, it couples the demand side model and the merit order model via
the market clearing condition (Eq. (3.39)). As such, it is possible to consider
the effect of the energy demand variation on the electricity price, even if in a
simplified manner. This MO model however only considers the minimum and
maximum output of each power plant and hence neglects ramping constraints,
minimum on- and off-times and start-up costs, which are considered in a unit
commitment model. As a consequence, power plants may be switched on/off
in an unrealistic way in the merit order model. E.g., coal power plants are
switched on and off within one hour, while in reality it takes multiple hours for
such a power plant to start up. Results obtained with such a merit order model
should thus always be interpreted with caution, e.g. via a re-evaluation of the
resulting demand profile with a UC & ED model as discussed below. Figure 4.5
shows the ranking of the different power plants. Fuel costs and CO2 costs are
the same as those assumed for the unit commitment model in Section 4.2.

The costs from the MO model have been compared to those from the IM for 18
scenarios for the RES-based generation, namely three different RES profiles that
cover 5%, 10%, 15%, 20%, 25%, 30% of the total electricity demand (energy
basis) in the considered optimization period. Figure 4.7a shows the ratio of
the total operational system costs as obtained with the MO model and the IM.
Furthermore, this figure shows the ratio of the energy costs for the building
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Figure 4.7: Relative difference in total system costs (TC) and building owners
energy costs (EC) between the merit order model (MO) and the integrated
model (IM). The upper figures show the relative difference when considering the
costs as obtained directly from the MO. The lower part of the figure contains the
same results, but shows the costs after re-evaluation with the unit commitment
model.

owners as obtained with the MO model compared to the IM. In the upper
part of the figure, the costs of the MO model are directly compared to the
results of the IM. In the bottom part of the figure, the demand profiles of the
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electric heating systems, as obtained from the MO, are used as an input of the
unit commitment model, in order to recalculate the costs, taking into account
all operational constraints and costs of the power plants. With regard to the
total operational cost, the merit order model yields a cost between 1 to 3.5%
lower than in the case of the integrated model (Figure 4.7a). In this case, a
modeler thus takes 96.5% to 99% of all operational costs into account when
he employs a merit order model. Furthermore, the difference between both
models decreases with a higher share of DR. DR has the effect of flattening
the residual demand, which makes it less likely that the solution of the MO
model violates any dynamic constraint of the power plants. In addition, start-up
costs become relatively less important in the IM solution as less start-ups are
required. Looking at Figure 4.7c, showing the re-evaluated operational cost for
the system, one is able to judge the quality of the solution obtained from the
MO model. This re-evaluated total operational cost is obtained by solving the
UC & ED considering the electricity demand profile as obtained from the merit
order-state space model. Total operational costs deviate as little as 0.4% to 2%
from the solution obtained with the IM.

Fig 4.7b and 4.7d show the energy cost for building owners. The results from
the MO model yield cost differences within a range of -12% to +3% compared
to the IM solution. After re-evaluation this range changes to -7% to +10%.
However, one should be careful in the interpretation of these results. Indeed,
the objective of the optimization is to minimize total operational system cost,
not the owners cost. The demand profile that yields the minimal operational
system cost might not be unique. E.g., a change in the demand profile may
lead to a significant difference in the cost for the building owner, but the effect
of this change on the total operational cost might fall within the optimality gap
of the optimization. From a system perspective, large variations may exist in
the owners cost, while system costs remain unaffected.

To conclude, the merit order model successfully takes into account the interaction
of electricity prices and the demand profile, especially if one is looking at DR
from a system perspective. Results that are close to those of the integrated
model can be obtained, especially after re-evaluation of the solution with the unit
commitment model. Solving the MO model takes about 30 seconds, compared
to 30 minutes for the IM. Re-evaluating the MO model with the UC & ED
model additionally requires 30 seconds.

4.3.6 Model comparison

The analysis performed above allows us to state the following conclusions from
using the different approaches for modeling demand response when storage-type
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customers, such as electric heating systems coupled to any form of thermal
storage, are involved. The integrated model, which employs a unit commitment
and economic dispatch model for the supply side of the electricity generation
system and a physical state space model to represent the demand side, is used
as a benchmark. This model allows a modeler to correctly assess the effect of
DR on the supply and demand side of an electricity generation system, but
requires a significant computational effort and detailed information to set up the
model. It can for example be employed to assess the quality of other modeling
techniques.

If a modeler seeks to simplify the demand side model, price-elasticity and virtual
generator models are often encountered in the literature due to their simplicity
and low computational cost. However, in the setting of storage-type customers,
in both cases it will be very difficult to estimate the models’ parameters ex-ante.
It is shown that e.g. price-elasticities and demand recovery ratios, as a measure
for the losses in a system, fluctuate erratically with the share of DR and RES
in the system. However, the assumptions on the set of model parameters will
drastically affect the obtained results.

Likewise, if the modeler employs simpler models on the supply side, he should
proceed cautiously. If one neglects the effect of a change in demand on the
electricity price profile, results will only hold for a small group of consumers.
Iterative price profile approaches will to some extent allow to take into account
this feedback and are simple to implement, but results remain sub-optimal and
become computationally intensive to solve.

In addition, not taking into account the limitations of the considered power
plant portfolio might lead to demand profiles that cannot be met. Merit order
models consist of a ranking of the power plants according to their operational
costs. Although they do not take into account any operational constraints,
nor all costs, they allow to approximate the solution of the integrated model
in about 1/60th of the calculation time. However, one should take caution in
interpreting the results, as the resulting dispatch might violate the constraints
of the power plants and not all costs, such as start-up costs are taken into
account.

4.4 Conclusion

This chapter illustrates how the integrated modeling approach allows to capture
the full integrated effect of DR on the supply and demand side, as well as to
quantify the benefits for the system. However, this comes at a significant
computational cost. In order to reduce the computational effort, several
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simplified approaches are investigated, such as price-elasticity-based models,
virtual generator models, price-profile models and merit order models. In
particular, the difficulty of representing storage type customers’ behavior by
means of price elasticity based models is demonstrated, together with the
complexity of a proper estimation of all terms contained in a virtual generator
model. Furthermore, fixed electricity price profile demand side models, that
neglect the interaction between supply side and demand side, can be misleading
for the determination of the flexible demand behavior. Merit order models,
instead, provide good results in terms of operational cost estimates, even if the
supply side is represented in a simplified way with respect to the integrated
approach. Solving such a merit model takes about 30 seconds, compared to 30
minutes for the integrated model. A merit order model may thus be a good
candidate for full year simulations.

The combination of the merit order model with the demand side model is
employed in full year simulations in Chapter 5 and Chapter 6. These chapters
explore the benefits of performing DR on buildings with heat pumps in terms
of cost savings and CO2 emission reductions.





Chapter 5

Case study I: Greenhouse gas
abatement cost of heat
pumps in a Belgian residential
context

This chapter is based on a paper that was previously published as:
Patteeuw, D., Reynders, G., Bruninx, K., Protopapadaki, C., Delarue, E.,
D’haeseleer, W., Saelens, D., and Helsen, L. CO2-abatement cost of residential
heat pumps with active demand response: demand- and supply-side effects.
Applied Energy 156 (2015), 490 – 501.

5.1 Introduction

In this chapter, the integrated model is employed in a first case study. The
goal of this case study is to investigate the CO2 emission saving potential of
applying DR on heat pumps in Belgian residential buildings. Furthermore, as
residential building characteristics can vary widely, it is hard to assess which
building types should be given priority for installing a heat pump and applying
DR. The benefits of installing a heat pump and contributing to DR programs
are merged in a single indicator: the CO2 abatement cost. This allows for a
clear comparison between the different types of buildings and heating systems.

77
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Heat pumps are often suggested as a key technology for decreasing the CO2
emissions associated with space heating in the residential building sector [90].
According to a study made for the European Heat Pump Association [19], large
scale introduction of heat pumps could reduce CO2 emissions by 34% to 46%
in the building sector of certain European countries by 2030. Bayer et al. [16]
report a CO2 emission saving in space heating for multiple European countries
up to 80%, depending mainly on the heat pump efficiency, the replaced fuel type
and the CO2 intensity of the electricity generation system. In these studies,
the CO2 emissions associated with the electricity consumption of the heat
pumps is assessed by considering an average carbon intensity of the electricity
generation system. Such methodology can be questioned for multiple reasons.
First, the heat pump electricity demand can be strongly correlated to high or
low instantaneous CO2 intensities of the electricity generation system, that can
significantly deviate from the average CO2 intensity. For instance, Reynders
et al. [153] found that due to passive solar gains the space heating demand
is mostly lower at times when PV panels are generating electricity; hence, a
carbon intensity strongly affected by PV might not be a good measure for
the CO2 emissions related to space heating. Second, the electricity demand
associated with a massive heat pump introduction could correlate with peak
electricity demand, increasing the need for peak power capacity [111]. Finally,
these published methods for accounting CO2 emissions are unable to predict
the emission reduction and peak shaving potential when heat pumps participate
in demand response programs.

This chapter aims at a thorough assessment of the CO2 emission savings potential
of residential heat pumps with DR. The emission savings are determined from
the integrated model developed in Chapter 3. According to Hewitt [84], buildings
equipped with heat pumps can play a role in coping with the variability and
limited predictability of renewable energy sources. Different studies illustrate
how introducing heat pumps, possibly combined with DR, may be used to
increase the penetration of RES and avoid curtailment losses [114, 142, 180]
Hedegaard [81, 82] evaluated the added value of using heat pumps with DR in
energy systems with 50% wind power penetration. However, in all of the above
mentioned studies, which building types are better suited for installing heat
pumps was not evaluated. Thereby, the main challenge lays in the wide variation
of building types all with their own characteristics. The building parameters
may affect many important indicators, such as the overall heat demand, the
heat pump cost and heat pump efficiency as well as the load shifting potential
and peak electric power demand. Hence, this chapter explicitly considers the
variation in building parameters, as is not the case in Chapters 3, 4, 6 and 7.

In order to compare the suitability of different building types for installing heat
pumps with DR, the CO2 abatement cost is calculated, which is a measure
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for the cost of reducing CO2 emissions. Although CO2 abatement costs are
known to be sensitive to assumptions on economic parameters such as fuel
prices [45] or discount rates [122], this quantity is employed in this chapter for
relative comparison between building and heating system types. As such, the
numerical results obtained from this chapter on CO2 abatement costs can only
be compared to other technologies if identical assumptions on technical and
economic parameters are made. A few studies report a CO2 abatement cost
for installing a heat pump instead of another heating system, however with not
fully adequate results due to simplifying modeling assumptions. Joelsson [89]
reported an abatement cost of 100 EUR/ton CO2 for a heat pump compared
to a condensing gas boiler, −120 EUR/ton CO2 compared to an oil fired boiler
and −190 EUR/ton CO2 compared to direct electric heating. These values
are obtained by considering yearly average values for energy use, heat pump
performance and efficiency of the electricity generation system. No attention
is paid to the impact the heat pumps may have on the electricity generation.
Kesicki [97] employed a long term energy planning model, UK MARKAL,
which considers system wide interactions, and finds that heat pumps would
become widely implemented in the UK if the CO2 price exceeds 137 £/ton
CO2. However, Kesicki reported that his study lacks the inclusion of more than
two building types, heat pump peak demand, demand side management and
occupants behavior. The current chapter goes beyond this work by thoroughly
taking into account all important factors for determining the CO2 abatement
cost, specifically: the operational cost and CO2 savings, the investment in heat
pumps and the investment in extra peak electric power capacity needed to cover
the additional peak electricity demand. All these factors can be accurately
determined through the integrated modeling framework. The analysis in this
chapter is carried out for an energy system inspired by the Belgian power system.
A high RES future energy system is assumed with wind and PV providing
respectively 30% and 10% of the electric energy on a yearly basis.

The chapter is structured as follows. First the modeling approach is discussed in
Section 5.2. Section 5.3 shows the CO2 abatement cost for the various building
types, as well as the intermediate steps in determining this cost. The discussion
section (Section 5.4) elaborates on some peculiar aspects of the results, in order
to formulate the main conclusions in Section 5.5.

5.2 Methodology

Section 5.2.1 describes how the CO2 abatement cost is determined. To quantify
both costs and benefits which make up the CO2 abatement cost, the parameters
for the integrated model are presented in Section 5.2.2.
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5.2.1 CO2 abatement cost

In many Northern European countries, like Belgium, a commonly installed
heating system is the condensing gas boiler (CGB) [141], which is assumed to be
the baseline heating system in this chapter. Installing a heat pump (HP) instead
of a CGB requires a higher investment cost, but may lower CO2 emissions and
operational costs. This can be expressed in a CO2 abatement cost (ACCO2)
which is the sum of the difference in annual operational costs of the system
and the annuity, ani , of the additional investment, divided by the annual CO2
emission savings 1.

ACCO2 = a20
0.035(Invhp − Invcgb + Invocgt,IM )− (OPEXcgb −OPEXhp,IM )

(COcgb2 − COhp,IM2 )
(5.1)

ani = 1− (1 + i)−n

i
(5.2)

In this expression, Invhp and Invcgb represent the investment cost of heat pump
and condensing gas boiler, respectively. It is assumed that the investment in
a heat pump is performed at the end of life of the previous heat production
system. Hence, the difference in investment cost is considered. Invocgt,IM

stands for the investment cost of extra peak electricity generation capacity in
the form of open cycle gas turbines, determined from the integrated model (IM).
OPEX are operational costs as explained below while CO2 stands for the CO2
emissions. These annual operational costs are to be compared with the annuity
of the investment cost, in which the number of years, n, is considered to be
the life time of the heat pump. This life time is 20 years as also assumed by
Blarke [22]. For the discount rate, i, two values are assumed, one choice leaning
more towards a societal perspective, 3.5% [96], and one reflecting a more private
viewpoint, 7%[5].

The cost of generating the additional electricity demand of the heat pumps,
OPEXhp,IM , is determined through the application of an integrated model
approach presented in Section 5.2.2. This integrated model is a centralized

1During the life cycle of the heat pump, there are also greenhouse gas emissions associated
with leakage of the refrigerant. As shown by Bettgenhäuser et al. [18], these greenhouse gas
emissions can cancel out up to a quarter of the greenhouse gas emissions savings of installing
a heat pump. There is a large debate on whether the use of these refrigerants should be
phased out in favor of refrigerants with a lower greenhouse gas potential. In the interest of
transparency, greenhouse gas emissions due to refrigerant leakage are not considered in this
chapter. Hence, the reported CO2 emission savings are only energy-related.
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optimization towards minimal cost of generating the total electricity demand
which includes the additional electricity demand of the heat pumps. In the
baseline case, the operational costs stem from purchasing of natural gas for
the CGB from the wholesale market, OPEXcgb. The wholesale market price
of natural gas is assumed to be constant at 25 EUR/MWhth, based on the
higher heating value of natural gas. For both electricity and natural gas, the
costs such as costs for transmission, distribution, taxes and RES levies are
ignored. The reported operational cost savings are hence system wide costs, as
CO2 abatement costs are more commonly reported from a societal perspective
[97, 96, 4].

Assuming a CO2 intensity of 205 kg CO2/MWhth [75], based on the higher
heating value for natural gas, both for CGB and gas fired power plants, and zero
CO2 intensity for PV and wind, the CO2 abatement cost can be determined
as the difference in emissions for the case of heating the building with a CGB,
COcgb2 , and with a heat pump, COhp,IM2 . In the former case, the CGB burns
natural gas directly but does not cause an increase in the electricity demand2.
Hence, in the baseline case, the CO2 emissions of the electricity generation
system remain unaltered. In the latter case, the emissions due to the heat pump
arises from a rise in electricity consumption. The CO2 emissions associated
with this increased consumption are determined by the integrated model.

The investment costs include both the investment in the heat pump, Invhp,
the avoided investment in a condensing gas boiler, Invcgb, and the investment
in extra electric peak power capacity, assumed to be open cycle gas turbines
(OCGT), Invocgt,IM . The investment in peak power units is assumed to be 750
EUR/kW [86]. This extra investment in peak capacity is determined by the
integrated model, as it not only depends on the installed heat pump capacity but
also on the simultaneity and stochastic aspects of both the electricity demand
and RES based generation. Additionally, DR can further decrease the need for
additional investment in peak capacity. The cost for DR infrastructure is not
taken into account in this chapter.

The cost of a CGB is assumed to be 3, 200 EUR and independent of the
size. The heat pump investment cost is based on Van der Veken et al. [172],
although care should be taken with these data as the heat pump investment
cost can vary significantly depending on the manufacturer and the installer.
Depending on the nominal heating capacity, Q̇nom in kW , of the heat pump,
Van der Veken et al. [172] pose a cost for a ground coupled heat pump of
(1, 000 · Q̇nom + 10, 000) EUR. The cost of a low temperature air coupled heat
pump depends on whether it is connected to radiators (675 · Q̇nom + 7, 150)

2Both CGB and heat pump consume electricity for the controller and the circulation pump,
but this is not considered as this will be about the same for both cases.
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EUR or to floor heating (410 · Q̇nom + 7, 650) EUR. For a high temperature
air coupled heat pump, a cost of (385 · Q̇nom + 9, 450) EUR is assumed, based
on Heylen et al. [85].

5.2.2 Integrated model description

The aim of this chapter is to identify whether specific building types are better
suited for installing heat pumps with DR, multiple building types (36 cases)
and heating system types (3 cases) are considered. For every combination of
building and heating system type, the CO2 emission reduction, operational
cost savings and increase in peak electricity demand are determined. In order
to have a significant impact on the electricity generation side, it is assumed
that for each case (combination of a building case and heating system case) the
electricity demand is scaled up to 250,000 buildings 3. According to the study
made for the European heat pump association [19], this is the total number of
heat pumps that is expected to be installed in Belgium by 2030.

As shown in Figure 5.1, the integrated model determines the operation of the
buildings, heating systems and electricity generation simultaneously. Thermal
energy storage is possible both in a passive manner in the building structure
and in an active manner in the domestic hot water tank.

For each combination of building type and heating system, three cases are
calculated: the case with heat pumps with or without DR and the baseline
case with condensing gas boilers. When DR is applied, a centralized control is
assumed in which the control of the heating systems interacts with the electricity
generation system as presented in Section 3.7. Hence, arrow (2) in Figure 5.1
works bidirectionally. In the case of no DR, the consumers minimize their
own electricity consumption regardless of the implications for the electricity
generation side and arrow (2) works unidirectionally. The electricity generation
system then minimizes the cost for supplying the resulting electricity demand
profile. In the baseline case, where all buildings are equipped with a CGB, dhpj
is zero and arrow (2) is not applicable.

The length of the time step is one hour and the prediction horizon is one
week. The results reported in this chapter are for one year, obtained by solving
the optimization problem for each week of the year. A receding horizon is

3The number of buildings is taken to be identical for all combinations of building types
and heating system types, in order to make the relative comparison between these types
independent of the number of buildings. Each case is calculated separately, meaning that the
250,000 buildings are always of one single building type with one single heating system type.
Hence, the number of buildings for each case does not directly correspond to the distribution
in the Belgian building stock as presented in [38].
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Figure 5.1: Schematic representation of the integrated model, which
simultaneously dispatches electricity generation units and activates heat pumps
in order to deliver the total electricity demand and maintain thermal comfort
in the buildings, respectively.

employed, in which the states of the system at the end of a week are passed
on to the next week. In this chapter, perfect prediction of disturbances in the
system is assumed and hence the presented results serve as an upper bound
of the practically attainable operational cost and CO2 emission savings. The
potential for peak shaving is determined through an a-priori optimization of
the critical week with the highest residual electricity demand4, in which the
installed capacity of the power plants is minimized. This installed capacity is
then applied as an upper bound for gppj throughout the considered year.

The electricity system, as well as the building types, are based on a possible
future Belgian setting with high RES penetration at the electricity generation
side and increased insulation of the buildings. For the sake of consistency,
all input profiles to the model, such as weather data, RES based electricity
generation and electricity demand, are taken for the same year (2013) and for
the same country (Belgium) as described in Section 2.4.3. The RES based
electricity generation is scaled up in order to represent a high RES system.

4The residual electricity demand is the electricity demand from which the generation from
renewable energy sources is subtracted. This is hence the demand which the traditional power
plants need to deliver.
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Electricity generation

Regarding the electricity generation side, profiles of fixed electricity demand
and electricity generation from RES are taken from the Belgian transmission
system operator Elia [54] for the year 2013. A high RES system is considered
with 30% and 10% of the electric energy consumption covered by wind and PV
respectively. This is largely in line with the European Commission’s overall
ambition of 45% RES in the power sector by 2030 [61]. This corresponds to
an installed capacity of 8, 274 MW of wind onshore, 2, 000 MW wind offshore
and 8, 217 MW of PV. The peak electric power demand, in the absence of heat
pumps, amounts to 13, 119 MW . With this assumed RES capacity and taking
the meteorological conditions of 2013, the peak in residual electricity demand,
without heat pumps, is found to be 12, 392 MW . The latter peak demand is
the most critical since it depicts the need for peak power plants, open cycle gas
turbines in this chapter, which cause the high costs associated with covering
peak demand. With these profiles the curtailment amounts to 0.55 TWh when
no heat pumps are installed.

The dispatchable power plants in the electricity generation system are assumed
to consist solely of CCGTs and OCGTs with different efficiencies. 28 CCGTs
are considered with a total installed capacity of 11, 200 MW , with a nominal
net efficiency between 60% and 48%. The rest of the electricity generation
system comprises of OCGTs, for which the installed capacity depends on the
a priori optimization of the critical week with the highest residual demand.
These plants have a nominal net efficiency between 40% and 30%. For both
power plant types, natural gas has a cost of 25 EUR/MWhth. For RES based
electricity generation, it is assumed that the marginal cost is zero. Curtailment
costs are zero5. The electricity generation system is modeled via the merit order
presented in Section 2.3.2, in order to allow yearly simulations. Taking into
account the system efficiencies and gas consumption, the overall CO2 emissions
for electricity generation and the resulting average system efficiency (in this
chapter defined as η̄egs, as used in Eq. (5.3)) can be calculated.

Buildings

In this chapter, only single family residential buildings are considered. The
building descriptions for the dynamic models originate from a bottom-up
building stock model based on the TABULA [38] building stock, as presented by

5In current European electricity markets, the price at the wholesale markets during
curtailment is not zero but negative due to subsidies and must-run units. The current work
does not take these two drivers of negative electricity prices into account and hence, the price
during curtailment is zero.
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Figure 5.2: Overview of the different building types based on the Belgian
residential building stock [147]. Given the 6 age classes, 3 building types and 2
renovation levels, there are in total 36 building cases.

Protopapadaki et al. [147], to which additions for new and renovated buildings
are made. As illustrated in figure 5.2, a total of 36 different building types is
considered, representing the Belgian residential building stock, which is divided
in three typologies, six age classes and two renovation levels. The three different
building typologies are typical for single family buildings (i.e., detached, semi-
detached and terraced houses). Each of these typologies is subdivided in six
age classes (i.e., before 1945, 1945-1970, 1971-1990, 1991-2005, 2006-2012, after
2012). The most recent class is represented by low energy houses with an average
U-value of 0.3 W/m2K and a ventilation rate of 0.4 ACH (air changes per hour),
which are two necessary conditions for the nearly zero energy building standard,
as set up by the Flemish government [175] and to the economic optimum for
Belgium found by Verbeeck [176]. Only in the buildings after 2005 a ventilation
system is installed for which two cases, with and without heat recovery, are
considered according to the TABULA description. A thermal efficiency of 84%
is assumed for the heat recovery unit. For each age class before 2005, two
renovation scenarios are considered. First, a "mild" renovation scenario includes
roof insulation, replacement of the windows and an improvement of the air
tightness. In the second, "thorough", renovation scenario the outer walls and
floor are additionally insulated [147]. The original buildings without renovation
are not considered in this chapter since the supply water temperature required
for these buildings is too high to be supplied by a heat pump. Additionally,
all poorly insulated Belgian buildings are assumed to have undergone at least
a mild renovation by 2030, in accordance with the proposed evolution of the
Belgian building stock by Gendebien et al. [72]. The thermal behavior and heat
demand of the dwellings are modeled using the two zone reduced order building
model reflecting a 9 states lumped capacity model as shown in Figure 2.4. The
assessment of the accuracy of this representation is described by Reynders et al.
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[151].

In order to represent the user behavior regarding temperature set points and
domestic hot water demand, 52 user stochastic behavior profiles were generated
using the profiles Baetens2 as presented in Section 2.4.2 and developed by
Baetens and Saelens [14]. In order to reduce calculation time, the user behavior
is aggregated by averaging the predetermined, effective lower temperature
bounds as explained in Section 3.6. The upper bound for the indoor temperature
setpoint is 22 ◦C and 20 ◦C for the day zone and night zone respectively [140].

Heating systems

When considering the application of a heat pump, there are three relevant cases
for the heating system: (1) an air coupled heat pump (ACHP) with radiators,
(2) an ACHP combined with floor heating and (3) a ground coupled heat pump
(GCHP) with floor heating6. Floor heating is only considered in the buildings
built after 1990, for which the nominal heating power allows applying a low
temperature heat emission systems, such as floor heating [10]. In each case, the
heat pump also supplies the DHW demand, which is stored either in a 200 l
or 300 l tank at 50 ◦C, depending on the maximum daily demand. For each
renovation case with radiators, it was chosen to keep the original heat emission
system for low temperature heating after renovation. For the "mildly" renovated
building, depending on the age category, this leads to a nominal supply water
temperature for zone heating that can be higher than 60 ◦C. This is too high
to be supplied by a standard heat pump, in which case a double compression,
high temperature air coupled heat pump is considered [85]. Furthermore, space
heating is only considered during the heating season while DHW is supplied all
year round.

The heat pump’s efficiency is typically expressed by the COP which is the
ratio of the instantaneous heating power delivered divided by the electric power
of the heat pump. The seasonal performance factor (SPF) is defined as the
ratio of the thermal energy delivered throughout the year to the yearly electric
energy consumption of the heat pump. In this chapter, the COP is determined
according to Bettgenhäuser et al. [19], which results in a SPF as shown in Table
5.1. The newer buildings (built after 2005) show very similar SPF values as
the "thoroughly" renovated buildings and are not shown separately. Based on
Verhelst et al. [179] and the results in Section 3.5, the COP is assumed to be
constant during the course of each week, thus within one optimization horizon.

6The radiators in the "thoroughly" renovated buildings are assumed to have a nominal
supply water temperature of 45 ◦C. GCHPs are generally not combined with this kind of
radiators, as the relatively high supply water temperature of the radiators spoils the efficiency
gain of the ground coupling.
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Table 5.1: Range of heat pump seasonal performance factors (SPF) for the
different building cases.

Renovation Mild Thorough Thorough Thorough
Heat pump source Air Air Air Ground
Heat emission Radiator Radiator Floor Floor
Min SPF 1.8 2.3 2.5 3.3
Max SPF 2.1 2.6 3.0 4.0

Hence, each week, the COP is predetermined based on the average supply and
source temperature.

