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Abstract

The Internet has fundamentally changed our society, the way we live, work and
express ourselves. Improvements in information processing and communication
technology have created mobile devices that allow the usage of smart mobile
services, i.e. apps, that keep us constantly connected and that deliver digital
content. Millions of such mobile service are available today. While being
inexpensive in terms of actual money, user data has become the actual currency,
rewarding the company that knows the most about their users. This has
created an eco-system which, invisible during normal usage, records virtually
every action online. The recorded data fuels sophisticated artificial algorithms
that learn our interests, desires and secrets for purposes such as behavioral
advertisement and surveillance.

We focus on location-based services (LBSs) to address the privacy concerns
of the mobile-device eco-system. Currently deployed LBSs are designed in a
privacy-invasive way, because the service provider and other third parties learn
accurate location information on their users. This is a significant threat to the
user’s privacy, because entities with access to accurate location data are able to
infer sensitive information, such as users’ home/work address, religious beliefs,
sexual orientation and income level.

We understand LBSs as a new socio-technical practice and assess its implications
on privacy from an interdisciplinary perspective, including the engineering,
ethics, social and legal domain. We employ the concept of contextual integrity
in order to evaluate how the changes of information flow, imposed by the new
socio-technical practice, affect society. Furthermore, we propose a framework
that allows to quantify threats towards an adversary that is able to observe app
traffic. We show that this poses a threat to the user’s privacy and in particular
to the user’s location privacy.

In order to address the privacy concerns of LBSs, we study technical solutions
that allow users to keep their data confidential. Therefore, we study the design
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of private protocols for service providers that want to provide guarantees that
they cannot learn user location information. Our design accounts for the current
business model of most mobile services to monetize their investments with data
that they learn about their users. Particularly, the overhead on the service
provider’s infrastructure is minimal allowing for a low cost maintenance of
the service. Furthermore, the service provider is able to learn, in a privacy-
preserving way, statistics about the locations that the users share among each
other. This may serve as a form of monetization.

Since most service providers, due to their business model, are reluctant to
implement privacy-friendly protocols, we study the design and analysis of
obfuscation-based protection mechanisms. These location-privacy preserving
mechanisms (LPPMs) allow users to protect their whereabouts when engaging in
privacy-invasive protocols. We propose a framework that allows the computation
of the optimal LPPM for users who engage sporadically in LBSs and that is
tailored to a user’s mobility profile and the user’s constraints. We furthermore
propose a framework that allows for a first-order location privacy approximation
for users that employ LPPMs.

Finally, we conclude the research results of this thesis and outline paths of future
work. Here we put particular emphasis on studying quantification frameworks
that take a middle ground between complexity and simplicity. Furthermore, we
suggest to study how our framework can be applied for the purpose of privacy
visualization. This may serve as a practical tool for the visualization of both
the user’s current location privacy as well as an assessment on how the privacy
level changes for the next query to the LBS and thus contribute for users to
better understand the privacy implications of their actions. Finally, possibilistic
thinking should also be applied to the design of LPPMs.



Beknopte samenvatting

Het internet heeft de manier waarop we leven, werken, en onszelf uitdrukken
fundamenteel veranderd. Verbeteringen in informatie- en communicatietech-
nologieën hebben geleid tot draagbare apparaten die smart mobiele diensten
ter beschikking stellen die ons constant geconnecteerd houden en die digitaal
content leveren. Millioenen zulke mobiele diensten zijn beschikbaar vandaag.
Deze diensten zijn goedkoop, omdat gebruikersdata het eigenlijke betaalmiddel
is geworden, waardoor bedrijven met de meeste gebruikerskennis beloond
worden. Dit heeft een onzichtbaar ecosysteem gecreëerd dat bijna elke actie
online opneemt. De opgenomen data wordt gebruikt in geavanceerde artificial
intelligence algoritmes die onze interesses, wensen, en geheimen leren voor
gedrags-georienteerde reclame en surveillance.

Wij focusen op location-based serivces (LBSs) om de privacy-zorgen van het
mobiel-apparaat-ecosysteem aan te pakken. LBSs die in de praktijk gebruikt
worden zijn niet ontwikkeld met privacy in gedachten, omdat de dienstverlener en
andere derde partijen nauwkeurige locatie-informatie leren over hun gebruikers.
Dit vormt een belangrijk gevaar voor de gebruiker’s privacy, omdat toegang
tot nauwkeurige locatie-data gevoelige informatie kan lekken, zoals thuis- of
werk-adressen, godsdienstige overtuigingen, seksuele orientatie, en inkomen.

Wij zien LBSen als een nieuwe socio-technisch praktijk en bepalen de implicaties
op privacy vanuit een interdisciplinair perspectief, waaronder de ingenieurs-,
ethiek-, sociaal- en legaal-domein. We gebruiken het concept van contextueel
integriteit om te begrijpen hoe veranderingen van een informatie-stroom,
opgelegd door de nieuwe socio-technisch praktijk, de maatschappij beïnvloeden.
Verder stellen we een raamwerk voor dat het gevaar van tegenstanders die
applicatie-verkeer kunnen zien kwantificeert. We tonen aan dat dit een gevaar
vormt voor de gebruiker’s privacy in het algemeen, maar ook voor de gebruiker’s
locatie-privacy.

Om de privacy-zorgen van LBSs aan te pakken, bestuderen we technische
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oplossingen die gebruikers toestaan om hun data vertrouwelijk te houden. Dus,
we bestuderen het ontwerp van private-protocollen voor dienstverleners die
locatie-privacy willen aanbieden. Ons ontwerp neemt het huidige businessmodel
van de meeste mobiele diensten in acht, om hun belegginging aan te munten met
data dat ze over hun gebruikers leren. In het bijzonder, de kosten bovenop de
dienstverlener’s infrastructuur is minimaal, waardoor de kost voor het onderhoud
van de dienst laag blijft. Bovendien, kan de dienstverlener stastistieken over de
locaties die de gebruikers met elkaar delen in een privacy-vriendelijke manier
berekenen. Dit kan een vorm van monetisatie zijn.

Vanwege hun businessmodel zijn de meeste dienstverleners onwillig om privacy-
vriendelijke protocollen te implementeren, waardoor we het ontwerp en
de analyse van obfuscatie-gebaseerde beveiligings-mechanismes bestuderen.
Deze location-privacy preserving mechanisms (LPPMs) geven gebruikers de
mogelijkheid om hun locatie te verbergen tegen privacy-brekende protocollen.
We stellen een raamwerk voor waarin de optimale LPPM voor gebruikers die
sporadisch gebruik maken van LBSs berekend kan worden, en dat ook op maat
is gemaakt voor de gebruiker’s mobiliteitsprofiel en beperkingen. Verder stellen
we een raamwerk voor dat eerste-order locatie-privacy approximate toelaat voor
gebruikers die LPPMs gebruiken.

Ten laatste concluderen we de onderzoeksresultaten van deze thesis, en schetsen
mogelijke toekomstig werk. Hier leggen we vooral nadruk op het verbeteren van
kwantificatie-raamwerken die een goede evenwicht behouden tussen complexiteit
en eenvoud. Verder suggereren we hoe ons raamwerk gebruikt kan worden
voor het visualizeren van privacy. Dit zou als een praktisch instrument gebuikt
kunnen worden voor de visualizatie van de gebruiker’s huidig locatie-privacy en
een beoordeling van hoe de privacy-niveau verandert voor de volgende verzoek
naar de LBS en kan dus gebruikt worden om gebruikers een beter begrip te
geven over hoe hun acties effect hebben op privacy. Ten slotte, possibilistic
thinking zou ook toegepast kunnen worden op het ontwerp van LPPMs.
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Chapter 1

Introduction

The Internet has changed the way mankind lives and is ubiquitous in the daily
routine of billions of people. The development of the Internet started in the
late 1960s and gained shape in the 1980s with development of protocols such as
TCP/IP that allowed to connect various autonomous networks. While still being
a technology that did not concern the average citizen, starting with the 1990s
the mass commercialization of the Internet took place. Telecommunication
providers offered services that allowed end-users to be connected to the Internet
in order to browse the World-Wide-Web (WWW) or to send email.

At the beginning of the 21st century the Internet fundamentally changed. Instead
of simply consuming content, users started to create the content themselves
and to use interactive and collaborative services. This development, commonly
referred to as Web 2.0, has significantly influenced our society. To name
only a few: people spend a substantial amount of their time in online social
networks communicating, socializing, engaging in their hobbies or expressing
their opinions. Events all around the globe are almost instantly reported
via instant messengers and hundred of thousands collaboratively create and
maintain large online encyclopedias.

During the last decade, mobile devices, such as smartphones and tablet
computers, have further increased the ubiquity of online services in our lives.
We not only engage in online communications or purchase items online when
we are at home at our desktop computer, but do this during any instant of our
live. Furthermore, we employ sensors of these mobile devices, such as Global
Positioning System (GPS) sensors. This does not only allow us to engage in
context aware services, but also increases the types of information that we
create, transmit and store at remote machines.

3



4 INTRODUCTION

A consequence of these developments is that billions of people create an
unprecedented amount of data that either includes or allows the inference
of highly sensitive information. Either way, it turns out that the entity that
learns such information can use it in an extremely profitable way. The services
that know more information about people are able to optimize their services
and thus attract more users. Furthermore, services that know more about the
interests of their users are able to present them behavioral advertisement. In
this particular form of online advertisement, online advertisers present targeted
ads that relates to the user’s online activities. In a simple example, a user who
was recently shopping online for cloths would receive matching advertisement
where other users would see different advertisement.

Today, a multi-billion dollar economy exists whose main driving factor is user
data. Users are typically unaware of the exact functioning of this industry.
They are not aware of, for example, the multiple trackers that they download
when visiting webpages or the Ad and Analytics (AA) software that they run
on their mobile devices. They are also not aware of how their data is collected,
aggregated and processed in economic transactions.

1.1 Goals of the Thesis

We aim at investigating the threats on information privacy that emerge when
people share information while engaging in online mobile services. Information
privacy has gained considerable attention in the last decades due to constant
advancements in information technology. People constantly share information
that is analyzed by intelligent algorithms that aim at inferring as much
as possible about Internet users [98, 197, 211]. This may have significant
consequences for individuals as they have virtually no control about how their
data is being used and how inferences about them take effect when, for example,
shopping online [153].

For the scope of this thesis we focus on Location-Based Service (LBS). In these
services the user’s location is processed in order to deliver a service, such as
finding a nearby Point-of-Interest (POI) or getting directions. Due to their
usefulness, LBS are being used by most mobile device users [6,212]. Some services
require the users to reveal their location either sporadically or continuously. The
difference between the two is that in the sporadic case two consecutive queries
to the LBS of the same user happen with sufficient time in between so that
they do not correlate. We shall understand LBSs from a broader prospect than
only from a technology perspective. Instead, we consider processing location
data as a new socio-technical practice, having impact on technology, society
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and legislation. We adopt an interdisciplinary approach in order to understand
the threats on privacy from engineering, ethical and legal perspectives. We
employ the ethical as well as engineering approach in order to analyze how the
socio-technical practice of location sharing alters established information flow.
Changes in information flow may disturb the common sense of privacy and this
indicates that the new socio-technical practice may have a significant impact
on society. We weigh these impacts on privacy of the socio-technical practice
against the advantages that it brings. Furthermore, we undertake an analysis
of the new socio-technical practice from a legal perspective.

Mobile devices are the main platform that people use in order to engage in
LBSs. A main part of the privacy problem of LBSs is that the software of these
platforms is not designed with privacy in mind. This thesis contributes to the
understanding of information that users leak by engaging in LBSs.

In this thesis we develop and analyze technologies that allow users to hide their
location data while engaging in LBSs. We tackle the privacy issues of LBS from
a data hiding perspective, i.e. confidentiality perspective. Note that, especially
from an interdisciplinary perspective, privacy can be achieved in other ways
than via confidentiality. From a legal perspective, for example, privacy can be
achieved although other entities receive the user’s data but the legal regime
forbids or limits its processing.

We first take the perspective of a LBS provider that wants to provide its service
in a privacy-preserving, i.e. private, way. Therefore, we employ state-of-the-art
cryptographic mechanisms that allow the user to hide her location from the
service provider. Since this makes it impossible to monetize user data, the most
predominant business model of LBSs, we investigate services that require little
computational overhead from the service provider and thus are cost efficient.
Furthermore, we investigate mechanisms that allow the service provider to
compute privacy-preserving statistics on location data that can be used to
monetize the investments of developing and maintaining the service. This may
help to create a competitive market around privacy-preserving LBSs.

Since most service providers are reluctant to employ privacy-preserving protocols,
this thesis also investigates the design and analysis of Location Privacy
Protection Mechanisms (LPPMs) as a second way for the user to hide her
location data. LPPMs allow users to obfuscate their whereabouts with various
strategies when engaging in LBSs. While a wide series of such LPPMs are
described in the literature, we investigate the design of optimal obfuscation
strategies that are tailored towards a particular user profile and preferences.
We also investigate ways to quantify the level of location privacy that users
enjoy when protecting their whereabouts with LPPMs. This is a crucial part
of obfuscation-based location privacy protection. Even if LPPMs allow some
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protection of location privacy, the user still leaks information on her whereabouts.
Furthermore, a framework for location privacy quantification allows for the
unified evaluation of the different LPPMs that exist in the literature.

1.2 Contribution of the Thesis

We employ the framework of Contextual Integrity (CI) in order to analyze
how the socio-technical practice of location sharing impacts privacy. This is
combined with a technical analysis of LBSs. Furthermore, we analyze LBSs
from the legal perspective of purpose limitation. The relevant work is described
in [105].

We propose a framework that allows for a large-scale, automated evaluation
of the information leaks on Mobile Application (app) traffic. This framework
analyzes the extent to which mobile apps enable third party surveillance by
sending unique identifiers over unencrypted connections. It also contributes to
the analysis of how user information, such as identifier and location information,
is being used by different software modules running in apps. Furthermore, we
analyze the effect that mobile ad-blocking tools have on the data that is being
transmitted in the clear by apps. The relevant work is described in [195].

For the design of private LBSs we address LBSs that allow users to share their
location. We employ two schemes based on identity-based broadcast encryption.
For the first protocol we assume the user to reveal the friends who should
receive her location updates. This allows for a particular efficient design of the
service. For the second protocol we employ anonymous identity-based broadcast
encryption. Both of our protocols have the advantage that the LBS provider
does not need to perform computationally expensive operations. Furthermore,
we extend the first protocol in order to allow the service provider to collect
privacy-preserving statistics on the locations shared among the users. While
this extension requires the LBS provider to perform additional computations,
the obtained statistics could be monetized to compensate for this additional
overhead. The relevant work is described in [107].

For the domain of obfuscation-based location privacy protection we first propose
a framework that allows the computation of optimal LPPMs for users who
sporadically engage in LBSs. Our framework accounts for resource constraints
of mobile devices with which LBSs are typically being accessed. This makes our
framework suitable to compute optimal dummy and precision-based obfuscation
strategies. An analysis of several optimal obfuscation strategies further shows
the trilateral trade-off of privacy, Quality Loss (QL) and bandwidth overhead
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that a user makes when setting her parameters for an LPPM. The relevant work
is described in [108].

Finally, we propose the novel notion of possibilistic location privacy and compare
it with the existing probabilistic model. This comparison shows that although
the probabilistic model is in principle able to quantify privacy of very complex
scenarios, its computational complexity renders such evaluations impossible
in realistic scenarios. We provide a framework that enables the possibilistic
privacy evaluation of LPPMs and show that our framework can quantify privacy
in an extremely efficient manner. The relevant work is described in [106].

1.3 Structure of the Thesis

This thesis consists of two parts. Part I provides the introduction of this thesis:
it introduces the privacy concept, provides a description of how location data is
being used in current mobile device platforms, outlines existing work on private
LBSs and obfuscation-based LPPMs. In this chapter we also explain what our
contributions are.

Chapter 2. This chapter discusses the concept of privacy and its importance.
We address in detail the concept of CI due to its importance to this
thesis. We provide an overview on the development and the current
privacy legislation. The last part of the chapter presents the foundations
of privacy enhancing technologies.

Chapter 3. In this chapter we address the usage of location data. We provide a
description of the common mobile platforms on which users engage in LBSs.
This includes a description of mobile devices, the apps and the business
model of app developers. We also address privacy concerns of mobile
platforms in general and concerns on location privacy in particular. We
outline in this chapter the legal protection of location data. Furthermore,
we provide an overview on the literature that reports about user perception
of LBSs, which includes a description on users’ attitudes towards LBSs and
the users’ privacy preferences. Finally, we summarize the inferences any
entity with access to location information can make about an individual.

Chapter 4. Here we outline the design of private LBSs. We categorize existing
proposals into four types of services: geo-social networks, friend-nearby
notification, point of interest finder, and traffic monitoring.

Chapter 5. This chapter outlines existing work on obfuscation-based protec-
tion mechanisms, i.e. LPPMs. We outline work on the quantification of
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these LPPMs. This includes a discussion on commonly used location
privacy metrics as well as the state of the art quantification framework.
Furthermore, we summarize existing proposals and present them along
the four obfuscation strategies: hiding, reducing-precision, perturbation
and dummies.

Chapter 6. In this chapter we draw the conclusions of this thesis and present
an overview of future work.

Part II contains the publications related to this doctoral thesis.

• Our interdisciplinary analysis of LBSs [105].

• Our framework for the quantification of information leakage in mobile
devices [195].

• The design of our LBS that allows users to privately share location and
location related information [107].