For the ground coupled heat pump, a borehole heat exchanger is assumed with
average thermal properties for the ground as located in the north of Belgium,
namely a thermal conductivity of 1.8 W

mK and a volumetric heat capacity of
2.2 MJ

m3K [160]. The heat pump is sized to 80% of the nominal heat demand in
accordance with the code of good practice in Belgium [127], with the peak heat
demand delivered by a back-up electric heater. The model of the heating system
comprises the set of linear equations presented in Section 3.4. The domestic
hot water tank is assumed perfectly mixed and needs to be at a temperature
higher than 50 ◦C at times when DHW is demanded. It can be heated by the
heat pump up to 60 ◦C, but also by the back-up electrical heater up to 90 ◦C.
An exception to this is the high temperature heat pump, which can heat the
DHW storage tank to 80 ◦C.

Illustration of the integrated model output

Figure 5.3 illustrates the output of the integrated model for the case of newly
built detached dwellings with heat recovery on the ventilation, an ACHP and
radiators. The left figure shows the sum of the demand of the heat pumps, dhpj
and the fixed electricity demand, dfixj . When no DR is applied, the heating
systems do not interact with the electricity generation system and thus present
a specific demand profile without feedback. In this case the energy use is
minimized, causing the mean temperature of the buildings (right figure) to stay
as low as possible while maintaining thermal comfort. Note that when assuming
no DR, optimal control is applied which results in an indoor temperature close
to the minimum comfort temperature. When DR is applied, the building is
preheated to higher temperatures in order to avoid electric demand at times
of expensive electricity generation. Load shifting occurs during hours 26 to 31,
avoiding demand when the fixed demand is already high and hence the least
efficient power plants are running. From hour 56 to 67, the electricity demand
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Figure 5.3: Electricity demand minus RES generation (left) and average day
zone temperature (right) for three days of a typical week. The heat pumps
cause an extra demand on top of the fixed electricity demand.

is also shifted in time in order to reduce heat pump demand at peak demand
(peak shaving). Although DR has a direct impact on the indoor temperature,
the temperature stays between the comfort bounds at all times and the rate of
change of the indoor air temperature does not exceed 1 ◦C per hour.

In practice, the temperature range that is available for DR is expected to vary
significantly depending on occupant preference. Moreover, it should not be
constant in time. Nevertheless, the comfort band of 2 ◦C is assumed to be
an acceptable range, taking into account the indoor temperature fluctuations
observed for current state-of-the-art control strategies [104]. Traditional control
systems apply a feedback control on the indoor air temperature with a typical
spread of 1 ◦C to 2 ◦C [104] which will result in a similar average and similar
fluctuations of the indoor air temperature.

5.3 Results

The first part of this section shows the CO2 abatement cost for different
building and heat pump cases, which allows a comparison between these cases.
The sensitivity of this CO2 abatement cost towards economical parameters
is illustrated by the different discount rate cases. Next, the different factors
determining this abatement cost are described in detail, namely the CO2
emission (Section 5.3.2), the operational costs (Section 5.3.3) and finally the
need for peak electrical capacity (Section 5.3.4).
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Figure 5.4: Overview of the CO2 abatement cost as a function of the heat
pump’s seasonal performance factor (SPF) for a discount rate of 7%. The
results are clustered depending on the presence of an air coupled heat pump
(ACHP) or ground coupled heat pump (GCHP), the presence of radiators (Rad)
or floor heating (Fh) and whether the buildings are mildly renovated (Mild ren.)
or not.

5.3.1 CO2 abatement cost

In Eq. (5.1), the CO2 abatement cost includes operational cost savings, the
additional investment in a heat pump and the extra investment in OCGT needed
to cover the increase in peak electricity demand. In this abatement cost, the
heat pump investment plays an important role. As shown in Figure 5.4, the
CO2 abatement cost depends strongly on the SPF. In Figure 5.4 there is a clear
"clustering" of the results based on the four heat pump cases shown in Table
5.1. The "mildly" renovated buildings (SPF 1.8 to 2.1) are the least attractive
buildings in which to install a heat pump, as these have the highest abatement
costs. Applying DR for these buildings does bring the abatement cost closer to
that of the "thoroughly" renovated buildings.

For these "thoroughly" renovated buildings, coupling the heat pump to the
radiators leads to somewhat higher seasonal performance factors (SPF 2.3 to
2.6) and also to lower abatement costs. However, the lowest abatement costs are
obtained with the air coupled heat pumps coupled with floor heating (SPF 2.5
to 3). For the best case, an abatement cost of 185 EUR/ton CO2 is obtained.
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Ground coupled heat pumps (SPF 3.3 to 4) lead to the highest CO2 emission
savings, as shown in the next section, but this is not enough to counteract the
higher investment cost; hence the abatement cost is on average 100 EUR/ton
CO2 higher than for the air coupled heat pump with floor heating. Furthermore,
it must be noted that all buildings have been at least "mildly" renovated and
the original heat emission system was kept for low temperature heating after
renovation. As such, the main differences in abatement cost are induced by the
heat pump investment cost and the influence of the supply water temperature
which is directly affecting the SPF of the heat pumps. These factors cause a
large spread on the abatement cost as shown in Figure 5.4. What also follows
from the strong clustering of the results based on the SPF, is that there are
little differences between the considered building types. As soon as the buildings
are well insulated, i.e. the "thoroughly" renovated buildings and buildings built
after 2005, their CO2 abatement cost depends mainly on the type and SPF of
the heating system. In those cases, it is observed that the age class and building
type are of less importance. In order not to overload the figures this is not
illustrated. Throughout all cases, the application of DR is beneficial and lowers
the abatement cost with 300 EUR/ton CO2 on average.

The results in Figure 5.4 are determined using a discount rate of 7%, reflecting a
more private perspective. In order to illustrate the sensitivity of this abatement
cost to the discount rate, the results are shown for the more societally oriented
discount rate of 3.5% in Figure 5.5. This lower discount rate lowers the weight
of the investment cost in the determination of the CO2 abatement cost (Eq.5.1).
This causes the CO2 abatement cost, on average, to reduce by 250 EUR/ton
CO2 and 150 EUR/ton CO2 for the cases without and with DR, respectively.
In the best case, the abatement cost becomes 110 EUR/ton CO2. The relative
differences and trends between the different building and heating system cases
appear to be similar to Figure 5.4.

5.3.2 CO2 emissions

Figure 5.6 shows the relative change in CO2 emissions associated with replacing
a condensing gas boiler with a heat pump. The relative CO2 emission savings
are highly dependent on the SPF of the heat pump, for which four groups can
be distinguished based on Table 5.1. The first group consists of the mildly
renovated buildings which are all equipped with a high temperature ACHP
(SPF 1.8 to 2.1) for which the CO2 emissions are lowered by 15% to 25%. For
the second group, consisting of the thoroughly renovated buildings with an
ACHP and radiators (SPF 2.3 to 2.6), the CO2 emission reduction is higher:
25% to 35%. The third and fourth groups represent the buildings with floor
heating combined with an ACHP (SPF 2.5 to 3) or a GCHP (SPF 3.3 to 4)
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Figure 5.5: Overview of the CO2 abatement cost as a function of the heat
pump’s seasonal performance factor (SPF) for a discount rate of 3.5%.

respectively. For these groups the decrease in CO2 emission is 30% to 40% and
40% to 55%, respectively. Applying DR leads to an additional reduction in
emission of approximately 15% on average. For the cases with floor heating,
applying DR seems to cancel out the differences between the building types,
leading to a general 45% or 60% emission reduction for an ACHP or GCHP,
respectively. Note that these are all relative reductions in CO2 emission. As
buildings get better insulated and the annual heat demand lowers, the absolute
CO2 emission for the heat pump cases will converge.

One could also make a simplified estimation of the results in Figure 5.6. If
one would assume that all electric demand of the heat pump is covered by an
electricity generation system with a yearly average system efficiency, η̄egs, and
the heat pump has a seasonal performance factor, SPF , the estimation of the
relative CO2 emission would be:∑year

CO2(HP )∑year
CO2(CGB) =

COgas
2 ·Qdem,year

η̄egs·SPF
COgas

2 ·Qdem,year

ηcgb

= 1/(η̄egs · SPF )
1/ηcgb (5.3)

with COgas2 the CO2 intensity of burning natural gas and Qdem,year the yearly
thermal energy demand of a building. This estimation is plotted in Figure 5.6 if
η̄egs would correspond to the minimal (48%) and maximal (60%) efficiency of a
CCGT as well as the maximal efficiency of an OCGT (40%). As can be seen from
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Figure 5.6: Relative CO2 emission when replacing the reference condensing
gas boiler with a heat pump which does not (no DR) or does participate in
DR (DR), as a function of the seasonal performance factor (SPF) of the heat
pump. Additionally, the simplified estimation based on three typical values
of the yearly average electricity generation system efficiency η̄egs (Eq. 5.3) is
shown.

Table 5.2: Equivalent electricity generation system efficiency, η̄egs, which can
also be interpreted as the inverse of the primary energy factor.

Case Literature no DR DR
η̄egs 40% 52% 65%
PEF 2.5 1.9 1.5

Figure 5.6, this equation is good in estimating the relative CO2 savings when no
DR is applied. This is because, when no DR is applied, most of the electricity
demand of the heat pumps is covered by gas fired power plants, as discussed in
Section 5.3.3. If one assumes an ηcgb of 0.92, the fitted equivalent electricity
generation system efficiency would be 52% with a coefficient of determination
R2 of 0.94. A similar fit can be found for the cases with DR, attaining an
equivalent electricity generation system efficiency of 65% with a coefficient of
determination R2 of 0.95. This equivalent efficiency is higher than what the
power plants can reach, as applying DR allows for a higher uptake of RES. Of
course, the presented values will change if the boundary conditions of this study
change.

The equivalent electricity generation system efficiency, η̄egs, can also be
interpreted as the inverse of the primary energy factor (PEF) of electricity
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(Table 5.2). For example for the boundary conditions of this chapter, a heat
pump with DR has a PEF of 1.5 which means that for 1 kWh of electricity,
on average 1.5 kWh of fuel is needed. In the literature, the PEF is typically
around 2.5 [177] [161] [156] or varying between 2 and 3.5 [49]. The PEF is highly
dependent on the mix of generation systems in the electricity generation system.
In this chapter, the mix consists mainly of efficient CCGTs and RES, causing
the PEF to be lower than the typical value in the literature. The integrated
model is able to determine this PEF accurately and determine the change in
PEF due to the application of DR.

5.3.3 Operational aspects

Regarding the operational cost savings, the trends of relative cost savings with
respect to the heat pump SPF are identical to those of the CO2 emission
reduction. Indeed, as natural gas is the only fuel considered in the study and
the cost of RES is considered to be zero, the only driver in this chapter that
reduces CO2 emissions and fuel cost is a reduction in natural gas demand.
However, 250,000 heat pumps will have a significant impact on the electricity
generation system, which is discussed in this section.

The increase in electricity demand due to the 250,000 heat pumps is covered
either by a reduction in RES curtailment (left in Figure 5.7) or by an increase
in generation by gas fired power plants (right in Figure 5.7). The reduction in
RES curtailment is achieved by shifting heat pump electricity demand towards
hours of curtailment. As such, the heat pumps use electricity which would
have otherwise been curtailed. Figure 5.7 shows that the heat pump electricity
demand is mainly covered by a higher generation from the gas fired power
plants. When no DR is applied, a minor fraction of the heat pump demand
is covered by RES. In this case, the CO2 emission reduction of installing a
heat pump instead of a condensing gas boiler is dominated by the difference in
overall efficiency.

When DR is applied, CO2 emissions do not only decrease due to a higher overall
efficiency, but also due to load shifting. This load shifting improves the average
efficiency of the power plants and, through a higher uptake of RES, decreases
the generation by these power plants, as shown later in Figure 5.9. On average,
DR causes these plants to produce 0.1 TWh less by increasing the use of RES
by 0.2 TWh on average. In relative terms, the better insulated buildings will
have a higher share (15% to 25%) of the heat pump electricity demand covered
by RES compared to the less insulated buildings (5% to 15%).

Load shifting in heating systems typically leads to higher average temperatures
(e.g. Figure 5.3) and hence higher thermal losses and higher energy use. Figure
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Figure 5.7: The electricity demand of the heat pumps is covered by reduction
in RES curtailment (Left) and by additional generation from the gas fired
power plants (Right). Mind the difference in y-axis. With no heat pumps,
the curtailment amounts to 0.55 TWh while with heat pumps and no DR,
the curtailment amounts to 0.52 TWh. Hence, performing DR approximately
halves the curtailment in this case study.
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Figure 5.9: Decrease in curtailing RES per building with respect to extra
electricity consumption per building when applying DR. The thick contour line
depicts the situation in which, on a net basis, no net reduction is achieved.

5.8 shows this increase in energy use associated with load shifting. For all
building cases, the domestic hot water tank is used almost identically: around
3% more thermal energy is added to this storage tank, causing the yearly average
temperature of the storage tank for DHW to be 4 ◦C higher. Regarding space
heating with radiators (SH Rad), when DR is applied, a clear trend can be
observed: as the peak heat demand decreases, relatively more heat is emitted
to the building. On average, the energy use increases by 5.5% and the indoor
air temperature by 0.5 ◦C. If the buildings are equipped with floor heating (SH
Fh), the trend is less pronounced, leading to an average increase in energy use
by 3.5% and an average increase in indoor air temperature by 0.2 ◦C.

One may perhaps argue that the extra energy use is wasted in higher thermal
losses. To see whether this is the case, the decrease in RES curtailment per
building is plotted against the increase in electricity use per building in Figure
5.9. For example, applying DR causes a building to consume 300 kWhe of
electricity more but reduces 800 kWhe of RES curtailment, then on a net basis,
the gas fired power plants produce 500 kWhe less. From this figure it is clear
that the decrease in curtailment is always higher than the increase in electricity
consumption due to DR. Hence on a net basis, less electricity from gas fired
power plants is used. For an ACHP with floor heating, this difference is the
highest, reducing 325 kWhe to 625 kWhe electricity consumption from gas fired
power plants per building. Note that, due to the high RES share assumption,
the curtailment in the case with no DR is rather high to start with, namely
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around 2000 kWhe per building. Hence, the relative reduction in curtailment is
between 30% and 45% and is similar to values found in the literature [81, 52].

5.3.4 Peak capacity

In the calculation of the CO2 abatement cost, the investment in additional peak
power plant capacity is taken into account (Eq. 5.1). At an investment cost of
750 EUR/kWel (Section 5.2.1), this additional capacity can be an important
term in the CO2 abatement cost, which is typically not included in heat pump
CO2 abatement cost in the literature. The need for additional peak power plant
capacity depends highly on the simultaneity of the heat pumps’ demand and
the other electricity demand, assumed to be fixed, at peak periods. Figure 5.10
shows how the heat pumps contribute to the electricity demand at peak periods,
as also shown by Hawkes [79]. For the considered climate and demand profile,
i.e. Belgium, the highest demand of the heat pumps will occur at cold and dark
days which typically coincides with the peak electricity demand. As shown in
Figure 5.10, when no DR is applied, the additional peak demand per building is
strongly correlated with the nominal electric power demand of the heat pump.
Regarding buildings with the same heat demand, a ground coupled heat pump
would hence perform best in this case, as this system has the highest COP and
therefore the lowest peak electricity demand.

Installing heat pumps with DR can cause the need for additional peak power
plants to decline, as peak shaving can be applied. Below a certain capacity of
the heat pump, the buildings are able to shift almost all demand away from the
hour with the highest electricity consumption (Figure 5.10). The buildings with
floor heating generally perform better than the same building with radiators.
Figure 5.10 shows that peak shaving becomes less effective at higher design
electricity demand. The reason for this is twofold. First, the buildings with
a higher electricity demand at design conditions are also the less insulated
buildings for which preheating is less efficient. Second, the load can only be
shifted a limited number of hours. If a significant number of heat pumps perform
this shift, the hours before the peak might become "saturated", e.g. in hour
56 in Figure 5.3. When this occurs, there is no other option than to increase
the consumption in these hours, and therefore the installation of additional
peak power is required. Note that in this chapter, for each case, the heat pump
demand was scaled up to represent 250,000 buildings. Altering this number of
buildings can alter this "saturation" and hence also alter the results shown in
Figure 5.10.

Additionally to peak shaving, heat pumps with DR also demand less power
when the peak power plants are running (Figure 5.11). Since these are typically
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Figure 5.10: Performance of DR in peak shaving. The electric power that each
building is contributing to the demand at peak time by installing a heat pump
is shown with respect to the nominal electric power demand of the heat pump.
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Figure 5.11: Part of the residual load duration curve for the cases of installing
250,000 ACHPs with radiators in the best (left) and worst (right) insulated
detached buildings. DR decreases the need for extra peak power. For the best
insulated buildings, the electricity generation covered by the peak power plants
is also reduced.
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less efficient OCGT, compared to CCGT, this also leads to lower CO2 emissions
for this case. This effect is predominantly observed for the better insulated
buildings (left in Figure 5.11) where more load shifting is performed.

5.4 Discussion

The lower values of the CO2 abatement cost found in this chapter are in
the same order of magnitude as in the work of Joellson [89] and Kesicki [97].
However, those studies lack to highlight the large spread in abatement cost
associated with the building renovation level, the type of heat pump installed
and the application of DR. As shown in Figure 5.4, these factors cause the
abatement cost to vary between 185 and 2, 300 EUR/ton CO2. Furthermore,
the abatement costs obtained here are not comparable to the other studies,
as this chapter takes into account operational and investment costs at both
demand and generation side.

What might also cause a large spread in the CO2 abatement cost are the
characteristics of the studied electricity generation system. Van den Bergh et
al. [170] and Delarue et al. [45] illustrate that the abatement cost is highly
dependent on RES deployment and RES cost as well as the fuel mix and fuel
cost of conventional power plants in the electricity generation system. In order
to limit the scope of this chapter, only natural gas was considered as a fuel.

Applying DR on heat pumps causes a reduction in peak electricity demand
and RES curtailment. However, other technologies may be more cost effective
in attaining these reductions. For example, Dupont et al. [52] studied the
application of DR with battery electric vehicles and white good appliances. For
a future scenario with 18% of electricity generation stemming from PV and
wind and 8% of the cars being electric, this reduces RES curtailment with 41%.
Hence, the potential for DR on heat pumps also lowers. Another possible source
of DR competition stems from stationary batteries, which are a favourable
option to combine with rooftop PV [163].

A number of factors influencing the CO2 abatement cost could change by 2030.
A limited sensitivity analysis towards these factors is shown in Table 5.3. A
large scale introduction of heat pumps can increase the electricity demand up
to the point that extra investments in the distribution and transmission grids is
needed. It is hard to estimate the associated costs since these are very location
dependent [67]. For an arbitrary value of 3000 EUR of grid enforcement per
household based on [67], Table 5.3 shows that the CO2 abatement cost rises.
This rise is however limited for most cases and does not alter the difference
among the demand side technologies. One can also argue whether the additional
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Table 5.3: Sensitivity of the CO2 abatement cost (in EUR/ton CO2) towards
grid infrastructure investment, heat pump investment cost and gas price. The
results are only shown for the cases with DR for the detached buildings built
between 1971 and 1990.

Renovation Mild Thorough Thorough Thorough
Heat pump source Air Air Air Ground
Heat emission Radiator Radiator Floor Floor
Reference (i = 7%) 976 493 251 397
3000 EUR network 1165 665 380 495
investment [67]
40% cheaper 555 193 52 152
heat pumps [99]
25% higher natural 977 476 228 371
gas price [171]

investment in grid infrastructure should be solely attributed to heat pumps,
since a higher uptake of distributed PV needs similar investments [13]. On the
other hand, the investment cost of heat pumps could be lower in 2030, due to
the learning curve effect associated with higher production volumes [99]. If one
assumes a similar cost reduction as in Switzerland [99], the CO2 abatement cost
significantly lowers as shown in Table 5.3. Thus, the heat pump investment
cost represents a substantial part of the CO2 abatement cost, and lowering this
cost can make a heat pump a more attractive option in lowering CO2 emissions.
Finally, according to the World Energy Outlook [171] the price of natural gas
could rise 25% compared to 2014 levels. The CO2 abatement cost appears to
be less sensitive to this price as Table 5.3 shows.

In this chapter, a large scale deployment of heat pumps is considered to cause
an additional electricity demand on top of the fixed electricity demand, and the
extent to which this additional demand can be covered by RES is quantified.
Thus, this chapter employs the incremental emission factor as defined by Bettle
et al. [20]. Bettle et al. advise applying this incremental emission factor for
assessing a change in electricity demand and hence for the application in this
chapter, the replacement of condensing gas boilers with heat pumps. According
to Bettle et al., the incremental emission factor can lead to 50% higher CO2
emissions than employing the average emission factor, in which the CO2 emission
of a particular electricity demand profile is assessed in each time step with the
average CO2 emission of the electricity generation in that time step.

This chapter does not include investment costs for building renovation, but
assumes that the renovated buildings are already present. Of course, one could
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Table 5.4: Yearly CO2 emissions in ton for certain scenarios for the cases with
a condensing gas boiler (no HP), heat pump without DR (no DR) and heat
pump with DR (DR).

Renovation level Mild Thorough
Ton CO2/year no HP no DR DR no HP no DR DR
Detached pre 1945 12.9 10.9 10.4 3.8 2.6 2.2
Terraced 1971-1990 3.2 2.7 2.3 2.1 1.5 1.2

argue whether the investment in a heat pump is justifiable in a mildly renovated
building, and whether this money should not better be spent on a more thorough
renovation of the building envelope. Judging from the results, this appears to
be very case dependent, as shown in Table 5.4. For example, for the worst
building case (detached building pre 1945) renovating the building envelope is
more effective in reducing CO2 emissions. In case of a better insulated building
(terraced building from 1971-1990), installing a heat pump and performing DR
leads to almost the same emission reduction as renovating the building envelope.
For these cases, installing a heat pump and performing DR is hence a viable
alternative for newer and more compact buildings, where a thorough renovation
of walls and floor might not be a feasible option.

For the ground coupled heat pumps, the CO2 abatement cost is on average
higher than for the air coupled heat pumps with floor heating (Figure 5.4).
Ground coupled heat pumps are known to have high global efficiencies in
applications where both heating and cooling are needed, such as office buildings,
thanks to the high efficiency of direct cooling [178]. This benefit is not exploited
in residential buildings in a climate similar to that of Belgium, leading to longer
pay back periods.

It is important to note that from a consumer point of view, the increase in
electricity consumption can demotivate the consumer of participating in DR.
A consumer will only participate in DR schemes when facing a lower overall
energy cost. This cost for the end consumer typically consists of energy related
costs (the cost of electricity generation) and non-energy related costs (taxes,
transmission and distribution tariffs), which are currently transferred as a
proportional tariff (per kWh) to the end consumer. A time dependent price
signal through the energy component of this tariff may be insufficient to motivate
the end consumer to participate in an DR scheme: the decrease in energy related
costs, via a time dependent tariff, may be fully offset by an increase in the non
energy related costs. The latter increase can result from the increased energy
use and hence, the time invariant non energy related component of the tariff.
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5.5 Conclusion

This chapter makes an assessment of the suitability of heat pumps for reducing
CO2 emissions in the residential building sector. A large scale deployment of
heat pumps with demand response, instead of the commonly installed condensing
gas boilers, is investigated by taking into account the effects on the electricity
generation system. To this aim, a detailed integrated model of buildings,
heating systems and the electricity generation system is employed. This allows
a thorough assessment of the CO2 emissions, fuel usage and peak capacity
investment. From the results, it appears that the reduction in CO2 emission
is dominated by the seasonal performance factor of the heat pump and the
application of DR. This DR allows a higher uptake of RES based electricity
generation that would have otherwise been curtailed. The heat pumps appear to
contribute significantly to the peak electricity demand. The application of DR
partially alleviates this problem, especially for the buildings with floor heating.

To allow comparison between combinations of heating systems and buildings, the
above results are summarized in a CO2 abatement cost. This CO2 abatement
cost is sensitive to assumptions on economical parameters, as illustrated by
the difference in results due to a different discount rate. The numerical values
on CO2 abatement cost are hence only valid within the given assumptions on
boundary conditions. Furthermore, the sensitivity on the assumptions of the
electricity generation system characteristics was not considered in this chapter.
Rather, the focus is on demand side, where it appeared that the CO2 abatement
cost is already strongly influenced by multiple factors at the building level. The
result is a large spread on the CO2 abatement cost as a function of the heating
system and building characteristics. The first factor is the renovation level of
the considered dwellings, which causes large differences in CO2 abatement costs.
Installing a heat pump in "mildly" renovated buildings causes a low relative
reduction in CO2 emissions and hence a high CO2 abatement cost. Buildings
which have undergone a "thorough" renovation, as well as new buildings, show
a substantially lower CO2 abatement cost and CO2 emissions when installing a
heat pump. The second factor is the heating system. For the new buildings and
the "thoroughly" renovated buildings, an air coupled heat pump combined with
floor heating is the most competitive heating system in terms of CO2 abatement
cost. The ground coupled heat pump leads to higher CO2 emission savings, but
results in a higher abatement cost due to the difference in investment cost and
the absence of cooling demand in residential buildings in a Belgian climate. The
third factor is the application of DR. This lowers the CO2 abatement cost with
on average 300 EUR/ton CO2 because of a lower investment in peak power
plant capacity, operational cost savings and lower CO2 emissions. These savings
are reached by load shifting which causes, on average, the heat demand for
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domestic hot water to grow by 3% and the space heating demand by 5.5% for
radiators and 3.5% for floor heating.

The proposed methodology can support policy makers in prioritizing investments
in the building sector that reduce CO2 emissions. It is shown that, within
the boundary conditions assumed, particular buildings and heating system
configurations are more cost effective than others in reducing CO2 emissions by
installing a heat pump. Additionally, the effects of a large scale deployment of
heat pumps with DR on the electricity generation system are illustrated.



Chapter 6

Case study II: Impact of
market penetration

This chapter is based on:
Arteconi, A., Patteeuw, D., Bruninx, K., Delarue, E., D’haeseleer, W., & Helsen,
L. (2016). Active demand response with electric heating systems: impact of
market penetration. Accepted for publication in Applied Energy.

6.1 Introduction

In the previous chapter, the value of DR was determined for different building
and heating system types. In contrast to this, this chapter considers one building
type and one heating system type. Rather, this chapter focuses on the effect of
different penetration rates of DR programs among customers in order to point
out positive and negative aspects of a variable introduction of such programs.
The main effort is the attempt to quantify the economic benefits of DR programs
both from a customer’s and an overall system’s perspective.