• Our model for the computation of the optimal LPPM in the sporadic
setting [108].

• Our quantification framework for the possibilistic evaluation of location
privacy [106].

The complete list of publications can be found on page 92.



Chapter 2

Privacy

Privacy is a concept that, according to Smith [178], is extensively studied in
the philosophical, psychological, sociological, legal and engineering discipline
for more than 100 years. Concerns regarding privacy have typically been raised
whenever technological advancements have allowed to alter how information
can be gathered, accessed or used.

There are many definitions and aspects of privacy [152], but information privacy
has received considerable attention during the last decades. Information privacy
studies the field between the massive data dissemination/collection/processing
and the legal/political/technological issues surrounding them. It has significant
impact on the way that we live in the information age that is, especially since the
1960s, dominated by constant progress in information technology. Furthermore,
as Solove noted [179], the question of how we shape our society in the information
age is extremely challenging. One of the first discourses on information privacy
is Warren’s and Brandeis’s [170] work on The Right to Privacy. Concerned of
the technology that allows instant photographs and its meaning to the privacy of
society, Warren and Brandeis have raised the question how the law is supposed
to protect the peoples’ privacy. They argue that people have the right to be left
alone, i.e. the freedom from interference. From a philosophical perspective, this
is a negative right, because it obliges inaction. There are, however, other scholars
that consider privacy to be a positive right, i.e. a right that obliges action. A
common example for a work defining privacy as positive right is Westin [202],
who defines privacy as “the claim of individuals, groups, or institutions to
determine for themselves when, how, and to what extent information about
them is communicated to others”.

9
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While the described technological advancements have brought society numerous
advantages, their threats to information privacy cannot be doubted. Nowadays,
billions of people constantly create data while they browse the WWW, use
online social networks or employ their mobile devices. The latter are typically
equipped with several sensors allowing to process not only virtual activities,
such as clicks in apps, but also to process physical location, audio, video and so
on. It is easy to see that processing such data is a very delicate matter as it
allows to gain very sensitive insights in the private lives of the users.

The 21st century has shown us that there is a very large interest in user data.
Multi-billion companies exist whose core business model is to gather data,
aggregate it and monetize the results. Recent revelations by Snowden, see
Landau [131], have shown that intelligence agencies all around the world use
any possibility to massively collect data and to surveil people in the name of
national security. While many practices are scary as they are, little hope exists
that the situation will improve in the near future. With an estimated 50 billion
devices on the Internet in 2020, we are stepping into a world in which virtually
every electronic device is able to communicate to any other device. In this world,
enough data is being created that algorithms developed by artificial intelligence
researchers have the potential to analyze every single aspect of our lives. Users,
tempted by smart and useful services, are typically unaware or overwhelmed to
understand how and by whom their data is being processed.

It is crucial to note that in our society information necessarily needs to be
exchanged. People need to reveal their income to tax authorities, cannot
subscribe to gym memberships without revealing their address and bank
account information, tell their friends about their weekend plans and many
more. Information privacy is therefore a relational concept that depends on
the entities being involved, such as close friends, family, employers, service
providers and government agencies. These entities process information and this
may also be in the sense of the citizen/consumer who provided it. Therefore an
entity that processes user data, be it a human or a computer algorithm, cannot
necessarily be seen to be adversarial as they may act in the very interest of the
citizen/consumer. However, for the design and analysis of Privacy Enhancing
Technologies (PETs) (cf.C̃hapter 4 and 5) we adopt a perspective in in which a
user wants to share information only with her intended receivers but not with
third parties. Thus, entities such as the service provider, third party software
developers or government agencies that may attempt to learn user data are
considered to be adversarial.

In Section 2.1 we explain how several scholars argue that privacy is essential
for both individuals and for the whole society. Furthermore, we discuss the
philosophical concept of CI that connects privacy issues with social norms and
contexts that exist while information is exchanged. The arguments and concepts
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invite for a discussion on what is at stake when information is transmitted.
However, they do not have any legal power. In Section 2.2 we discuss the legal
protection of privacy and data protection for several countries.

2.1 Importance of Privacy

There is a broad consensus that privacy is valuable and beneficial at an
individual, group, organizational and societal level, where the individual and
the societal level have received most attention [178]. For Westin [202] privacy is
related to informational self-determination. It is essential for an individual to
decide which information about herself in which situations should be revealed.
Reiman [167] marks that the autonomy over personal information is key to
intimate relationships. Intimacy is constituted and signalled by the information
that people choose to share with another. Likewise, Gerstein [94] noted that
people create different levels of intimacy and trust depending on the personal
information they disclose. For Kang [120] people create intimacy on the basis
of what experiences they share with each other; he notes that this would not be
possible without privacy. For Kupfer [129] privacy is necessary for autonomy
and personal growth. Without privacy people would neither be able to develop
“...a purposeful, self-determining, responsible agent...” nor would they engage in
self-discovery and self-criticism. Phillips [160] argues that privacy is essential to
build a sphere of autonomy without intrusions from the state or any pressure of
social norms. For Altman [5], people need personal space, and thus privacy, in
order to separate themselves from others and to define the self. Removing that
space leads to hostility and unease. Kang [120] enumerates two further values of
privacy. First, preventing misuse of personal information since the individuals
are able to control their own information. Second, avoiding embarrassment for
actions that are perfectly normal, yet, when exposed to the public, are considered
to be embarrassing. Wagner DeCew [66] names a series of other values in privacy
that are all centered around the control of one’s own information. Particularly,
she names: freedom from scrutiny, judgment, prejudice, pressure to conform
and exploitation. While Gavison [90] also promotes individual values of privacy,
such as autonomy, selfhood and human relations, she further argues that privacy
is necessary for promoting liberty and establishing a free society. Similarly,
Solove [179] adds s psychological well-being, individuality and creativity, but
also finds that privacy is necessary for freedom and democracy as individual
values of privacy.
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2.1.1 Contextual Integrity (CI)

Nissenbaum introduces the concept of CI in order to understand what is at stake
with privacy and to illustrate the issues that arise when data is being shared. Key
to CI is that there is a common sense, a cultural practice, on how information
is supposed to be shared. The sense of privacy is always disturbed when
established informational norms are disturbed. Nissenbaum posits two types
of informational norms. Norms of appropriateness and norms of distribution.
While the former shapes what information is appropriate to disclose, the latter
shapes how information may be distributed. If a a certain information flow
violates any of the two informational norms it is considered to be inappropriate.
This could have several reasons and depends on the type of information that
is being transmitted, the persons to whom the data relates, between which
parties this data is being transmitted, and, finally, the conditions or constraints
under which this transmission is being made. For example, a patient who is
visiting her doctor communicates, i.e., transfers, sensitive information about
her health condition to her doctor. This is a perfectly normal and acceptable
transmission of information. However, if that doctor communicates the shared
information to a friend of the patient, this information flow would clearly be
considered inappropriate, because the doctor would have violated the social
norm, and even the law, of doctor-patient-confidentiality. However, if the
doctor would communicate the data to a colleague, then this is within our
expectation of doctor-patient-confidentiality. Numerous other examples exist
to illustrate Nissenbaum’s concept of CI. Information shared within a lawyer
and her client underlies more restrictions to be shared among others than, for
example, information shared among colleagues. All these examples appear to
be rather intuitive, illustrating the common sense that exists when information
is being shared.

While CI is merely a concept for understanding the concept of privacy,
Nissenbaum introduces the CI heuristic as a more practical tool to determine
whether a new technology violates CI. More specifically, her heuristic allows the
assessment of a socio-technical practice with respect to its implications on CI.
While a technology is merely a technical possibility, the respective socio-technical
practice is the technology being used in particular environments that are shaped
by economic, social and political factors. For example, determining the location
with the help of a GPS receiver and a set of orbiting satellites is a technology,
the socio-technical practice of LBSs is also influenced by business incentives,
peoples’ desire to share locations among each other and the respective legislation
on how location data is to be protected.

Applying the CI heuristic to a particular scenario is a process that involves
nine different steps. The steps one till five serve to shape the scenario of the
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new socio-technical practice. This includes the definition of sender, receiver
and information type that is being transferred. Furthermore, they include the
analysis of the prevailing context, transmission principles and information norms
of the new socio-technical practice. The context, such as health or education,
defines the setting in which the information flow happens and shapes the setting
and the rules under which the information flow takes place. For example, a
fraud detection system that considers the location where a credit card payment
is being made happens clearly in a financial context, which already shows the
sensitivity of the socio-technical practice and the information that is being
shared. The transmission principles and the informational norms define the
rules that govern the information exchange and how the information may be
processed further. Information exchanged between banks and their clients is
clearly confidential and thus the bank is expected not to share this data with
other entities.

The sixth step of the CI heuristic is a prima facie assessment of whether CI
has been breached by observing whether entrenched informational norms have
been violated. If this step comes to a negative assessment, then the CI heuristic
stops at this point. However, in the case of a positive assessment, the heuristic
continues with the steps seven till nine. Step seven and eight assess the severity
of the CI violation. Particularly, step seven investigates the harms, threats to
autonomy, freedom, power structures, justice, fairness, equality, social hierarchy
and democracy that are due to the new socio-technical practices. In step eight
the practices that directly impinge on values, goals and ends of the identified
context are analyzed. In the ninth step the CI heuristic concludes and analyzes
whether the advantages of the new socio-technical practice compensates for the
breach of CI. This reflects that the CI heuristic may leave room for informational
norms to change if this is overall beneficial for society.

2.2 Privacy Legislation

The right of privacy was first declared by the Universal Declaration of Human
Rights (UDHR) of 1948 [147] in Article 12: “No one shall be subjected to
arbitrary interference with his privacy, family, home or correspondence, nor to
attacks upon his honour and reputation. Everyone has the right to the protection
of the law against such interference or attacks.” In 1950 the European Convention
on Human Rights (ECHR) [150] defined the human rights and fundamental
freedoms in Europe. In Article 8 the ECHR provides the right to “respect for
his private and family life, his home and his correspondence”. This right shall
only be limited if three conditions are fulfilled. First, there must be a legitimate
goal for the infringement, such as in the interests of national security and public
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safety. Second, the infringing measure must be in accordance with the law.
This includes i) the infringement must be foreseeable; ii) the relevant provision
needs to be accessible; and iii) sufficient safeguards must be contained in the
relevant provision that limit the infringing measure and enable redress with an
independent authority. Third, the infringing measure needs to be necessary
in a democratic society, i.e. the measure is appropriate for the legitimate aim,
there is no less infringing measure and the seriousness of the infringement is
proportional to the legitimate aim. The Organisation for Economic Co-operation
and Development (OECD) issued its principles for protection of personal data
in 1980 [149]. These include: Collection Limitation Principle, Data Quality
Principle, Purpose Specification Principle, Use Limitation Principle, Security
Safeguards Principle, Openness Principle and Individual Participation Principle.

Declarations such as the UDHR or the OECD are not legally binding for its
member states and thus have no legal effect. Instead, such treaties are used as
customary international law or a tool to apply diplomatic pressure. One of the
first countries to adopt information privacy protection was the United States
with the Privacy Act of 1974 [181] that “. . . establishes a code of fair information
practices that governs the collection, maintenance, use, and dissemination of
information about individuals that is maintained in systems of records by
federal agencies”. The Unites States Privacy Act had significant influence on
the definition of the OECD principles for protection of personal data in [149].
This was followed by Australia with its Privacy Act of 1988 [19]. In 1995 the
European Union (EU) approved the Data Protection Directive (95/46/EC)
(DPD) for which the ECHR and the OECD principles served as a blueprint.
Since the DPD is a directive, member states of the EU have some room for
interpretation on how the DPD is being implemented in national law. On May
4th 2016, the EU published the General Data Protection Regulation (2016/679)
(GDPR) [192]; it will become effective in 2018. This regulation illustrates the
increased importance of data protection within the EU legislation. A more
modern and unified legislation may allow the EU to meet the challenges of data
protection in the 21st century. Furthermore, it will create a unified legislation
within all EU member states, because, as a regulation (rather than a directive)
it is a binding legislative act. Several other countries have implemented a
data protection legislation, such as Canada’s Personal Information Protection
and Electronic Documents Act (PIPEDA) of 2000 [39] and Japan’s Personal
Information Protection Law of 2003 [116]. In 2005 the Asia-Pacific Economic
Cooperation (APEC) [13] implemented a privacy framework for cross-border
privacy protection in the Asia-Pacific region.

The U.S. constitution does not mention a right to privacy. However, legal experts
agree that several amendments to the constitution defend various aspects of
privacy [148]. The first amendment defends freedom of speech, religion, and
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association; the third amendment restricts quartering of soldiers in homes and
prohibits it during peace time; the fourth amendment prohibits unreasonable
searches and seizures; the fifth amendment prohibits self-incrimination; the
ninth amendment protects rights not enumerated by the constitution; finally, the
fourteenth protects personal liberty versus state actions. Furthermore, the U.S.
issued several other acts on specific grounds or contexts that partially regulate
information flow. These acts include the Children’s Online Privacy Protection
Act (COPPA) of 1998, the Health Insurance Portability and Accountability Act
(HIPPA) of 1996 and the Fair and Accurate Credit Transactions Act (FACTA)
of 2003. The only notable exception with respect to data protection legislation
is the state of California that has issued in 2003 the Online Privacy Protection
Act (OPPA). This act requires, for example, websites to post a privacy policy.
The Federal Trade Commission (FTC) proposes fair information practices in
electronic marketplaces [89] that, among others, promote user notice/awareness
and choice/consent for personal data processing. While they are widely accepted,
they are only guidelines and not enforceable by law.

2.3 Privacy Protection

Research on privacy technologies started in the late 1970s and at the beginning
of the 1980s. One of the first papers on this topic was authored by Chaum [47]
who proposed a method to communicate when all parties are under surveillance.
Confidentiality in online communications, i.e. hiding who talked with whom,
when and about what over electronic communication networks, was among the
most commonly studied topics of privacy research in the 1980s. In the 1990s
many new topics were studied including electronic cash [45] and credential
systems [32,38]. Powerful solutions for both topics could be proposed thanks to
breakthroughs in cryptography, such as zero-knowledge proofs [83]. In the 2000,
the scope of privacy widened and its focus also included to study the privacy of
the entire system instead of only focusing on the mathematical core.

Danezis and Gürses [62] separate Privacy Technologies into PETs and Privacy
Preserving Data Publishing and Mining. The former includes technologies such
as communications anonymity and anonymizers that have the goal to make users
of online communications systems not identifiable within a set of others, i.e. the
anonymity set [159]. Typically anonymizing networks are being distinguished on
the basis of the latency between user request and system response. Tor [68] is
probably the most widely used representative of a low-latency anonymizer. There
is a wide variety of high-latency solutions, such as [61,145], that are all variations
of Chaum mixes [47]. More recently, Chaum proposed cMix [46], a mix network
that aims at solving the performance overheads of its predecessors. Privacy
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preserving data publishing and mining includes technologies that allow personal
information databases to be analyzed in a privacy-preserving manner. This is
achieved for example by suppressing and generalizing identifiers [140,184] or by
employing cryptographic primitives [3, 194]. Differential Privacy [71] proposed
by Dwork achieves a similar goal. The key difference to tabular data analysis is
that a differentially private mechanism adds noise to the query result in such a
way that the result from a query which a specific individual’s data is included
is almost identical from the result of a query in which it is left out.

According to Danezis and Gürses s [62] PETs can be categorized as: privacy as
confidentiality, privacy as control and privacy as practice.

• Privacy as confidentiality refers to a user’s ability to prevent information
from becoming public. There are many technologies that help to achieve
confidentiality in several scenarios and systems. The technology that is
suitable for a specific scenario depends on the property that needs to
be private and the adversary model that is considered. An encryption
algorithm, such as the Advanced Encryption Standard (AES) [163], can
be used to provide confidentiality of the message content. While Tor
provides confidentiality of the message content, it also provides the user
with unlinkability of her different HTTP sessions to adversaries that are
not able to observe network traffic at certain positions.

• Privacy as control is closely related to informational self-determination (cf.
Section 2.1). In practice Identity Management Systems (IMS) and Single
Sign-On (SSO) systems offer users the possibility to control which entity
is allowed to learn which information. Every major IT company, such as
Microsoft, Apple, Google or Facebook, offers a service that allows users to
log in with their own credentials to a variety of their own services or even
to third-party services. This provides usability and security advantages,
because users do not have to maintain numerous credentials. Furthermore,
those services may be used to attest attributes, such as the user’s age, to
third parties. Of course this requires users to first prove certain attributes
to the service provider. This exactly shows the privacy problem with such
services, because the operator does not only learn all the actions that the
user performs, but also the user’s attributes. To solve the privacy problems
with IMS and SSO systems, several anonymous credential systems, such
as [36, 55, 125], have been proposed. Those systems, however, are not yet
deployed in practice.

• Privacy as practice is an extension to privacy as control. The user does not
only have the choice about what information is revealed to which service,
but she is also able to understand how information is being transmitted,
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aggregated and used. Services offer feedback to the users to help them
understanding the privacy of their actions (e.g., [132]). Other services,
such as BlueKai Registry proposed in [157] allow users to inspect the
profiles online advertisers store about them and additionally provide ways
to correct and modify the profile.

Usability is a major problem for privacy technologies. Users who wish to employ
privacy preserving mechanisms typically have to sacrifice performance. For
example, as measured by Wendolsky et al. [201] browsing the web via Tor can
be significantly slower than browsing the web with a regular Internet browser
or, as noted by Leon et al. [133], privacy enhancing technologies reduce or break
the functionality of systems. Another major challenge for privacy technologies
is that the typical user has insufficient understanding on how technical systems
work [142]. Therefore many researchers propose nudges, such as [198,203], which
are paternalistic interventions that are designed for users to employ systems in
a more private way.