Mathieu et al. [116] modeled thermostatically controlled loads as a virtual
energy storage and determined savings of 22 - 56 USD/year for heat pumps
when these participate in ancillary service markets. Papaefthymiou et al. [131]
considered a large set of buildings in the German market and showed cost savings
of DR with heat pumps between 25 EUR and 40 EUR per year. Hedegaard
and Munster [82] determined that the flexible operation of individual heat

103



104 CASE STUDY II: IMPACT OF MARKET PENETRATION

pumps leads to a cost reduction of about 60 - 200 EUR per year per house in
integrating wind power. This was mainly caused by savings on energy system
investments. In contrast to these authors, this chapter analyses the operational
cost savings while varying the participation rate in DR programs, rather than
in a predetermined scenario. This allows evaluating to what extent deploying
these residential DR resources is meaningful and how the gains per participating
household1 depend on this.

The analysis is conducted by employing the integrated model presented in
Chapter 3. Section 6.2 provides the parameters of the integrated model for this
chapter. In Section 6.3, the effect of a partial DR participation, see Eq.(6.1),
is assessed in terms of difference in energy use and operational costs for the
electricity generation system. Section 6.4 evaluates the difference in flexibility
in the hot water storage tank and the thermal mass of the building, both
separately and together. Moreover, different levels of RES integration in the
generation mix are studied in Section 6.5, in order to highlight their effect on
the operational performance of the system. Section 6.6 discusses the results
further in order to end up with the conclusions in Section 6.7.

6.2 Methodology

In this chapter, the integrated model as presented in Section 3.7, is employed.
The electricity generation system is modeled using the MO model as described
in Section 2.3.2. The main focus of this chapter is on the DR participation
parameter pdr in Eq. 3.41, which is repeated here:

∀j : dhpj = (1− pdr) · dhp,fix
j + pdr · dhp,var

j . (6.1)

The linear demand side model is employed to model the flexibility in the heat
pump electricity demand dhp,var

j . This model entails the buildings using electric
heating systems, composed of heat pumps and auxiliary electric resistance
heaters. These heating systems provide both space heating via floor heating
and domestic hot water. Thermal energy storage, allowing shifting electricity
demand in time, is provided both by the thermal mass of the building and the
hot water storage tank. The same demand side model is used to predetermine
the electricity demand of the heating systems not participating in a DR scheme
(dhp,fixj ) by minimizing the energy use to meet the required thermal comfort
and neglecting any interaction with the supply side model. This electricity

1The presented gains are fully divided over the participating buildings. Note that in
reality, this will not be the case as other parties, such as electricity generation companies
and/or aggregators, will claim part of this profit. The intention of the presented earnings is
to illustrate the maximum possible size of the gains.
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demand is referred to in the following as the minimum energy scenario for
heating systems (pdr = 0%).

In this chapter, the electricity supply and demand is inspired by the Belgian
power system. The electricity generation system configuration is based on
a hypothetical future energy mix, consisting solely of gas fired power plants
and RES based electricity generation [57]. The installed capacity of gas fired
power plants consists of 11, 200 MW CCGTs and 5, 800 MW OCGTs. The
nominal net efficiency of the CCGT power plants varies between 60% and 48%
while for the OCGT power plants, this varies between 40% and 30%. Both
the traditional electricity demand profile and the electricity generation by RES
(gRESj ) are taken from the Belgian transmission grid operator [54] for the year
2013. Considering the traditional electricity demand profile, the peak electric
power demand on the transmission grid amounts to 13, 119 MW . When adding
also the electric heating system to this traditional demand, the peak demand
occurs at another moment in time, and amounts to 16, 917 MW 2. The gas
price is assumed to be 25 EUR /MWh [62]. RES based electricity generation
is assumed to have zero marginal cost.

Regarding the demand side, the number of buildings (nb) is assumed to be
about one million, which is the expected number of detached buildings for
Belgium in 2030 [147]. In this study, the detached buildings are represented by
an ‘average’ building as suggested in the TABULA [38] project, since Chapter 5
illustrated the similar DR potential for thoroughly insulated buildings. For this
average building, the day zone and night zone have a surface area of 132 m2

and 138 m2 respectively. All these buildings are assumed to have undergone a
renovation of windows, air tightness, walls, floor and roof resulting in low energy
buildings with an average U-value of 0.3 W/m2K and a ventilation rate of 0.4
ACH (air changes per hour), which are two necessary conditions for the nearly
zero energy building standard, as set up by the Flemish government [175]. The
dynamic building model is the linear state space model based on Reynders et
al. [151], as shown in Figure 2.4. Table 6.1 provides an overview of the values
for the thermal resistances and thermal capacities used in this building model.

Regarding the occupant behavior, the user behavior data from Baetens and
Saelens [14] was used, as illustrated in the profiles Baetens2 in Section 2.4.2.
The user behavior data was aggregated with the methodology presented in
Section 3.6. The weather data is based on Uccle for the year 2013, as shown in
Section 2.4.3. This weather data is taken for 2013 in order to have the correct
simultaneity with the fixed electricity generation profile and the electricity
generation by RES.

2This value refers to the case of minimum energy use by heat pumps (dhp,fix
j )
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Table 6.1: Resistance and capacitance values used in the RC network model of
the building as illustrated in Figure 2.4.

Parameter Day zone Night zone
Cw (MJ/K) 20.3 8.8
Cf (MJ/K) 12.1 -
Ci (MJ/K) 2.43 1.47
Cwi (MJ/K) 26.2 4.09
Cfi1 (MJ/K) 31 -
Cfi2 (MJ/K) - 31
Rw1 (K/W) 0.003 0.002
Rw2 (K/W) 0.031 0.043
Rwi (K/W) 0.001 0.009
Rf1 (K/W) 0.02 -
Rf2 (K/W) 0.047 -
Rfi1 (K/W) 0.001 -
Rfi2 (K/W) 0.002 -
Rfi3 (K/W) - 0.001
vent (K/W) 0.006 0.009

The heating system consists of an air coupled heat pump which supplies heat
to the floor heating system in the day and night zones, as well as to the storage
tank for DHW. Space heating is only considered during the heating season
while DHW is supplied all year round. The heat pump is sized to meet 80% of
the peak heat demand, the rest of the peak demand is covered by a back up
electric resistance heater. The COP of the heat pump is determined according
to Bettgenhäuser et al. [19]. The nominal supply water temperature of the
floor heating is 35 ◦C. Based on this, the COP is predetermined and assumed
to be constant throughout each optimisation period, based on Verhelst et al.
[179] and the results of Section 3.5. Hence, during each optimization period
of a week, the COP is predetermined based on the average supply and source
temperature.

Cases In the reference case, it was assumed that RES based electricity
generation is capable of covering 30% of the electricity demand and consists of
50% solar and 50% wind energy. The lower bounds for the indoor temperature
set points are 20 ◦C and 18 ◦C for the day zone and night zone respectively,
while, in the reference case, the upper bounds are 22 ◦C and 20 ◦C respectively
[140]. The maximum allowed air temperature in the day zone is referred to as
T sh,max in the rest of this chapter. The maximum allowed air temperature in
the night zone is always assumed to be 2 ◦C less. The DHW storage tanks are
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Table 6.2: Summary of the key parameters in the different cases studied in this
chapter. The DR participation rate is expressed as a percentage of the total
electricity demand of electric heating systems. The RES share is expressed as a
share of the total electric demand.

Parameter Reference DR technology RES share
Section 6.3 6.4 6.5
DR participation rate [%] 5-25-50-100 5-25-50-100 5-25-50-100
RES share [%] 30 30 0-30-50
T sh,max [◦C] 22 22-24 22
T tank,max [◦C] 60 60-90 60
Tank size [–] small small or big small

either 200 l or 300 l, depending on the maximum daily hot water demand at
50 ◦C. The upper bound for the DHW storage tank is 60 ◦C. This upper bound
for the DHW storage tank is inspired by the maximum temperature at which
the heat pump can still deliver heat. In this reference case, the share of flexible
demand from electric heating systems (pdr) is varied between 5% and 100%.
The first column of Table 6.2 provides an overview of the key parameters of the
reference case. The results for this reference case are shown in Section 6.3.

In a second case study, entitled ‘DR technology’ in Table 6.2, the difference
in DR flexibility between space heating and domestic hot water provision is
evaluated along with measures to increase the available flexibility: the upper
boundaries are varied for the indoor air temperature, T sh,max(up to 24 ◦C),
and the DHW storage tank, T tank,max (up to 90 ◦C). The DHW storage tank
can be heated up to a temperature higher than 60 ◦C by a back-up electric
resistance heater. The effect of doubling of the DHW storage tank size is also
investigated, so 400 l or 600 l tanks instead of 200 l or 300 l tanks. The results
for this comparison are provided in Section 6.4.

In a third case study, entitled ‘RES share’ in Table 6.2, the impact of the RES
share is evaluated by considering two extra cases, namely a 0% and 50% RES
share in the end electric energy use. Moreover, the relative share of solar and
wind energy, and its impact on the performance of DR programs, is studied.
The results for this case study are provided in Section 6.5.

6.3 Results: reference case

In this section, the results for the reference case are illustrated both for
operational cost savings (Section 6.3.1) and peak shaving (Section 6.3.2).
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(a) The rate of DR participation influences
the demand recovery ratio (squares, top
figure) as well as the total increase in
electricity demand (circles, bottom figure).
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(b) Effect on the operational cost savings,
both in relative total system cost (crosses, top
figure) and per participant (asterisks, bottom
figure).

Figure 6.1: Reference case: energy use and operational cost savings. The
increase in energy use and difference in operational cost are determined with
respect to the case of no DR participation (pdr is 0%). These cost savings are
for the electricity generation system as a whole.

6.3.1 Operational cost savings

One of the main purposes of this chapter is to illustrate the effect of a variable
DR participation of customers using electric heating on the electricity generation
system. This effect is presented both from the customers’ and overall system’s
point of view. The controllable demand from the electric heating systems is
assumed to participate to the DR program with a variable percentage, pdr,
namely 5%, 25%, 50% and 100% (see Table 6.2, ‘Reference’ case). When there
is no full DR participation, a part of the consumers is not exposed to the hour
to hour variations of the electricity generation cost. It is assumed that these
consumers minimize their own electricity use. For the customers adhering to the
DR program, the demand is shifted to hours of lower overall consumption, hence
lower electricity costs, and so called ’valley filling’ occurs. Load shifting however
leads to higher temperatures in the building and DHW storage tank and hence
to additional thermal losses and an increase in overall energy use. The absolute
increase in electricity demand grows with pdr (Figure 6.1a). This increase
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varies between 20 GWh to 180 GWh annually at the country level, which is a
small amount compared to the total electricity demand of about 88 TWh. The
demand increases with increasing DR penetration rates in a sub-linear fashion.
This sub-linear trend is due to a ’saturation’ of the usefulness of flexibility in
the power system. Additional DR based flexibility is not used as intensively,
because the need for load shifting has already been fulfilled. During moments of
load shifting, the burden of load shifting is however carried by more buildings
when increasing the DR penetration rate, resulting in smaller deviations from
the minimum energy use demand profile for each building individually. As a
result, the increase in energy use rises sub-linearly with the DR penetration
rate.

The ratio between the observed electric energy use by the flexible electric heating
systems and the minimum electric energy use of those heating systems (pdr =
0%) is defined as the demand recovery ratio (DRR) [27, 41]. This ratio allows
quantifying the increase in energy use due to load shifting of the demand side
technology. It is always greater than or equal to one: in the case of 0% DR,
the DRR is 1 as in this case there is no participation in the DR program and
the buildings minimize their own electricity consumption (pdr = 0%). When
the buildings participate in DR, the DRR exceeds one. Figure 6.1a illustrates
the DRR for the buildings participating in the DR program. An important
observation is that the DRR depends on the DR participation. When 5% of the
buildings are participating, the relative increase in energy use per dwelling is
the highest, because, as previously described, there are few customers involved
in the load shifting process. The required deviations from the minimum energy
use electricity demand profile are the highest, resulting in higher thermal losses.
Additional DR consumers face lower opportunities for load shifting, because of
the above mentioned saturation effect. Hence, when more buildings participate
in DR, the thermal losses per building are lower, as can be seen in the DRR.

Another effect of the share of DR participation can be seen on the total
operational cost of the electricity generation system. Figure 6.1b shows the
trend of Rc, defined as the ratio between the total operational cost with DR and
without DR participation. This operational cost includes only fuel costs and
hence no investment costs, ramping costs, CO2 emission costs nor start-up costs.
The maximum cost reduction for the considered configuration of the system
is about 1.5%3. This small percentage corresponds to an absolute cost saving
of about 41.8 million EUR per year. In this case, the CO2 emissions are at
most reduced by 0.34 Mton/year. At current EU emission trading scheme price
levels (i.e. 4-8 EUR/ton CO2 [44]), the operational cost reduction stemming

3The optimality gap used in the mathematical optimisation of the model is 0.1%, an order
of magnitude smaller than the operational cost reduction.
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Figure 6.2: Reference case: origin of operational cost savings.

from CO2 emission lowering is thus an order of magnitude smaller than the
operational cost reduction due to fuel cost savings.

The possible annual cost saving per customer is also shown in Figure 6.1b
(circles, bottom figure). These results are made under the hypothesis that
the operational savings can be entirely divided among the participants of the
DR scheme. The yearly cost saving per building goes down in case of more
participants, meaning again that a lower benefit per participant is attainable
when more consumers are involved. Relative operational cost and cost savings
per participant show a sub-linear trend in accordance with the behavior of the
energy use previously illustrated in Figure 6.1a. This analysis gives an idea
of the operational cost benefit that DR can bring not only to the system, but
also to the customers: it ranges between 41 to 124 EUR per customer per year.
These results, especially for high DR penetration rate, are similar to values
reported by other authors [116, 131], that analyzed a large scale deployment of
heat pump flexibility for space heating and cooling.

The decreases in operational cost and CO2 emissions are due to a more efficient
operation of the power plants and a reduction in curtailment of electricity
generation by renewable energy sources. This is demonstrated in Figure 6.2a.
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The average gas fired electricity generation efficiency4 shows a slight increase
(Figure 6.2a), while the curtailment is halved by increasing the DR participation
from 5% to 100%. The sub-linear trend of these curves reflects the saturation
effect.

Figure 6.2b, shows the electricity price duration curve. The electricity price
is here determined as the marginal cost of the most expensive unit running in
accordance with the MO model. Three different main plateaus can be detected:
(i) for a small number of hours (about 400) the price is zero, when the RES
based electricity generation fully satisfies the demand; (ii) an intermediate price
level set by the CCGT power plants; (iii) the highest price corresponds to the
OCGT power plants covering the peak demand. The duration of the peak
electricity price decreases with an increasing penetration rate of DR, from about
3,000 hours to 1,000 hours. This is due to two effects, the first being the load
shifting from peak hours to hours where the CCGTs can cover the load. The
other is the increasing of demand above the minimal operating point of the
CCGTs in order to avoid the use of the OCGTs with lower efficiencies. Note
that already at a DR penetration rate of 25%, the high price hours only appear
for 1375h in a year. This is already close to the final value of about 1000h,
illustrating the reduced incremental impact on the final price of increasing the
DR participation above 25%. Additionally, the duration of the plateau where
the price is zero, increases as the DR participation increases. The demand is
shifted away from hours where the CCGTs set the price, towards hours with
excess RES based electricity generation. This shift is very short in terms of
duration: there are an additional 15h of zero electricity prices in the case of a
100% DR penetration rate compared to the case without DR.

Note that the cost evaluation above is not quantitatively exhaustive with
respect to all the DR benefits such as reduced investment costs, start up costs
and ramping costs. To evaluate the economic viability of a DR program, the
operational cost savings (Figure 6.1b) should be compared with the investments
for implementing the necessary DR technology in every dwelling and the deferred
investment in peak production capacity of the electricity generation system (see
the discussion below). The investments required to implement the necessary DR
technology are however beyond the scope of this chapter and already treated
by other authors [81].
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Figure 6.3: Reference case: peak shaving.

6.3.2 Peak shaving

Figure 6.3 illustrates the potential for peak shaving, which shows the peak
residual electricity demand5. In order to quantify the potential for peak shaving,
a new simulation was performed: the peak demand was minimized considering
only the two most critical winter weeks with the highest peak residual electricity
demand, namely the second and third week of January. In such simulation, an
additional constraint, which limits the peak electricity demand, was included
in the integrated model. This constraint was lowered until the potential for
peak shaving via load shifting was exhausted, identifying the new peak demand.
Figure 6.3a (solid line) shows how the residual peak demand goes down almost
linearly with higher DR penetration, until 50% DR penetration is reached. From
this point onward, a certain saturation of the peak shaving potential is observed.

4The average gas fired electricity generation efficiency is here defined as the total volume
of electric energy produced by the gas fired power plants divided by the total amount of
primary energy needed to produce that electricity.

5The residual demand is the electricity demand from which the electricity generation by
RES is subtracted. The peak of this demand is the most critical, as this denotes the need for
investment in, among others, power plants.
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In fact, Figure 6.3b illustrates how, in the case of a 100% DR penetration, the
heat pumps are not able to shift their demand earlier in time, as peak shaving
is already occurring at that time. The power plants hence face a flat demand
for three days.

The economic benefit of peak shaving (see Figure 6.3a) can be estimated by
assuming an investment cost of 1, 250 EUR per kW installed peak production
power plants [87]. Hence, a capacity decrease of 2, 000 MW corresponds to a
deferred investment worth approximately 2, 500 million EUR . Assuming that
the avoided investment costs are shared among the participants annually, with a
plant life time of 25 years and a discount rate of 3.5% [138], the cost saving per
participant fluctuates around 300 EUR per participant per year, until 50% DR
penetration (Figure 6.3a, circles, bottom). This behavior depends on the almost
linear relationship between number of buildings involved in the DR program
and peak demand reduction for DR penetration rates between 5 and 50%. The
above mentioned saturation, instead, limits the cost saving per participant at
100% DR penetration. Note that the exact value of these cost savings is highly
dependent on the assumed investment cost, discount rate and plant life time.
These factors will determine whether the economic benefits from peak shaving
are higher than or similar to the operational cost savings (Figure 6.1b).

6.4 Results: influence of the DR technology

The results reported above take into account both the flexibility provided by the
building thermal mass and the flexibility of the DHW tank, as the heat pump
can supply heat to both. In this section, the two different types of thermal
storage are analyzed separately in order to evaluate their own intrinsic potential.
This is meaningful considering that installations are possible in which the heat
pump is dedicated either to space heating or to domestic hot water production.
Again both the customer’s and the overall system’s point of view are analyzed
by means of the two parameters DRR and Rc. Figure 6.4 shows the demand
recovery ratio for all the studied configurations of the demand side technologies
(‘DR technology’ case in Table 6.2).

6.4.1 Flexibility in building thermal mass

For the scenarios with only flexibility in the building thermal mass, the electricity
consumption for DHW is assumed to follow a fixed profile (corresponding to the
minimal electricity consumption needed for providing DHW), and vice-versa.
As already mentioned in Section 6.2, the flexibility in the building thermal mass
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Figure 6.4: DR Technology case. DRR by varying the DR penetration rate for
the two DR technologies considered in different configurations.

stems from the difference between the lower and upper bound of the indoor
temperature set point. The average lower bound for the building is about 20 ◦C,
while two possible upper bounds are studied in this section, namely 22 ◦C (SH22)
and 24 ◦C (SH24). The latter being already high for the inside winter comfort
condition, it is assumed unnecessary to examine higher inside temperature set
point bounds6. As expected, the DRR increases for a higher inside boundary
temperature (Figure 6.4a), because employing more flexibility translates in a
higher energy use. At 5% DR participation, the relative difference in electricity
demand is the highest, corresponding to 20 GWh when T sh,max is 22 ◦C and
26 GWh when T sh,max is 24 ◦C. Moreover, when the DR penetration rate
increases, the two DRR curves tend to converge (Figure 6.4a), showing that it
is unnecessary in these cases to rise the temperature above 22 ◦C in order to
grasp the associated operational benefits. Again, the value of the additional
available flexibility of a higher temperature bound decreases as more buildings
participate in DR.

On the other hand, the differences in operational costs (Figure 6.5a) for the
two space heating temperature set point cases are negligible. The savings per

6Note also that the upper bound of 24 ◦C can lead to unacceptable temperature swings of
4 ◦C while the occupants are present. Hence, the results of this scenario should be handled
with care, as thermal comfort in terms of temperature variation might not be attained.
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Figure 6.5: DR Technology case. Influence on the relative operational cost and
the cost savings per participant. The top figures show the relative operational
cost while the bottom figure shows the cost savings per participant, both with
the same legend.

DR participating building are similar (about 30 - 110 EUR per participant) to
those examined in the previous section (Figure 6.1b). All these observations
lead to the conclusion that it is not necessary to make a dramatic change in the
upper bound for the inside temperature. Moreover a 2 ◦C dead band for the
variation of the internal temperature is a standard operational range for space
heating thermostats and it is demonstrated to be sufficient to comply with
the flexibility requirements from the electricity generation system, as discussed
above. Furthermore, this is also confirmed by the daily zone temperature during
the year (averaged over the DR participating buildings): in the first case with
T sh,max =22 ◦C, it is 20.4 ◦C, while in the second case with T sh,max =24 ◦C it
is 20.5 ◦C, meaning that the system rarely reaches the upper bound temperature
and tends to be close to the lower bound (as it happens in case of no DR). This
is especially the case for higher DR penetration rates, where less load shifting
per participant is requested (Figure 6.6a).
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Figure 6.6: DR Technology case: temperature duration curves. Given the
demand side technology configuration, lower DR penetration rates show a longer
duration of the temperatures close to the upper bound of the temperature dead
band.

6.4.2 Flexibility in DHW tank

Similarly to the case with flexibility in the building thermal mass, the analysis
was performed for the case in which thermal flexibility is only allowed in the
DHW tank. The analyzed configurations consist of variations on the upper
bound temperature of the stored hot water, which can be set at 60 ◦C or 90 ◦C,
and on the size of the tank: small size (200 l or 300 l) or big size (400 l or 600
l). Again more flexibility, i.e. bigger tank and higher boundary temperature,
results generally in higher DRR (Figure 6.4b), while the difference in relative
operational costs is limited (Figure 6.5b). As far as the energy use is concerned,
when the upper bound temperature is set at 60 ◦C, the increase in energy use
is below 0.5% regardless of the tank size. Conversely, when the upper bound
temperature increases to 90 ◦C, the effect of the higher temperature bound is of
greater influence than the doubling of the volume: the small tank needs to reach
higher temperatures (and more losses) to store the same amount of energy.

The DHW tank temperature duration curve (Figure 6.6b) reveals that the
temperature of the hot water tanks (averaged over the DR participating
buildings) is about 51 ◦C when the upper boundary is set to 60 ◦C and
53 ◦C when it is set to 90 ◦C. Hence, it is not necessary to choose extreme
design configurations to benefit from the flexibility of this kind of demand side
technology7. In contrast to the space heating flexibility, the relative operational

7The studied configurations are in line with the current design practices.



RESULTS: INFLUENCE OF THE DR TECHNOLOGY 117

costs show a linear trend with respect to DR penetration (Figure 6.5b). This
is due, as pointed out later on, to the lower electric demand by DHW that
can not produce any saturation effect yet as in the case of the space heating.
The highest savings are achieved for the configuration allowing more flexibility
(highest upper bound temperature and big storage tank): it represents 0.8% of
the total costs and corresponds to a saving of 22 million EUR per year. For the
case with less flexibility (lower upper bound temperature and small storage),
the maximum cost reduction drops to about 14 million EUR /year (Figure
6.5b).

From the point of view of the buildings participating in the DR program with
DHW tank flexibility, the annual saving per dwelling is lower than the previous
cases (Figure 6.1b and Figure 6.5). Also, the impact of the DR penetration
rate is less evident. The operational cost savings amount to about 27 EUR
per dwelling per year. Note however that in the case of flexibility in the DHW
production, the shift in electricity consumption does not affect the perceived
end energy service. Indeed, when providing flexibility via DR subjected space
heating, residents may be aware of (small) deviations of the temperature from
their preferred set point.

Domestic hot water will however always be available, when requested, at the
same temperature year-round (while flexibility from space heating is available
only during heating season8). Moreover, the total energy demand for space
heating is about 6 times higher than the energy demand for providing DHW.
At a 100% DR penetration rate, the maximum electric energy demand is 6.92
TWh/year for space heating versus 1.25 TWh/year for DHW. This puts the
flexibility of the building thermal mass into perspective: its higher cost saving
potential is in part related to the higher energy use. In terms of installed power,
there is no difference in the two analyzed cases, because the considered heating
system consists of a heat pump providing both space heating and DHW. The
only difference is whether the control of the heat pump for supplying space
heating and/or DHW undergoes DR or not.

On a further note, the reduction of the operational costs when the two demand
side technologies work together (Figure 6.1b) is slightly below the sum of the
reductions of the operational costs when they work separately (Figure 6.5). This
demonstrates that there might not be a perfect superposition of the flexibility
of different technologies. The more demand side technologies are participating
in the DR program, the lower the additional benefit of additional flexibility.

8Note that throughout this work, space cooling is not considered, as it is assumed that this
is achieved by passive measures in residential buildings in Belgium. If space cooling through
the reversible heat pump would be allowed, this would of course open up the flexibility of the
building outside the heating season.
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Figure 6.7: DR Technology case. Peak residual power production trend and
corresponding cost savings divided among participants. The top figures show
the peak residual electricity demand while the bottom figures show the cost
saving per participant.

6.4.3 DR technology and peak shaving

Finally, the difference between the flexibility provided by the building thermal
mass versus the DHW tank with regard to peak shaving is shown in Figure
6.7. The flexibility in the building envelope allows a maximum peak shaving of
about 2500 MW when the DR participation is 100% for space heating, while
the DHW production system allows a reduction of the peak electricity demand
that is an order of magnitude lower (about 200 MW ). Moreover for DHW, this
peak demand reduction does not change significantly with the DR penetration
rate. This is due to the low DHW energy demand (much lower than the space
heating electric demand, as previously mentioned), that does not cause any
saturation effect yet. Also, this difference in peak shaving potential stems from
the timing at which the heating of the building thermal mass and the DHW
tank occurs. During cold months, high space heating demand coincides with the
morning and evening peaks in the fixed electricity demand. Given the limited
heat pump capacity, the loading of the DHW tanks is shifted towards the night,
as the storage efficiency of these systems exceeds that of the building envelope.
Hence, when peak shaving is needed, the potential of the DHW tank is low as
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Figure 6.8: RES share case. All figures share the same legend.

its demand was already shifted away from the typical peak electricity demand
periods (morning and evening). Figure 6.7 also represents the behavior of the
different configurations of the two demand side technologies with respect to
the peak power demand. It is evident that the typology of technology has an
impact, but not its setting: the load shifting potential does not vary significantly
by changing the upper bound for the inside temperature or the upper bound
for the DHW tank temperature and the tank volume. Finally, the savings per
participant due to capital investment reduction (assessed as explained in section
6.3) are almost identical when the upper bounds or the tank sizes are higher.
For the DHW tank, the costs savings are generally low (about 15 EUR per
participant).