Related to privacy as confidentiality is Brunton’s and Nissenbaum’s work in [34].
They elaborate that it can be justified to apply obfuscation as protection
mechanism against data collection and analysis. Obfuscation is a technique
to protect user privacy; it can be applied in many systems. Unlike encryption
algorithms, that allow users to keep data confidential, in obfuscation users
reveal the data but hide it under a set of other, false information or make
the data less precise. This happens with the goal to make it harder to collect
sensitive information by producing misleading, false or ambiguous data in order
to make data gathering less reliable and therefore less valuable. For Brunton
and Nissenbaum obfuscation is the only means for users to level a playing field,
in which users of information systems face two major asymmetries. First, users
face a power asymmetry, because they cannot choose to be not surveilled or have
their data recorded, respectively. Second, they face an epistemic asymmetry
since they are often not fully aware of what happens when they engage in
information systems and have no control over what happens with their data. In
many cases, obfuscation is the last resort for users to protect their privacy. Opt-
out mechanisms shift the responsibility to the user whose data is being collected;
the law operates slowly in the presence of a quickly changing technological
landscape; and PETs require trade-offs in utility and are typically only known
by experts who already behave much more privacy aware than the average user.
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Figure 2.1: Contributions of our interdisciplinary work

2.4 Contribution

Figure 2.1 outlines the main contributions of our work. We conduct a privacy
assessment of LBSs from an engineering, an ethical and a legal perspective.
Scholars from every of the involved disciplines obtain an added value for their
own field and additionally obtain an insight in how the topic is addressed in
other disciplines. For example, the detail provided by the legal perspective
serves as a valuable reference for legal scholars. However, scholars from other
disciplines may find the provided information especially valuable, because works
in their discipline typically lack this kind of legal detail. Also, the combination
of the engineering, ethical and legal discipline to assess privacy implications
in LBS contributes towards a better understanding of privacy issues from a
broader perspective.

We apply the CI heuristic in a novel way. Typically, the CI heuristic is
used to analyze how a new socio-technical practice impacts the CI in very
specific situations. For example, consider a library that provides a paper-based
repository of all available books that can be used by visitors to locate the books
in which they are interested. If the library would replace this paper-based
system by a computer-based search system, then the situation for the visitors
would fundamentally change. While consulting the paper-based repository leaves
no digital trace, any action on the computer-based system can be recorded.
Finding the prevailing context of the CI heuristic is in this scenario relatively
straight forward, because visitors use the system only in the library. This is
different with LBSs as they are employed in numerous situations and contexts.
In our work we analyze the impact of the new socio-technical practice on CI
independent of a particular scenario. Instead, we employ the context of traveling
for our analysis. This allows us to analyze a socio-technical practice, such as
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LBS, that is used in many different scenarios.

Our analysis also shows that the technical detail from an engineering perspective
provides a substantive added value in connection with the ethical as well as
the legal discipline. Furthermore, we identify the special relation between the
ethical and the legal discipline, i.e. the commonalities and differences between
the concept of CI and purpose limitation.

In summary, our interdisciplinary work in [105] contributes to all parts of this
chapter except Section 2.3. As we apply the CI heuristic to analyze the socio-
technical practice of LBSs, we particularly contribute Section 2.1.1. With our
discussion of the legal concept of purpose limitation itself, we contribute to the
legal assessment of LBSs and thus our work also contributes to Section 2.2.





Chapter 3

Location Data

In this chapter we present the necessary background on location data. We
provide a detailed explanation on apps that are the most important tools for
people to utilize the capabilities of their mobile devices, such as their location
data. This also includes a description of the prevailing business model of the
app-eco system and its privacy issues, as well as the users’ attitude towards this
business model. We continue with the explanation of the legal protection of
location data and outline users’ attitude towards LBSs. Finally, we provide a
summary of the threats to user privacy when location data is misused.

3.1 Mobile Device Eco-System

Mobile devices are nowadays ubiquitous companions. More than two billion
people worldwide are using smartphones and more than 1.2 billion people are
using tablet computers. Smartphones are intuitive to use and they are equipped
with a wide variety of communication modules, such as WiFi, Bluetooth
and 4G/LTE, allowing their users to be connected in ways never possible
before. Another reason for the success of smartphones is their platform, i.e.
the Mobile Operating System (MOS) and the app-store that are maintained
by the Platform Operator (PO). More traditional mobile phones usually run
a MOS developed by the phone manufacturer and offered only a very limited
number of additional applications, which typically have also been implemented
by the phone manufacturer. The software of modern mobile devices, however,
is much more sophisticated. The MOS developer offers a Software Development
Kit (SDK) that allows third-party developers to implement apps for their
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respective MOS. Furthermore, the MOS developer runs markets that allows
these developers to upload, offer and sell their apps. These software libraries
and app markets are the major reasons that helped to create a multi-billion
dollar market for companies to develop their apps. Tablet computers are equally
intuitive to use. They employ the same software, have larger screens and overall
superior hardware. This makes them in many scenarios an ideal replacement to
traditional computers and laptops.

We focus in the following on the two most successful MOS developers: Google
with their Android and Apple with their iOS Operating Systems (OSs). Note
that other other companies and organizations, such as Microsoft (Windows
10), Research in Motion (BlackBerry 10) and Mozilla (Firefox OS), offer a very
similar infrastructure.

3.1.1 Mobile Applications

The software design of mobile devices is, in the definition of Zittrain [213], a
generative technology. Third-party software developers are able to develop apps
that run on the manufacturer’s OS. This design is key to the success of current
mobile device infrastructures. Hundred of thousand of third-party software
developers provide a wide variety of apps for almost any possible purpose. This
makes mobile devices very useful and has created a huge market around those
apps as we see in the next section. While the advantages of apps cannot be
doubted, the fact that users run third-party software on their phones raises
security and privacy concerns. POs implement several measures to provide a
secure and private platform.

In order to prevent one app to interfere with another app, MOS typically
implement some sort of application sandboxing. Android builds on the Linux
user separation to employ sandboxing [9]. The Linux kernel prevents an app
from interfering with another app; it also restricts the app’s memory, CPU
usage and restricts access to device sensors, such as the GPS receiver. Since
Apple does not provide any official information on their sandboxing, the only
information available has been obtained via reverse-engineering the code [27,60].

Another major security and privacy concern is the presence of malicious apps.
Such apps are comparable to malware on ordinary computers. They typically
have a benign-looking functionality, but actually run malicious code on a user’s
mobile device, such as sending text messages to premium numbers or monitoring
the sensors of the mobile device [166]. The most important countermeasure
that the PO implements towards this threat is policy enforcement in their own
app-market. The PO defines and enforces rules that an app needs to comply
with in order to be offered via the respective app-market. App-market providers
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analyze the apps that developers want to upload to their store. This process is
called application vetting. Although the vetting process of Google’s PlayStore
and Apple’s app-store are similar, there are some differences between them.
The most important difference is that the Google Bouncer, Google’s tool for
application vetting, permits apps the dynamically load code during the runtime
of the app, while Apple forbids such operations.

Sandboxing and vetting protect the users against malicious apps, such as sending
unauthorized text messages or accessing private data of the user. However, apps
may have proper reasons for accessing such resources and data. For example, a
navigation app needs access to the user’s location in order to provide directions
from her current location or a messenger app may need access to the address
book of the user. To account for legitimate access, the MOS usually implements
a permission control that allows the users to specify which resources an app
may access.

Android separates between normal and dangerous permissions [10]. All
dangerous permissions are organized in permission groups. Starting with
Android 6.0, which was released on Oct. 5th 2015, apps need to ask permission
the first time they want to access a certain resource. This allows the user
to learn how the phone’s resources are being used. If the user grants a
privilege of a certain category, then the app automatically is allowed to
access all the resources of the category. For example if an app requests the
ACCESS_COARSE_LOCATION privilege in order to get the coarse location
from the user, then the MOS displays to the user that the app needs access
to the phone’s location. If this request is being granted and the app requests
ACCESS_FINE_LOCATION at a later time, then the MOS automatically
grants the request. Previous versions of Android request the user to approve
all possible permissions that the app requests at install time. The app is only
installed if the user grants all the requested permissions. In May 2016, only
7.5% of all Android devices were running this latest Android version [11].

Apple separates in iOS between Entitlements [14] and the permission dialog
system. Entitlements are general permissions of the app that cannot be
influenced by the user. They give an app-specific capabilities or security
permissions, such as accessing cloud storage or enabling the app to send the
user messages even if the user is not actively using the mobile device, i.e.
push notifications. The permission dialog system works similar to the one of
Android 6.0. If an app requires a privilege, then it prompts the user for approval.
The user may change certain permissions of the app at any time.

As mentioned in Section 3.1, the PO provides SDKs to ease the development
process of apps. Another reason that makes the development of apps relatively
easy is the huge market of third-party software libraries that can be embedded
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in an app. These libraries offer a broad range of different functionalities, such
as advertisement, networking and databases. As a result, most apps do not only
contain code from the app developer, but also from many different software
developers. Android as well as iOS grants the permissions of the app the app
as a whole, including code from the app developer and any third-party software
libraries.

3.1.2 Business Model

One of the reasons that such a broad variety of mobile apps exists is that the
Google Play and Apple market provide many ways for developers to run their
app development as a business and to monetize their apps. There are three
main ways of monetization: selling the app via the app-store, offering in-app
purchases, and advertisement.

Selling an app is a straightforward business model. In this case the app developer
asks a certain price for the app that every user needs to pay in order to download
and run the app. Note that the app developer does not obtain the full price, as a
certain fraction of the turnover is kept by the app-market provider. The second
possibility to monetize an app is to offer so called in-app purchases. These
allow the user to buy additional features from within the app. Similar to the
case before, the app-market provider themselves keep a fraction of the in-app
purchase turnover. The third possibility for monetization is via displaying
advertisement to the user.

There are several large mobile AA networks, such as AdMob, MoPub, AirPush
and AdMarvel, that provide third-party libraries that can easily be integrated
in an app. With embedding an AA library, the app-developer enables the AA
network to display behavioral advertisement that the AA network considers
relevant to the user. The app-developer then typically earns a fixed price
depending on whether the ad was only being displayed to the user or whether
the user has clicked on the ad. Additionally to the advertisement functionality
of AA libraries, they also provide analytics functionality that provide the app
developer with an overview on how the app is being used and on the revenue of
their app.

Although it is not directly a business model, it has been shown that many app
developers hope to eventually get acquired by another tech company. While
there are many reasons for companies to acquire other companies [84], recent
acquisition by major Internet companies show that there are two prevailing
reasons. Either a company possesses a technological advantage over the
acquirer and/or has a large and vital user base. Take for example Facebook’s
acquisitions [57] of Gowalla and Instagram or Alphabet’s acquisitions [56]
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of YouTube, AdMob and DoubleClick. Certainly, compared to the number
of companies developing apps, the number of acquisitions is relatively small;
however, an acquisition can be extremely profitable, e.g. Facebook has acquired
WhatsApp for US$ 19 billion.

In the following we provide more information on how ad and analytic networks
operate, because their presence in the mobile device eco-system has a significant
impact on the user’s privacy (see also Section 3.1.3). There are three main
entities in mobile advertisement [180]: publishers, advertisers and the AA
network. Publishers are the entities that want to have advertisement displayed
to relevant users and therefore contact the advertiser and the AA network.
Advertisers create the actual ad that is displayed to the user, the ad creative.
The ad-network provides the Advertisement Software Development Kit (AdSDK)
that connects advertisers and app-developers. While the main purpose of the
AdSDK is to display ads in an app, it may also modify the creative. For example,
AdMob adds buttons to let users turn off interest-based advertisement or to
report offensive ads and may add trackers to check whether the ad was being
displayed on the user side.

AA networks are faced with two major challenges. First, being able to determine
the most relevant ad to an app user and, second, being able to re-identify, i.e.
to track, users, for example to count user clicks on ads. For the former, the
more information the AA network possesses about the user, the better it is able
to determine what is the most relevant target audience for an ad. The AdSDK
typically requires access to the phone’s location in order to serve geo-localized
advertisement. The latter challenge turns out to be difficult in the mobile
device eco-system. In the conventional web ecosystem, third-party cookies
can be used to track users [141]. Recently, more sophisticated techniques
for user tracking, such as canvas fingerprinting and evercookies, have been
developed [1]. Mobile advertisement that is integrated in apps is presented
in WebView instances. Since there are no cookies in such instances, AdSDK
developers rely on persistent identifiers [114]. According to the Google Play
developer program, Android apps are required to use the Google Advertising
ID (GAID), which is available on Android phones with Google Play services
and which can be reset by the user. On phones without Google Play Services,
most apps need to use permanent identifiers, such as Android ID (created
when the device is installed), International Mobile Equipment Identity (IMEI)
(permanent), International Mobile Subscriber Identity (IMSI) (permanent)
and Media-Access-Control address (MAC address) (permanent). The Internet
Protocol (IP) address of a phone does not serve as a good identifier as it
periodically changes and many mobile devices share the same IP via Network
Address Translation (NAT).
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3.1.3 Privacy

A mobile device contains a lot of private data of its user. This data is either
added by the user herself, such as the address book or calendar entries; data
of the device itself, such as the device’s IMEI; or data of the device’s sensors,
respectively, such as the user’s location. In the following we shall refer to such
data as sensitive data, because it can typically be used to learn information
about a mobile device user. For example, the IMEI can be used to re-identify
users in online sessions (see Section 3.1.2) and GPS data can reveal various
information about the respective individual (see Section 3.2). Note that this
definition is not sensitive data in a legal meaning. In law, sensitive data is a
well defined category for that a particular protection applies. Different countries
have different definitions of sensitive data, but common examples include health
information, ethnic or racial origin, religious beliefs, political opinions and
sexual preferences [190,192].

Naturally, some apps need to access and process sensitive data of the user. For
example, an app for finding nearby friends needs to process location data of
the user, a calendar app stores the user’s calendar entries or a video-chat app
needs to access the phone’s microphone or video. However, the reality of the
mobile device eco-system shows that apps may process and transmit sensitive
data indiscriminately. This raises serious privacy concerns, because most apps
gain enough location data to be able to profile app users [78]. This problem
also exists because Android does not allow for fine grained privacy settings to
give the user more control, such as allowing an app only to access location when
not being at home. Around 50% of the most popular apps request location
data [78].

Mobile Application Analysis

Reverse-engineering the app’s source code followed by static analysis is a well-
established method for analyzing how apps process and transmit user data.
While this may constitute a violation of copyright, it is a common practice on
researchers, nevertheless. Felt et al. [80] and Vides et al. [196] showed that
apps, as well as third party libraries, request unnecessary privileges. Such
over-privilege grants the app access to more sensitive data and thus leads to a
potentially more severe privacy problem. The phone’s identifiers, such as IMEI
and IMSI, are among the most commonly used sensitive data that apps access
as shown by Enck et al. [75]. However, apps also transmit other data, such as
the user’s location [136,169], call logs [101], account information [101] and the
user’s contact list [136].
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A further analysis of the apps source code shows that not all types of third-party
libraries equally collect sensitive data. Instead, AA libraries turn out to be
a major collector of sensitive data [30,81,182]. They either probe for certain
permissions during runtime of the app [75], which allows them to access sensitive
data, or, as Book et al. [30] showed, AA libraries require over time more and
more privileges themselves in order to work within an app. Hence, it is also
possible that an app requests location information only due to the AA library
that it includes, but not because the actual app needs it for its service. It is
not very surprising that AA libraries process so much sensitive data. The more
data a mobile AA network is able to process, the better it is able to predict
user interests and thus becomes more attractive for advertisers. Note that this
is not different to behavioral ads in the WWW.

Analyzing the app’s source code alone does not suffice to quantify to what
extent sensitive data is being accessed. Dynamic analysis tools actually run
the apps and thus may be identify such dynamic behavior. TaintDroid [74]
by Enck et al. uses taint analysis for the analysis and tracking of sensitive
information flows within the app. Among 30 popular Android apps they found
many cases in which the personal information of users, such as phone number
or location, is collected and transmitted to remote destinations. Other studies
using dynamic analysis tools have shown that a substantial amount of app-traffic
is unencrypted and contains sensitive information such as users’ location or
real identities [59, 182,205]. Wei et al. [200] found that apps send unencrypted
traffic to many remote destinations. Furthermore they found that the remote
destinations commonly belong to third parties. In the near future we can expect
that the amount of unencrypted traffic being sent by apps declines as the use of
Hyptertext Transfer Protocol Secure (HTTPS) increases. For example, Apple
has decided to make the deployment of the HTTPS protocol mandatory as app
communication protocol [52].

Dynamic app analysis is also capable of identifying more sophisticated techniques
of apps to access sensitive data. Apps may conceal their accessing of sensitive
data by not doing it in their own code, but by leaving this task to code that is
dynamically loaded [51]. Furthermore, Feng et al. [82] have shown that apps may
circumvent sandboxing by using Inter-Process Communication (IPC) calls or
SD-card memory to exchange data. This way, apps may combine their privileges
to learn data about the app users. For example, considering two apps where
one is able to access the Internet and the other one the user’s accurate location.
Neither of them alone may leak sensitive information, but they could combine
their privileges to transmit location data of the user to a remote destination.
Sooel et al. [180] have shown that ad creatives themselves may access sensitive
data from the user. This is possible because AA networks give ad advertisers
access to Mobile Rich Media Advertisement Interface Definitions (MRAID), an
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interface that allows ad creatives to be written in Hypertext Markup Language
(HTML) and to call a limited set of JavaScript functions. This allows the
ad creative to track the user’s whereabouts by having the AA network send
the user’s current location along with a unique identifier to a remote machine
under control of the advertiser. The authors further show how MRAID can
be exploited to learn a user’s medication from the GoodRx app; the gender
preference from POF Free Dating App; and the user’s browser history of the
web browser Dolphin.