6.5 Results: influence of the RES share

As one of the main purposes of introducing DR programs lays in the possibility
of a better match between electricity demand and variable electricity generation
from RES, the sensitivity towards the RES mix share is studied in this section
(Case ‘RES share’, Table 6.2). Figure 6.8 shows the DRR and the relative
operational costs, Rc, when renewable energy sources cover 0%, 30% (reference
case) or 50% of the total electricity demand. For a higher RES penetration in
the generation mix, more load shifting is requested from the dwellings involved
in the DR program (i.e. higher DRR, see Figure 6.8a). This is also accompanied
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Table 6.3: RES share case. Curtailment of RES based electricity generation for
a 30% RES penetration, provided fully by either wind or PV. The curtailment
levels are split based on the time of year (heating season and rest of the year). In
terms of DR penetration, two cases are shown (0% and 100%). DHW indicates
the situation in which only the flexibility of the DHW tank is exploited (small
tanks, T tank,max =60◦C), SH corresponds to the case in which only the space
heating system is DR adherent (T sh,max =22◦C).

Curtailment (GWh) 30 % Wind, 0 % PV 0 % Wind, 30 % PV
Heating season Yes No Yes No
DR penetration (%) 0 100 0 100 0 100 0 100
Space heating 144 106 35 35 2932 1999 3018 3018
Domestic hot water 144 110 35 31 2932 2796 3018 2914

by higher annual operational benefits, reflected by the higher cost reduction,
both in relative and absolute values (Figure 6.8b and 6.8c). For the cases with
100% DR penetration, the absolute value of cost savings for the system was
estimated at 32 million EUR per year over a total production cost of about
4, 000 million EUR per year for a RES share of 0%. For a RES share of 30%
the cost saving is 42 million EUR per year over a total production cost of about
2, 800 million EUR per year. Finally for a RES share of 50%, the cost saving is
68 million EUR per year over a total production cost of about 2, 200 million
EUR per year. Similar trends are observed for the cost savings per participant
(Figure 6.8c). In case of 100% DR, the cost saving per participant for a RES
share of 50% is twice the value for a RES share of 30%.

As more RES based generation is available, it is easily understood that a higher
flexibility of demand side technologies is more relevant. For example, for the
case with only building thermal mass flexibility and a 50% share of RES, the
maximum system cost saving goes from 58 million EUR per year up to 62
million EUR per year by increasing the upper bound from 22 ◦C to 24 ◦C. This
increase in cost savings is rather small but is in contrast to the previous section
with a 30% share of RES, where there was almost no difference between the
two cases.

Furthermore, the influence of the composition of the renewable mix between
solar and wind power is evaluated in two extreme cases where RES based
electricity generation is capable of providing 30% of the electricity demand.
In the first case, only wind turbines are considered, delivering 30% of electric
energy demand while PV does not produce anything. In the other case, the
shares for wind and PV are reversed. For the case with flexibility only in
building thermal mass and 100% DR, the wind dominated scenario produces
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Figure 6.9: Results from the year simulation in case the 30% RES share is
fully provided by wind turbines. Figures 6.9b and 6.9c show the increase in
temperature due to a 100% DR instead of a 0% DR participation.

an operational costs reduction up to 23 million EUR; per year. In the PV
dominated scenario, an operational cost reduction of 85 million EUR per year is
observed. Table 6.3 shows the reduction in RES curtailment by shifting only the
space heating energy demand or only the domestic hot water energy demand.
The DHW tank can reduce curtailment throughout the year, while for space
heating, this is limited to the heating season. For domestic hot water flexibility
the reduction in curtailment is lower compared to the space heating, but keep in
mind that the DHW tank also represents a lower energy demand. These results
further highlight that a massive PV deployment9 gives higher incentives for DR
than a massive wind deployment. This is due to the lower capacity factor of
solar power: more capacity has to be installed to achieve the same RES share
in the final energy demand. As a consequence, higher RES based electric power
generation peaks are to be expected, which are more often curtailed, especially
in absence of DR based flexibility.

9Note that the 30% RES share fully covered by PV is a rather extreme scenario. Within
the assumption in this work of no export of electricity and no flexibility competitors, about
20% of the energy generated by PV panels gets curtailed.



122 CASE STUDY II: IMPACT OF MARKET PENETRATION

3 9 15 21
Time of day (hour)

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

0 5 10
Curtailment (GW)

(a) Curtailment 0% DR.

3 9 15 21
Time of day (hour)

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

0 1 2 3
Incr. indoor air temp. (°C)

(b) Zone temperature.

3 9 15 21
Time of day (hour)

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

0 5 10
Incr. DHW tank temp. (°C)

(c) DHW tank temperature.

Figure 6.10: Repetition of Figure 6.9 but in the case of a 30% RES share fully
provided by PV panels.

The difference between both RES generation from wind turbines and PV panels
is further illustrated by Figures 6.9 and 6.10. Figure 6.9 shows how the building
thermal mass and DHW tank are employed as thermal energy storage, by
increasing the temperature of both. One of the drivers to employ this TES is to
make use of the curtailment present in the system. Note that the curtailment
shown in Figure 6.9a is for the case of 0% DR and hence, where the heat pump
demand is already added to the traditional demand. As shown by Hedegaard
and Münster [82], this increase in electricity demand already lowers curtailment
to some extent.

In the case of a 30% share of wind in electricity generation (Figure 6.9b),
curtailment rarely occurs and occurs at random moments throughout the year.
As can be seen in Figure 6.9b and 6.9c, this curtailment of wind is barely an
incentive for preheating the building thermal mass or DHW tank. Preheating is
triggered by other incentives, such as shifting electricity consumption to more
efficient power plants. The DHW tank is preheated in the morning, mostly
during the heating season, in order to avoid coincidence with the morning
peak. Furthermore, both TES are preheated during a limited number of days
in January, in order to lower the peak demand for the electricity generation
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system on January 18th of the studied year.

In the case of a 30% share of PV panels in the yearly electricity generation,
much clearer trends on a daily basis can be identified (Figure 6.10). As noted
before, electricity generation from PV panels is far more curtailed due to a clear
mismatch between supply and demand. This leads to spikes in curtailment of up
to 14 GW . In the case of the same RES share of wind turbines, this curtailment
reaches 3.5 GW only. The curtailment of PV is also far more predictable,
occurring at a limited number of hours in the afternoon (Figure 6.10a). The
TES potential of the thermal mass of the building is mainly activated in mid-
season, which is represented by the months April to June for this particular
year. The DHW tank is preheated actively throughout the year in this case
(Figure 6.10c). The DHW tank is heated up to 60 ◦C right at the end of the
curtailment periods, typically beteen 15h and 19h, depending on the season.
This timing makes the most of the curtailment. When the DHW tanks would be
preheated at the beginning of the curtailment period, part of the stored energy
would already be lost in the evening due to thermal losses of the DHW tank.

6.6 Discussion

The sum of operational costs savings and the avoided investment costs due to
peak shaving ranges between about 400 EUR to about 200 EUR per DR adherent
consumer. These total cost reductions are for a 5 % and 100 % participation
rate, respectively. Hence, the value of participating in DR is halved for full
DR participation. Hedegaard and Munster [82] obtained similar values when
considering also investment costs in case of a large uptake of individual heat
pumps systems. Mathieu et al. [116] attained lower values by participating in
the ancillary service market and Papaefthymiou et al. [131] also realized lower
cost savings.

The aspect of (operational) cost savings per building is of paramount importance
in understanding the final customers’ interest in DR participation. In fact,
while it is evident that the electricity generation system benefits from a more
flexible demand, it is less evident that the end consumer can sufficiently benefit
to participate. The analysis performed in this study, even if based on some
simplified assumptions, clearly shows that the customer could have a (sometimes
limited) economic advantage, plus this advantage is reduced as more consumers
adhere to the DR program. The consumer thus favors a lower penetration rate
of the DR program, while in contrast, the system as a whole benefits most from
a high DR participation rate. As a consequence, the DR incentive policy has to
be carefully conceived by the stakeholders. From both points of view, the use
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of the thermal flexibility of the building envelope introduces a larger margin
for profit than the flexibility in the DHW tank. Moreover the operational
cost savings per dwelling should be compared with the investments required
to upgrade a.o. the heating system control with a communication platform
for the exchange of information with the electricity generation system, already
available on the market in some countries [81]. Note that at the demand side,
the standard heating system installation, as conceived under current design
practices, is sufficient to exploit the inherent flexibility of these thermostatically
controlled loads just by varying the working temperature range.

6.7 Conclusion

This chapter analyses the role of the DR penetration on the performance of
the integrated demand-supply electricity system. The demand side technologies
considered are electric heating systems coupled with thermal energy storage.
The analysis makes an attempt to evaluate the value of flexibility of thermal
inertia in buildings and active TES in DHW tanks, in terms of energy use and
operational costs. The main conclusions are the following.

First, higher DR penetration rates increase the reduction of operational costs,
but on the other hand decreases the savings per participant since less load
shifting per dwelling is necessary. A higher DR participation requires also smaller
deviations from the minimum energy use electricity demand profile per dwelling
to achieve the same load shifting, leading to lower thermal losses per dwelling.
This also results in a reduction of the demand response ratio. Second, DR can be
put into practice with the considered demand side technologies without changing
the particular constraints or design configurations from current practice. The
increase of the upper temperature bounds or a doubling of the DHW tank size
show relatively little extra value. The flexibility due to the building thermal
mass involves a higher energy demand than the DHW flexibility and is hence
more attractive for DR purposes, even if its availability is only present during
the heating season. Additionally, this demand contributes the most to the
winter peak electricity demand and is thus also the most attractive for peak
shaving. Third, the higher the generation based on renewable sources, the
higher the benefits that can be attained by the DR application.

Finally, this chapter demonstrates the strict interaction between the demand
and the supply side: the behavior of the flexible electric heating systems is
not only dependent on the comfort constraints, but also on the boundary
conditions under which they operate, such as the RES share in the system and
the behavior of the other consumers. Thus, in order to assess the added value
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and effects of DR, it is necessary to take both the demand and supply of the
electricity generation into account, for example through integrated modeling
approaches. Moreover, beyond the economic evaluation on its convenience, it
is worth remembering that DR is interesting because it is a powerful tool to
face the challenges of new energy supply systems, where renewables have a
significant role in generation mix.





Chapter 7

Comparison of DR incentives
in attaining integrated model
performance

This chapter is based on a paper that was previously published as:
Patteeuw, D., Henze, G. P., and Helsen, L. Comparison of load shifting incentives
for low-energy buildings with heat pumps to attain grid flexibility benefits.
Applied Energy 167 (2016), 80–92.

7.1 Introduction

The case studies in Chapters 5 and 6 illustrate the potential of performing
demand response with residential heat pumps by means of the integrated
modeling approach presented in Chapter 3. However, this integrated modeling
approach is not feasible for real life applications, as it is not practical to optimize
the dispatch of a number of power plants simultaneously with the control of
thousands to millions of heat pumps. The aim of this chapter is to investigate
how the reductions in operational cost and CO2 emissions as determined from
the integrated model, can be attained in practice. Two typical approaches
towards demand response, direct load control and time-of-use pricing, will be
compared in their ability to realize the savings as determined from the integrated
model.

127
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Direct load control is typically assumed by authors studying the DR potential of
heat pumps from an electricity system perspective, such as [15, 28, 81, 115, 181].
In this way, applying demand response to residential buildings with heat pumps
allows numerous benefits, such as balancing short-term power fluctuations of
wind turbines [28], providing reserves [115] or voltage stability [181], reducing
wind energy curtailment by up to 20% [81], and reducing CO2 emissions by up
to 9% [15].

On the other hand, studies conducted from a building owner’s perspective
typically assume time-of-use pricing. A wholesale electricity price profile is
considered and it is assumed that the actions taken under DR do not effect
this price profile. For example, Kamgarpour et al. [92] found that for a set of
1000 residential buildings, savings of up to 14% can be reached with respect
to a wholesale electricity price profile. Henze et al. [83] obtained savings up
to 20% by employing the passive energy storage present in an office building
with respect to an on-peak and off-peak electricity tariff. Kelly et al. [94] also
investigated the use of thermal energy storage to shift electricity demand to
off-peak periods, but reported significant increases in energy use. In addition,
Kelly et al. observed a loss of load diversity causing a peak demand during off-
peak tariff periods (rebound), which is up to 50% higher than normal. This loss
of load diversity phenomenon for thermostatically controlled loads is explained
well by Lu and Chassin [109]. More advanced and dynamic price profiles have
been suggested in different studies, e.g. Oldewurtel et al. [124] suggest a price
profile based on the spot price and on the level of the traditional electricity
demand. A good overview of different price based incentives for consumers is
provided by Dupont et al. [51].

Another difference in DR approaches is whether DR is performed manually
by the building occupants or automatically. As shown by Wang et al. [183]
and Dupont [50], automatic control achieves higher participation in demand
response than manual control. The smart thermostat, an enabling technology
to achieve automatic control for heating and cooling demand [1], has drastically
increased its market share in recent years [78]. Apart from improving energy
efficiency [108], some of these internet-connected smart thermostats already
perform peak shaving while maintaining thermal comfort [117].

In this chapter, both models of the electricity generation system and the buildings
equipped with heat pumps are used both separately and in the integrated model.
Modeling both systems also allows studying different DR incentives. Both
supply and demand systems are assumed to behave rationally and strive to
minimize their observed cost. To this aim, all buildings considered feature
a model predictive controller (MPC) developing optimal thermostat setpoint
strategies. This could be achieved, for example, by a massive deployment of
smart thermostats performing MPC. In this context, MPC is a control approach,
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which optimizes the control of a building’s heating system by harnessing a
simplified physical model of the building’s thermal characteristics and energy
systems along with predictions on occupancy and weather conditions. As shown
in experiments in tertiary buildings by Širokỳ et al. [159], MPC can reduce
energy use up to 28% . Buildings with MPC can easily cope with dynamic price
profiles, as shown by Oldewurtel et al. [124].

The main focus of the chapter is to compare two common approaches to attain
the desired benefits through demand response with a practical implementation
in mind: direct-load control and time-of-use pricing. These incentives are
compared by determining to what extent the reductions in operational costs
and CO2 emissions, as reached by the integrated model, are reached. Hence,
the results of the integrated model serve as a reference benchmark for this
comparison.

This chapter will show that, even under the assumptions of perfect predictions,
system perspective and absence of grid constraints, the performance of the
studied demand response incentives already significantly deviates from the DR
performance of the jointly optimized best-case scenario. Additionally, it is
shown that this performance is very sensitive to the share of RES and the
number of participating buildings.

The boundary conditions in this chapter are inspired by the Belgian context, with
an electricity generation system dominated by nuclear power plants, gas-fired
power plants, and RES. The buildings considered are all detached, heating-
dominated low-energy buildings. As Chapter 5 shows, low-energy buildings are
the best candidates for a widespread heat pump implementation in Belgium.
Section 7.2 describes the different models and scenarios employed in this chapter.
The results Section (Section 7.3) illustrates the output of the different models
(Section 7.3.1) used to evaluate the DR potential (Section 7.3.2) and the
performance of DR incentives (Section 7.3.3). The difference between the
performance of these DR incentives is explained in Section 7.3.4 while results
for mixtures of these incentives are shown in Section 7.3.5. Finally, a discussion
is given in Section 7.4 in order to arrive at the conclusions in Section 7.5.

7.2 Methodology

This section consists of two parts. Section 7.2.1 elaborates on the different
models used, and the case study for assessing the DR incentives. Section 7.2.2
illustrates the different scenarios considered for applying these incentives.
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Table 7.1: Overview of the abbreviation and description of the models in this
study.

Abbreviation Description
Gen Electricity generation system model
B20 Large building stock model, optimal

control problem of 20 buildings.
B2 Aggregated building stock model

based on B20.
Int20 Integrated model performing a

co-optimization of B20 and Gen.
Int2 Integrated model performing a

co-optimization of B2 and Gen.

7.2.1 Models and parameters

All models in this chapter are examined as deterministic optimal control
problems as listed in Table 7.1. In the first model (Gen), the electricity
generation system minimizes its total operational cost via a unit commitment and
economic dispatch problem with profiles for electricity demand and electricity
generation by RES. From a building owners’ perspective (B20 and B2), the
heat pumps in the buildings are controlled by MPC that minimizes individual
electricity cost while maintaining thermal comfort. In the integrated models, the
two optimal control problems are combined into one optimal control problem
(Int20 or Int2) that jointly minimizes the total cost for generating electricity
for both the traditional electricity demand and the total electricity demand,
including the demand stemming from low-energy buildings with heat pumps
whose temperature setpoints can be optimized. These models are MILP
problems with an optimality gap of 0.1%. All presented results are from
a full year simulation for which the electricity demand and weather conditions
are based on Belgium in 2013 (see Section 2.4.3).

Electricity generation system The electricity generation system is modeled
as a unit commitment and economic dispatch problem [169] as described in
Section 2.3.1. The technical parameters and fuel costs for the power plants are
taken from Bruninx et al. [26] and summarized in Table 7.2. These technical
parameters and costs are inspired by the Belgian power system. However, in
order to cope with the large production by RES, the technical parameters for
the nuclear power plants are taken from more flexible nuclear power plants
than currently present in Belgium. Hence, the generation system is inspired by,
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Table 7.2: Parameters for the electricity generation system per fuel type [26,
54, 56, 157]

Total Nr. of Nominal
cap. units cost

Type (MW) (-) ( EUR
MWhe

)
Nuclear 5925 8 6
Coal 760 3 30
Gas 7018 47 60
Oil 215 13 83

but not completely representative for Belgium. Additionally, losses or capacity
limits due to the electricity grid are neglected.

The profile for the traditional electricity demand consists of the Belgian
electricity demand, from which the electricity generation by combined heat and
power, run-off river, and pumped hydro are subtracted. The profiles for these
demand and generation types are assumed to be constant and are taken from
Elia [54] for Belgium for the year 2013. Electricity generation from PV, onshore
wind and offshore wind are lumped together with a share based on the year
2013 in Belgium [54]: 3%, 2.2% and 2.7%, respectively. The generation profiles
of these RES are also for Belgium in the year 2013 [54]. In order to study the
sensitivity of the results towards the share of electricity generation from RES,
the generation profile is scaled up in order to represent 15%, 20%, 30% and
40% of the yearly electricity demand, depending on the case. According to
Devogelaer et al. [46], these are feasible shares for Belgium.

Furthermore, the sensitivity of the results to the number of buildings is also
studied. This is varied in multiple steps between 50, 000 and 500, 000. Hence,
on a yearly basis, the heat pumps of the buildings respectively add an electricity
demand between 0.4 and 4 TWh to the traditional electricity demand of 85.6
TWh [56], i.e. at most roughly 5%.

Residences with heat pumps The residences with heat pumps are modeled
using the linear optimal control problem formulated in Section 3.4. The building
structure is the two zone reduced-order model by Reynders et al. [151], as shown
in Figure 2.4. Furthermore, the building parameters are based on low energy
detached buildings with an average U-value of 0.3 W/m2K and a ventilation
rate of 0.4 ACH, which are two conditions for the nearly zero energy building
standard, as set up by the Flemish government [175] and to the economic
optimum for Belgium found by Verbeeck [176].
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In order to keep the problem size for the best case integrated model (Int20)
manageable for the MILP solver, the number of buildings was chosen to be 20.
Each of the 20 buildings has an identical building structure but different user
behavior, based on Baetens and Saelens [14] as presented in Section 2.4.2. The
user behavior profiles used in this chapter are described as Baetens2 in Section
2.4.2.

Each building is equipped with floor heating and a hot water storage tank for
domestic hot water, which are both heated by an air coupled heat pump. The
heat pump is sized to meet 80% of the peak heat demand while the remainder
of the peak demand is covered by an auxiliary electric resistance heater. The
COP of the heat pump is predetermined according to Bettgenhäuser et al. [19]
and assumed constant throughout each optimization horizon of a week. Hence,
during each week, the COP is predetermined based on the average supply and
source temperature. Finally, weather data is based on measurements in Uccle
for the year 2013, as discussed in Section 2.4.3.

Integrated model The integrated model as presented in Section 3.7 is also
employed in this chapter. In the ideal case, this integrated model has available
all details of buildings participating in demand response (Int20)1. In practice
however, the number of participating buildings could go up to thousands,
making an integrated optimization infeasibly large. Thus, an aggregation of
this large building set is necessary. Assuming the presented average building to
be representative for a wider set of buildings, an aggregation with respect to
building parameters is not needed. However, an aggregation towards different
occupant behavior is employed, as presented in Section 3.6, to determine an
aggregated building stock for the integrated model (Int2). In this model, only
two buildings remain, with the “average” building structure but with two
different sizes of the DHW storage tank.

7.2.2 Incentive scenarios

Given the modeling framework discussed in Section 7.2.1, it is possible to study
different incentive mechanisms for realizing the possible operational benefits of
DR. Figure 7.1 gives an overview of the different incentive scenarios.

First, in the Reference scenario, no DR is performed. In this scenario, the
controls of the heat pumps of the 20 buildings (B20) completely ignore the

1In some cases, the integrated optimization with 20 buildings (Int20) was not able to
obtain a solution. For the other cases, the results were very close to the integrated model with
the aggregated buildings (Int2), more precisely within the optimality gap of 0.1%. Hence, in
the failed cases of Int20, the result from Int2 serves as result for Int20.
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Figure 7.1: An overview of the studied scenarios. The red non-filled arrows
denote the communication of a price profile. The blue filled arrows denote the
communication of the electricity demand profile of the buildings equipped with
a heat pump. In the load shaping scenario, the dashed blue arrow denotes the
suggestion of an electricity demand profile. The color of the boxes denotes the
model type. The red box denotes the electricity generation system model, the
blue box the building stock model and the purple box the integrated model of
both.

electricity generation system and focus on minimizing their own electricity use.
Hence, in this scenario the buildings face a flat electricity price. This results
in the following optimization criterion for the optimal control problem of the
MPC:

min
∑
j

dhpj . (7.1)

From this, the electricity generation system (Gen) needs to deliver this resulting
heat pump electricity demand plus the traditional electricity demand.

In the Best Case scenario, the electricity generation system and all participating
buildings simultaneously optimize their control by means of an integrated model
(Int20). In this model, the building structure and domestic hot water tanks
are occasionally preheated when this reduces the total cost for the electricity
generation system. Simultaneously, the power plants are optimally dispatched
in order to meet the resulting electricity demand. This Best Case scenario
serves as upper bound of the operational cost savings attainable by applying
DR.
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A first time-of-use pricing scenario is the Price G scenario. In this scenario, the
electricity generation system makes an estimate of the total electricity demand
of the following day, including the electricity demand of the heat pumps, which
minimize their own consumption. This estimate is assumed to be perfect in this
chapter. However, the heat pump controllers receive the resulting price profile,
priceGj , and alter the electricity demand accordingly by applying the following
optimization criterion:

min
∑
j

priceGj · d
hp
j . (7.2)

In real-time, the electricity generation faces the traditional electricity demand
plus the altered building electricity demand. This scenario hence represents a
unilateral price communication from the electric power system to the buildings
with heat pumps.

In contrast to this, the Price I scenario represents the situation where the
electricity generation system makes an estimate of the flexibility of the buildings
with heat pumps. In the estimate for the following day, the aggregated
representation of the buildings with heat pumps (B2) is co-optimized with
the dispatch of the electricity generation system. The resulting price profile
from this integrated model, priceIj , is then communicated to the controllers of
the heat pumps, resulting in the following optimization criterion

min
∑
j

priceIj · d
hp
j . (7.3)

Also in this scenario, the impact of the measure on the electricity generation
system is determined. In this chapter, solely the electricity generation system
determines the electricity price profiles. Hence, the electricity price for the
building owners is not augmented with a fixed tariff for electricity generation
and distribution, as is typically the case in practice. This causes the electricity
price to be zero for the building owners at times of RES curtailment.

Finally, the Load Shaping scenario is identical to the Price I scenario except
that, instead of communicating the resulting price profile, the resulting demand
profile from the integrated model (dIMj ) is communicated to the buildings. This
demand profile, similarly to the work of Corbin and Henze [36, 37], acts as
a centrally-suggested demand curve for the buildings with heat pumps. The
resulting optimization criterion for the optimal control problem of the heat
pump controllers is:
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min wls · |dhpj − dIMj |+ (1− wls) ·
∑
j

dhpj (7.4)

in which dIMj represents the centrally-suggested demand profile from the
integrated model. Hence, the heat pump controllers make a trade-off between
the deviation with respect to the centrally-suggested demand profile (|dhpj −dIMj |)
and minimizing electricity use (

∑
j d

hp
j ) by means of the weighting factor wls,

taken to be 0.5 in this chapter.

7.3 Results

This section consists of five parts. In the first part, Section 7.3.1, the output of
the different models, presented in Table 7.1, is illustrated. In Section 7.3.2, the
maximum attainable benefits of DR are investigated for the studied boundary
conditions. The results for the different DR implementation scenarios are shown
in Section 7.3.3 and the resulting metrics in Section 7.3.4. Finally, the different
cost functions for the buildings, Eq. (7.1) to (7.4), are combined in Section
7.3.5.

7.3.1 Illustration of model output

Figure 7.2 shows the results for two days in the case where 30% of the yearly
electricity demand is generated from RES and 250, 000 buildings are equipped
with heat pumps. The power plants need to generate the sum of the residual
traditional electricity demand, Figure 7.2a, and the electricity demand of the
heat pumps, Figure 7.2c. Note that, in some scenarios, both the heat pump and
auxiliary heater are activated simultaneously, causing a high electricity demand
of 10kWe per building. Figure 7.2b shows how the day zone temperatures,
averaged over the buildings, are manipulated to achieve these electricity demands.
In the Reference scenario (blue lines in Figure 7.2), the indoor air temperatures
are kept close to the lower comfort bounds, resulting in an electricity demand that
doesn’t strongly fluctuate. In this scenario, the buildings miss the opportunity
of using the excess electricity generation by RES that gets curtailed in hours
4 to 5, hours 11 to 16 and hours 27 to 28. In the Best Case scenario (Int20,
green lines in Figure 7.2) advantage of this abundant electricity generation by
RES is taken by drastically increasing heat pump electricity demand (dhpj ) in
those hours. As a result, no electricity generation by RES is curtailed, as the
buildings have perfect knowledge of the magnitude of the curtailment. This
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Figure 7.2: The power plants must deliver the sum of the traditional residual
demand (Figure 7.2a) and the heat pumps demand (Figure 7.2c). The
curtailment at hours 4 to 5, hours 11 to 16 and hours 27 to 28, in some
cases communicated through a price profile (Figure 7.2d), forms an incentive to
preheat the buildings (Figure 7.2b).

avoidance of curtailment causes the nuclear power plants to set the price (green
line in Figure 7.2d) and, hence, no zero electricity price is observed.

This is not the case for the Price G scenario (red lines in Figure 7.2). In this
scenario, the buildings face a zero electricity price at times of curtailment, see
Figure 7.2d. This causes the so-called avalanche effect [39] to occur, meaning
that the buildings drastically increase their electricity demand as they observe
electricity to be completely for free at that time. However, this leads to an
overshoot in demand, which will cause the electricity price to go up again in
hours 4, 5, 11, 15, 16, 27 and 28. Clearly, this will increase the electricity
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Table 7.3: The difference between the Reference and Best Case yields the upper
limit for savings by applying DR. Both the relative savings and the savings per
participant are shown for a different number of participating buildings.