Feng et al. [82] revealed that 96% of the top free apps request Internet access
and at least one persistent identifier. This allows a third party to link two
random apps with high probability. This is especially a problem in the case of
AA libraries, because persistent identifiers allow them to aggregate different
app sessions and thus get an insight in the user’s life that she is unaware of and
from which she has no means to opt out.

Android Location Privacy

Fawaz and Shin [79] propose LP-Guardian, a modified Android version that is
specifically designed for protecting the user’s location data. Whenever an app
requests location data, LP-Guardian obfuscates the user’s current location in
the background. The type of obfuscation depends on two main factors. First,
how sensitive the location is that the user visits. Therefore, LP-Guardian is
able to determine sensitive places, such as the user’s home location; it depends
on user input to set the sensitivity level of the current location. Second, LP-
Guardian takes into account the accuracy of the user’s location that is needed
by the app. The authors find that the city level suffices for 68% of the apps
to provide their service. Another key feature of LP-Guardian is that it is able
to generate fake routes for apps that require continuous location tracking. For
certain apps, such as fitness apps, fake routes that resemble the actual speed
of the user are sufficient to provide valuable service quality. LP-Guardian also
recognizes location requests from AA libraries and ensures that the same AA
library obtains the same obfuscated location irrespective of the app in which
it is running. This way LP-Guardian guarantees that no AA library is able to
obtain a better location estimate on the user due to tracking in multiple apps.

Fawaz et al. [78] propose LP-Doctor, a system that also aims at restricting the
app’s access to location data while maintaining the app’s required functionality.
The key feature of LP-Doctor is that it is not necessary that the user installs a
modified version of Android, as required by LP-Guardian. Instead, LP-Doctor
is a modified version of an app-launcher that an Android user may install in
a similar way as an ordinary app. The task of an app-launcher is to start the
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app after the user clicked on the app’s icon. LP-Doctor takes advantage of this
and obfuscates the user’s location with Laplacian noise [7] if the user starts an
app that requests location data and if it is necessary according to the internal
privacy metric. In order to decide whether the current app call poses a privacy
threat, LP-Doctor considers the user’s input at the installation time of the app
and, additionally, tracks the user’s movements. The latter enables LP-Doctor
to reuse pseudo-locations if the user starts the same app at a privacy sensitive
place. This guarantees that an app, that the user starts frequently from the
same, sensitive place, is not able to average out the Laplacian noise over time
as described in [7]. The main disadvantage of LP-Doctor is that it fails to
protect the user against apps that request the user’s location while running in
the background.

3.1.4 User Studies

Although behavioral advertisement is a well-established business in apps, there is
not much research on how users feel about having their location data being used
for behavioral advertisement. However, studies on behavioral advertisement
for regular WWW sessions suggest that the majority of people reject such
technologies. It is not only that users oppose that their sensitive data is
processed for marketing reasons, they also oppose being tracked while surfing
the WWW. Tracking is a key technology for Online Behavioral Advertisement
(OBA) as it enables so called trackers to re-identify users in different WWW
sessions and thus to learn as much as possible about their activities and their
interests, respectively. The most traditional way to re-identify users is with the
help of Hyptertext Transfer Protocol (HTTP)-cookies. Since WWW browsers
allow informed users to delete HTTP-cookies, they have some sort of control
over this form of re-identification. However, more recent technologies, such as
cookie respawning, Flash cookies or fingerprinting [1, 112], leave the user with
no countermeasure in order to escape tracking. Even worse, these technologies
are hardly noticeable.

Considering that tracking is a technology that happens invisible in the
background, it is not surprising that users have a poor understanding of OBA
and that they are very concerned about how their data is being used within
OBA. This is shown by a study of Ur et al. [193]. They demonstrated that
users confuse anti-malware software with a tool to protect against OBA or the
users believe that there exists a browser setting that protects them against the
data collection due to OBA. Even the notice and choice mechanisms that the
ad industry provides are misleading to the users and are poorly understood. If
an OBA provider offers an opt-out mechanism, users are typically not aware of
it. The poor understanding of OBA is not limited to typical users, who tend to
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have little knowledge about information technology. Instead, even technically
savvy people do have limited knowledge of third party tracking techniques as a
user study by Agarwal et al. has shown [2].

Besides the lack of transparency and understandability of OBA, a study by
Fawaz et al. [78] revealed that the behavioral user profiles have poor accuracy
and are not, as promised by the companies, anonymous. In a first step, Fawaz et
al. conducted an in-person interview to inspect together with the users their own
behavioral profile that was created by some OBA companies. These interviews
revealed that OBA companies store wrong data about their users. In a second
phase, Fawaz et al. identified that users are mostly concerned about: how their
data may be used, the level of detail of their data, the aggregation and the
amount of sensitive data that is being collected.

Most people oppose that their private data is collected and processed for
marketing purposes. In the study of Turow et al. [189], 66% of the users
dislike private data analysis for advertisement. Interestingly, when the authors
informed the study participants about common ways that marketers gather
data, rejection increases to 73% - 86%, depending on the particular way that
data was being collected. In their study, Turow et al. also did not find much
support for tracking anonymously as it is also rejected by the majority (68%).
Most participants of a study conducted by McDonald et al. [142] consider OBA
to be privacy invasive and thus believe that it violates their fundamental rights.
The study of Ur et al. [193] found that it depends on the context whether people
accept being tracked. More participants tend to accept tracking practices, when
they are planning a vacation or when they are shopping for a car. However,
almost none of the participants accept any form of tracking when they are
engaging in rather sensitive behavior, such as researching sexually transmitted
diseases. Another, more practical, concern has been studied by Agarwal et al. [2].
They show that people are also afraid of embarrassing ads being displayed on
their screen when they are next to other people. Similar to the study of Ur et
al. [193], their study participants state that their concerns regarding tracking
for OBA purposes depend on the topic, i.e. the context.

Some works also investigate possible ways to improve the situation of OBA
and study how it could be designed in a fairer way. Kelley et al. [121] realize
that their study participants have complex and unique privacy preferences.
Furthermore, they find that choice is key for the users. The more users are able
to express their privacy preferences, the more they are willing to share data
and the more they are willing to have their data being processed. This is in
line with the study of Agarwal et al. [2] where the participants stated that they
wish to be able to block certain OBA ad topics. Fawaz et al. [78] find that,
although users in general appreciate the opportunity to investigate their own
OBA profile, the effect of editing needs to be clearer to the users. Furthermore
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OBA companies should elaborate on how the data was collected or inferred,
respectively, and they should also elaborate on how the collected and inferred
data is being used [78,165].

3.2 Threats

As we have seen in Section 3.1.3, the design of the mobile device eco-system
gives many parties access to user location data. This raises significant privacy
concerns with respect to the LBS provider and third-party software developers,
such as AA network providers. However, there are further entities that learn
location data which may raise separate privacy concerns. In many LBSs the
user shares her location with other users of the LBS. Furthermore, operators of
the communication infrastructure can also learn user location data if it is being
transmitted unencrypted. Likewise, surveillance agencies that gain access to
the communication infrastructure may be able to learn user location data.

Clearly, the scenario in which an entity learns user location data may differ
and, along with that, also the necessary countermeasures. For example, if users
are able to set within the app of the LBS the other users with whom they are
willing to share their location data, then this may solve privacy concerns with
respect to the other users in the system. However, this would still not solve
privacy concerns towards all the other entities that may learn user location data.
Instead of providing detail on particular scenarios where entities may learn user
location data, in the following we provide an overview why the protection of
location data is difficult and an overview about the threats to a user’s privacy
once an entity has gained access to location information.

Several researchers observed that anonymization of location traces is hardly
possible, because the traces of users are unique. As Bettini et al. [24] showed,
the location traces of a person is a spatio-temporal pattern that is almost unique
to a user. Therefore, pseudo-anonymization does not offer any protection of user
traces, because the pseudonym allows to reconstruct user traces. This may still
allow to infer home/work addresses of the user or, if location traces that are not
pseudo-anonymized are available, both data sets can easily be correlated. De
Mulder et al. [65] showed that the adversary is able to compute a Markov model
from location traces that serves as a mobility profile. This mobility profile
is sufficiently unique that it allows to recognize pseudo-anonymized location
traces. Ma et al. [139] employ a maximum likelihood estimator, minimum square
approach and a weighted exponential approach to re-identify pseudo-anonymized
traces even if the traces are obfuscated with Gaussian or Normal noise. De
Montjoye et al. [64] analyze the movement of users among Global System for
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Mobile Communications (GSM) base stations and find that movement patterns
are highly unique as four location and time points suffice to uniquely identify
95% of all people.

Analyzing location traces provides a lot of sensitive information about the
respective people. The user’s home and work address are among the most
easily identified locations. This is particularly concerning, because, as shown
by Golle et al. [100], knowing the home/work region reduces the anonymity set
of a user dramatically. Hoh et al. [110] show that it is relatively easy to infer
the user’s home and other places of interest when the user resides in traffic
monitoring applications. Ashbrook et al. [18] show that by analyzing the GPS
data of user movements it is possible to infer meaningful places for a user and
to predict the user’s movement. Since GPS data is noisy, they employ a variant
of the k-means algorithm to cluster the GPS data points. Every cluster must
be a place where the user resided for some time and thus be of importance
to the user. Additionally, this data reveals how much time the user spends
in a certain building, potentially revealing additional information about the
purpose of the user’s stay. Furthermore, Ashbook et al. build a Markov model
where the nodes are a meaningful location and the transition probabilities are
retrieved from the user’s movements between meaningful locations. This model
allows to predict user movements. Freudiger et al. [88] propose an algorithm
that allows to identify users and to reveal their interests when having access
to their GPS data. In the first stage of the algorithm, they employ, similarly
to Ashbrook et al., a k-means algorithm. In the second stage of the algorithm
they label the GPS cluster according to a pre-defined set of rules. For example,
clusters between 9 am and 5 pm are likely to indicate the working place and
places where the user stayed overnight are likely to be the home address. Their
analysis shows that an entity having access to accurate location information is
able to infer sensitive information about the users. In particular, they investigate
the success probability of identifying home, work, home/work places depending
on how frequent the user queries the LBS. Furthermore, they show that the
anonymity set for a home, work and home/work locations is rather low and that
the 10 most meaningful locations for the user can easily be revealed. Krumm et
al. [127] show that even if the location trace of the user was created by a device
that the user does not carry around, such as a car tracker, the home address of
the user can be identified with several heuristics.

The above inferences are also possible even if the adversary has only pieces
of the location trace at hand, i.e. an incomplete location trace. As shown
by Hoh et al. [109] Kalman filters can be used to track the user with high
accuracy [109]. Liao et al. [135] also employ Kalman filters in order to identify,
beside home/work locations, the user’s transportation type and when the user
deviates from the daily routine. Olteanu et al. [154] show that even if the user
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does not actively reveal her location, friends may reveal her current whereabouts
using geo-localized tags in an online social network.

Polakis et al. [161] investigate the location-privacy guarantees of popular LBSs.
Particularly, they analyze applications, such as Facebook and Grindr, that
allow for approximate nearby information. Modifying the client app allows an
adversary to localize other users with an accuracy of a few meters. While this
is more difficult, even users who are traveling can be localized with an accuracy
of a few hundred meters. Riederer et al. [168] propose FindYou, a system that
collects user location data directly from the LBSs, such as Foursquare and
Instagram, and confronts the user with inferences that the system makes about
the user. Possible inferences include: home location, race and income level.
Theodorakopoulos et al. [185] show that even if the user employs a location
protection mechanism, the level of protection degrades the more often the user
obfuscates the same location

3.3 Legal Protection of Location Data

There are several directives in place for the protection of location data of which
we discuss in detail the DPD, the ePrivacy Directive (2002/58/EC, as amended
by 2009/136/EC) (ePrivacy Directive) directive and the recently published
GDPR.

The Data Protection Directive (95/46/EC) (DPD) [190] defines the legal rules for
processing personal data. The term processing is very broad and can be anything
from recording, handling and deleting data. The term personal data refers to
“any information relating to an identified or identifiable natural person (data
subject)”, whereas the identification can be direct or indirect. Direct means to
identify an individual without third party data sources. For example, the address
of an LBS user typically directly identifies the individual and is thus personal
data. Third party data sources are necessary for an indirect identification. This
typically applies to all kinds of pseudonyms, such as employee numbers or IP
addresses. Although an employee number alone does not necessarily identify an
individual, in combination with the employer’s database that maps employee
numbers to names and addresses, an individual can be identified. The DPD
is applicable if the data controller either has an establishment in one of the
EU Member States or makes use of equipment situated on the territory of a
Member State. Hence, the DPD also applies if the data processor resides outside
the EU, but offers its service through equipment that is situated within the
EU. Requirements for data processors with respect to the data quality are also
defined in the DPD. Data must be processed fairly and lawfully and data may
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only be collected for “specified, explicit and legitimate purpose”. Furthermore,
the data needs to be “adequate, relevant and not excessive in relation to the
purposes for which they are collected and/or further processed”. Furthermore,
the data controller must implement sound security measures in order to protect
data from being corrupted, destoryed, or disclosed in an unauthorized way.
The DPD grants the user considerable rights with respect to learn how her
personal data is being used. Particularly, the user is “. . . to be informed that
processing is taking place, to consult the data, to request corrections and even
to object to processing in certain circumstances”. Since third parties may
process the user’s data, the DPD states that the data subject is to be informed
“. . . when the data are first disclosed to a third party”. In any case, the data
subjects have the right to access, rectification, erasure, blocking and the right
to object. If a data processor engages in unlawful processing of personal data,
then the DPD states that the member states of the EU have to put in place
effective sanctioning mechanisms. The DPD obliges the data processor to apply
protection of personal data as long as it is not anonymized.

The ePrivacy Directive [191] defines additional rules to the DPD. While
the DPD is solely concerned with protecting the personal data of natural
persons, the ePrivacy Directive is part of a larger set of directives regulating
the electronic-communications sector and applies to the sector of electronic
communications as well as to natural persons. The ePrivacy Directive [191]
defines a regime of different rules depending on whether location or traffic data is
processed. Within the ePrivacy Directive location data is any data that indicates
“. . . the geographical location of a terminal equipment of a user. . . ”; and traffic
data refers to “. . . any data processed for the purpose of the conveyance of a
communication . . . or for the billing thereof”. Whenever traffic and location
data is considered to be also personal data, then both regimes, the ePrivacy
Directive as well as the DPD, apply. In this case the ePrivacy Directive prevails
over the DPD. Regardless of the service, the ePrivacy Directive lays down a
provision with regard to the processing of location data. The data needs to be
made anonymous and the user needs to give her prior and informed consent to
the processing of her data. The user should be able to withdraw her consent
temporarily with simple means and free of charge. Furthermore, the data
processor may only process the data as long as necessary for the provision of
the value added service.

The Article 29 Data Protection Working Party (WP) [63] is an independent body
with advisory status under the Article 29 of the DPD. While the WP does not
have any legislative power, its opinions and recommendations on data protection
have considerable impact. The members of the WP are representatives
from each EU Member State, representatives of the EU institutions and one
representative of the European Commission. The WP has issued two opinions
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and recommendations that are directly related to LBS that are very helpful to
understand the European data protection regime on location data.

In opinion WP 115 [16] the WP concludes that location data always relates
to an identified or identifiable person and thus location data shall fall within
the scope of the DPD. Hence, providers of LBSs fall under the DPD regime.
The opinion WP 185 [17] establishes that the ePrivacy Directive applies only
to a certain type of providers: providers of public electronic communication
services and networks, which are telecommunication providers [58], fall under
the scope of the ePrivacy Directive, while providers of LBSs on mobile devices
do not. Telecommunication providers fall under the regulation of the ePrivacy
Directive regardless if they only process location data that is base station data
or if they also process location data that is WiFi or GPS data (WP 185, p. 8).
The WP particularly excludes LBSs on mobile devices, such as Google Maps or
Foursquare, from the ePrivacy Directive and considered them to be information
society services. This decision has been criticized by Cuijpers and Pakárek [58]
because it puts the telecommunication provider under a stronger regime than
LBS even if the same data is being processed.

Besides the issue of which service provider falls under which regime, the WP
also provides clarification on the matter of anonymization and consent. The WP
does further discuss several additional issues relating location data. Although
this does not directly address information society services, it is rather likely that
these statements also apply to them. First, the WP acknowledges that that “true
anonymisation is increasingly hard to realise and that the combined location data
might still lead to identification” (WP 185, p. 18). This has considerable impact,
because under the DPD the data processor needs to implement protection for
non-anonymous data. Furthermore, the WP elaborates on legitimate grounds
for the processing of location data. These include the following two main points
(WP 185, p. 19). First, the consent, necessary for the processing of location
data, cannot be obtained through general terms and conditions. The consent
needs to be specific, it should by default only be valid for a certain period and
it needs to be very easy for the data subject to withdraw their consent. Second,
LBSs should be turned off by default.

As already mentioned in Section 2.2, the new GDPR was approved in May 2016
and will replace the DPD in May 2018. The GDPR was initialized in 2012;
the GDPR intends to address current and future information technologies and
thus make Europe fit for the digital age. The GDPR adds additional elements,
such as the transparency principle, the clarification of the data minimization
principle and the establishment of a comprehensive responsibility and liability
of the data controller. It, furthermore, provides additional information to the
data subject, including the storage period. Also, the data subject has several
additional rights: the right to lodge a complaint in relation to international
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transfers, a right to be forgotten, a right not to be subject to a measure based on
profiling, and a right to have her data transferred from one electronic processing
system to another one. Data processors have to employ data protection by
design, by default and to carry out a data protection impact assessment prior
to risky processing operations. In the case of infringements, this stipulates
judicial remedy obliging the supervisory authority to act on a complaint and it
includes considerable penalties and sanctions. Additionally, the GDPR includes
that there are data processors that are beyond the controller’s instructions and
addresses their obligations as a joint controller.

The DPD, the ePrivacy Directive directive and the GDPR all have in common
that they also define exceptions of their protection. Typical cases in which the
legislation is restricted is for measures to safeguard national security, defense,
public security, important economic interests and law enforcement. This is
related to the Data Retention Directive (Directive 2006/24/EC) (DRD) that
accounts for the value of traffic and location data (in the sense of the ePrivacy
Directive) for the investigation, detection, and prosecution of criminal offenses.
The DRD was supposed to regulate the duration of which telecommunication
providers have to store traffic and location data of their customers, which they
have to provide on request of police and security agencies. On 8 April 2014 the
Court of Justice of the European Union declared the DRD adversely affects
“. . . the essence of the fundamental rights to respect for private life and to the
protection of personal data” [151] and thus nullified the DRD. However, it is
not clear what this means in practice. For example, the United Kingdom has
passed in 2014 a new Data Retention and Investigatory Powers Act [124].

3.4 User Perception of LBS

As we saw in Section 3.1.4, users mostly oppose the current practice of Online
Behavioral Advertisement (OBA). In this section we report on whether users
appreciate LBSs in general. A series of user studies has investigated the attitude
of users towards LBS and the respective threats to their privacy. Overall we
can draw the conclusion that users appreciate LBS, but that they are concerned
about their privacy and would like to stay in control of their location data.
Table 3.1 provides information on the participants of the available studies.
While overall the studies provide some evidence on the users’ preferences, the so
called privacy-paradox [126] also needs to be considered. The privacy paradox
is widely studied and describes the gap between the privacy attitude of users
and their actual privacy behavior. Typically, when being asked, users express
rather large concerns regarding their privacy but, in practice, rarely hesitate to
share private information for a small compensation, such as a small monetary
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Table 3.1: Recruitment information of user studies

Work # Users Profession Age
Barkhuus et al. [21] 16 University mean 23.7
Tsai et al. [188] 587 Various > 18

Bilogrevic et al. [25] 35 University 20 - 38
Egelman et al. [72] 493 Various > 18
Toch et al. [186] 25 Various 20 - 40

Consolvo et al. [53] 16 Non-technical unknown
Iachello et al. [115] 11 Various 2 families (52 - 14)
Anthony et al. [12] 30 Undergraduates mean 20
Brush et al. [35] 32 Various 12 households
Tsai et al. [187] 123 University unknown
Almuhimedi [4] 23 Various 18 - 44

reward [41,104]. Kokolakis finds that there are four main reasons for the privacy
paradox: i) users perform calculus between the expected loss of privacy and the
potential gain of disclosure; ii) users have no choice but revealing their data in
order to participate in online social life; iii) users are subject to cognitive biases
and heuristics, such as the optimism-bias, overconfidence and perceived benefits;
iv) users have no ability to make informed judgment about trade-offs in privacy
decisions. Zafeiropoulou et al. [209] find in their study that in LBS there is no
strong correlation between users’ privacy preferences and their actual behavior.
This shows that the privacy paradox also exists in LBS.

3.4.1 Overview on User Studies

Several works have opted for a questionnaire as the main body of their user
study: Barkhuus et al. [21] interviewed users about the perceived usefulness of
hypothetical LBSs, such as friend nearby notification; Tsai et al. [188] conduct
an online survey of American Internet users to investigate when they would be
willing to share their locations; Bilogrevic et al. [25] use a questionnaire in order
to learn user opinion about their private LBS. Egelman et al. [72] show users
pictures about different LBS that have the same functionality but differ in their
privilege requirements in order to learn the users’ preferences; Toch et al. [186]
recruit people directly via a people nearby LBS and conduct an interview on
how they use those applications.

Other studies equipped users with some sort of device that allows to reach the
users in their daily routines. The main point of these studies is that the study
participants can be reached in real situations at random times, asking them
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about their whereabouts and whether they would like to share their location
with family, friends, colleagues or strangers. Consolvo et al. [53] provide the
users PalmOS devices, Iachello et al. [115] people receive questionnaires on
mobile phones and Anthony et al. [12] provide users with beepers.

Brush et al. [35] collect GPS traces of the study participants from 12 households.
After the collection phase the authors show the participants the data and ask
them whether they would be willing to share the location data and whether
protecting the location data with certain obfuscation methods would increase
the participant’s willingness to share the location data.

In a later study, Tsai et al. [187] are using a Facebook location-sharing application
that the study participants can use on their own laptops. The app allows the
participants to define time-based rules that determine when they are willing to
share locations among their friends.

In the study of Almuhimedi [4] the participants have an app directly installed
on their smartphone. The app monitors how frequently the other apps, which
are already installed on the participants’ device, request sensitive information,
such as the participants’ location. In the next phase, the authors send nudges
to the users to have them limit the privileges that are granted to the other app.

3.4.2 User Attitude Towards LBS

Users mostly embrace LBS as a technology and consider it to be useful.
Furthermore, users are concerned about their location data in general, but
privacy concerns are bigger when location data is being used for commercial
services [121]. In the case of Barkhuus et al. [21], the participants of the
questionnaire consider especially services, such as friend nearby notification or
turning the phone in silent mode when being for example in the cinema, as
useful. The study of Consoolvo et al. [53] and Egelman et al. [72] show that
users appreciate LBS for sharing location data with their friends and that they
are willing to share accurate location data among each other.

Tsai et al. [188] provide a more comprehensive overview on the services considered
useful by the study participants. These include: finding people in an emergency,
keeping track of children and family, point-of-interest finder, finding nearby
friends, carpooling, allowing users to keep track of their own activities and
finding new people.

Toch et al. [186] show in their study that location is a driver for users to
understand other users, to gain trust, to convey trust, to feel secure and to filter
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other users. Note that location does not mean local. Knowing their location
helps to increase trust, even if the other people are far away.

3.4.3 Privacy Preferences of Users

Users are concerned about what happens when they reveal location data. Tsai et
al. [188] show that users are afraid that they may expose their home addresses
or may enable other people to stalk them when using LBS. Also, the study
of Brush et al. [35] reveals that the participants associate certain risks with
a service that shares location data. However, the study finds that user data
obfuscation could reduce the perceived risk.

The fact that users are concerned about their privacy is illustrated in the studies
of Bilogrevic et al. [25] and Egelman et al. [72]. Bilogrevic et al. show on the
example of an application, which finds a fair meeting point among a group
of people, that the participants prefer if the group members do not learn the
location data of all the other users. Egelman et al. let people choose between
different price/permission variants of apps where the app is the more expensive
the less permissions it requires. Their results indicate that people are willing to
pay more for a mobile application if it requires less privileges. In particular, a
quarter of the participants is willing to pay the highest premium of $1.50 for
the app that only requires the Internet permission and 40% of the participants
are willing to pay a premium for an app that does not request access to their
location.

In the 2003 study of Barkhuus et al. [21] the majority of people has no concerns
regarding revealing location data. The study may have this outlying result
due to a small number of participants or perhaps, given that the study was
conducted prior to the time at which privacy incidents happened on a regular
basis, the study simply reflects that people have been less privacy concerned
in the past. In any case, the participants in Barkhuus et al. study are more
comfortable with LBS if the location data does not leave their phone.

Iachello et al. [115] show that participants would not like their location data
being transmitted in an automatic fashion. Instead, the participants like to be
in control of their location data and they would like to decide every time their
location data is being requested. Furthermore, users do not want a third party
or strangers to receive their location data, but only the intended receiver. If the
participants are in control of their location data and get to decide to share their
location data in case-by-case scenarios, then they see little use in deception or
lying about their whereabouts.

The study conducted by Consolvo et al. [53] investigates the factors
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that determine the participants’ location sharing behavior in more detail.
Unsurprisingly, the main drivers in this behavior include the person with
whom the location is to be shared, the place where the participant is located
and the participants’ current mood. Furthermore, if the request does not match
the current context, for example if colleagues request location information when
the user is in a private context, then people will likely reject the request for
location information. This is in line with the results of Anthony et al. [12]
and Tsai et al. [187]. The former shows that that people have different sharing
behavior depending on their current place and social context. In the latter study
the participants would like to define location-based and group-based sharing
rules and they are generally unwilling to share their location with strangers.
Only the participants in [35] indicate that they are also willing to share location
with the service provider in order to have their service delivered.

Almuhimedi et al. [4] investigate the usability aspect of mobile applications.
They reveal that permission managers are essential for users to adjust their
preferences and that nudges can increase the efficiency of the permission
managers.

3.5 Contribution

Our work in [195] contributes towards an analysis of how apps process sensitive
information, such as device identifiers and user locations. In this sense our work
mainly contributes to Section 3.1.3 of this chapter. In particular, we analyze
the extent to which apps enable global surveillance. Snowden has revealed the
extent of global surveillance by revealing a large number of programs run by
the intelligence agencies from the US and the UK. The Tempora program [103]
analyzes global Internet traffic combined with many other sources. The Badass
program [156] analyzes unencrypted app traffic.

Our framework downloads Android apps and executes them in an automated
fashion and records the traffic that is being sent by the apps. Subsequently, our
framework analyzes the recorded traffic as it would be done by a surveilling
adversary. While the framework employs several tools, such as the Android
UI/Application exerciser Monkey [8] and the network traffic dumping tool
dumpcap [204], we developed the core functionalities of the framework from
scratch. The framework can be separated into the setup and the analysis
part. The setup part consists of software to parse and download apps from
Google Play, to automatically execute apps and to record the app traffic. In
the analysis part of our framework we developed software modules that extract
relevant information from the recorded traffic and software that evaluates the
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success of a surveilling adversary. The latter includes a similar technique to the
one proposed by Engelhardt et al. [76] as well as a novel technique based on
Transmission Control Protocol (TCP) timestamps. Overall, our framework is
the first to quantify the success of a surveilling adversary on mobile app traffic.

We employ our framework in an analysis of 1260 Android apps. Our analysis
shows that up 57% of the unencrypted mobile app traffic is linkable. Third
party software, such as AA software, turns out to be the most frequent sender
of unique identifiers. Furthermore, our analysis shows that passive network
fingerprinting techniques, such as processing TCP timestamps, increases the
efficiency of the adversary, because TCP timestamps can be used to link
unencrypted traffic even if no unique identifier is transmitted. Furthermore, we
evaluate the extent to which ad-blocking tools hamper the adversary’s ability
to link user app sessions. While these tools have not been designed to protect
against a surveilling adversary, they seem to be the best protection mechanism
available, since they prevent traffic from AA libraries. Our analysis shows,
however, that the two tools that we analyze, Adblock Plus for Android [99] and
Disconnect Malvertising [54], have only a very limited effect on the efficiency of
the surveilling adversary.

3.6 Conclusion

Mobile devices and their smart applications have become ubiquitous. One of
the most popular mobile services are LBSs. They have proven to be useful and
studies have shown that users appreciate the functionality such as location-
sharing or Point-of-Interest (POI) finder. Unfortunately, it turns out that most
LBS are privacy invasive. This is mostly because the current market rewards
companies that collect as much user information as possible, as this data can
be used for behavioral advertisement or could be monetized in another way.
However, privacy issues also exist due to platforms that have not been designed
with privacy in mind.

Overall, the current practice of LBS has resulted in a massive collection of
private user data in general and location data in particular. While, location
data is commonly considered to be personal data, it is subject to protection
under the scope of the DPD. Therefore, any processing of location data needs a
legal ground according to the DPD and the location data needs to be deleted
or anonymized if there is no longer a legal ground or the purpose has been
exhausted. However, several works have shown that it is difficult to anonymize
location data, because movement patterns of individuals tend to be unique. This
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leaves the user in the inconvenient situation of leaking accurate location data
while engaging in LBSs that allows various entities to infer sensitive information.



Chapter 4

Design of Private
Location-Based Services

Most LBSs for mobile devices are privacy invasive, because the service provider
learns the user’s location data. A variety of services have been proposed that
make this privacy invasion impossible. Such services employ cryptographic
primitives that allow them to provide the necessary privacy guarantees. One of
the most commonly used cryptographic primitives (see for example [25,162,210])
is homomorphic encryption that allows computations to be carried out on
ciphertexts. There exists several cryptosystems that provide this homomorphic
property. For example, the Paillier [158] or the Boneh-Goh-Nissim [29]
cryptosystem possess the additive homomorphic property. Given two plaintexts
m1 and m2 and their respective encryptions E(m1) and E(m2), the following
equation holds:

E.(m1)� E.(m2) = E(m1 +m2) ,

where � is an arithmetic operation in the encrypted domain that corresponds
to the integer sum of operation on the plaintexts.

While providing strong protection, private LBSs are typically tailored to a very
specific use-case and thus cannot be reused for other services. Furthermore, most
of the designs for private LBSs assume the service provider cannot be trusted and
users do not share their location information with the service provider. Instead,
they assume the service provider to be honest-but-curious. This assumption
accounts for the commercial interest of service providers in practical scenarios
that makes them honestly follow the private protocol. However, the service
provider is still interested in learning as much as possible about its users.

43
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Table 4.1: Comparison of private GSN.

Work Building Block Workload Comments

Freudiger et al. [86] Hybrid User No TTP when
encryption using a DHT

Dong et al. [69] Proxy LBS —re-encryption [28]

Carbunar et al. [40] Dedicated Both Requires extra
protocols hardware

Puttaswamy et al. [164] Coordinate Both Requires
Transformation obfuscation

Herrmann et al. [107] Broadcast User Private
Encryption statistics

Therefore, he may infer patterns in user behavior or employ side information
that he obtained, such as historical data about the users [174] or information
from the user’s friends [154].

In the following we outline private alternatives for the most commonly used
LBSs. Geo-Social Networks (GSNs) combine functionality of LBSs and online
social networks. Another very popular LBS is friend-nearby notification in that
users are automatically notified if a friend of them is in close proximity. Point-
of-Interest (POI) finder allow users to find interesting places, such as sights or
restaurants. Finally, traffic-monitoring is designed to provide intelligence about
the traffic situation and thus route traffic in a more efficient way.

4.1 Geo-Social Networks

Since GSNs, such as Foursquare, are particularly popular among the users of
LBSs, a substantial effort has been invested to develop privacy-preserving
counterparts. Works, such as Freudiger et al. [86] and Dong et al. [69],
propose private location-sharing services, which is the core functionality of
any GSNs. In such a service two users, Alice and Bob, wish to either mutually
or unidirectionally share their locations. Carbunar et al. [40] and Puttaswamy et
al. [164] propose services that provide more GSN functionality, such as checking-
in or leaving recommendations of venues. Table 4.1 provides an overview of
these systems. For comparison, the table also includes our work in Herrmann et
al. [107] as location sharing is a fundamental building block of a GSN.

Freudiger et al. [86] proposes a private location-sharing service and employ
hybrid encryption to protect the user’s privacy. Every user is assumed to



GEO-SOCIAL NETWORKS 45

have a public/private key pair and users can exchange their public keys either
out-of-band or with the help of the service provider. If Alice wants to inform
Bob about her current location, she chooses a secret key, encrypts her location
with the secret key, encrypts the secret key with the public key of Bob and sends
both to Bob. The receiver Bob uses his private key to decrypt the symmetric
key, enabling him to decrypt Alice’s location. The data being sent between
Alice and Bob could be transferred with the help of a central service provider,
but if the service provider is reluctant to store and forward encrypted data,
Alice and Bob could exchange their information with the help of a Distributed
Hash Table (DHT), such as [183].

Dong et al. [69] argue that a solution using pairwise secrets or a public/private
key infrastructure is not practical. Their location-sharing service is designed
such that users only store their own keys in their devices and no other keys are
needed to participate in the service. Furthermore, their protocol is designed
to be lightweight on the user device. The proposed solution is based on proxy
re-encryption [28]. In such a scheme a proxy function is employed to convert
a ciphertext for a particular key into a ciphertext for another key without
revealing any information on the key or the plaintext. If Alice wishes to share
locations with Bob, then Alice retrieves Bob’s public key from the service
provider and issues a proxy re-encryption key for Bob and stores it at the
service provider. The actual location exchange is done with the service provider
as a third party that performs the proxy re-encryption. Bob, wishing to obtain
an update on Alice’s location, queries the service provider for her location.
The service provider checks if Bob is allowed by Alice to learn her location,
performs the proxy re-encryption and sends the ciphertext to Bob who is able to
decrypt. The proposed scheme allows Alice to specify the precision of the GPS
coordinates and thus the granularity of the location that Bob learns. Using
the service provider as third party also comes with the advantage that it can
enforce revocation. If a user revokes a friend’s privilege to learn her location,
the service provider no longer performs the re-encryption. The proposed service
can run on low end smartphones, because the computationally most expensive
operation, the re-encryption, is carried out by the service provider.