RES share (%) 30
No. of buildings (x1000) 50 100 250 375 500
Reference: cost (106 EUR) 671 686 731 772 815
Reference: CO2 (106 ton) 4.69 4.82 5.24 5.59 5.95
Best case: cost (106 EUR) 663 671 698 725 756
Best case: CO2 (106 ton) 4.62 4.69 4.98 5.25 5.53
Cost saving (%) 1.2 2.2 4.6 6.1 7.3
CO2 reduction (%) 1.6 2.7 4.9 6.2 7.0
Cost saving (EUR/participant) 157 151 134 125 119
CO2 reduction (ton/participant) 1.5 1.3 1.0 0.9 0.8

generation cost far more than expected. The Load Shaping scenario (pink
dashed lines in Figure 7.2) does not cause this overshoot in demand, as it
receives information on how much to increase electricity use in these time
periods. As can be seen in Figure 7.2c, the electricity demand profile in the
Load Shaping scenario is very close to that of the Best Case scenario.

7.3.2 Best case DR potential

In this section, the savings in operational cost and CO2 emission of the Best
Case scenario for DR are shown. This will serve as an upper bound to the
possible savings of the different DR implementation scenarios in Section 7.3.3.
Throughout this chapter, the results are given for a variation of two important
parameters: the number of buildings equipped with heat pumps and the share
of electricity generated by RES over a year. Tables 7.3 and 7.4 give an overview
of the total yearly operational cost and CO2 emissions. Note that the mentioned
buildings switch from fossil fuel fired heat production to heat pumps. A higher
number of buildings making this switch, causes a higher electricity demand and
thus higher operational costs and CO2 emissions for the electricity generation
system2.

Table 7.3 shows the decrease in operational costs and CO2 emissions due to
performing DR. The trend is however not linear, as can be seen in the savings

2When considering the entire system from a primary energy perspective, buildings and
electricity generation system, the switch to heat pumps causes total operational costs and CO2
emissions to lower, see Chapter 5. This chapter only discusses the effects for the electricity
generation system.
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Table 7.4: Table 7.3 is repeated for different RES shares.

RES share (%) 8 15 20 30 40
No. of buildings (x1000) 250
Reference: cost (106 EUR) 1283 1056 925 731 603
Reference: CO2 (106 ton) 10.98 8.73 7.32 5.24 3.98
Best case: cost (106 EUR) 1266 1033 897 698 568
Best case: CO2 (106 ton) 10.95 8.64 7.17 4.98 3.70
Cost saving (%) 1.3 2.2 3.0 4.6 5.7
CO2 reduction (%) 0.2 1.0 2.1 4.9 7.0
Cost saving (EUR/participant) 67 93 113 134 138
CO2 reduction (ton/participant) 0.1 0.4 0.6 1.0 1.1

per participant as discussed in Chapter 6. A number of buildings higher than
500,000 is not studied as the peak in total demand approaches the maximum
installed capacity of the assumed electricity generation system. A number of
buildings lower than 50,000 is also not studied as for these small numbers,
the operational cost savings approach the optimality gap of 0.1% used in this
chapter.

Another important parameter is the share of electricity generated by RES over
a year. As can be seen in Table 7.4, a higher share of RES causes the potential
operational cost savings of DR to increase. For example, an increase in RES
share from 8 to 40%, causes the potential operational cost savings to rise from
17 million EUR to 35 million EUR.

7.3.3 Comparison of incentives scenarios

The savings presented in Section 7.3.2 could be hard to realize in practice as
the Best Case scenario is not feasible for a large set of buildings. Instead, a set
of alternative scenarios for reaching these savings were introduced in Section
7.2.2. The performance of these different scenarios in striving towards the
operational cost savings of the Best Case scenario is shown with respect to the
RES share in Figure 7.3a for 250,000 buildings with heat pumps. In this figure,
100% represents the Best Case scenario, while 0% represents the Reference
scenario. Most notable is the poor performance of the Price G scenario. Up
to a RES share of 20%, this implementation causes the total operational cost
to be even higher than the Reference scenario. This is because the buildings
greedily overreact to price incentives and induce extra operational costs for the
electricity generation system. Only when the RES share is high enough, does
the Price G scenario start showing operational cost reductions with respect to
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Figure 7.3: Scenario comparison for operational cost savings relative to the Best
Case scenario of DR. In Figure 7.3a the share of RES is varied while 250,000
buildings are considered. In Figure 7.3b the number of participating buildings
is varied while the RES share remains at 30%.

the Reference scenario. However, this increase in savings for a higher RES share
is a general trend in all scenarios.

The price signal from the integrated model, scenario Price I, partly avoids the
overreaction as it has information on both electricity generation system and
buildings. In a sense, it represents the price signal after a long iteration of price
and demand between electricity generation system and buildings. However,
the Price I scenario is still outperformed by about 20% by the Load Shaping
scenario, although the difference decreases for a higher RES share.

The difference between Price I and Load Shaping scenarios can be explained
using Table 7.5. For a low RES share (8%), there is no curtailment in the
electricity generation system and the operational cost savings by DR (Best
Case) are dominated by improving the efficiency of the power plants (Fuel
and CO2 cost) and avoiding start-up and ramping costs. The efficiency of the
power plants is improved by running these power plants closer to their full load
capacity (see Part load in Table 7.5). These savings can be subtle to attain, as
a slight increase in demand above the maximum generation capacity of the last
power plant can trigger an extra power plant to be activated. Since in the Load
Shaping scenario an exact indication of what the ideal electricity demand profile
looks like is given, these subtleties are better retained. A price profile can give
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Table 7.5: For two RES shares, the difference in curtailment of electricity
generation by RES (Curt.), average part load of all operating power plants
throughout the year (%), difference in fuel and CO2 cost (Fuel+CO2) and
difference in costs related to starting up and ramping of power plants (Start-up
+ ramping).

RES Scenario Curt. Part Fuel + Start-up +
share load CO2 ramping
(%) (TWh) (%) (cost in 106 EUR)
8 Reference 0 95.7 1255 28
8 Best Case 0 97.9 1245 21
8 Price I 0 95.8 1252 23
8 Load Shaping 0 97.2 1249 21
40 Reference 2.32 88.3 567 36
40 Best Case 1.15 88.9 539 30
40 Price I 1.80 88.2 545 30
40 Load Shaping 1.63 88.7 542 30

an indication of when electricity demand should be increased or decreased, but
not how much this increase or decrease should be.

On the other hand, for a high RES share (40%), the savings are dominated by
reducing RES curtailment in order to decrease operational costs. Both Price I
and Load Shaping scenarios are successful in decreasing RES curtailment. In
the former, the buildings see a very low electricity price and act accordingly. In
the latter, the buildings receive information on how much the demand should
be increased when curtailment occurs. However, the Load Shaping scenario is
better as it communicates how much the demand should be increased in order
to exactly absorb all curtailment. This information is not present in a price
profile.

The number of buildings having a heat pump installed, also has an impact on
the performance of the incentive scenarios as shown in Figure 7.3b. In this
figure, the share of RES in the yearly electricity generation is fixed to 30%. First
of all, the Price G scenario performs very poorly as more people install a heat
pump that participates in DR. In the case of 500,000 buildings, the demand
overshoot in the coldest week is so high that the maximum cumulative capacity
of the production park is exceeded. With respect to the Price I scenario, when
a relatively low number of buildings is involved, this scenario performs the
best. However, as more buildings are involved, these all respond to the same
price profile, and cause demand overshoots. In this case, the buildings start
influencing the price itself, and become price influencers instead of price takers.
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Table 7.6: Metrics of the yearly residual load curve (dtradj +nb ·dhpj − curj ·gresj ),
similar to Corbin [35], for the case of a 30% RES share and 250, 000 buildings
with heat pumps. The metrics are provided for the Reference case (Ref.), Best
case (Best), the Price G and Price I case and the Load Shaping (Load S.) case.

Name Ref. Best Price G Price I Load S.
HP demand (TWh) 1.99 2.43 2.42 2.29 2.33
Peak (GW) 12.8 12.0 12.9 12.3 12.1
Mean ramping (MW/h) 556 424 589 509 444

In the case of 500,000 buildings with heat pumps, the performance is so abysmal
that only about half of the potential savings are attained. In contrast to this,
the Load Shaping scenario is far more robust to the number of buildings: No
matter what this number of buildings is, the Load Shaping scenario reaches
about 80% of the possible savings.

7.3.4 Comparison on metrics

Similar to the work of Corbin [35], Table 7.6 presents different metrics to
evaluate the improvement of the different incentive scenarios with respect to
the Reference scenario. In contrast to the work of Corbin, the full electricity
generation system is modeled, which allows a direct interpretation of the residual
demand curve. This is the total demand from which the electricity generation
from RES is subtracted (dtradj + nb · dhpj − curj · gresj ). In all DR scenarios, the
electricity use of the heat pumps rises by between 13% to 20%. This is due
to the high share of electricity generated by RES and nuclear power plants,
which causes a lot of curtailment to occur in the Reference scenario. In the
model, curtailment is deemed as for free and drastic increases in electricity use
occur during these hours. This reduces electricity use after the time periods
when curtailment occurred. Additionally, for the Best Case, an arbitrary choice
between heat pump and auxiliary heater occurs at times of curtailment, since
during these times electricity is observed as for free. The Load Shaping scenario,
as shown in Eq. (7.4), partly minimizes own electricity use, and will mostly
choose for the heat pump during times of curtailment. For the Price G scenario,
the zero electricity price at curtailment causes a drastic increase in electricity
use. The Price I scenario rarely observes this zero electricity price, as illustrated
in Figure 7.2d, and hence increases electricity use far less.

The peak demand shows interesting differences between the different scenarios.
During peak moments, expensive generation plants are running and the Best
Case scenario will try to reduce electricity use during these hours as much as
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Table 7.7: Hybrid incentive scenarios in which the optimization criteria are a
mixture of minimizing energy use (Reference), minimizing cost with respect to
a price profile from the generation (Price G) or the integrated model (Price I)
and deviation towards a load profile (Load). The presented attained percentage
of operational cost savings is for the case of a 30% RES share and 250,000
buildings with heat pump.

Name % savings
Reference + Price G 45
Reference + Price I 43
Price I + Load 92
Reference + Price I + Load 94

possible. The Price I and Load Shaping scenarios are able to partially imitate
this behavior. However, for the Price G scenario the situation becomes worse
than the Reference scenario, as an overreaction to high prices in some hours
causes an even higher peak in the hours before.

The mean ramping, calculated as the mean of the absolute value of the ramping
from hour to hour, shows significant differences between the scenarios. The
Best Case scenario is able to significantly decrease the hour to hour variations
in residual demand. The Price I and Load Shaping scenario approximate
this behavior while the Price G scenario again shows worse behavior than the
Reference case. This is mainly due to the drastic ramping of the heat pump
electricity demand right before and after hours of curtailment, as shown in
Figure 7.2c.

7.3.5 Hybrid incentive scenarios

Multiple combinations of the above mentioned scenarios are possible by
combining the optimization criteria from Eq. 7.1 to Eq. 7.4. The performance
of a selection of these hybrid scenarios is summarized in Table 7.7.

Regarding the price-based scenarios, the addition of minimizing total energy use
(Reference) could counteract the overshoot with respect to the price profile. For
the Price G scenario, the addition of minimizing energy use in the optimization
criterion (Reference + Price G) slightly improves the obtained savings from 32%
to 45%. However, for the Price I scenario, adding the minimization of energy
use in the optimization criterion (Reference + Price I) drastically decreases
the attained savings from 72% to 43%. In this combined case, the price profile
triggers the correct behavior far less.
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In practice, the Load Shaping scenario may be difficult to implement as
compensating the participating building owners is not straightforward. By
combining this scenario with a fluctuating price profile, this compensation could
be easier. The combination of the price from the integrated model with the load
shaping (Price I + Load) reaches a slightly higher percentage of the operational
cost savings (92%) than the load shaping scenario (85%). However, this cost
function proved to be difficult to handle for the buildings, as in some days
it drives the temperature close to its bounds in order to attain more drastic
electricity demand profiles. These issues were not observed in the combination
of the three scenarios (Reference + Price I + Load). This final hybrid scenario
performs very well in terms of operational cost savings and realizes 94% of the
maximal possible operational cost savings.

7.4 Discussion

Demand response applied to building portfolios with electrically driven heat
pumps provides value for the electricity generation system, as it can contribute
to lowering system operational costs and CO2 emissions (Table 7.3). For a
low number of buildings or a low RES share, these savings are about 1% and
hence rather limited. As the number of buildings or RES share increases, the
reductions in operational cost and CO2 emissions go up to 7% in both cases.
This is not a drastic change, but is nonetheless a significant contribution. For
these cases, the cost savings are typically around 100 EUR per participant
per year. Given the typical investment cost of enabling technologies such as
the smart thermostat [78] or smart controllers [81] between 200 EUR and 350
EUR, the pay-back period is on the order of magnitude of a few years, for
the boundary conditions employed in this chapter and assuming that all cost
savings are directly allocated to the building owners. The order of magnitude
of the annual reduction in CO2 emissions is around 1 ton per participant but
highly depends on the number of participating buildings and the RES share.

Regarding the magnitude of the operational cost savings of DR, Hedegaard
and Münster [82] investigated the value of flexible operation of heat pumps
in 716, 000 buildings for an electricity generation system with a 60% share of
wind generation and biomass fired combined heat and power plants. According
to Hedegaard and Münster [82], this flexible operation results in an annual
cost saving per participant of 30 EUR due to avoided operational costs and
a 2% reduction in CO2 emissions. When comparing these results with Table
7.3, the savings are on the same order of magnitude, but are not close. Given
the similar climate, building and heat pump characteristics in both studies,
the differences in savings are dominated by the composition of the electricity
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generation system. This difference, along with the large spread of results in
Table 7.3, illustrates that the reductions in operational cost and CO2 emissions
are highly case dependent.

Figure 7.2c illustrates the avalanche effect as discussed by Dallinger and
Wietschel [39] for the Price G scenario: all heat pump controllers simultaneously
observe a low electricity price and drastically increase demand in those moments.
Kelly et al. [94] also observed this overconsumption due to low prices, along
with a loss of load diversity. As shown by Ling and Chassin [109], this loss
of load diversity can cause simultaneous oscillations in electricity demand of
thermostatically controlled loads, causing problems for the electricity generation
system following the low price period. As proposed by Dallinger and Wietschel
[39], when all participants make individual price forecasts, the peak electricity
demand is less concentrated and also the load diversity is better preserved.

The Load Shaping scenario suffers far less from the above mentioned effects.
First, during the moments of curtailment, the buildings do not receive a low
electricity price but information to increase demand and, equally important,
up to which level to increase demand. In the hour 27 in Figure 7.2a for
example, there is little curtailment of RES and the buildings know that only a
limited increase of electricity demand is necessary. This is far more information
than a price signal can hold. Second, the optimization criterion of the Load
Shaping scenario, Eq. 7.4, shows that the centrally-suggested demand curve
(dIMj ) is merely a suggestion, not an obligation, towards increasing or decreasing
electricity demand. Part of the optimization criterion is still the electricity use
minimization of each individual building. This partly ensures the preservation
of load diversity, as each building will make an individual trade-off. Nonetheless,
preservation of load diversity could be improved even more by providing each
building with a certain perturbation on the centrally-suggested demand curve
[39].

The results for the different scenarios (Figure 7.3) show the potential benefit of
applying the integrated optimization during the day ahead stage and distributing
profiles from this source. The resulting price profile (Price I scenario) clearly
outperforms the case where the price profile is unilaterally determined from the
electricity generation system (Price G scenario). The Price I scenario can be
regarded as the case where the electricity price is infinitely iterated between
electricity generation system and the individual buildings. As Figure 7.3b
shows, this price profile causes the system to attain a great amount of the
theoretically possible savings, as long as the number of participating buildings
remains small. In this sense the buildings are price takers up to this point, and
will only have a minor effect on the price itself. As the number of participating
buildings increases, this influence will no longer be negligible and the buildings
become price influencers. In this sense, the approach of suggesting a load profile
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instead of a price profile (the Load Shaping scenario) is generally better for
a high number of participating buildings, over 100, 000 in this chapter. The
relative operational cost savings remain stable in this scenario, even for 500, 000
participating buildings. On a total of 4.6 million households in Belgium [70],
this is still a relatively small amount of participating buildings.

From the presented results, one should carefully consider whether time-of-use
pricing is the correct way to achieve DR. In regions where a high share of the
buildings employ electricity for either heating or cooling, a price profile can lead
to unintended adverse effects. With the increasing share of smart thermostats
[78], which are technically able to act upon such price profiles, these artifacts
of greedy control actions could occur shortly afterwards. In these regions, a
central determination of a load profile for all buildings to follow, appears to be
a better option.

This chapter only investigates the effects of different DR incentives for low-
energy buildings. Chapter 5 showed that buildings lacking proper insulation
are not suitable candidates for heat pumps, at least not in a Belgian context.
Hence, these buildings were not included in this chapter.

With respect to compensation for the building owner, either a yearly fee or
a tempered price profile is possible. A yearly compensation can be based on
the operational cost savings as presented in Table 7.3, although it can be a
challenge to determine which party is responsible for paying this compensation.
A tempered price profile can be used in a hybrid scenario, such as in the
Reference + Price I + Load scenario, to automatically compensate the building
owners.

For implementing the Load Shaping scenario in practice, the procedure can be
followed as shown in Figure 7.1. A day ahead integrated optimization of the
electricity generation system along with an aggregated representation of the
building stock could be performed. The resulting load profile is communicated
to the generation system operators to determine their dispatch. Furthermore,
the centrally-suggested demand curve (dIMj ) is communicated to the smart
thermostats of all participating buildings, with a small perturbation applied in
order to maintain load diversity. The electricity generation system thus runs
business as usual, albeit in providing an altered electricity demand profile.

In the current European electricity markets, it is not straightforward which
party should determine the load shaping signal, as there are conflicting interests
involved. In the electricity generation system, multiple competitors could prefer
a different load shape that maximizes their own profits. This could lead to a sub-
optimal total cost for all electricity generators combined. Due to the monopoly
of the transmission system operator (TSO) and his interest in low system wide
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cost, this TSO could be the party that determines the load shaping profile.
However, this might lead to the TSO stretching his allowed market power.
Finally, as identified throughout this work, the application of DR increases the
electricity consumption of the heat pumps. If this would significantly burden
the local distribution grids, the distribution system operators should also be
involved in shaping the load profile.

7.5 Conclusion

For the boundary conditions in this chapter, the Best Case scenario shows
reductions in operational costs between 1.3% and 7.3%, depending on the
number of participating buildings and the share of RES in the electricity
generation. In addition, a reduction of CO2 emissions is observed to be between
1.3% and 7.0%. These savings result from a better part-load operation of the
power plants, a reduction in starting up and ramping of power plants and the
reduction in curtailment of electricity generation from RES.

Multiple scenarios for a more practical DR application are studied, inspired by
time-of-use pricing and direct-load control. The added value of the integrated
formulation is shown, as it produces price profiles that clearly outperform
price profiles coming from the electricity generation system optimization alone.
However, as soon as a large amount of buildings, identified to be 100, 000 in
this chapter, start participating in DR, the performance of price profiles drops
significantly.

In general, and surely for a large amount of participants, it is shown that Load
Shaping clearly outperforms the price-based incentives. Load Shaping gives
clear information on the magnitude of RES curtailment and inefficient part-load
operation of electricity generation plants. For this scheme, it does not matter
how many buildings are participating, the performance remains in the same
order of magnitude.

Finally, a practical implementation of this DR approach may be performed
centrally, namely by performing the day-ahead optimization of the operation of
the electricity generation system and an aggregated formulation of the building
portfolio with heat pumps. The resulting load profile can then be communicated
to the buildings as a suggestion on how to shape the heat pump electricity
demand over time.



Chapter 8

Demand response:
implications for residential
heating system design

This chapter is based on:
Patteeuw, D., & Helsen, L. (2016). Combined design and control optimization
of residential heating systems in a smart-grid context. Submitted to Energy
and Buildings.

8.1 Introduction

The previous chapters studied the interaction between variable renewable energy
sources and the building level by starting from a fixed heating system design.
This chapter inverses the question of the impact of installing heat pumps on
curtailment of RES: does a large-scale integration of RES has significant impact
on the design of heating systems on a residential building level? In other words,
will other residential heating systems or hybrid systems become more cost-
efficient due to a large increase in electricity generation from RES? Examples
could be the selection of a larger DHW tank or a storage tank coupled to floor
heating in order to use more electricity during times of curtailment. Another
option could be the installation of a heat pump with a supplementary gas-fired
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boiler to avoid electricity demand during times of low electricity generation by
RES.

To this aim, an investment model for residential heating systems is needed
which takes the dynamics of the heating systems and building structure into
account. Furthermore, the electricity generation by RES should be explicitly
included in the decision process. In this chapter, an optimization problem
is proposed which simultaneously selects, sizes and operates the residential
heating systems, in combination with an approximate modeling of the electricity
generation system. On a residential level, heating system investment costs
typically have an important fixed cost component which is independent of
the heating system size [172]. In order to take this into account in the sizing
optimization, an integer decision variable is needed. Hence, the optimization
problem for selecting, sizing and operating heating systems is modeled as a
MILP problem.

The use of MILP for heating system optimization differs from the more widely
used genetic algorithms. According to Attia et al. [9], these genetic algorithms
combined with building simulation tools are the most common optimization
methodologies applied in the field of building energy performance research. The
main advantages of this method, according to Attia et al., are the suitability
for multi-objective optimization such as in [30, 186], the ease of use and the
robustness as it explores many points in the solution space simultaneously. The
disadvantage lies in the large number of simulations needed and hence, the long
calculation times.

Using the genetic algorithms, typically only controller setting parameters are
included in design optimization [9, 34]. In contrast to this method, this chapter
features a MILP optimization approach, where no building simulation tool is
needed. The dynamics of the building envelope and heating system are explicitly
modeled, in a simplified way within the optimization problem. This offers the
advantage of faster simulation times, at the cost of lower accuracy. Another
advantage is the aforementioned possibility of simultaneously optimizing design
and control during each time step, which is necessary to accurately include
the interaction with the electricity generation system [135]. This combined
optimization approach has a long history in large scale energy system investment
planning, using tools such as TIMES [107] and Balmorel [150], which are both
based on linear programming.

The MILP approach has been applied before to multiple scales to study the
effect of the integration of RES on investment decisions in the build environment.
On a single building level, these studies were performed using MILP [8] or a
combination of genetic algorithms and MILP [64]. On an urban scale, Allegrini
et al. [3] provided a literature review focusing on multiple energy networks and
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urban micro climate. The integration of RES on this scale was studied using a
wide variety of approaches, from detailed multi-physics simulation models [13]
to multi-objective operational approaches [66, 126]. In contrast to the literature,
the current chapter studies the interaction of building energy demand with
renewable energy on a national scale, which features a set of buildings in the
order of magnitude of a million.

For this large scale, Hedegaard and Balyk [80] developed an investment model
for buildings with heat pumps, which acts as an extension to the Balmorel model
[150]. Investment in two technologies was considered, namely in a controller
to activate the passive storage potential of the building structure and in a hot
water storage tank for space heating. Given the combination with Balmorel,
investment in these technologies is performed as a response to opportunities in
the electric system. In this chapter, a more detailed representation of building
structure and storage tanks is employed as well as a consideration of other
technologies such as back-up fuel-fired heating, PV panels and solar thermal
collectors.

Some of the heating system models presented in this chapter are similar to the
framework of Ashouri et al. [8]. Ashouri et al. simultaneously optimized the
selection, sizing and operation of both electrical and heating related system
components in a single commercial building. These components are modeled
as first-order linear differential equations. The main differences with the
presented work and the work of Ashouri et al. lies in two points. First,
different temperature levels are considered, which allows applying different
efficiencies when a heating system is supplying heat to radiators, floor heating
or a domestic hot water tank. This difference is crucial for heat pumps as these
supply temperatures strongly influence system efficiency. A second difference
lies in the explicit modeling of the electricity generation side. As shown in
Chapter 5, a massive uptake of heat pumps can have a large impact on the
electricity generation system and hence alter any price or CO2 emission profile
stemming from this electricity generation system.

A specific reason to combine these two additions, is the possibility to investigate
the full energy storage potential of a thermal energy storage tank for space
heating (TESsh), as illustrated in Table 8.1. For example, a residential heating
system consisting of an ACHP and floor heating can be complemented with
a 1000 l hot water storage tank. Suppose the floor heating has a supply
temperature of 35 ◦C and a return temperature of 30 ◦C, at an outdoor
temperature of 5 ◦C. The air coupled heat pump could load the TESsh in a
stratified manner to contain 6 kWhth at a COP of 2.9. However, at a time of
abundant electricity generation from RES which is being curtailed, it could be
beneficial to load the tank even further. The ACHP could heat up the tank
further to 45 ◦C in order to contain 17 kWhth at a COP of 2.4 and further to
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Table 8.1: Energy content of a 1000 l hot water storage tank heated up by an
air coupled heat pump or in the last row, by an electrical resistance heater
(ERH). The numbers are for the case where the tank is coupled to floor heating
and where the outdoor temperature is 5 ◦C.

Mean tank Heat pump Thermal energy
temperature ◦C COP (-) stored (kWh)
30 3.3 0
35 2.9 6
45 2.4 17
60 1.9 35
90 (ERH) 1.0 70

60 ◦C to contain 35 kWhth at a COP of 1.9. After this, an electrical resistance
heater (ERH) could heat up the TESsh even further to 90 ◦C to contain 70
kWhth at a COP of 1. Hence, the different temperature levels are needed to
model the TESsh in such a detailed manner while the explicit modeling of the
electricity generation side provides the correct incentives to use this energy
storage.

The aim of this chapter is twofold. The first aim is to assess whether the
addition of the different temperature levels and the explicit modeling of the
electricity generation side is crucial in the selecting and sizing of heating systems
in residential buildings. Given the large variety in electricity generation mixes,
heating system investment costs and climates in different countries, it is hard
to perform this assessment in a general way. Therefore, a general methodology
is developed and this methodology is applied to the case study of Belgium. The
value of the two modeling additions will be tested for nine different electricity
generation scenarios. This will provide insight in the impact of variable RES
in Belgium on the residential heating system design including optimal control,
which is the second aim of this chapter.

This chapter is structured as follows. First, the MILP optimization problem for
selecting, sizing and operating heating systems combined with the approximate
modeling of the electricity generation system is presented in Section 8.2. This
modeling framework is applied to a case study of Belgium, for which the
parameters and assumptions are provided in Section 8.3. The results presented
in Section 8.4 show two aspects, namely the added value of the modeling
framework and the implications for the case study. This is discussed further in
Section 8.5 and finally the results are summarized in Section 8.6.
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8.2 Combined design and control optimization frame-
work

This section provides a full description of the combined design and control
optimization problem which is modeled as a MILP problem. The first part,
Section 8.2.1, presents the optimization problem along with the objective
function. The second part gives a description of the demand for space heating
and domestic hot water (Section 8.2.3). Next, the equations for design and
control of the heating system are explained in Section 8.2.4. Finally, a description
of the models for electricity generation is provided in Section 8.2.5.