Carbunar et al. [40] propose a private alternative to a GSN, which provides
similar functionalities to Foursquare. The service provider does not learn location
information, but only ensures correctness of the protocol. Every communication
between the users and the service provider happens via an anonymizing network,
such as Tor. The core of the system is a system called SPOTR that allows the
GSN provider to certify the location of the users. SPOTR relies on a dedicated
piece of hardware at a venue that is able to perform simple computations and
to display a Quick Response (QR) code. This QR code encodes a signature
of the venue and a time of validity. Users scan this QR code and send it to
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the GSN provider. If the sent QR code contains a valid signature and correct
validity period, the GSN provider confirms the user’s check-in with a signature.
A protocol named GeoBadge extends SPOTR to achieve a functionality allowing
users to prove that they have been present at the same venue a certain number
of times. In GeoBadge the user sends anonymously with every check-in a nonce
that is signed by the GSN provider. When the user wishes to verify her k
check-ins, she presents the k signatures to the GSN provider who replies with
the respective signed token. The protocol GeoM extends GeoBadge to facilitate
the mayor-functionality of Foursquare. The key difference is that check-ins
happen now in discrete time intervals, i.e. epochs, and that users prove to
the GSN provider that they have checked in at a certain epoch. The proof is
zero-knowledge in the sense that the user proves that she knows values that
the service provider issued during a check-in in a specific epoch. The user who
can prove the most check-ins receives a signed mayor-token. Finally, MPBadge
extends GeoBadge to implement a functionality allowing a group of l users to
prove they have checked-in at the same time at a certain venue. In this protocol,
every of the l users checks-in independently and obtains an additional signed
value. The GSN provider issues a MPBadge only if one user in the group is able
to present a value being computed as the result of all l additional signed values.
The implementation and analysis of the protocols shows that the proposed
schemes have reasonable computational demands. While indeed protocols such
as the GeoBadge and MPBadge provide similar functionality to services such
as Foursqure, the system by Carbunar et al. does not allow users to privately
share their location among each other.

Puttaswamy et al. [164] propose another privacy-preserving GSN that is very
efficient: the only operations that users have to employ are encryptions and
coordinate transformations. Every user in the system is assumed to have a
secret which she shares with her friends. A user who wishes to store data for a
particular place at the GSN provider, such as a check-in or a venue rating, first
transforms the coordinates of the venue and stores them at the service provider.
A friend who is interested in messages of her friends to a particular venue,
transforms the venue’s coordinates according the friends’ secret and queries
the service provider. Once the data is retrieved, the user is able to decrypt
the friends’ messages with the shared secret. While storing data at the GSN
is a very efficient operation, retrieving data from friends is less efficient and
mechanisms need to be implemented to avoid that the service provider learns
additional information, such as a the set of transformed locations belonging
to the same venue or friend relations. Puttaswamy et al. [164] propose several
mechanisms based on obfuscation that offer a privacy/performance trade-off.
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Table 4.2: Comparison of private Friend-Nearby LBSs. All systems require a
TTP.

Work Cryptosystem Protection Location
Lying Probing

Zhong et al. [210] Paillier [158] None Yes
Narayanan et al. [146] PTSI [146] Location Tags No

Lin et al. [137] PEqT [85] Location Tags No

Bilogrevic et al. [25] Paillier [158] None NoBGN [73]

Herrmann et al. [107] Several: None No[22,93,125]

4.2 Friend-Nearby Notification

In friend-nearby notification services, users wish to be informed or to learn
whether they are in close proximity. Similar to services that allow the exchange
of location information, Alice and Bob engage in a private protocol and either
one user or both learn at the end if they are nearby or, in some proposals, they
also learn the exact location of each other. If they use a protocol that does
not allow them to learn the exact location of each other, they could engage
in a protocol such as the ones of Freudiger et al. [86] and Dong et al. [69]. A
challenge of every friend-nearby notification service is that Alice or Bob may lie
about their location and thus learn the other party’s location without revealing
their own location. This could lead to privacy violations, because Alice or Bob
may only be willing to let people know their location if they are also in the
same area. The proposed protocols are not equally suited to detect or prevent
such misbehavior. We provide an overview on privacy-preserving friend-nearby
notification LBSs in Table 4.2. Again, this table includes for comparison our
work in Herrmann et al. [107] as location sharing can be used for a friend-nearby
notification service.

One of the first private protocols for friend-nearby notification was designed by
Zhong et al. [210]. They introduce three protocols, named Louis, Lester and
Pierre, that are based on homomorphic encryption [158]. The Louis protocol
requires a Trusted Third Party (TTP) for Alice and Bob to learn if they are
nearby. This TTP does not, however, learn the locations of Alice and Bob.
Furthermore, the TTP never communicates with Bob, but Alice relays the
messages for Bob. The protocol either stops after the first phase where Alice
learns if Bob is nearby or, if both engage in the optional second phase of the
protocol, Alice and Bob learn their respective locations. In the Louis protocol,
both users are able to lie about their location if the TTP collaborates with
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them. Furthermore, Alice is able to lie about her location if the second phase of
the protocol is not run. In the Louis protocol, both users are able to lie about
their location and the only protection against misbehavior is that users can
physically verify the result of the protocol run. If the Louis protocol returns
that the users are nearby, but one of the users cannot see the other, then she
knows that Bob or the TTP must have misbehaved. Likewise, if one of the
users spots the other user although the protocol returned that the users are
not nearby, then misbehavior is revealed. The Lester protocol works without a
TTP. However, while Alice learns location information about Bob, Bob does
not learn location information about Alice in return. Furthermore, Alice does
not learn exact location information, but only if Bob is within a certain radius
of her location. Unfortunately, the Lester protocol does not allow Alice or Bob
to learn whether the other lies about their current location. Even worse, Alice
can use a single response of Bob to probe his location for several radii. The
only protection the Lester protocol provides is that both Alice and Bob can
participate in the protocol and change their inputs in such a way that the result
of the protocol is that they are not nearby without the other user being able
to detect this behavior. In the Pierre protocol, Alice and Bob will, as in the
Lester protocol, not learn exact locations, but only a coarse location area that
they are within. While cheating about their location is still possible in the
Pierre protocol, it comes with the significant advantage that Alice cannot probe
a single response of Bob for multiple guesses. Instead, Alice is only able to
check if Bob is nearby to the location that she has provided in the protocol run.
While of course Alice could initiate multiple, consecutive location runs, Bob is
able to detect that kind of probing and stop participating in the protocol.

Narayanan et al. [146] propose three protocols for friend-nearby notification.
Two protocols are based on private set intersection [85] and assume a TTP. The
key distribution of the system is done via Facebook instead of traditional Public
Key Infrastructure (PKI) solutions. In the first protocol, both Alice and Bob
need to be simultaneously online. The second protocol supports asynchronous
private proximity testing. The first protocol is more efficient but insecure
against collaboration between TTP and users. To prevent cheating in the
protocol run, i.e. lying about one’s location, the paper suggests to use location
tags. A location tag is a nonce derived from electromagnetic signals present at
the respective location. Using a location tag as input to the protocol comes
with the advantage that lying about the location is much harder, because a
cheating user would have to find the location tag for a location where she is not
present. However, it is unlikely that Alice and Bob will both measure the exact
same electromagnetic signals even if they are in close proximity. Therefore, the
authors propose Private Threshold Set Intersection (PTSI) [77], which allows
the system to determine proximity if the location tags are only similar but not
equal. This comes, however, at the cost of efficiency.
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The efficiency problem of Narayanan et al.’s proposal is solved by Lin et al. [137].
They employ a shingling technique [33] that allows them to use the more efficient
Private Equality Testing (PEqT) in such a way that the protocol finds Alice
and Bob nearby even if their location tags are similar but not strictly identical.
Furthermore, they propose to compute location tags based on messages received
from GSM base stations on their paging channel, which is used to ping mobile
devices in the area of the base station. Since GSM has a much higher signal
strength, users can receive the same signals even if they are further apart.
Signals on the paging channel turn out to be a valid source for location tags
since the data on the paging channel includes a unique identifier, which is
assigned to the base station, and the paging requests turn out to be unique and
random.

Bilogrevic et al. [25] propose a scheme that allows users to find a Fair Rendez-
Vous Point (FRVP) in a privacy-preserving way. This is a meeting point that is
both fair, i.e. the maximum distance everyone has to travel to the meeting point
is minimized, and private, i.e. everyone only gets to know the final meeting point
and no user or the service provider gets to learn private location information
of the other users. Bilogrevic et al. find a FRVP by solving the k-center
problem with k = 1. The solution requires the service provider to compute
distances. The authors employ homomorphic encryption to do this in a privacy
preserving way and propose two different protocols. The first protocol computes
the distances with the help of the Boneh-Goh-Nissim (BGN) [73] cryptosystem
and the second solution computes it with the ElGamal [73] and Paillier [158]
cryptosystems. Their analysis showed that the ElGamal/Paillier system is more
efficient on both the user’s device as well as the LDS, because the BGN schemes
makes use of rather expensive bilinear mappings. However, even on nowadays
outdated Nokia N810 mobile devices (ARM 400 MHz CPU) the operations of
both cryptosystems can be performed efficiently.

4.3 POI Finder

One of the most commonly used LBSs allows users to find Point-of-Interest
(POI) around their location. Therefore, the user submits a query to the service
provider along with her location and, optionally, some additional information
on what kind of POIs the user is interested in.

Private Information Retrieval (PIR) [48, 130] is suited to implement a POI
finder in a privacy-preserving way. PIR is a mechanism that allows users
to query a database without the database server learning what information
the user requested. Ghinita et al. [95] propose two protocols based on PIR.



50 DESIGN OF PRIVATE LOCATION-BASED SERVICES

The first protocol works with a single PIR request at the cost of providing
only approximate results. The second protocol has a higher computational
and communication overhead but provides more accurate query results. Both
protocols are built on a data structure based on Hilbert curves and search
trees that convert the map coordinates of POIs into 1-dimensional coordinates
preserving the proximity of POIs. This allows to apply PIR on originally
two-dimensional data.

The drawback of the Ghinita et al.’s solution is that PIR is computationally
heavy on the service provider. To overcome this issue, Olumofin et al. [155]
propose a POI finder that combines PIR with a generalization technique called
cloaking. The user reveals in what larger area she is located and the service
provider runs the PIR scheme only in this larger area. This has the advantage
that the PIR runs are more efficient, because it is run only on the subset of
the entire database including all POIs. However, the solution comes with the
drawback that the user has to reveal at least some information on her location.
This effectively allows the user to engage in a privacy/performance trade-off.
The larger the area the user reveals, the more uncertainty the service provider
has about the user’s whereabouts at the cost of longer protocol runtime.

4.4 Traffic Monitoring

The idea of traffic monitoring is that cars on the road are equipped with tracking
devices and report to a LBS additional data, such as their current speed. This
allows the LBS to compute statistics, such as current road utilization, that
can be used to navigate cars in a more efficient way. Clearly, such a system
can provide considerable advantages, including the detection of traffic jams
and the subsequent redirection of other cars to a faster route. However, if cars
constantly reveal their locations, any observer would be able to learn private
information about the users as described in Section 3.2.

Hoh et al. [110] employ basic cryptographic operations such as encryption
and hash functions in order to build a private and secure traffic monitoring
infrastructure. Cars send the LBS provider encrypted messages and only the
LBS knows the respective decryption keys. While this provides some privacy
against entities that observe traffic data, the LBS needs to be trusted and is
able to learn all the location information of the users.

A privacy-preserving alternative called PrivStat is proposed by Popa et al. [162].
Their system allows to compute privacy-preserving location statistics, such as
traffic monitoring, that protects against any kind of side information. The
authors design their system such that the LBS provider does not need to be
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trusted, since it may try to infer user movement. Furthermore, the clients are
neither trusted as they may try to bias aggregates in their favor. Central to
the protocol is the so-called Smoothing Module (SM) that creates the keys of a
Paillier cryptosytem [158] and ensures that clients upload the right number of
measurement values needed for the execution of the protocol. The SM may be a
dedicated entity on a measurement point or may be implemented in a distributed
fashion running on the users’ devices. In both cases, PrivStat is designed to
detect possible data corruptions of the SM. During the runtime of the system,
the clients encrypts every measurement point, using the public key from the SM,
and send it to the LBS provider. In return, the LBS provider is able to compute
the aggregate of all received measurement data thanks to the homomorphic
property of the Paillier cryptosystem. Subsequently, the LBS provider sends the
encrypted aggregate to the SM that is able to decrypt the aggregate. Finally, the
LBS provider verifies that the SM has not corrupted the decrypted value using
the trapdoor permutation of the Paillier cryptosystem. Since clients upload
their measurement values anonymously, PrivStat implements accountability
functionality. By employing e-cash schemes, in a similar way as demonstrated
by Camenisch et al. [37], PrivStat can ensure that users are only able to upload
a maximum number of measurement points; employing interval zero-knowledge
proofs ensures that every measurement point is within a pre-defined range.

4.5 Contribution

Our work in [107] proposes a novel Location-Sharing-based Service (LSBS).
Location sharing is a key functionality of GSNs and friend-nearby notification
services. Thus, our work mainly contributes to Section 4.1 and Section 4.2,
respectively.

Similar to existing work, such as [40,69,164], the LBS provider does not learn
the location of the users in our work. However, we put particular attention to
the business model of the LBS. Learning the users’ locations is of fundamental
importance to the business model of most LBSs. For example, knowing the
users’ locations allows them to present them ads of nearby shops or attractions.
In our work, we address the absence of this form of monetization in two ways.
First, we keep the overhead of operations on the LBS provider side minimal.
This allows to maintain the service at the lowest possible costs. Second, an
extension of our solutions allows the service provider to learn statistics of the
locations that users have shared among each other in a privacy-preserving way.

We propose two protocols that are based on identity-based broadcast
encryption [93]. Users encrypt their location data and use the LBS provider
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only as a communication channel. Consequently, the LBS provider only has to
forward ciphertexts and does not engage in any computationally demanding
operations unlike prior work. While both protocols allow a user to protect her
location data, the user reveals her friends graph in the first protocol. This allows
for a particular efficient service. The second protocol offers a trade-off between
performance and location privacy. Since users cannot reveal their friends, they
define a larger region of interest for the locations they want to share with their
friends (share-area) and another region of interest for the locations they receive
(receive-area). The service provider then forwards location update only to those
users that are currently in the share-area and have set their receive-area such
that it includes the share-area.

We extend the first protocol in order to allow the service provider to learn
aggregated data on the number of times a user visited a location. This may be
interesting for venues that want their customers to check-in into their venue
and to share this information with their friends. Every time a user checks-in a
location, the user shares the venue’s location with her friends and increases a
committed counter for that location. While this committed counter is hidden
from the service provider, the user can choose to disclose the counter of a
particular location. Doing so may entitle her to certain discounts or prizes of
that venue.

We have implemented both of our protocols on a Samsung S III mini smart
phone that runs a 1 GHz dual core processor. Our experiments have shown
that even rather complex cryptographic operations, such as bilinear mappings,
impose an insignificant computational overhead, even on this rather outdated
mobile device.

4.6 Conclusion

As this chapter has shown, it is possible to apply cryptographic primitives in
order to design private LBSs. In such a setting the service provider is usually
considered to be honest-but-curious, meaning that he follows the protocol
honestly but may try to learn information about his users. Unfortunately, as
the current practice shows, such proposals for private LBS are currently merely
of academic interest, as currently deployed LBSs are implemented in a privacy-
invasive way. There is almost no hard evidence shedding light on why this is the
case, but several reasons seem plausible. Mainly the business interests of the
service provider seem to hinder a wide adoption of private LBSs. Furthermore,
as we have seen in Section 3.1.3, many different entities, such as third party
software libraries, may require access to the user’s location data. Consequently,
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even if the LBS provider would be open to implement a private service, the
lack of private third party software libraries may make this impossible. Another
possibility for the lack of private LBSs is the competitiveness of the market. The
adopted cryptographic primitives require a substantial knowledge on information
security and their implementation requires considerable effort. Both requires
the investment of additional resources for which the market does not provide
an immediate reward. Finally, developing an industry product from a proof
of concept implementation, common in academic works, requires substantial
resources. Especially factors such as usability and marketing are difficult to get
right.





Chapter 5

Obfuscation-based Location
Privacy

Most LBSs do not employ mechanisms as described in the previous chapter to
protect user location data. Instead, they are designed in a way that they learn
user location data and they leak location data to third parties. Obfuscation can
be a practical way for users to protect their location when engaging in these,
privacy-invasive LBSs. Instead of using their accurate location x, users employ
a Location Privacy Protection Mechanism (LPPM) that computes a pseudo-
location z and then transmits this pseudo-location to the service provider. As a
result, the LBS provider and third parties receive only altered or approximate
location instead of accurate location information. There are four main types
of obfuscation strategies that have been extensively studied in the literature:
hiding location data, perturbation, reducing precision, and dummies. Which
obfuscation strategy is best suitable for a given scenario depends on the setting.
A particular difficult case for all obfuscation-based LPPMs is to protect the users
in a setting where they continuously query the LBS. In this case, subsequent
queries become linkable and patterns tend to persist. However, in a case where
the users query the LBS just once, i.e. sporadic, obfuscation can offer a much
better level of protection.

An adversary that observes obfuscated location data tries to invert the operations
of the LPPMs, i.e. to find x when observing z. For this task the adversary is
assumed to be strategic, i.e. to know: the functioning of the LPPMs, the user’s
obfuscation parameters and additional information, such as the terrain or the
user’s regular movements. One of the key parameters for the user to choose
is the Quality Loss (QL) that she is willing to tolerate in order to protect her
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location privacy. The reason for QL is that the user alters her location and
thus the LBS provider is only able to compute the response to imprecise data.
While there is QL with most LBSs when obfuscation is employed, some services
can naturally better tolerate obfuscation. For example, a weather app works
similarly fine with accurate location information and location information on
the granularity of a city.

5.1 Quantification of Location Privacy

Choosing the right way to measure the effectiveness of LPPMs, i.e. choosing an
appropriate metric, is crucial when evaluating the level of protection level that
they provide. Otherwise, assessments of their protection may not correspond
to their actual level. Furthermore, different LPPMs can only be compared in
a meaningful and fair way if they are evaluated under the same, meaningful
metric. Authors of LPPMs have adopted a wide variety of different metrics
when they have evaluated their LPPM proposals. In most of the cases, the
chosen metrics originate from other areas of privacy research, such as anonymous
communication, where they have proven to be useful. However, sometimes
authors have invented ad hoc metrics to evaluate the efficiency of their proposals.

Shokri et al. [174] propose a framework for the unified evaluation of LPPMs
and argue that the adversary’s error in reconstructing the user’s location
or trace is the right metric for the quantification of location privacy. The
proposed framework relies on a Hidden Markov model and applies a series of
well-established statistical methods to quantify location privacy. The evaluation
of a real-world data set shows the shortcoming of two other metrics that are
commonly used to evaluate LPPMs. The error of the adversary is now considered
to be the accepted metric for location privacy evaluations and has been used in
several other works, such as [7, 31,44,175,176].

Prior to Shokri’s work, entropy and k-anonymity were among the most commonly
used metrics. Entropy [173] has been widely used among the different types of
LPPMs, such as [23, 113, 118,134, 143, 199]. In privacy research, this metric was
originally applied by Diaz et al. [67] and Serjantov and Danezis [171] to measure
user privacy in anonymous communication systems. In a location privacy setting
the adversary assigns a probability pij that corresponds his observations of the
system. This could be, for example, the probability of two LBS queries i and j to
be the consecutive queries by the same user; the probability of two consecutive
queries i, j to belong to the same user; or the probability that two users i, j
have switched their pseudonym. Applying Shannon’s entropy measure yields
the uncertainty of the adversary:
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hj = −
∑
i

pij · log(pij) (5.1)

An LPPM is then considered to increase the privacy of the user if it increases
the uncertainty of the adversary’s. Another widely used metric is k-anonymity,
which was the natural choice as metric of many precision-based LPPMs, such
as [24,49,92,97,102,119], as their functioning is inspired by k-anonymity in a
database setting [184]. The assumption of the metric is that if the user submits
an area where there are more possible users that may have issued the query,
i.e. a higher k value, then the user enjoys a higher level of location privacy.
Despite its widespread use, researchers noticed that k-anonymity is not suitable
to measure location privacy and may even be detrimental to the user’s location
privacy [177].

5.1.1 Contribution

We propose the novel notion of possibilistic location privacy in [106]. This notion
provides a first-order estimation of the protection provided by LPPMs. The
main difference to the probabilistic approach by Shokri et al. is its simplicity.
Particularly, given a obfuscated location, we compute the area where the user
is with a certain probability and consider this as the user’s possibilistic area,
i.e. the area where the user can possibly be. For a subsequent LBS query, we
again compute a possibilistic area and intersect it with the previous possibilistic
area considering possible user movements between the consecutive queries. This
allows us to further narrow down the possible region of the user for every
received LBS query.

In principle the probabilistic approach by Shokri et al. can evaluate arbitrarily
complex situations with a great variety of user behavior, inference attacks, and
adversarial prior knowledge. However, we show that the computational needs
soon become prohibitively expensive for meaningful evaluations, because the
complexity of the framework grows quadratically in the number of considered
locations. In our case, the complexity of our possibilistic approach is constant
in the number of locations. Due to this much more advantageous complexity, it
turns out that we achieve with our possibilistic approach an assessment of user
privacy that is much more fine grained than with the probabilistic approach in
a feasible time.

We use our possibilistic framework to provide the first evaluation of the privacy
level provided by the geo-indistinguishability mechanism proposed by Andrés et
al. [7] and Chatzikokolakis et al. [44]. In particular, we evaluated the privacy
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level of those two LPPMs when the user exposes locations with high enough
frequency such that the consecutive locations become linkable by the adversary.

5.2 Obfuscation-based Protection Schemes

In the following we outline the existing proposals for LPPMs and categorize
them along the four main types of obfuscation strategies. Most of the LPPMs
assume a TTP in place that computes a user’s pseudo-location z. While this
may help to achieve a better obfuscation, the TTP becomes the single point
of trust and single point of failure. As a result, some LPPMs run only on the
user’s device or communicate only with other users in order to compute the
pseudo-location.

5.2.1 Hiding Events

With this obfuscation strategy the user stops engaging in the LBS for a certain
time or at a certain place. While the user, obviously, achieves location privacy
when she is not querying the LBS, the key benefit in this strategy is that the
user may change or exchange the pseudonym that she uses when contacting the
LBS.

Beresford and Stajano [23] propose the concept of mix zones. When a user
enters such a zone, she remains silent until she leaves the zone. While being
inside the mix zone, the user changes the pseudonym with which she queries
the LBS. She either creates a new pseudo-random pseudonym or exchanges
the pseudonym with another user. The strategic adversary tries then to infer
the mapping of pseudonym exchanges and its success can be measured with
the entropy metric. Similarly, Jiang et al. [117] study how silent periods in
WiFi networks can be used to exchange MAC addresses. Huang et al. [113]
further formalize mix zones and generalize them to a Mix-based model used
in anonymous communication, such as [47]. Freudiger et al. [87] study the
optimal placement of mix zones. Therefore they introduce a privacy metric
that captures the adversary’s probability of wrongly mapping a pseudonym
exchange. They formalize then the optimal Mix network that maximizes the
adversary’s probability to perform wrong mappings.

Another approach is proposed by Li et al. [134]. They do not rely on fixed mix
zones, but have the users exchange their pseudonyms when they are nearby.
They also measure the privacy of the users with entropy. Hoh et al. [111]
propose a similar approach but realize that the entropy metric does not provide
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a meaningful privacy estimate, because it does not express how long users can
be tracked. Therefore, they propose the mean-time to confusion metric that
captures the mean during which the adversary is able to track a user.

5.2.2 Reducing Precision

One of the most widely used LPPM strategies is to reduce the precision. Instead
of using accurate locations, the user provides a cloaking region to the LBS
provider. For example, a user provides as location the region of a city instead
of her accurate GPS coordinates. Reducing precision typically assumes that the
service provider supports queries with cloaks [20]. This obfuscation strategy
comes with the advantage for the user that the provider has then some level
of uncertainty about the user’s actual location and whether it is within the
cloaking region, respectively. The privacy of the user is typically expressed
in the k-anonymity metric, but some works also employ entropy as a privacy
metric [118,199].

A series of works assume a TTP that is aware of all the user’s locations
to compute the cloaking area. The algorithm to compute the area applies
the popular concept of k-anonymity from databases [184] to the area of
location privacy. The first LPPM of this type was proposed by Gruteser
and Grunwald [102]. Users choose a value k and the LPPM computes a cloaking
area that covers k − 1 other users. The users also share with the TTP spatial
and temporal constraints. These constraints express possible user preferences
on how large the area at least/at most has to be and for how long the user is
willing to wait until k− 1 users are sufficiently close to compute the region. The
TTP organizes the current user positions in a quad-tree in order to be able to
efficiently compute the obfuscated areas.

Several follow-up works and improvements on Gruteser and Grunwald’s work
exist. All have in common that they assume a TTP that knows the user’s actual
locations in order to compute the cloaking region. Bettini et al. [24] observe that
if every single query is protected using k-anonymity, subsequent queries may
not be. They therefore introduce the concept of historical k-anonymity where a
trace of k-anonymous queries itself is k-anonymous. If historical k-anonymity
cannot be ensured, the user exchanges her pseudonym using ad hoc mix zones,
such as [134]. Wang et al. [199] propose four additional heuristics to achieve
historical k-anonymity. Gedik et al. [91] show how quasi-identifiers can be
used to break k-anonymity-based LPPMs and outline possible ways to protect
against this threat. In another work, Gedik et al. [92] propose a mechanism
that employs k-anonymity, but finds areas including k users with the help of a
more efficient algorithm that is based on the graph-theoretic concept of cliques.



60 OBFUSCATION-BASED LOCATION PRIVACY

Mokbel et al. [144] also find the cloaking area with the help of quad-trees, but
they can find smaller cloaking areas that also cover k users. Kalnis et al. [119]
propose two mechanisms to build the cloaking area. In the first, the cloaking
area includes the k − 1 nearest users of the user who wants to query the LBS.
The authors note that the k − 1 other users covered by the cloaking area may
themselves compute cloaks that cover different users, because other users are
closer to them. This allows the adversary to rule out some of the k users as being
the initiator. The second mechanism does not have this drawback, because it
chooses k − 1 other users based on a Hilbert curve.

Users may not wish to share their data with a TTP when they obfuscate their
whereabouts. Chow et al. [49] propose a distributed protocol to find a cloak
of k-nearest neighbors. Users try to find k − 1 other users who follow the
protocol in their surroundings. Once they found enough users, they compute
the cloak and use it for their LBS. The most severe drawback of their solution
is that the initiator of the cloak tends to be localized in the center of the cloak.
Ghinita et al. [97] propose PRIVE that relies on distributed B+-trees. This
solution has the advantage that the initiator’s location under the cloak is more
equally distributed and that, similarly to the LPPM of Kalnis et al. [119], all k
users in the cloak compute the same cloak. Mobihide [96] uses a DHT [183] and
Hilbert curves to solve some performance issues of PRIVE that are due to the
B+-trees. Ju and Shin [118] propose an LPPM that creates a cloak covering k
POIs instead of k users.

Duckham and Kulik [70] propose a cloaking mechanism that is tailored towards
POI queries and that is not built on k-anonymity. Instead, the user chooses an
arbitrary region as cloaking area and sends this along her query. The service
provider computes an answer that consists of average distance information of
all nearby POIs to all possible locations within the cloaking area. The user
has then the option to either refine her query, i.e. reduce the cloaking area, or
to choose the POI that is on average closest with respect to all the locations
within the cloaking area.

5.2.3 Perturbation

A user may perturb her location, i.e. use the library as her current location
instead of her true location the hospital, in order to protect her location privacy.
Perturbation has the significant advantage that the obfuscation is a single
location and thus can be used with most of the LBSs as they require a single
location as input.

Hoh and Gruteser [109] propose to perturb the location of a user onto the
trajectory of another nearby user. For the adversary it then appears as if
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the trajectories of two users have crossed and cannot distinguish which user
went in which direction. To determine the obfuscation points, the authors
formulate the system as a nonlinear optimization problem that maximizes the
error of the adversary. Ardagna et al. [15] observe that localizing a user, even
when no LPPM is in place, cannot be done accurately. The inaccuracy of the
GPS sensor adds noise to the user’s location. This effect is regardless of the
technology that is being used to determine the location. Ardagna et al. propose
to meet the privacy requirements of the user by perturbing x far away such
that an adversary observing z is unlikely to choose an x′ such that x = x′.
Shokri et al. [176] formalize an LPPM as a function that considers: i) the
user’s privacy requirement; ii) the user’s maximal tolerable QL; and iii) the
adversary’s knowledge. They propose a framework that allows to find the user’s
optimal perturbation LPPM that, first, maximizes the adversary’s expected
error when employing the optimal inference attack and, second, respects the
user’s maximal tolerable QL. The authors formulate the problem of finding the
optimal protection mechanism and the optimal inference attack as a zero-sum
Bayesian Stackelberg game. Theodorakopoulos et al. [185] propose to sample
the pseudo-location z from Gaussian noise as this distribution has the highest
entropy compared to other distributions.

Andrés et al. [7] propose a perturbation-based LPPM based on the Laplace
distribution. Their LPPM provides geo-indistinguishability, a notion of location
privacy that is also introduced by Andrés et al. and based on a generalized
version of differential privacy from Chatzikokolakis et al. [42]. An LPPM provides
geo-indistinguishability if the probability of reporting an obfuscated location z
is similar for two close locations x and and x′ and the more different the further
x and x′ are apart. The mechanism from Andrés et al. has several advantages
over that of Shokri et al. First, the geo-indistinguishable LPPM operates on
continuous locations while Shokri’s LPPM operates on discrete regions. Second,
the mechanism abstracts from the adversary’s knowledge. A series of other geo-
indistinguishable mechanisms have been proposed. Bordenabe et al. [31] propose
a geo-indistinguishable LPPM that perturbs the user’s location such that the
QL is minimal. The geo-indistinguishable mechanisms of Chatzikokolakis et
al. [43] reuses z if the user’s location x is still in close proximity. This allows
them to be more economic about the noise that is needed to obfuscate a series
of queries to the LBS. In another proposal, Chatzikokolakis et al. [44] propose a
geo-indistinguishable solution that adjusts the noise added to pseudo-locations
z depending on the density in the current area. For example, the mechanism
adds more noise in rural areas than in cities. Xiao et al. [206] argue that
applying a differentially private mechanisms, such as the geo-indistinguishability
mechanism from Andrés et al. [7], to protect location privacy comes with new
challenges, because the subsequent locations of a trajectory contain temporal
correlations that leak additional information. As a solution the authors propose
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a perturbation LPPM that applies the noise depending on the next possible
movements of the user.

5.2.4 Dummies

A dummy-based LPPM queries the LBS with a series of fake locations that
may include the user’s actual location x. If the LBS accepts dummy queries,
the LPPM can send the set of locations directly to the LBS and receives in
return an answer to every location in z. However, if the LBS only accepts a
single location as input, then the LPPM could still send subsequent queries for
every location in z to the LBS. While the idea of dummies is rather intuitive,
Krumm [128] shows that the creation of realistic dummies is a quite difficult
task. By analyzing a real-world data set, Krumm shows that key parameters
for the creation of realistic dummy trajectories, such as the user’s driving speed,
the randomness of routes, start/end locations and the GPS noise, are difficult
to create artificially.

Kido et al. [122, 123] proposes two LPPMs that create fake movement data.
The basic mechanism computes random trajectories and a more sophisticated
version considers the distribution of other users in the map and high density
regions when computing trajectories that lead to high user privacy. You et
al. [208] propose an LPPM that computes dummy trajectories such that they
intersect with real trajectories as well as other dummy trajectories. The authors
argue that this increases user privacy, because more places appear possible as
the current location of the user. In the LPPM of Lu et al. [138] the user defines
her privacy requirement as a tuple of two values (k, s). The LPPM then creates
k dummy locations in an area of size s. Meyerowitz and Choudhury et al. [143]
propose to also cache the replies of true and dummy requests to the LBS. In
a setting with a TTP, the TTP caches the replies. A user first queries the
TTP that answers the query itself if the respective reply is within its cache and
queries the LBS if it is not. If there is no TTP, the authors suggest to have
the cache on the user devices in a Peer-to-Peer (P2P) fashion using a DHT. An
LPPM that creates dummy locations according to the `-diversity paradigm [140]
is proposed by Xue et al. [207]. Particularly, the LPPM computes the dummies
in such a way that at least ` different location types, such as library, hospital or
museum, are among the dummy locations. Furthermore, a more sophisticated
LPPM also considers the probability distribution of the location types in order
to create more realistic dummy locations.

Chow and Golle [50] as well as Shanker et al. [172] create dummy routes with
the help of other LBSs. For example, the user may query Google Maps for a
route between two places and alter this route with adding some noise to find
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a realistic driving route. The advantage of both proposals is that they do not
need a TTP in order to function. Instead, all the computations can happen on
the user’s device.

Bindschaedler and Shokri [26] propose a framework for the construction of
synthetic, yet plausible dummy traces. Therefore the framework takes real
location traces as seeds in order to compute the dummy traces. They further
leverage the fact that the location traces of the users are semantically similar.
Most users commute between a work place and their home and further visit
several other places, such as a friend’s place or their favorite restaurant.

5.2.5 Contribution

Our contribution in [108] computes a user’s optimal LPPM for sporadically
querying the LBS. Our work extends a framework proposed by Shokri et al. [176]
for the computation of optimal perturbation LPPMs. Similar to Shokri et al.’s
framework, we consider a strategic adversary, i.e. an adversary that knows
and exploits the LPPM algorithm, the user’s movement profile and the user’s
maximal tolerable QL.

The key feature of our framework is that it considers constraints on resources,
such as the bandwidth, which are typically of concern on resource-constrained
mobile devices. Considering such constraints allows us to compute the optimal
dummy-based and precision-based LPPMs. Our evaluation provides two
additional insights. We show that the user’s maximal level of privacy can be
achieved by either sufficiently relaxing the QL constraint, sufficiently relaxing
the bandwidth constraint or with an adequate relaxation of both. Second, if the
user can tolerate communication overhead, then dummy as well as precision-
based LPPMs can provide a better protection than the perturbation-based
LPPM.