8.2.1 Optimization problem set-up

Figure 8.1 provides a schematic presentation of the combined design and control
optimization. The heating system design and control are developed for multiple
building types simultaneously. When the selected heating system is powered
by electricity, the building and heating system will interact with the electricity
generation system. In this optimization, the interaction is explicitly modeled
by scaling up the buildings electricity demand. For example, in the case study
(Section 8.3) four building types are considered. The electricity demand of these
building types is scaled up to represent the demand of one million buildings.
Hence, the multiple building types can simultaneously demand electricity and
influence the electricity generation system. This couples the design and control
optimization for the different building types.

Within each building type, multiple heat production systems can be selected,
which can supply heat at 4 different temperature levels and hence with a different
efficiency. This heat is used to satisfy the heat demands in the building, each at
its respective temperature. The domestic hot water tank is typically heated to 60
◦C in order to supply DHW. However, in case of abundant electricity generation
by RES, the tank can be heated up further to 90 ◦C. The space heating demand
can either be supplied by radiators or by floor heating. The nominal supply
and return water temperatures for the radiators are 45 and 35 ◦C respectively.
For floor heating, these temperatures are 35 and 30 ◦C respectively. These
temperatures vary in time on the average outdoor temperature. Both emission
systems can be complemented with a dedicated storage tank TESsh. Finally,
the building structure is represented by a thermal resistance and capacitance
network, expressing its potential for passive energy storage.

In the presented optimization framework, four indices are used:
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Figure 8.1: Schematic overview of the combined design and control optimization
of heating systems in multiple building types. Given the impact on the
electricity generation system, this optimization is performed for all building
types simultaneously. In each building type, a different heat production, storage
and emission system can be selected.

• Index j denotes a time step with duration ∆t in seconds

• Index t denotes a time period (rescaling to a full year with weighing factor
wt)

• Index b denotes a building type

• Index l denotes a temperature level (at temperature T levell,t ). For the two
levels dedicated to space heating, this temperature depends on the average
outdoor temperature of period t.

All variables in the equations, except temperatures, are positive.
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8.2.2 Objective function

The optimization objective is to minimize the equivalent annual cost (EAC) of
providing heating to all considered buildings:

min EAC =
∑
b

nbb ·

ahs · Invhsb +
∑
j

∑
t

wt ·OPEXhs
j,t,b +OPEXtariff

j,t,b


+ app ·∆Invpp +

∑
j

∑
t

wt ·∆OPEXpp
j,t

(8.1)

with wt a scaling factor to rescale the operational costs for the considered periods
to a year. The EAC stems partly from heating systems (HS) but also from
power plants (PP) in case of electricity based heating. In each building type an
investment Invhsb is made in heating systems. The operational expenditures for
providing heating, except those related to electricity generation, are lumped in
the variable OPEXhs

j,t,b. Furthermore, the electricity consumption at building
level also faces an electricity tariff OPEXtariff

j,t,b . Hence, the energy component
of the electricity cost is explicitly modeled as described further, the non-energy
component of the electricity cost is fixed to a tariff.

It is assumed that in the base case, the heating is supplied by a fuel-fired heating
system. The building types’ electricity demand is scaled up by the factor nbb
in order to represent a massive installation of electricity driven heating. This
will cause extra investment in power plants ∆Invpp and extra operational costs
attributed to the electricity generation system ∆OPEXpp

j,t . Different annuities
are considered for investment in heating systems, ahs, and for investment in
power plants, app. The explanation of the heating system costs and the power
plant costs is provided further in Section 8.2.4 and Section 8.2.5 respectively.

8.2.3 Heat demand

For each building type, the heat demand must always be met. Hence, there
is no thermal discomfort allowed. The residential heating demand consists of
space heating and domestic hot water production.

Given the potential of building structures to allow demand response [153, 81,
138], the demand for space heating is modeled through a dynamic building
model rather than a fixed profile. This dynamic building model is a thermal
resistance and capacitance network based on the two zone building model of
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Reynders et al. [151] and described in Section 2.4.1. This network is translated
to a discrete state-space model. The upper comfort bound is 24 ◦C for the day
zone and 22 ◦C for the night zone, based on Peeters et al. [140]. The lower
comfort bounds are based on Baetens and Saelens [14], which, in the day zone,
is on average 20.2 ◦C when the occupants are present and on average 15.1 ◦C
when the occupants are absent. For the night zone, the lower temperature
bound is on average 12.8 ◦C.

In order to keep the problem size computationally feasible, only 4 building
types are considered in the case study. The demand of these building types
is scaled up with a factor nbb (see Eq. 8.1), as if all buildings of this building
type have an identical building structure. The user behavior for these building
types is based on the correct user behavior data of Baetens and Saelens [14] as
described in Section 2.4.2 and aggregated as described in Chapter 3.6.

The domestic hot water demand is modeled as a demand profile, based on
Baetens and Saelens [14] (see Section 2.4.2). Similar to the aggregation of the
building models, also the domestic hot water demand is averaged over multiple
profiles. All buildings are assumed to have a storage tank for domestic hot
water. This storage tank is modeled similar to Eq. 8.7-8.8. The temperature
of the DHW storage tank must always be above 50 ◦C in order to maintain
comfort.

8.2.4 Heating system

In this chapter, a wide range of heating system components is modeled. This
section describes these components in detail. First, the general equations
for investment in different components are provided. Second, the general
equation that couples all heating system components is explained. Afterwards
each component type for heat emission, heat storage and heat production is
described.

General investment equations

For each component of the heating system, the selection and size of this
component are optimization variables. In order not to repeat similar equations
for each component, a general description of these investment equations is given
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by Eq. (8.2)-(8.5).

∀b : Invxb = izxb · costfix,x + Sxb · costvar,x (8.2)

∀b : izxb · Smin,x ≤ Sxb ≤ izxb · Smax,x (8.3)

∀l, j, t, b : 0 ≤ Oxl,j,t,b (8.4)

∀l, j, t, b :
∑
l

Oxl,j,t,b ≤ Sxb (8.5)

In a building with index b, the investment cost Invxb in a specific component
x consists typically of a fixed cost costfix,x and a variable cost costvar,x
proportional to the size Sxb of that component. The operational characteristic
Oxl,j,t,b of this component is limited by the size of that component (Eq. (8.5)).
Note that the component can exchange heat at different temperature levels in
the same time step, but the sum of these exchanges cannot exceed the maximum
size (Eq. (8.5)).

The selection of whether this component is installed or not is expressed by the
binary decision variable izxb . When izxb is zero, the component is not installed.
This forces the size of the component to zero (Eq. (8.3)) which nullifies the
operation of the component (Eq.(8.5)). When izxb is one, the component is
installed and its size can vary between a minimum Smin,x and maximum size
Smax,x.

General heating equation

In each time step and in each building type, each heat production system can
provide heat Q̇prodl,j,t,b at a certain temperature level with index l. This heat is
always taken up by one of the thermal energy storages Q̇toTesl,j,t,b

1

∀l, j, t, b :
∑

Q̇prodl,j,t,b =
∑

Q̇toTesl,j,t,b (8.6)

in which the summation works over all heat production and thermal energy
storages. There are three TES involved, which are dedicated to their respective
heat demand: DHW, radiators or floor heating. In case there is no thermal
energy storage installed for a particular demand, Q̇toTesl,j,t,b is directly passed on
to satisfy this demand, as shown later in Eq. 8.7.

1Given Eq. 8.6, there are no losses in the distribution pipes considered. However, this
could be added in this framework.
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Thermal energy storage

Regarding thermal energy storage, only sensible TES in the form of hot water
storage tanks is considered. For other thermal storage technologies, such as
phase change material tanks, absorption TES and adsorption TES, it is hard to
obtain reliable cost data. Nevertheless, this framework can be easily extended
to these technologies. Since the standby heat losses of a hot water storage tank
depend on the application, each hot water storage tank is assumed to supply
heat solely to its specific application (Q̇toDeml,j,t,b ). As such, there is a hot water
storage tank dedicated to domestic hot water (TESdhw) and two storage tanks
dedicated to space heating (TESsh): to the radiators (TESrad) and to the floor
heating (TESfh). Each of the hot water storage tanks are modeled as follows:

∀l, j, t, b : 1
∆t
(
Qtesl,j+1,t,b −Qtesl,j,t,b

)
=Q̇toTesl,j,t,b − Q̇toDeml,j,t,b − f tes,prop ·Qtesl,j,t,b

−M tes
b · Q̇standbyl,b

(8.7)

∀l, j, t, b : 0 ≤ Qtesl,j,t,b ≤M tes
b · cp ·∆T levell (8.8)

in which Qtesl,j,t,b is the amount of heat stored in the tank at a certain temperature
level l. Part of the heat loss to the environment is proportional to the stored
heat with the factor f tes,prop. This factor depends on the size of the tank,
which causes a multiplication of decision variables and thus makes the problem
non-linear. Hence, it is chosen to predetermine this factor based on an expected
tank size. The actual tank size is denoted by the variable M tes

b . In the case of
the TESrad and TESfh, the level connected to the emission system is assumed
to work perfectly stratified. For this level there is also a standby heat loss to the
environment proportional to the size of the tank Q̇standbyl,b [173]. The maximum
heat content of a level hence depends on whether the level is assumed to be
perfectly stratified or mixed, determining the value of the allowed temperature
spread ∆T levell . More detail on this modeling approach of the storage tank is
provided in [11].

In the case where a storage tank is not installed, the heat to the tank equals
the heat provided to the specific demand: Q̇toTesl,j,t,b = Q̇toDeml,j,t,b and no thermal
losses occur.

For example, as illustrated in Table 8.1, a hot water storage tank of 1000
l coupled to floor heating with a supply temperature of 35 ◦C and return
temperature of 30 ◦C would be able to store 5.8 kWh in a stratified way at a
supply temperature of 35 ◦C. To this aim, the temperature of the tank needs to
stay above 30 ◦C at all times. This results in the standby heat loss. If the tank
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is heated above 30 ◦C this leads to the proportional heat loss. Furthermore, the
tank could be heated further to 45 ◦C, albeit with the heat pump working at a
lower efficiency, allowing the tank to store an additional 11.6 kWh. The level
at 45 ◦C works perfectly mixed in this case, with only a heat loss proportional
to the stored heat.

Heat emission

The two lowest temperature levels are dedicated to space heating, which can be
supplied through two heat emission systems, namely floor heating and radiators.
In this study, when an emission system is chosen, it is sized to meet the design
heat demand. The circulation pump of the emission system demands an electric
power P pump,emil,j,t,b . In order to avoid an integer decision variable each time
step, this electric power is assumed to be proportional to the designed power
P pump,emi,max and the heat demand.

∀l, j, t, b : P pump,emil,j,t,b = P pump,emi,max ·
Q̇emi,dl,j,t,b + Q̇emi,nl,j,t,b

Q̇max,emi,d + Q̇max,emi,n
(8.9)

with Q̇emi,dl,j,t,b and Q̇emi,nl,j,t,b the heat supplied by the emission system to the day
zone and night zone respectively.

The mean supply temperatures of these emission systems are determined for each
period, based on the nominal heat demand and the mean outdoor temperature
for that period, using a heating curve. Hence, during each period the heat
production systems that supply space heating may have a different efficiency.

Traditional heat production

The considered traditional heat production systems consist of the following:
condensing gas boilers, heating oil boilers, wood pellet boilers and electrical
resistance heaters. The operational aspect of the condensing gas boilers is
described by the following equation:

∀l, j, t, b : Q̇cgbl,j,t,b = ηcbgl,t · Ḟ
cgb
l,j,t,b. (8.10)

Hence, the heat delivered by the condensing gas boiler Q̇cgbl,j,t,b depends on the
rate of fuel input to the boiler Ḟ cgbl,j,t,b and the efficiency ηcgbl,t . This efficiency
depends on the temperature level at which the boiler is supplying heat. For the
two levels connected to space heating, this temperature depends on the ambient
air temperature and thus varies in time. Hence, the efficiency of the CGB in
supplying space heating varies each period.
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The equations for the heating oil boiler, electrical resistance heater and wood
pellet boiler are identical to Eq. 8.10, albeit with other parameters. In order to
avoid an unrealistically high wood pellet consumption, an extra constraint is
added which limits the annual wood pellet consumption to a total potential.

Combined heat and power

In this study, no micro combined heat and power plants (CHP) are considered at
the building level. As shown by Pruitt et al. [148], the modeling of micro-CHP
requires an integer decision variable in each time step, which would make the
optimization problem infeasibly large to solve. Furthermore, as shown by Dorer
and Weber [48], the primary energy saving of micro-CHP devices is typically
far lower than for a heat pump. Given these factors combined with the high
investment cost of a micro-CHP [155], this technology is not considered here.

Hence, in this chapter only macro CHP plants combined with district heating
are considered. Three types are considered, which use natural gas, wood pellets
or waste as a fuel. All 3 CHPs are modeled in a similar way:

∀j, t, b : gchpj,t,b = ηchp,el · Ḟ chpj,t,b (8.11)

∀l, j, t, b : Q̇chpl,j,t,b = ηchp,th · ηnetwork · Ḟ chpl,j,t,b (8.12)

with Ḟ chpl,j,t,b the rate of fuel consumption of the CHP. The CHP generates
electricity gchpj,t,b at an efficiency of ηchp,el. The heat delivered by the CHP to
the building Q̇chpl,j,t,b depends on the thermal efficiency of the CHP, ηchp,th , but
also on the average efficiency of the district heating network ηnetwork. This
average efficiency of the district heating network is assumed to be constant. A
macro CHP is only considered for a building type when the investment in a
district heating network is made. Note that the electricity generation from the
macro CHP is not considered in the tariff calculation in Eq. 8.26. Hence, the
electricity generation from macro CHP observes the same market incentives as
the CCGTs and OCGTs.

Solar thermal

In a residential context, solar thermal collectors are often installed for partially
supplying domestic hot water [143]. According to Peuser et al. [143], the heat
gain from a solar thermal collector Q̇stc is typically modeled as follows:

Q̇stc = Astc ·
(
η0 · q̇sol − k1 · (T̄ stc − T e)− k2 · (T̄ stc − T e)2) (8.13)
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with Astc the useful surface of the solar thermal collector (STC). The solar
thermal collector is heated by q̇sol, the total solar irradiation per square meter
in the inclination and azimuth of the solar thermal collector. Part of this heat is
directly lost to the ambient air, which is at a lower temperature T e, due to the
high mean temperature of the water in the solar thermal collector T̄ stc. The
balance between heat gain and heat loss depends on the technical parameters
η0, k1 and k2. However, Eq. 8.13 is not practically useful for design and control
optimization due to the quadratic term and the need for a binary variable to
switch off the STC when there is insufficient solar irradiation. Another approach
is taken, similar to Ashouri et al. [8], namely by assuming a fixed temperature
of the water in the STC and defining the (useful) surface of the solar thermal
collector Astcl,j,t,b as the operational decision variable:

∀l, j, t, b : Q̇stcl,j,t,b = Astcl,j,t,b · qstcl,j,t (8.14)

∀l, j, t : qstcl,j,t = η0 · q̇solj,t − k1 · (T levell,t − T ej,t)− k2 · (T levell,t − T ej,t)2. (8.15)

This useful surface varies between zero and the installed size of the solar thermal
collector and is multiplied by the heat gain per square meter qstcl,j,t in order to
know the heat gain to a certain temperature level. It is assumed that the STC
can deliver to each considered temperature level at temperature T levell,t and that
this is also the mean temperature of the solar thermal collector.

Heat pump

In this study, two types of heat pumps are considered, namely ground coupled
and air coupled heat pumps. Both heat pump types are coupled to a hydronic
system. Since about 90 % of the Belgian residential buildings have a hydronic
system [125], air-air heat pumps are not considered in this study. The heat
supplied by the different heat pump types Q̇hpl,j,t,b is modeled as follows:

∀l, j, t, b : Q̇hpl,j,t,b = COPl,t · Phpl,j,t,b (8.16)

∀l | (T levell,t > Thp,max) : Phpl,j,t,b = 0 (8.17)

with Phpl,j,t,b the heat pump electricity consumption in each time step. The heat
pump is unable to supply heat above the temperature Thp,max which is 60 ◦C in
this study. In order to avoid non-linear constraints in the optimization problem,
the heat pump’s COP is approximated as constant in each period with index t.
According to Verhelst et al. [179], this is the best linear approximation for the
COP. Based on the average supply (T levell,t ) and source (T̄ sourcel,t ) temperature
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for the period with index t, the COP is determined based on Bettgenhäuser et
al. [19]:

∀l, t : COPl,t = ahp ·
T levell,t

T levell,t − T̄ sourcel,t + bhp
(8.18)

for which the parameters ahp and bhp depend on the heat pump type and are
also based on Bettgenhäuser et al. [19].

8.2.5 Electricity generation

The economic aspects of electricity generation strongly depend on the scale of
the electricity generation units. Therefore, large-scale and local scale electricity
generation are modeled separately.

Electricity generation system scale

As stated in the objective function (Eq. (8.1)), the additional cost for the
electricity generation system caused by a widespread switch from fuel-fired to
electricity-driven heating is explicitly modeled. This study does not consider
import and export of electricity and neglects grid constraints. Hence, the
following equation holds:

∀j, t : dtradj,t +
∑
b

nbb · dbuildj,t,b =gccgtj,t + gocgtj,t + gnuc + curtj,t · gresj,t

+
∑
b

nbb ·
(
gchpj,t,b + grPV,gj,t,b

) (8.19)

with dtradj,t the traditional electricity demand before a widespread switch from
fuel-fired to electricity-driven heating. When a switch towards electricity based
heating is performed, this electricity demand dbuildj,t becomes an important
fraction of the total demand. This additional demand is met by electricity
generation from multiple sources. The first source is gas-fired power plants,
namely combined cycle gas turbines gccgtj,t and open cycle gas turbines gocgtj,t .
The second source is nuclear gnuc, which is assumed not to modulate and run at
full capacity in each time period. Electricity generation from renewable energy
sources gresj,t is the third source, for which curtailment is modeled through a
factor curtj,t between zero and one. Finally, there is electricity generation from
the buildings’ level when combined heat and power is installed gchpj,t,b or when
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residential PV panels supply electricity directly to the grid grPV,gj,t,b . Electricity
generation from RES is assumed to have zero marginal cost.

The equations for the operational cost for the combined cycle and open cycle
gas turbines are similar. The equations are given for the combined cycle gas
turbines:

∀j, t : OPEXccgt
j,t = fcgas

ηccgt
· gccgtj,t + dcccgtj,t (8.20)

∀j, t : dcccgtj,t ≥ (succcgt + racccgt) · (gccgtj,t − g
ccgt
j−1,t) (8.21)

∀j, t : dcccgtj,t ≥ rac
ccgt · (gccgtj−1,t − g

ccgt
j,t ) (8.22)

with fcgas the fuel cost of natural gas including costs due to the CO2 price and
dcccgtj,t the dynamic cost of operating the power plant. Hence, Eq. (8.21)-(8.22)
represent a linear approximation of the electricity generation system, neglecting
part-load efficiencies of the power plants and linearly modeling start-up costs.
The power plants have a constant efficiency ηccgt. The start-up cost succcgt is
expressed per MW and assumed proportional to the upward increase in power
generation. Costs associated with ramping racccgt are proportional to both
upward and downward ramping. This simplified approach was taken as it was
observed in Chapter 4 that when a large number of buildings with heat pumps
participate in demand response, merit order modeling of the power plants leads
to an error of only up to 2 % compared to a full unit commitment model.
Furthermore, it was observed in Chapter 6 that the presence of a large number
of buildings with heat pumps participating in demand response also brings the
efficiency of the power plants closer to its maximum value.

As a large set of buildings make a switch to electricity-driven heating, an
investment in additional generation capacity could be needed. Again, only the
equations for the CCGT are given:

∆Invpp = Invccgt ·∆gccgt,max (8.23)

∀j, t : gccgtj,t ≤ g
ccgt,inst + ∆gccgt,max (8.24)

(8.25)

with Invccgt the investment cost for CCGT perMW for the generation capacity
∆gccgt,max that comes on top of the already installed capacity gccgt,inst.
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Local electricity generation scale

Since all costs in this chapter are calculated at building level, the costs for
electricity transmission, distribution, taxes and levies should be included.
Otherwise electricity would be unrealistically cheap compared to other energy
sources at the building level:

∀j, t, b : OPEXtariff
j,t,b = tariffdem · dbuildj,t,b − tariffgen · grPV,gj,t,b . (8.26)

As the energy component of the electricity cost is already explicitly modeled
by Eq. 8.21-8.22, the tariff tariffdem is the domestic electricity price minus
the energy component. Electricity can be generated at the building level by
means of PV panels and supplied to the grid, for which a certain tariff tariffgen
is received. In case of net metering policy, the two tariffs equal each other.
Throughout this chapter, a net metering policy is assumed. The sensitivity
towards this policy is investigated in Section 8.4.5. The residential PV panels
can either supply electricity for use in the building grPV,bj,t,b or supply electricity
to the grid grPV,gj,t,b :

∀j, t, b : grPV,bj,t,b + grPV,gj,t,b ≤ cfPVj,t · g
rPV,inst
b . (8.27)

The sum of these electricity generation terms cannot exceed the actual electricity
generation from the PV panels, which is the product of the capacity factor in
each time step cfPVj,t and the installed capacity grPV,instb . In Belgium, the yearly
electricity generation by PV panels is not compensated for when the yearly
generation exceeds the yearly electricity demand [55]. Hence, the following
constraint is added:

∀b :
∑
j

∑
t

wt ·
(
grPV,bj,t,b + grPV,gj,t,b

)
≤
∑
j

∑
t

wt ·
(
dbuildj,t,b + grPV,bj,t,b

)
. (8.28)

In this study, the building electricity demand consists solely of the electricity
demand for heating purposes. Hence, the electricity demand for lighting and
appliances is not modeled explicitly, but is assumed to be included in the
traditional electricity demand dtradj,t . The electric heating demand dbuildj,t is hence
determined as follows:

∀j, t, b : dbuildj,t,b =
∑
l

(
P pumpsl,j,t,b + Phpl,j,t,b + P erhl,j,t,b

)
− grPV,bj,t,b (8.29)

and consists of the electricity consumption of circulation pumps P pumpsl,j,t,b , heat
pumps Phpl,j,t,b and electrical resistance heating P erhl,j,t,b from which the momentary
self-consumed local generation by PV is subtracted.
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Table 8.2: The four building types considered in this study. Detached is
abbreviated as Det.

Index b 1 2 3 4
Building typology Det. Semi-det. Terraced Det.
Location Urban Urban Urban Rural
Peak heat demand (kW ) 6.5 4.8 4.5 6.5
Yearly heat demand (MWh) 12 9 7 12
Day/night zone area (m2) 132/138 98/136 60/140 132/138
South oriented roof size (m2) 90 70 40 90
Number of buildings 350.000 250.000 250.000 150.000
Natural gas allowed yes yes yes no
District heating allowed no no yes no

8.3 Case study

The optimization problem formulated in Section 8.2 is applied to a case study.
The aim is to investigate whether the addition of the different temperature
levels and the explicit modeling of the electricity generation system add value
to the design of heating systems in residential buildings. This investigation is
performed by using the combined design and control optimization framework
to determine which heating systems should be selected in thoroughly insulated
buildings in Belgium, for nine electricity generation mix scenarios. This section
provides the assumptions on cost and performance data of all considered systems.
These costs vary substantially in practice. Hence, the results with respect to
cost should be considered with care.

8.3.1 General

The annuity for all heating systems is based on a lifetime of 20 years [22] while
the power plants annuity is based on a lifetime of 25 years [157]. For both, the
same discount rate is taken, namely 7 % which reflects the point of view of a
private investor [5]. The gas fired power plants face a natural gas price of 25
EUR/MWh [60] in which the cost for CO2 emission is included. Furthermore,
the buildings face an electricity tariff of 150 EUR/MWhel [58].
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8.3.2 Buildings

In this study, only thoroughly renovated buildings are considered. As shown
in Chapter 5, these buildings are appropriate candidates for heat pumps and
hence show potential interaction with the electricity generation system. Four
typologies are considered for which the demand is scaled up to represent a larger
set of buildings, based on Gendebien et al. [72] and Protopapadaki et al. [147]
(Table 8.2).

According to the economic optimum for Belgium [176], these buildings have
an average U-value of 0.3 W/m2K and a ventilation rate of 0.4 ACH, which
are two conditions for the nearly zero energy building standard, as set up by
the Flemish government [175]. The resulting peak heat demand and yearly
heat demand are listed in Table 8.2. The user behavior is based on the data
from Baetens and Saelens [14] as described as Baetens2 in Section 2.4.2 and
aggregated as described in Section 3.6. This results in a diversity factor of 75
%, which means the peak heat demand per building in Table 8.2 is possibly
underestimated. However, in this study the control is optimized which, as shown
by Verhelst [178], enables a smaller design. Typically, even with a smaller sized
heating system, the control is able to determine a correct start-up time for
heating, as is already implemented in smart thermostats [78].

8.3.3 Heating system

Table 8.3 gives an overview of the technical and economical parameters of the
heating systems considered in this study. Combustion of wood pellets and waste
is assumed to have a zero net CO2 emission. Waste is assumed to come at
zero cost, but constructing the CHP for this fuel type is expensive, see Table
8.3. The total wood pellet potential is taken to be 3 TWh, halfway between
Belgians own production and demand, based on Goh et al. [74]. The potential
of waste for energy conversion is assumed to be 1 TWh based on Govaerts et
al. [77]. The condensing gas boiler uses natural gas at the residential level and
hence faces a different natural gas price (75 EUR/MWh) than the large scale
CHP and power plants (25 EUR/MWh) [62].

8.3.4 Electricity system

The only conventional power plants considered, except CHP, in this study are
open cycle gas turbines, combined cycle gas turbines and nuclear power plants.
The prices for gas fired electricity generation units are based on [157] and given
in Table 8.4. The natural gas price for these power plants is 25 EUR/MWh
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Table 8.3: Overview of economical and technical parameters employed in the
case study. Efficiencies are based on the higher heating value and given between
brackets for the 4 temperature levels: (η at 90 ◦C; η at 60 ◦C; η at 45 ◦C; η at
35 ◦C). Costs are given per building and are mainly based on [172]. Technical
data is based on [31, 24, 19] and technical specifications from various heating
system producing companies. All fuel prices are given with respect to the
primary energy content.

Component costfix costvar Technical parameters
EUR EUR

Elec. resistance heater - 100 /kWel η = 1
Condensing gas boiler 3000 - η = (0.84; 0.86; 0.92; 0.95 )

Fuel 75 EUR/MWh
Heating oil boiler 5500 - η = (0.95; 0.95; 0.98; 0.98 )

Fuel 85 EUR/MWh
Wood pellet boiler 9000 - η = 0.9; Fuel 55 EUR/MWh
District heating 5000 ηnetwork = 0.95
Gas CHP - 900 /kWel ηel = 0.41; ηth = 0.40

Fuel 25 EUR/MWh
Wood pellets CHP - 2300 /kWel ηel = 0.22; ηth = 0.75

Fuel 55 EUR/MWh
Waste CHP - 6200 /kWel ηel = 0.18; ηth = 0.61

Fuel 0 EUR/MWh
PV panels - 1.6 /Wpeak 150 Wpeak/m

2

Solar thermal collector 3150 410 /m2 η0 = 0.84; k1 = 3.66;
k2 = 0.017

DHW tank 150 1.5 /liter f tes,prop = 5 · 10−7

50 l ≤ size ≤ 300 l
TESsh 1000 0.5 /liter f tes,prop = 2 · 10−7

500 l ≤ size ≤ 5000 l
Air coupled HP 4650 1000 /kWth ahp = 0.38 bhp = 10
Ground coupled HP 7000 4500 /kWth ahp = 0.5 bhp = 10
Radiators 950 500 /kWth P pump = 30 W

T supnom = 45 ◦C; T retnom = 35 ◦C
Floor heating 3000 100 /kWth P pump = 40 W

T supnom = 35 ◦C; T retnom = 30 ◦C

[62]. The annuity for these plants is calculated based on a period of 25 years.
The nuclear power plants have an operational cost of 20 EUR/MWhel [157].
These nuclear power plants operate at full capacity in the scenarios where these
are considered and hence no ramping costs or start-up costs are applicable.
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Table 8.4: Electricity generation costs, based on [157].

Power plant type Investment Efficiency Start-up cost Ramping cost
EUR/MW % EUR/MW EUR/MW

CCGT 876 62 60 0.25
OCGT 498 40 10 0.66

The electricity generation from RES is assumed to have a marginal cost of 0
EUR/MWhel. The installed capacity of nuclear power and RES depends on
the scenario and the accompanying investment cost is not taken into account in
this study so they are considered as existing units. Finally, the capacity limits
and losses associated with electrical grids are not considered in this study.

8.3.5 Disturbance profiles

The modeled system faces four dynamic disturbances: the traditional electricity
demand dtradj,t , the electricity generation from RES gresj,t , the ambient air
temperature T ej,t and the solar heat gains Q̇solj,t . These disturbances are taken for
Belgium for the period of the years 2013 to 2016, since national RES profiles are
only fully available from 2013 onwards [54]. Both the electricity generation from
RES and the traditional electricity demand are based on data from the Belgian
transmission system operator [54]. Weather data is based on measurements
in Brussels. Three types of centralized RES generation are considered in this
study: PV-panels, onshore wind turbines and offshore wind turbines.

In an ideal case, the optimization horizon would be the full period of 3 years, but
this would lead to infeasible calculation times. Instead, representative periods
are determined based on the methodology of Poncelet et al. [145]. In order to
take into account the lower traditional electricity demand during weekends, the
length of the representative periods is chosen to be one week. After applying
the methodology of Poncelet et al., six representative periods were chosen,
depending on the scenario. In scaling up the variables of these periods to a
year, weighting factors are determined in order to have a similar load duration
curve for the residual electricity demand (electricity demand minus electricity
generated by RES) and the heat demand of the buildings (Figure 8.2). The
periods were also chosen in order to assure that a cyclic boundary condition
can be imposed.

One weakness of choosing the representative weeks this way, is that the
correlation between the heat demand and the residual electricity demand can
change. For example, two extreme weeks could be chosen: a week with high
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Figure 8.2: Illustration of the normalized (norm.) load duration curves in the
case of the original profiles for the period 2013 to 2016 (Original) and the
rescaled load duration curve in the case of the six representative weeks (Repr.
weeks).

curtailment but low heat demand and a week with low curtailment and high
heat demand. This could lead to an underestimation of how much the heat
demand can be shifted to times of curtailment. Regarding the peak demands,
this mismatch is avoided. In the profiles for Belgium in 2013 to 2016, the coldest
week and the week with the highest electricity demand coincide, namely in the
second week of 2013. Hence, while applying the methodology of Poncelet et
al., a constraint is set that this coldest week is always one of the six chosen
representative weeks.

8.3.6 Scenarios

The scenarios are based on the mix in the electricity generation system. In
this chapter, this mix is assumed to consist solely of gas-fired and/or nuclear
power plants and generation from wind turbines and PV panels. The different
scenarios can be chosen based on Figure 8.3, which is determined from profiles
for electricity demand and RES generation from the TSO of Belgium [54] from
January 2013 to January 2016. Hence, it is assumed that wind energy generation
stems for two thirds from offshore wind turbines and for one third from onshore
wind turbines. The maximum allowable capacities for onshore wind, offshore
wind and PV are 9 GW , 8 GW and 50 GW respectively, based on Devogelaer
et al. [46].

The black squares in Figure 8.3 denote the currently installed capacities of wind
and PV in Belgium, while the black triangles show the chosen scenarios. An
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Figure 8.3: Situating the different scenarios for the shares of electricity
generation by wind, PV and nuclear. Figures 8.3a and 8.3b show the percentage
of curtailment with respect to the total electricity generation from wind and
PV. The black squares denote the current share of wind and PV in Belgium
at the end of 2015. The black triangles denote the other scenarios in the cases
with or without nuclear capacity installed.

overview of these scenarios is given in Table 8.5. In the first five scenarios, the
currently installed capacity of nuclear power plants is still available. Assuming
that the nuclear power plants run at their full capacity of 5925 MW all year
through, these deliver about 66 % of the electricity generation. As can be
seen in Figure 8.3a, the presence of these nuclear power plants causes much
curtailment already at low shares of RES. Hence, with nuclear power plants
present, only scenarios are chosen up to a 60 % RES share. In the last four
scenarios, no nuclear power plants are present. In these cases, curtailment only
starts occurring at high RES shares and the scenarios are chosen accordingly.
Regarding the division of the RES generation between wind turbines and PV
panels, two options were chosen. In one option, wind turbines provide two times
as much energy as PV panels, as is currently the case. In the other option,
wind turbines and PV panels provide an equal amount of energy throughout
the year.
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Table 8.5: Scenarios with respect to the electricity generation system. The
shares are calculated as the yearly electricity generation by a source divided by
the yearly demand, without taking curtailment into account.

Scenario Nuclear Wind PV
Name # % % %
N66W06P03 1 66 6,5 3,7
N66W18P09 2 66 18 9
N66W13P13 3 66 13,5 13,5
N66W40P20 4 66 40 20
N66W30P30 5 66 30 30
N00W40P20 6 0 40 20
N00W30P30 7 0 30 30
N00W66P34 8 0 66 34
N00W50P50 9 0 50 50

8.4 Results

In this section, the results are shown step by step. In Section 8.4.1 an example
illustrates the typical model output. Next, the results are set up step by step.
In a first step, the heating system design is fixed and hence the components are
selected and sized according to common practice. Hence, only the control is
optimized in Section 8.4.2. In a next step, only the selection of the heating system
is fixed in Section 8.4.3 and hence the sizing and control of the components can
be optimized. In a third step, Section 8.4.4 shows the results of the full combined
design and control optimization with integer variables where the selection, sizing
and control of the heating systems can be optimized. Finally, section 8.4.5
investigates the sensitivity of the results to some of the assumptions.

8.4.1 Example result of integrated design and control

Figure 8.4 illustrates part of the output in the scenario of the current electricity
generation mix (N66W06P03) where all buildings are equipped with an air
coupled heat pump and a back-up electrical resistance heater. Figure 8.4 shows
the output of these models for the coldest week. In this period, the heat pumps
are almost continuously running at their maximum capacity (Figure 8.4b) which
causes the average day zone air temperature in these buildings to remain above
20 ◦C all the time (Figure 8.4c). This is due to the incorporation of the
investment decisions in the optimization. At building level, this minimizes
the installed capacity of the heat pumps. The buildings and DHW tanks
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Figure 8.4: Illustration of the model output for the coldest week in the scenario
of the current electricity generation mix (N66W06P03), in the case where all
buildings are equipped with an air coupled heat pump (ACHP) and a back-up
electrical resistance heater (ERH). The total electricity demand of these heat
pumps (Figure 8.4b) affects the electricity generation by renewable energy
sources and gas fired power plants (Figure 8.4a). In order to attain a good
interaction, the day zone temperature (Figure 8.4c) and energy content of the
domestic hot water tank (Figure 8.4d) are manipulated. For clarity reasons,
only the day zone temperature (Figure 8.4c) is shown for the 4 building types,
in which U and R stand for urban and rural. D, SD and T stand for detached,
semi-detached and terraced.

are preheated to a minor extent in hours 65 to 80, in order to partly avoid
electricity demand during hours 80 to 92. This leads to a lower investment in
peak electricity generation capacity. The remainder of the heating demand is
covered by the electrical resistance heater (Figure 8.4b), which is solely used
for heating the domestic hot water tank. Note also how the temperature in the
detached buildings (Figure 8.4c) remains closer to the lower boundary than in
the other building types. This can either mean that the investment cost is more
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Figure 8.5: Overview of the equivalent annual cost (EAC) and CO2 emission
of different heating system cases for scenario N66W06P03, averaged over all
buildings, with a fixed design.

critical for this building type or that the potential for load shifting is smaller.

8.4.2 Results with fixed design (selection and sizing)

In a first step, the optimization is performed for a fixed design: when a heating
system is chosen, it is sized to meet the peak heat demand. Also, when a PV
system is considered, it is sized to meet the annual electricity consumption of
the household. Hence, only the control of the components can be optimized.
The results are shown in Figure 8.5.

The cases with combinations of condensing gas boiler, heating oil boiler, wood
pellet boiler or gas-fired CHP are named "Fuel" in this figure. These systems
clearly lead to the lowest EAC, but also to the highest annual CO2 emissions.
For these heat production systems, the lowest average CO2 emission, 1.5 ton
per building per year, is attained when the detached and semi-detached urban
buildings have a condensing gas boiler, the terraced urban building is coupled
to a macro CHP running on natural gas and waste while the rural buildings
have a wood pellet boiler. This shows a clear influence of the building type on
the most appropriate heating system.

In all cases where a heat pump is installed, the CO2 emission is lower. The
cases with an air coupled heat pump show a somewhat higher CO2 emission
and lower equivalent annual cost than the cases with a ground coupled heat
pump. These results include the option where the urban, terraced buildings
are coupled to a CHP through a district heating network and all other building
types are equipped with a heat pump. This combination leads to the lowest
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Table 8.6: Results of optimized sizing and control for different heating system
selections in the scenario N66W06P03: the main heat production system size
(Main), the size of the electrical resistance heater (ERH) and the thermal energy
storage tank for space heating (TESsh). Also the need for extra OCGT capacity
per building is given (OCGT) along with the reduction in yearly curtailment
(curt.).

Heating system selections Main ERH TESsh STC OCGT Curt.
Values per building kWth kWth liter m2 Wel kWh

CGB, HOB; Fh 30 0 0 0 0 -0.001
CGB, HOB and STC; Fh 30 0 0 1 0 -0.006
ACHP; Rad 4.14 0.50 0 0 972 -0.160
ACHP; Fh 4.42 0.42 0 0 642 -0.159
ACHP + TESsh; Fh 4.27 0.55 500 0 550 -0.159
GCHP; Fh 3.03 2.41 0 0 365 -0.135
GCHP + TESsh; Fh 2.88 2.45 500 0 321 -0.131

EAC of all cases shown with an ACHP. The highest EAC of the options with
an ACHP is the one where this heat pump is coupled to a radiator.

Complementing the heat pumps with PV panels drastically lowers the annual
CO2 emissions with 0.6 to 0.9 ton per building per year, at a surplus EAC of
only 30 EUR per building per year. The lowest CO2 emission of 0.19 ton per
building per year is attained when all buildings are equipped with a ground
coupled heat pump and PV panels, at the highest annual cost of 2202 EUR per
building per year.

8.4.3 Results with fixed selection

A second step before getting to the results of the combined design and control
optimization, is to perform the optimization multiple times with fixed integer
decision variables. This means that in each calculation, the selection of heat
production, storage and emission system is fixed. However, the sizing and
control of these components are optimized. The absence of integer decision
variables turns the optimization problem into an LP problem, which drastically
decreases the calculation time from the order of days to two minutes.

Table 8.6 presents the results for some cases in the scenario of the current
electricity generation mix (N66W06P03). For the case where a condensing gas
boiler (CGB) is installed in the urban buildings and a heating oil boiler (HOB)
in the rural buildings, the results are of little interest: both heat production
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Figure 8.6: Overview of the equivalent annual cost (EAC) and CO2 emissions
of different heating system cases for scenario N66W06P03, averaged over all
buildings, with fixed system selection but optimized size and control. The black
squares denote the cases where a thermal energy storage tank is added to the
heating system (TESsh). The results of these cases are connected to the results
of the respective case without TESsh.

systems are typically over-sized. Since these heat production systems only use
electricity for the circulation pumps, the influence on the electricity generation
system is negligible.

For the ACHP and GCHP, part of the investment cost is proportional to the
heat pump size. For both heat pump types, this causes part of the peak heat
demand to be covered by a back-up electrical resistance heater. Note that the
sum of both thermal capacities is lower than the expected heating power as
provided in Table 8.2, meaning that combined design and control optimization
is able to lower the investment cost in the heat pump, by optimizing the system
control.

For the GCHP, the proportional component of the investment cost is that high,
that the size of the back-up resistance heater almost equals the size of the
GCHP. However, this does not lead to a drastic increase in peak electricity
demand, as can be seen in the capacity of OCGT installed per building (Table
8.6). Similar as in Figure 8.4, the building structure is preheated at night, but
to a larger extent. As was also found in Chapter 5, the highest increase in peak
electricity generation capacity occurs when the buildings are equipped with the
combination of an air coupled heat pump and radiators.

Figure 8.6 gives an overview of the equivalent annual cost and CO2 emission
for some selected heating systems for the scenario with the current electricity
generation mix: N66W06P03. For the cases with heat pumps, the differences
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Table 8.7: Equivalent annual cost and CO2 emission per building for different
heating system selections and different scenarios.

Scenario N66W06P03 N66W40P20 N00W66P34
Heating system selections EAC CO2 EAC CO2 EAC CO2
Values per building per year EUR Ton EUR Ton EUR Ton
CGB, HOB; Fh 1520 2,32 1466 2.16 1423 2.05
CGB, HOB and STC; Fh 1829 2.24 1772 2.06 1735 1.97
ACHP; Rad 1812 1.41 1651 0.39 1596 0.55
ACHP; Fh 1709 1.22 1571 0.30 1520 0.41
ACHP + TESsh; Fh 1830 1.25 1692 0.30 1637 0.41
GCHP; Fh 2030 1.13 1905 0.38 1874 0.62
GCHP + TESsh; Fh 2143 1.16 2022 0.37 1985 0.60

with Figure 8.5 are clear: generally a lower EAC is attained, but at the cost of
a higher annual CO2 emission. For the cases with a GCHP, the EAC lowers
with about 200 EUR per building per year but increases the CO2 emissions
with about 0.25 ton per building per year. This is due to the installation of the
large electrical resistance heater (Table 8.6). Also the PV system is drastically
downsized, reducing the EAC but increasing the annual CO2 emissions. The
difference in results illustrates a handicap of the combined design and control
optimization framework: it is single objective optimization towards EAC.

Regarding the solar thermal collector and the storage tank for space heating,
a general trend is visible in Table 8.6 and Figure 8.6, which is also confirmed
for other scenarios. This trend is that both systems are sized as small as
allowed by the constraints. This means that for these components, even when
these are obliged to be installed, the marginal cost of the proportional part
of the investment cost is still higher than the marginal gains by sizing these
components larger.

One square meter of a solar thermal collector (Table 8.6) only reduces the CO2
emission by 0.1 ton per building per year, at an increased cost of about 300
EUR per building per year. For a similar increase in EAC, an ACHP reduces
the CO2 emission with 1 to 1.5 ton per building per year (Figure 8.7).

Regarding the thermal energy storage tank for space heating, Figure 8.6 and
Table 8.7 illustrate that in most cases this technology causes the CO2 emission
to rise. This means that the flexibility offered by the TESsh does not pose
significant added value with respect to the flexibility already provided by the
building structure and the tank for domestic hot water. Hence, the main effect
of the TESsh is an increase in heat demand, due to its standby losses.
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Figure 8.7: Equivalent annual cost (top) and CO2 emission (middle) per
building per year for a selected number of cases over all scenarios (the scenarios
corresponding to the numbers on the x-axis can be found in Table 8.5). The
average installed PV capacity per building is shown in the bottom figure.

The results for the heating system selections which are close to pareto optimality
in Figure 8.6 are shown in Figure 8.7 for all electricity generation mix scenarios.
The scenarios corresponding to the numbers on the x-axis can be found in Table
8.5. Both figures show the same trends in the results. First, the fuel based
options (CGB,CHP,WPB) show the lowest EAC of these cases, but also the
highest CO2 emission. The variation in CO2 emission between the different
scenarios stems from the macro CHP.

Regarding the options with a heat pump, the EAC for the air coupled heat
pump is between 300 and 400 EUR lower than that of the ground coupled heat
pump cost in all scenarios (Figure 8.7). The option in which all buildings are
equipped with an air coupled heat pump except the terraced buildings, which
are coupled to a macro CHP, leads to the lowest EAC. Regarding the CO2
emission, the difference between the different heat pump cases is rather small.
For cases with a ground coupled heat pump, this is partly because of the large
size of the electrical resistance heater (Table 8.6), to limit the investment cost.
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Finally, in the cases where the heat pump is complemented with rooftop PV
panels, the CO2 emission drops and the equivalent annual cost slightly decreases
(Figure 8.7). However, the installed capacity greatly varies throughout the
scenarios. In the cases where already a large fraction of the electricity generated
by PV is curtailed, i.e. scenarios 3 to 5 and scenario 9, there is practically no
investment performed in additional residential PV. In the other cases, the PV
is sized to such an extent that the constraint in Eq. 8.28 becomes active: the
annual electricity demand from the heating systems is met.

One exception in this is scenario 1 (N66W06P03), where one would expect the
residential PV to be also sized to meet the annual electricity demand, which is
not the case. The reason for this deviation is the choice of representative weeks.
When the cases in scenario 1 were recalculated with the representative weeks of
scenario 2, the residential PV was sized to meet the annual electricity demand.
This shows a weakness in the approach of using representative weeks, as this
can influence the result.

8.4.4 MILP results

In this section, the results are shown for the full combined design and control
optimization, with inclusion of all integer decision variables, as described in
Section 8.2. This leads to a very large optimization problem, consisting of 42
integer decision variables and 2 million continuous decision variables. This
MILP problem is solved using CPLEX 12.6 using all 20 threads on a Xeon
E5-2680v2 processor. The optimization problem proves to be very hard to solve,
as it takes typically 3 days to find a solution.

The MILP returns one single solution. As the first row in Table 8.8 shows,
the MILP is still far from optimal after 3 days of calculating. In order to get
a solution and to make a comparison with the results from the fixed heating
system design or selection, the MILP is calculated again but with a limit on the
CO2 emission. In this way, it is possible to determine the technology selection
which lead to a certain CO2 emission reduction at the lowest cost. In Figure
8.8, the results are visualized together of all three approaches: the MILP, the
fixed designs and the fixed selections. This figure shows that the MILP results
do not deviate a lot from the results with fixed design or selection. This is
because these approaches lead to almost the same technology selection (Table
8.8): in all results, there is only one main heating system installed.

In the MILP results with different constraints on the CO2 emissions in Table
8.8, the terraced buildings are always coupled to the macro CHP, which runs
on natural gas and waste. The installed capacity of the waste CHP is low
throughout all solutions due to the high investment cost and the limited waste
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Table 8.8: Results of the MILP for the current electricity generation mix
(scenario N66W06P03), reaching an optimum after 3 days of calculation. For
each technology, the size is added between brackets in kWth, except for CHP
and PV in kWel. Both the CO2 limit and EAC are shown per building per year.

CO2 Selected technology EAC
limit Urban Urban Urban Rural
ton Detached Semi-det. Terraced Detached EUR
None Too far from convergence 3447
1.5 CGB (30) CGB (30) CHP: ACHP (5,2) 1486

PV (0.2) PV (0.2) gas (2.5) PV (5)
ERH (0.1) ERH (0.1) waste (0.2) ERH (0.2)

1 ACHP (5.2) ACHP (3.9) CHP: GCHP (3.1) 1645
PV (0.4) PV (0.3) gas (2.6) PV (2)
ERH (0.3) ERH (0.3) waste (0.1) ERH (3.3)

0.9 ACHP (5.3) ACHP (3.9) CHP: ACHP (5.3) 1595
PV (1.1) PV (0.8) gas (2.7) PV (1.2)
ERH (0.3) ERH (0.3) waste (0.1) ERH (0.3)

0.75 ACHP (5.3) ACHP (3.9) CHP: ACHP (5.3) 1596
PV (1.7) PV (1.3) gas (2.5) PV (2.3)
ERH (0.3) ERH (0.3) waste (0.1) ERH (0.3)

0.50 ACHP (5.3) ACHP (3.9) CHP: GCHP (3.2) 1652
PV (4.0) PV (2.0) gas (2.5) PV (2.8)
ERH (0.3) ERH (0.3) waste (0.1) ERH (3.3)

0.25 ACHP (5.2) ACHP (3.9) CHP: GCHP (3.2) 1668
PV (5.5) PV (3.9) gas (2.5) PV (4.6)
ERH (0.4) ERH (0.4) waste (0.1) ERH (3.1)

potential. In the rural buildings, typically an ACHP or GCHP is installed. For
the urban detached and semi-detached buildings, this is also the case when a
low limit on the CO2 emission is imposed. Otherwise, a condensing gas boiler
is installed in these buildings. In the case of a GCHP in the rural buildings,
these are complemented with a large electrical resistance heater, similar to the
result in Table 8.6.

Furthermore, all buildings except the terraced buildings are equipped with a
typically small electrical resistance heater and an occasionally small PV system.
For the electrical resistance heater, no fixed cost or minimum size was imposed
(Table 8.3) and hence this technology is attractive for covering the last peak
in meeting the heating demand. The net metering scheme then stimulates the
investment in PV to meet the electricity consumption of the electrical resistance
heater on a yearly basis. In the cases with a more stringent CO2 limit, the PV
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Figure 8.8: Situating the MILP results with respect to the results of the
optimizations with fixed design (Figure 8.5) and with fixed selection of heating
systems (Figure 8.6) for the current electricity generation mix (scenario
N66W06P03).

system is sized larger.

Note that in all results, no other components were added to the heating system.
In none of the results were there any solar thermal collectors installed. Also,
in none of the buildings where a heat pump is selected, are these heat pumps
accompanied by a TESsh or by another heat production system to meet the peak
heat demand. Hence, it appears that in all buildings, a rather straightforward
selection of heating system is made, namely one main heat production system
without much auxiliary systems, except for an electrical resistance heater and
PV. This is partly due to the large fixed part of the investment cost, in this
model, in heating production systems in a residential context, which forms an
important threshold to install a second heat production system. In practice
however, the cost of installing two systems might be lower than the sum of
installing both separately due to a reduced margin per component taken by the
installer.

Since the MILP usually ends up choosing one heat production system per
building, it shows little added value with respect to the approach of optimizing
multiple cases with fixed design (Section 8.4.2) or selection (Section 8.4.3). The
MILP takes around 3 days to calculate for one single solution, while a case
with fixed design or selection only takes 2 minutes. Hence, calculating the
latter results for the cases in Figures 8.5 and 8.8 took less than an hour, while
calculating the MILP results took multiple days.
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Figure 8.9: Equivalent annual cost per building for a discount rate of 3.5 %, for
all scenarios.

8.4.5 Sensitivity analysis

The results in this chapter are based on a large set of parameters, as listed
in Section 8.3. A full sensitivity analysis with respect to these parameters is
outside the scope of this chapter. Rather, this part illustrates the sensitivity of
the results towards a selected set of parameters and assumptions. The sensitivity
towards the net metering scheme and the discount rate is shown. Later, the
results for the TESsh for these sensitivity analyses are shown. Finally, the
sensitivity towards the method of calculating the CO2 emission is discussed.
Given the long simulation times of the MILP model, the sensitivity analyses
are performed with fixed heating system selection as in Section 8.4.3.

Net metering

To test the sensitivity towards the net metering policy, supplying electricity
to the grid by the residential PV panels is made less attractive by reducing
tariffgen to only half of tariffdem. With this policy, the residential PV panels
were sized very small: the maximum installed capacity over all scenarios is
320 W . This also holds for the cases with TESsh. Hence, the presence of this
energy storage is not able to make an investment in PV more attractive in
this case. Overall, the attractiveness of residential PV strongly depends on the
net metering policy as well as the already installed PV capacity in the central
electricity generation system (Figure 8.7).

Discount rate

In practice, the investment cost of heating systems can vary widely. A full
sensitivity towards the investment cost is beyond the scope of this work. However,
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Figure 8.10: Increase in equivalent annual cost and CO2 emission per building
per year over all results with fixed integer decision variables, due to the
installation of a TESsh. The results are shown for a discount rate of either 7 %
and 3.5 %, for either a normal net metering scheme (NM) or attenuated net
metering scheme (ANM) and for a minimum tank size of either 0.5 m3 or 2 m3.

in order to get a grasp of what the sensitivity towards the investment cost can
be, the impact of a different discount rate is illustrated. Figure 8.9 shows the
results when the discount rate is changed from 7 % to a discount rate which
reflects more a societal point of view, namely 3.5 % [96]. A lower discount
rate favours technologies which show a high initial investment cost but low
operational costs.

Figure 8.9 shows the equivalent annual cost in the different scenarios, for the
discount rate of 3.5 %. This is to be compared with the results in Figure 8.7
with a discount rate of 7 %. A first logical observation is that the EAC for all
heating systems lowers. However, the change in relative difference between the
heating systems is interesting: the combination of ACHP and residential PV
becomes cheaper than the typical fuel fired options in a number of scenarios. In
the other scenarios, the difference in EAC also lowers. Throughout the scenarios,
the lower discount rate also causes the heat pumps’ size to rise, as well as the
residential PV systems to be sized to meet the annual electricity demand in all
scenarios.

Thermal energy storage tank for space heating

Throughout this section, the thermal energy storage tank for space heating
shows poor performance. All results with respect to this TESsh are summarized
in Figure 8.10. This figure shows the increase in equivalent annual cost and
CO2 emission due to the installation of a TESsh, for the optimization results
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Figure 8.11: Comparison of CO2 emissions using the incremental (i) and average
(a) CO2 emission in each hour, for all scenarios.

with fixed selection where a heat pump is installed. A first general observation,
not shown in the figure, is that the TESsh size always equals the lower bound
on this size. Furthermore, installing a TESsh always increases the equivalent
annual cost. This cost increase mainly depends on the investment cost of the
TESsh, as can be seen in the clear clustering around a tank size in Figure 8.10.
Finally, the difference in CO2 emission is highly system and scenario dependent.
The CO2 emissions per building per year drop in some of the heating system
cases, mostly in the scenarios with high curtailment. Note however, that this
CO2 emission saving does not exceed 0.03 ton per building per year and is
highly case dependent.

CO2 emission calculation method

Throughout this chapter, the CO2 emission of the electricity consumption
and/or generation by the heating systems is determined by using the incremental
emission factor as defined by Bettle et al.[20]. In this methodology, the electricity
consumption is delivered by the marginal unit. In this chapter, the marginal
units are typically the gas-fired power plants, except during the periods when
electricity generation by RES overshoots the demand. In the latter situation,
RES functions as the marginal unit. However, as pointed out by Bettle et al.[20],
another approach is to use the average emission factor. In this approach, the
CO2 emission in each time step of the electricity consumption of the heating
systems is determined as the average CO2 emission of all electricity generation
units active at that time step. In case of electricity generation by the heating
system, this replaces the average CO2 emission at that time step.

The results of employing both emission factors are compared in Figure 8.11,



182 DEMAND RESPONSE: IMPLICATIONS FOR RESIDENTIAL HEATING SYSTEM DESIGN

which repeats the incremental emission factor results shown in Figure 8.7.
Independent of the scenario, the same trends occur. First, by employing the
average emission factor, the CO2 emission of the CHP is drastically higher
than employing the incremental emission factor. In the case of the incremental
emission factor, the electricity generation by the CHP is typically replacing
generation from a gas-fired power plant, next to which it is more efficient. In the
case of the average emission factor, electricity generated by the CHP replaces a
mix of nuclear, RES and gas-fired generation, compared to which it emits more
CO2.

A similar trend occurs for the residential PV panels. For example in scenario
N00W40P20 (scenario number 6), the residential PV systems substantially lower
the CO2 emission by 0.6 ton per building when the incremental emission factor
is employed. Using the average emission factor however, the residential PV
panels only lower the CO2 emission by 0.2 ton per building.

Finally, for the heat pump options, employing the average emission factor leads
to substantially lower CO2 emissions: below 0.5 ton per building, except in
Scenario N00W40P20 (scenario number 6) and N00W30P30 (scenario number
7). As in all scenarios large shares of nuclear and RES are assumed (Table 8.5),
this leads to a low average CO2 emission for electricity consumption. Employing
the average emission factor also drastically lowers the difference between the
CO2 emission of the air coupled and the ground coupled heat pump to below
0.15 ton per building.

Electricity versus natural gas tariff

As shown by Heylen et al. [85], the ratio between the electricity price and
natural gas price is a key indicator for the economic feasibility of a heat pump.
This ratio determines the operational cost savings of a heat pump over its
lifetime with respect to a natural gas boiler, which should compensate for the
higher investment cost of a heat pump. In order to illustrate the importance
of this ratio, the electricity tariff is varied while the natural gas tariff (at
50 EUR/MWh) and natural gas wholesale market price (at 50 EUR/MWh)
remains fixed. Instead of the value of 150 EUR/MWhel used throughout this
chapter, the electricity tariff is now varied between 100 EUR/MWhel and 200
EUR/MWhel, inspired by the tariffs in France and Germany respectively [85].

Figure 8.12 illustrates the sensitivity of the equivalent annual cost towards the
electricity tariff. This electricity tariff is a dominant factor in the EAC of the
heat pump options, regardless of the scenarios. When a low electricity tariff
of 100 EUR/MWhel holds, the air coupled heat pumps options become very
competitive with the fuel fired option in terms of EAC. However, the EAC
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Figure 8.12: Sensitivity of the equivalent annual cost per building towards
the ratio in electricity and natural gas price. This is illustrated by varying
the electricity tariff between 100 EUR/MWhel (low (l)), 150 EUR/MWhel
(medium (m)) and 200 EUR/MWhel (high (h)). 150 EUR/MWhel is the
electricity tariff assumed throughout the chapter.

of the ground coupled heat pump options remains 400 EUR higher. In the
other extreme case of an electricity tariff of 200 EUR/MWhel, the EAC of all
heat pump options is at least 250 EUR higher than the fuel fired option. This
illustrates the strong sensitivity of the heat pump’s economic attractiveness to
this electricity tariff.

8.5 Discussion

This section discusses the observations with respect to the added value of the
addition of the temperature levels and the electricity generation park in the
optimization framework. Furthermore, the use of a MILP approach towards the
combined design and control optimization is discussed along with some strong
and weak points of this approach. Finally, the impact of including the electricity
generation system in the residential heating system design is discussed.

As stated in the introduction, the main motivation towards including the
different temperature levels is to have an accurate representation of the energy
storage potential of the TESsh. However, Figure 8.10 shows that this TESsh has
little added value in the case study: the equivalent annual cost typically rises
with around 100 EUR per building and the reduction in CO2 emissions is highly
case dependent and smaller than 0.03 ton per building per year. Of course, these
numerical results highly depend on the parameters of the current case study, but
already give a strong indication that the TESsh and the accompanying modeling
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of the temperature levels, are superfluous in the studied residential framework.
The inclusion of the temperature levels does allow for an elegant modeling of
the interaction and cascading of different heating system components, but has
the downside of increasing the problem size proportionally with the number of
temperature levels.

The addition of the electricity generation park influences the heating system
design, as shown for example for the different scenarios in Figure 8.7. Especially
the design of the residential PV system, heat pump and macro CHP sees an
impact. The electricity generation system forms an extra incentive in the
operation of the heat pump and macro CHP during the coldest week. As
also seen in Chapter 5, this stimulates the heat pumps to greatly preheat
the buildings during the night. As during the coldest periods, the indoor air
temperature is almost constant, the heat pump size can be smaller. This is
because a smaller start up is needed after the period of the temperature set-back
at night, which plays a role in sizing of the heat pump. Regarding the equivalent
annual cost per building, Figure 8.7 shows that the relative order between the
different heating system options stays rather unaltered throughout the different
electricity generation mix scenarios.

Explicitly modeling the interaction with the electricity generation park also
allows to determine the incremental CO2 emission accurately. However,
interpreting the CO2 emission results should be done carefully, as Figure 8.11
illustrates the difference of up to 1 ton per building per year between the
incremental and average CO2 emission calculation methods. Bettle et al.[20]
discussed that the incremental emission factor should be used to assess the
short term impact of a change in electricity demand. Given that the electricity
generation system has more time to adapt to the change in electricity demand,
in terms of investment in new power plants and RES generation, the average
emission factor should be used. Bettle et al. suggest to employ a weighted
average of both resulting CO2 emissions to assess the impact of the electricity
demand. The weighing factor between the two is off course open for discussion.
The main aim of Figure 8.11 is to illustrate the high sensitivity of the CO2
emissions on the (arbitrary) choice between incremental and average emission
factors.

Using the MILP approach, it is possible to combine all heating system design
decisions in one single optimization problem. However, solving the MILP takes
more than 3 days and returns only one single solution. From the MILP results
in the current case study it also appears that only one main heating system
is selected per building type. Hence, the MILP shows little added value with
respect to the approach of multiple calculations with fixed heating system
design or selection (Figure 8.8). The latter approach only takes 2 minutes per
calculation, which allows for a quick computation of the solution space. In this
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way, it is possible to quickly situate the different technologies with respect to
each other. This provides much more knowledge and insight in the different
heating system options. This approach is similar to the large scale energy
system investment models TIMES [107] and Balmorel [150], which both employ
LP problem and avoid the use of integer decision variables.

Note that the presented MILP combined design and control optimization
determined the heating system selection for four different building types
simultaneously. This means that the number of integer decision variables
is four times higher than when a single building would be considered. Also, it
appears that the fixed cost component in a residential context is a large barrier
for implementing two main heat production systems as well as for implementing
a TESsh and STC. In the work of Ashouri et al. [8], the MILP approach was
also used, but from the perspective of a single office building. That setting
appears to be better suited for a full MILP approach.

Given the short calculation time of two minutes when the integer decision
variables are fixed, this model is suited for a combination with a genetic
algorithm. The genetic algorithm can make the selection between the heating
system options, while the presented model with fixed integer decision variables
optimizes the system size and control. The latter model would work as a
subroutine which provides the lowest achievable cost given a certain system
selection. This approach is close to the one applied by Evins [64], who applied a
genetic optimization for heating system selection and building design parameters
around a MILP for control of the heating system. Similar to Ashouri et al.
[8], Evins’ framework was applied to a single office building. The approach of
Evins could prove to be too calculation intensive for the scale in this chapter,
but nonetheless can provide valuable insight in the combination of a genetic
optimization for system selection and a subroutine providing the optimized
control.

As shown in Figure 8.13, the percentage of RES that gets curtailed, varies widely
throughout the scenarios. Installing heat pumps instead of the fuel fired options
reduces the curtailment with 1.5 to 7 % as compared to the total electricity
generation by RES. This translates to a 9 to 33 % reduction in terms relative to
the total curtailment. Employing this last metric, Hedegaard et al.[81] reported
reductions in curtailment of 8 % to 19 %, Meibom et al. [118] found 13 %
to 20 % while in Chapter 5 a reduction of 50 % in curtailment was reported.
This illustrates the wide diversity of the impact of heat pumps on curtailment
and the sensitivity towards the boundary conditions. Furthermore, this also
shows that installing heat pumps with smart controllers cannot fully limit the
curtailment of RES to zero, as was also found by Waite and Modi [180]. Hence,
in energy systems with high RES, smart heat pumps should be complemented
with extra energy storage technologies.



186 DEMAND RESPONSE: IMPLICATIONS FOR RESIDENTIAL HEATING SYSTEM DESIGN

1 2 3 4 5 6 7 8 9

Scenario

0

10

20

30

40

50
C

ur
ta

im
en

t (
%

)

CGB,CHP,WPB
ACHP
ACHP,CHP
GCHP
ACHP,PV
GCHP,PV

Figure 8.13: Curtailment of RES as a percentage of the total electricity
generation of RES. Comparison for the same scenarios as presented in Figure
8.7.

Regarding the case study for Belgium, some general trends could be found
throughout the results. First, the CHP with district heating appears cost
competitive for the assumed costs but the CO2 emission savings strongly depend
on whether the CO2 emission is determined according to the incremental or
average approach. Second, the cases with heat pumps lead to the lowest CO2
emissions independent of the CO2 emission calculation method. From the
heating system options, the air coupled heat pump coupled to floor heating
is the most cost competitive, as was also found in Chapter 5. As shown in
Figure 8.12, this cost competitiveness strongly depends on the tariff structure
for natural gas and electricity in residential buildings. When heat pumps are
combined with PV panels and given a low discount rate of 3.5 %, this option was
even cheaper than the classical gas condensing boiler in some scenarios (Figure
8.9). Finally, the solar thermal collector and TESsh appear to be expensive
technologies leading to only a small reduction in CO2 emission. For the TESsh,
the CO2 emissions even rose in a large part of the studied cases and scenarios.
Hedegaard et al. [81] also observed the little added value of the TESsh, as the
flexibility in the building structure and domestic hot water tank already provide
most of the flexibility benefits.

Note that the numerical results should be handled with care. First of all, real
heat production systems are sold in discrete sizes, for which the linear variable
cost in Eq. 8.2 is an approximation. A home owner will hence probably not
install the small auxiliary systems as depicted in the MILP results in Table
8.8. Also, the investment cost for heating system components vary widely.
Furthermore, the share of nuclear power generation and RES varies greatly
throughout the different scenarios. This will affect the fixed tariff tariffdem

for electricity consumption at the household level. Hence, the equivalent annual
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costs in the different scenarios should be handled with care.

Regarding residential PV, the investment decisions are particularly sensitive to
the investment cost and to the local policy. The investment cost of PV panels is
still expected to decrease substantially in the future [29] and hence the results
involving residential PV should be handled with caution. Regarding policy, a
net metering scheme ameliorates the decision for the combination of PV and
heat pump, making it competitive with a condensing gas boiler. Of course, this
scheme presents a challenge for the transmission and distribution grid operators
to recover their costs, also given the increased load on their networks2. Given
an attenuated net metering scheme, the PV system appears to be sized much
smaller. The potential for self consumption of heating systems is hence rather
limited, as discussed already by Reynders et al. [153].

8.6 Conclusion

This chapter presents a combined design and control optimization framework
to investigate the design of different residential heating system options under
varying electricity generation mixes. Towards this aim, two concepts were added
to the optimization framework, as compared to combined design and control
optimization in the literature. The first, the inclusion of temperature levels for
exchange of heat, allows for an elegant modeling of the heat exchange between
different components and the inclusion of temperature dependent efficiencies,
but increases the problem size and hence the calculation time. Also, the main
reason to add these temperature levels was to accurately model the potential of
the thermal energy storage for space heating, which proved to be an unattractive
technology in the studied residential context.

The second concept is the addition of the electricity generation park to the
optimization problem. This provides valuable insight in the impact of different
heating system selections and influences the heating system design. Throughout
the different scenarios, the relative differences between the different heating
system selections remained almost the same regarding equivalent annual cost,
but widely varied regarding CO2 emission.

The combined design and control optimization was implemented as a MILP.
However, this approach showed unreasonable long calculation times and ended
up with rather straightforward heating system selections. This is partly due to
the high fixed part of the investment cost in the residential context. Calculating
a variety of heating system designs and or selections proved to be a far better

2This also forms a challenge for a wide scale integration of heat pumps.
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approach than solving the full MILP: it gives a wide overview of the solution
space with a calculation time of only two minutes per case.

Regarding the results of the case study, the combination of air coupled heat
pump, floor heating and PV panels showed substantial CO2 emission reductions
of up to 2 ton per building per year for an increase in equivalent annual cost
below 350 EUR per building, as compared to typical fuel fired heating systems.
The CHP coupled to district heating is cost competitive, but the CO2 emission
reduction highly depends on the calculation method. Finally, the solar thermal
collector and thermal energy storage for space heating appeared to be very
expensive technologies for the limited, and for the latter technology highly
uncertain, reduction in CO2 emissions.



Chapter 9

Conclusion

This section summarizes the conclusions of the work (Section 9.1) along
with general commentary on these conclusions (Section 9.2) and provides
recommendations for future research (Section 9.3)

9.1 Main conclusions

The main conclusions of this work are summarized as a response to the four
research questions posed in the introduction (Section 1.2):

• How should the interaction between residential heat pumps and the
electricity generation system be modeled?

• What are the maximum attainable benefits from applying DR to residential
heat pumps?

• How could DR with residential heat pumps be realized in practice?

• Will the residential heating system be designed differently in order to
benefit from the DR potential?

How should the interaction between residential heat pumps and the
electricity generation system be modeled? Chapters 2 and 3 illustrate the
bottom up modeling of a large set of residential buildings with heat pumps
in an optimal control problem. This bottom up model involves a physical

189
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representation of the thermal dynamics of a building structure, the weather
conditions, the occupants’ demand for thermal comfort and a physical model
of the heating system consisting of a heat pump, heat emissions system and a
domestic hot water tank. Chapter 3 presents and verifies a linear representation
for the heating system along with an aggregation methodology towards the
user behavior. In this way, the entire bottom up model is an optimal control
problem with a linear set of equations with a limited number of states, which is
applied to identical building parameters in this thesis. Extending the framework
to multiple building parameters can be easily implemented but would rapidly
increase the calculation time. The difference in DR performance due to different
building parameters is discussed in Chapter 5.

This linear optimal control problem of residential buildings with heat pumps
is suitable to be combined with a unit commitment and economic dispatch
model of the electricity generation system (Chapters 2 and 3). The resulting
“integrated model” explicitly integrates the electricity demand and flexibility
therein of residential buildings with heat pumps, together with the incentives
from the electricity generation system.

Chapter 4 shows that this integrated modeling approach is the correct way of
investigating the aforementioned interaction in comparison to typical approaches
in the literature. From a supply side perspective, the buildings with heat
pumps are typically represented by a price elasticity or by a virtual generator
model. Both approaches fail to represent the flexibility of the buildings
with heat pumps well since significant erratic variations are found on the
most important parameters for these models: the own-elasticity, the cross-
elasticity and the demand response ratio. From a demand side perspective, the
electricity generation system is typically simplified to an electricity price profile.
However, the heat pump controllers overreact to this price profile thereby causing
additional demand peaks that increase the cost for the electricity generation
system. Even iterating with a price profile is unable to reach the cost savings
of the integrated modeling approach. Finally, chapter 4 also investigates the
demand side perspective of representing the electricity generation system by a
merit order instead of the full unit commitment and economic dispatch model.
This simplification of the electricity generation system, when combined with
a significant electricity demand from residential buildings with heat pumps,
appears to be promising: calculation times decrease more than a factor 10 for a
change in total system cost below 3.5 %.

Answer to the research question: In order to correctly model the interaction,
both the electricity generation system and the buildings with heat pumps should
be modeled simultaneously. To this aim, a fully linear representation of the
buildings with heat pumps is possible.
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What are the maximum attainable benefits from applying DR to residential
heat pumps? The integrated model is applied to two case studies in a Belgian
context, exploring the potential benefits of employing DR on heat pumps in
residential buildings. In Chapter 5, an electricity generation system with 40 %
RES is studied along with multiple heating system configurations and building
types. Applying DR is shown to lower the CO2 emissions relative to the use
of a condensing gas boiler with on average 15 % by increasing the electricity
demand at times of curtailment. Around half of this increase in electricity
demand is directly ‘wasted’ in higher heat losses of the building structure and
domestic hot water tank. The other half replaces electricity demand for the
gas fired power plants. Furthermore, the contribution of the heat pumps to
the peak in electricity demand is significantly reduced under DR. On average,
the application of DR lowers the CO2 abatement cost with 300 EUR/ton CO2.
Nonetheless, even with DR the heat pump is still an expensive CO2 abatement
technology in Belgium, showing an abatement cost between 100 and 2500 EUR
per ton CO2. Especially the mildly renovated buildings show abominable results.
For the thoroughly renovated and new buildings, the difference between the
results is mainly dominated by the seasonal performance factor of the heat
pump and not by the building characteristics. The air coupled heat pump with
floor heating shows the lowest CO2 abatement cost of all heating system types
considered.

Focusing on the thoroughly renovated buildings with air coupled heat pump and
floor heating, chapter 6 studies the sensitivity of the market value with respect
to market penetration, comfort temperature bounds and RES penetration.
Regarding market penetration, it is shown that, the more participants join the
DR program, the more the cost savings for the electricity generation system
as a whole but the smaller the cost savings per participant. The same trend is
identified when allowing a higher upper bound for the indoor temperature or
installing a larger DHW tank: there is less need for this flexibility when there
are more participants. Finally, the yearly cost savings per participant are up to
150 EUR attributed to operational cost savings and up to 300 EUR assigned to
reducing peak electricity demand. However, the exact cost savings are shown to
be highly sensitive to market penetration of the DR program and RES share.

For a different set of electricity generation mix scenarios, chapter 7 identifies the
same order of magnitude for the cost savings, along with reductions of yearly
CO2 emissions between 0.1 and 1.4 ton per participating building.

Answer to the research question: DR lowers the CO2 abatement cost with on
average 300 EUR/ton CO2. Per participating household per year, demand
response can lower CO2 emissions with up to 1.4 ton and save up to 150 EUR
in operational cost savings and 300 EUR in peak demand reduction. These
savings per household decrease as more participants join in. Note however that
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these numbers are shown to be very sensitive to the assumptions on both the
electricity generation system and the residential heat pumps.

How could DR with residential heat pumps be realized in practice?
Chapters 5 to 7 show that performing DR lowers costs for the electricity
generation system, but increases the yearly electricity demand of the heat
pump by up to 20 %. This poses a challenge when setting up a compensation
scheme for the building user. This building user should get a compensation for
joining DR that at least outweighs the costs associated with a higher electricity
consumption.

The presented integrated model is impractical for real life control, as it would
involve the operation of thousands of buildings to be co-optimized with the
electricity generation system. Hence, it can serve as an upper bound of the
maximum attainable benefits thanks to DR. Chapter 7 investigates three
incentives that can be employed to realize these electricity generation cost
savings identified by the integrated model. The first incentive, the day ahead
price, shows abominable performance: residential buildings with heat pumps
overreact on the price signal and in some cases even increase the system costs.
The second incentive, the price profile from the integrated model, performs
better as it already anticipates the buildings reaction. However, this price profile
suffers from low performance as more buildings participate in DR, for which the
threshold is identified as 100,000 buildings for the studied boundary conditions.
The third incentive called load shaping, based on the electricity consumption
profile from the integrated model, proves to be the most robust incentive. Even
when a large number of buildings participate in DR, load shaping is still able
to attain 80 % of the cost savings predicted by the integrated model.

Answer to the research question: It is shown that the response of residential heat
pumps to DR incentives should be anticipated by using an integrated model. A
centrally determined load profile outperforms a price profile, but poses challenges
in compensating the building user.

Will the residential heating system be designed differently in order to benefit
from the DR potential? Chapter 6 identifies the decreasing market incentive
per participating building as more participants step in on DR. Chapter 8
elaborates on this and investigates whether the incentives of the electricity
generation system are a driver to alter the heating system design on a residential
building level. To this aim, the integrated model is complemented with a heating
system design model. From the case study, it appears that the storage tank
for space heating is an unattractive technology, increasing the total cost for a
negligible and uncertain reduction in CO2 emission. The integration with the
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electricity generation system shows little alteration of the residential heating
system design, except for a small impact on heat pump sizing. From the
considered heating system components, the condensing gas boiler is still the
most cost efficient but shows a higher CO2 emission. The combination of air
coupled heat pump with floor heating and rooftop PV is a close competitor with
respect to cost but leads to CO2 emission savings of up to 2 ton per building
per year. Finally, CHP with district heating performs well in cost, but the CO2
emission savings highly depend on the way these savings are calculated.

Answer to the research question: When optimizing towards minimal cost, the
residential heating system design is only influenced to a limited extent by the
DR possibilities with respect to the electricity generation system.

9.2 Critical reflections

The numerical results presented throughout this work should be handled
with care as these should be interpreted within the assumptions taken in
the corresponding chapters. Some of these assumptions can severely alter the
numerical results.

First, curtailment of RES is considered to come at zero cost, zero CO2 emission
and is solely available for the heat pumps to use. This assumption is one of the
main drivers towards the cost and CO2 emission savings presented in this work.
However, a number of alternatives can also avoid this RES curtailment such as
export through the transmission grid, batteries, electric vehicles, white good
appliances or demand response in the commercial building sector or in industry.
This competition could take away the incentives for the heat pumps regarding
curtailment.

Second, the limited capacity and energy losses of the electricity transmission and
distribution grids are not taken into account in this work. These grid limitations
can pose serious thresholds for the presented cost and CO2 emission savings
throughout this work. One limitation is that the coordinated response of heat
pumps to increase electricity consumption during moments of RES curtailment,
could not be met in practice due to the limited transmission and/or distribution
grid capacity. In order to allow the suggested coordinated response of the heat
pumps, substantial investment in grid infrastructure could be needed which in
turn could hamper the development of DR.

Third, all simulations in this work are deterministic. In other words, no
prediction errors are taken into account. These uncertainties can lower the
presented savings as certain subtleties, such as avoiding the part-load operation
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of a power plant or exactly avoiding the curtailment of RES, may not be attained
in practice.

Finally, the bottom-up representation of the residential building stock with
heat pumps is still a simplified representation of the real life situation. The
number of buildings are scaled up starting from an identical building structure.
Furthermore, the presented verification was only performed over a time span of
two days for a specific combination of building and heating system parameters.

Hence, the strength of this work does not lie in the numerical values presented
but in the methodological contributions and identifications of trends. The
main methodological work concerns the aggregation of user behavior, linear
representation of residential heating systems, integrated modeling with the
electricity generation system and combined heating system design and control
optimization. These methodologies are thoroughly explained and demonstrated
throughout this work, along with an in-depth evaluation of their practical use.

Furthermore, within the above mentioned assumptions, some clear messages
could be distilled from the case studies concerning the order of magnitude of
cost and CO2 emission savings by performing DR with residential heat pumps.
These order of magnitudes can be interpreted as upper bounds to what can
be possible in practice. Also the identified trends on the impact of RES share,
building participation, building parameters and heating system configurations
provide valuable insights in the possible value of DR for residential heat pumps.

9.3 Recommendations for future research

The recommendations for future research are split up in two parts. First, several
ways of improving the impact assessment of DR with residential heat pumps
are discussed. The second part discusses the pathway towards a practical
implementation.

Improving the impact assessment of DR with residential heat pumps This
work is built on a number of simplifications which are commented upon in the
previous section. A way of improving the presented work is to explicitly model
the disregarded aspects into the integrated model.

This model can be expanded by taking the electricity transmission and hence
import and export into account. This requires the modeling of building stocks
in different regions and hence needs an extensive data base, since different
countries possess numerous differences in building habits, climate and electricity
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generation mixes. Hence, the potential for applying DR on heat pumps, or air
conditioning in hotter climates, can vary widely and should be studied case by
case. The presence of electricity transmission can lower the incentives for DR.

Also the limitations of the distribution grid can be included, as a limit to the
coordinated demand peak of heat pumps participating in DR. In this sense, a
trade off can appear between investing in distribution grid infrastructure and
operational cost savings for the electricity generation system.

Likewise, competing technologies for providing flexibility can be included in the
integrated model. This does require the operational aspects of these technologies
to allow integration in a MILP optimization.

Furthermore, this thesis focuses on tackling the variability of RES, while another
major challenge is the hard predictability of RES. DR for buildings with heat
pumps can be employed to counterbalance prediction errors of RES. This
requires techniques from robust optimization and stochastic MPC.

The bottom up representation of the building stock with heat pumps is
also open for improvement. A manageable representation of the variety in
building properties and heating system configurations is still to be developed.
Furthermore, the impact of DR on the COP of the heat pump should be
represented more accurately in the integrated model. A convex approach
employing a piecewise linear function can be appropriate in this context.
Also the dynamic inputs to the bottom up model, being the weather and
occupancy behavior, are prone to prediction errors. These prediction errors
show correlations with the prediction errors on RES, which can complicate the
assessment. Finally, other building types such as commercial buildings and
apartment blocks could be promising candidates for DR.

Pathway to practical implementation As shown in chapter 7, the integrated
model can be employed to determine a day-ahead scheduling of the electricity
demand by a large set of heat pumps. There are still obstacles towards a real life
implementation of this load shaping scheme. First, some of the aforementioned
methodological obstacles should be removed: the variety in building and heat
pump characteristics should be properly and efficiently represented. Also, the
robustness towards prediction errors of RES and climate should be improved.
The second step is to adapt heating system controllers to be able to follow the
centrally determined incentive. Third, a demonstration project should be set up
to show whether the whole set of buildings with heat pumps behave as expected.
Finally, a monetary compensation scheme should be developed to reward the
participants.
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