5.3 Conclusion

Most available LBSs are designed such that the LBS provider and third
parties learn the location data of the users. LPPMs are a commonly proposed
mechanism for users to protect their privacy when engaging in such privacy-
invasive LBSs. Key to the performance assessment of LPPMs is a unified
evaluation framework. The state-of-the-art framework is based on a Markov
model. Furthermore, the framework employs the distortion between the user’s
actual location and the adversary’s estimate as the proper metric to quantify
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location privacy. This framework allows to evaluate the different LPPMs. In
the literature the commonly used obfuscation strategies are: location hiding,
reducing precision, perturbation and dummies. While indeed LPPMs can be
used with most LBSs, they impose a QL for the user, because the LBSs provider
needs to operate on imprecise data. The extent of this QL depends on several
factors, such as the user’s privacy requirements.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In Part I of this thesis we have explained what privacy is and outlined why it
needs to be protected. The focus of this thesis is on privacy in mobile services
and to allow users to hide their location data. We have outlined the current
mobile device eco-system and that the data of users engaging in mobile services is
being processed indiscriminately. This practice mainly emerged for two reasons.
First, for economical reasons as the current business model rewards entities
knowing most about their users. Second, the mobile device eco-system has not
been designed with privacy in mind and and thus allowing for indiscriminate
data collection. It turned out that the massive data collection is a major threat
to the privacy for users of mobile devices. In the following, we have focused on
location privacy, a topic that became increasingly popular along the widespread
use of mobile Location-Based Services (LBSs). We have outlined that in existing
LBSs the user cannot keep her location data confidential, because the LBS
provider along with several other entities learn accurate location information of
the user.

In [105] we have conducted an interdisciplinary analysis and considered LBSs as
a new socio-technical practice instead of just a technology. We have employed
the concept of Contextual Integrity (CI) in order to show that the current
functioning of LBSs violate privacy. Our analysis also included a legal assessment
showing that current LBSs are not in line with the legal concept of purpose
limitation. Furthermore, we presented in [195] a framework that is able to
quantify information leaks on mobile devices. Thus, our work provides further
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evidence that the current mobile eco-system does not properly protect sensitive
user privacy, such as unique identifiers and location data.

With respect to the protection of location privacy, we have first presented in [107]
a private LBS that allows users to exchange location data and location-based
information such that no other entity is able to read the user’s information.
We acknowledged that many LBS providers need to monetize their service and
addressed this in two ways. First, we designed our service such that it imposes
minimal working overhead on the service provider’s infrastructure. Second,
we extended our protocols such that the LBS provider is able to learn private
statistics on the user movements. This may serve as some sort of revenue for the
LBS provider to monetize its investments. We note that while statistics that
are created in a privacy-preserving may not constitute a privacy problem for
the individual, they way may still be invasive. For example, a service provider
may be able to use statistics to discriminate users if their behavior deviates
from the average behavior.

Since most LBS providers are reluctant to run privacy-friendly services, location
obfuscation is often the last resort of users who wish to protect their location
privacy. In [108] we have studied the design of optimal Location Privacy
Protection Mechanisms (LPPMs) that allow users to trade off their privacy
with resources they are willing to invest and a loss in service quality that they
are willing to tolerate. Finally, we have proposed in [106] our novel notion of
possibilistic location privacy. This first-order estimation of location privacy is
very efficient such that it allows the quantification of user location privacy in
real-world scenarios.

6.2 Future Work

While our interdisciplinary analysis shows that the way LBSs process user
location data violates CI, it does not investigate CI when protection mechanisms
are in place. This may include private LBSs, which we have outlined in Chapter 4
together with our proposal of a private location-sharing service in [107], as well
as obfuscation-based mechanisms, which we have summarized in Chapter 5.
The investigation of this impact is an interesting path of future work of the
interdisciplinary part of this thesis. Furthermore, since we have taken a more
general perspective with respect to the concept of contexts in order to provide
a more general analysis, future work could include the analysis of specific and
concrete scenarios. This will allow to gain more specific insights in how the
processing of location data may violate CI.
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Our framework for the quantification of information leaks, described in [195],
should be extended such that it also analyzes encrypted messages. This is
particularly important as more and more Mobile Application (app) providers
and third party software employ HTTPS as communication protocol. The
extended version of our current framework, which was designed to only consider
plaintext messages, may be able to more accurately assess the information
leakage on mobile platforms. Another interesting line of research is a further
analysis of possible countermeasures. In a first step, this should include an
in-depth analysis on how mobile ad-blockers impact the adversary’s efficiency.
Our current analysis only shows that ad-blockers have a limited effect on the
adversary’s efficiency without going into detail why this is the case. For example,
this could be because either ad-blockers do actually not block the parts of the
ad traffic that allow the adversary to link user app sessions or because third
party libraries other than AA libraries send sufficiently often identifiers for the
adversary to achieve the attack efficiency that we describe in our work. In
the second step, after the reasons for the efficiency of the adversary’s attack
have been investigated in detail, future work could include the development of
protection mechanisms.

Our proposal for private LBSs has the drawback that users can lie about their
location. This means that they can claim to be at a particular place, while
they are actually elsewhere. This has significant disadvantages especially for
reward-based check-in services, such as Foursquare, because users can check-in
into a venue arbitrarily often. The only protection that our protocols provide
against this threat is that always when a user checks-in, she also has to share
this location with her friends. However, cheating users may simply choose
to share with some of their friends who do not mind to receive false location
information or they may create fake profiles with whom they share their false
location information. A solution that prevents this kind of misuse could include
dedicated hardware at the venue with whom the user engages in a private
protocol via nearby communication technologies, such as WiFi or Bluetooth.

There are several further lines of future work on our contributions on LPPMs.
Our possibilistic approach in [106] needs to be further compared to the state
of the art framework that is based on a Markovian setting. The first line of
future work is to analyze the impact of the user’s movement profiles. The
probabilistic framework proposed by Shokri et al. [174] requires prior knowledge
on the users’ mobility profile. In current evaluations the adversary was assumed
to possess accurate prior knowledge, but imprecise or false knowledge was not
evaluated. Although assuming the existence of accurate location information
provides an upper bound of the adversary’s attack, in more practical scenarios
the adversary possesses only inaccurate prior knowledge. Furthermore, changes
in the daily routine or one-time events may not be captured by adversaries that
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too heavily rely on prior knowledge. Since our possibilistic approach does not
rely on any prior knowledge, a comprehensive evaluation will reveal further
interesting insights on the practicability of the framework of Shokri et al..

A second line of future work is the investigation of quantification frameworks
that take a middle approach between simplicity and complexity. Our possibilistic
framework is a first-order estimation and thus takes an extreme position on
simplicity of the model that yields a practical but simplified analysis. Its
competitor the probabilistic approach that, in theory, is capable to quantify
location privacy in the highest detail possible, but that has a complexity
that makes any reasonable analysis prohibitively expensive. Opting for a
quantification that is not as simplistic as our approach, yet not as complex
as the current framework, may provide additional quantification accuracy at
reasonable costs. Second, the possibilistic area of a user is a rather intuitive
representation of location privacy. This approach may, therefore, be suitable
to design tools that visualize the user’s current level of location privacy or the
impact on their privacy level when they query the LBS another time. Third,
while our possibilistic approach allows for practical privacy quantification, it is
unclear how the insights of the possibilistic evaluation provides on the design of
LPPMs.

Future work should investigate whether LPPMs can be designed to offer strong
protection against possibilistic strategies. In a subsequent step, if such LPPMs
exist, future work should include the investigation whether such LPPMs also
provide better protection against more complex attack strategies, such as the
Markovian approach. Furthermore, with respect to the design of LPPMs,
we often find a similar situation than with quantification frameworks. Our
framework in [108] provides optimal protection, but is computationally very
demanding. Investigating how the possibilistic approach can be applied to
the design of LPPMs may also solve the problem of finding strong LPPMs
with reasonable computational overhead that also are not tailored towards a
particular mobility profile, but allow for deviations from the daily routine.
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Abstract. There exists a wide variety of location-based services
(LBSs) that simplify our daily life. While engaging with LBSs,
we disseminate accurate location data to remote machines and
thus lose control over our data. It is well known that this raises
significant privacy concerns as access to accurate location data
may reveal sensitive information about an individual. In this
work, we investigate the privacy implications of LBSs from a joint
perspective of engineering, legal and ethical disciplines. We first
outline from a technical perspective how user location data is
potentially being dissiminated. Second, we employ the Contextual
Integrity (CI) heuristic, an ethical approach developed by Helen
Nissenbaum, to establish whether and if so, how, the dissemination
of location data breaches the users’ privacy. Third, we show
how the concept of purpose limitation (PL) helps to clarify the
restrictions on the dissemination of location data from a legal
perspective. Our interdisciplinary approach allows us to highlight
the privacy issues of LBSs in a more comprehensive manner
than singular disciplinary exercises afford, and it enables us to
contribute towards a better understanding among the relevant
disciplines. Additionally, our case study allows us to provide two
further contributions that are of separate interest. We address
the problem of competing prevailing contexts without suggesting
that the ensuing incompatability of informational norms can be
resolved theoretically, even though it must be resolved in practice.
This ties in with the difference between a legal approach that has
to align justice with legal certainty and an ethics approach that
aims to align prevailing social norms with moral reasoning. In the
end, our interdisciplinary research shows how CI and PL are in
many ways complementary.
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98 PRIVACY IN LOCATION-BASED SERVICES: AN INTERDISCIPLINARY APPROACH

1 Introduction

During the last decades, interdisciplinary research has gained significant
popularity. While scholars typically work in their own self-contained and
isolated domain within their community of experts, we refer to interdisciplinary
research as that which brings together approaches of at least two different
disciplines.

In this work, we report on our interdisciplinary research on the protection of
location data. We tackle the problem from an engineering, legal, and ethical
disciplinary perspective. While there are several reasons why interdisciplinary
research can be fruitful,3 we think interdisciplinary research is particularly
useful for matters regarding data protection. In order to understand how data
is created, transmitted and processed, one needs an understanding of technical
systems, i.e. from the perspective of engineering. Yet, data processing is not
merely a matter of technical possibilities, but also one of legal regulation. Hence
one needs knowledge from the legal domain. Finally, we use Helen Nissenbaum’s
Contextual Integrity (CI) heuristic,4 based on an ethical approach, as a middle
ground between legal and technical assessments of privacy violations.

People use their smart devices, with their positioning capabilities, to engage in a
wide variety of location-based services (LBSs). These services have in common
that users must share their current whereabouts with a service provider to, for
example, find nearby points of interest, share location data with friends, or get
directions. It is well known that the ensuing mass dissemination of location data
generates significant privacy concerns because location data reveals information
about users that is potentially sensitive, difficult to anonymise,5 and entities
with access to accurate location data are able to make inferences about, for
example, home/work address, income level, religious beliefs, sexual preferences
or health issues.6 To make things worse, behind the scenes, users share their
location data with many more entities than they may be aware of and their
location data may be used for purposes that they would never anticipate. This
is mainly due to the current business model of many LBSs. In the case of free

3For a more complete assessment on the positive impact of interdisciplinary research,
please refer to M Nissani, “Ten Cheers for Interdisciplinarity: The Case for Interdisciplinary
Knowledge and Research” (1997) 34 The Social Science Journal 201-216.

4H Nissenbaum Privacy in Context: Technology, Policy, and the Integrity of Social Life
(Stanford University Press, 2009); H Nissenbaum, “Respecting Context to Protect Privacy:
Why Meaning Matters” (2015) Science and Engineering Ethics 1–22.

5P Golle and K Partridge, “On the Anonymity of Home/Work Location Pairs” (2009)
Pervasive Computing 390-397.

6M Gasson et al., “Normality Mining: Privacy Implications of Behavioral Profiles Drawn
from GPS Enabled Mobile Phones” (2011) 41 IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Review 251-261.
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services, service providers finance their service by either adding third party
advertisers to their applications or by selling user data to data brokers.7 Note
that LBSs thus collect location data that is not necessary to deliver their
service.8

This work is, to the best of our knowledge, the first that tackles the protection
of location data from an engineering, ethical and legal perspective. From an
interdisciplinary perspective, our article has four main contributions: first, the
technical detail from an engineering perspective provides a substantive added
value in connection with the ethical as well as the legal discipline. Second,
our article serves as a reference for scholars of the involved disciplines to learn
how the issue is addressed in the other two disciplines. Third, we identify a
special relation between the ethical and the legal discipline, i.e. the connection
between the concept of contextual integrity and purpose limitation. Fourth,
our article serves as a case study on how to do interdisciplinary investigations
of a data privacy matter. Additional to these interdisciplinary contributions,
our work also provides valuable contributions to the CI heuristic and to the
connection between the CI heuristic and data protection law. We show how
the CI heuristic can be applied in a way that sensitises readers (and users) to
what is at stake, and clarifies what the heuristic adds to the commonly stated
opinion that location data can be sensitive data. Finally, our article discusses
the legal concept of purpose limitation with respect to location data and argues
its added value compared to contextual integrity.

Many of the terms used in this work have a precise meaning within one discipline,
while evoking less precise connotations within the “other” discipline. For
instance, in legal terms sensitive data refers to a specific category of data,
summed up in art. 8 of the Data Protection Directive (DPD) and in art. 9
of the General Data Protection Regulation that will replace the DPR from
May 2018.9 This concerns personal data revealing e.g. ethnic or racial origin,

7C Timberg, “Brokers use ‘billions’ of data points to profile Americans” (2014)
available at http://www.washingtonpost.com/business/technology/brokers-use-
billions-of-data-points-to-profile-americans/2014/05/27/b4207b96-e5b2-11e3-
a86b-362fd5443d19_story.html (accessed 7 July 2016). Under EU law this would probably
be prohibited, though admittedly enforcement is lacking. For more information on the
practice of data brokers: Federal Trade Commission, “A Call for Transparency and
Accountability” available at http://www.ftc.gov/system/files/documents/reports/data-
brokers-call-transparency-accountability-report-federal-trade-commission-may-
2014/140527databrokerreport.pdf (accessed 7 July 2016).

8Under EU law this is prohibited ex art. 6 DPD, unless the data are processed for a
compatible purpose and a valid legal ground is applicable. Under US law such general
restrictions do not apply, therefore US companies are less concerned about re-use of personal
data.

9Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995
on the protection of individuals with regard to the processing of personal data and on the
free movement of such data [1995] OJ L281/31 (Data Protection Directive (DPD)), and

http://www.washingtonpost.com/business/technology/brokers-use-billions-of-data-points-to-profile-americans/2014/05/27/b4207b96-e5b2-11e3-a86b-362fd5443d19_story.html
http://www.washingtonpost.com/business/technology/brokers-use-billions-of-data-points-to-profile-americans/2014/05/27/b4207b96-e5b2-11e3-a86b-362fd5443d19_story.html
http://www.washingtonpost.com/business/technology/brokers-use-billions-of-data-points-to-profile-americans/2014/05/27/b4207b96-e5b2-11e3-a86b-362fd5443d19_story.html
http://www.ftc.gov/system/files/documents/reports/data-brokers-call-transparency-accountability-report-federal-trade-commission-may-2014/140527databrokerreport.pdf
http://www.ftc.gov/system/files/documents/reports/data-brokers-call-transparency-accountability-report-federal-trade-commission-may-2014/140527databrokerreport.pdf
http://www.ftc.gov/system/files/documents/reports/data-brokers-call-transparency-accountability-report-federal-trade-commission-may-2014/140527databrokerreport.pdf
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political belief. Being qualified as such has legal effect, since the processing
of such data is by default prohibited. Location data is not sensitive data in
this sense, though individuals may perceive their location to reveal sensitive
information in a more general sense, and when correlated with other data
location data may indeed result in data that is ‘sensitive’ in the sense of EU
data protection law. Since this article is co-authored by computer engineers
and lawyers, we refer to sensitive data in the general sense of the term and will
specify when we use the term in the legal sense. Other examples of potential
misunderstandings may arise, for instance, when engineers speak of “users”,
“clients”, and “service providers”, whereas lawyers speak of “citi“data subjects”
and “data controllers. This is important because legal terms have legal effect
and must therefore be used with precision. By specifying the legal meaning
whenever relevant, we thus o contribute to the necessary dialogue between both
disciplines on the challenges and solutions regarding the proliferation of location
data.

2 Location-based Services

2.1 Overview

With LBSs, we commonly refer to services that take the user’s current or past
location as input to provide a service. Enabled by the mass usage of mobile
devices with positioning capacities, LBSs have become very popular over the last
decade.10 Today, there is a wide variety of LBSs. Google Maps is arguably the
most popular and most commonly used LBS. It allows users to get directions to
almost any possible place and thus became a companion on most smartphones.
Other highly popular LBSs are services such as geo-social networks (GSNs),
where users share information about their current whereabouts in the form
of a check-in and as a way to maintain their social network. Foursquare, one
of the best-known GSNs, allows users to check into venues, leave comments,
share their activity with their friends, and obtain rewards for their system
usage. Although they also have a strong focus on social interaction, applications
such as Highlight are different from applications such as Foursquare since their

Regulation 2016/679 of the European Parliament and of the Council of 27 April 2016 on
the protection of natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation (GDPR)). Art. 99.2 GDPR stipulates that it will apply in the Member States of
the EU from 18th May 2018.

1049% of all users possessing a smart phone use LBS according to M Duggan, “Cell Phone
Activities 2013” available at http://pewinternet.org/Reports/2013/Cell-Activities.aspx
(accessed 8 July 2016)

http://pewinternet.org/Reports/2013/Cell-Activities.aspx
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focus is rather on displaying publicly available information on people in close
proximity.11 Other examples of LBSs include applications for directions in a
city’s public transport12 and even Twitter, which has a functionality for adding
location tags to one’s tweets.

2.2 The Business Model of Location-based Services

Many LBSs are free to use13 and although user data monetisation is not
necessarily limited to free applications, such applications aim to monetise the
information their providers gain about the users. This can be either information
the users intentionally or unintentionally share while engaging with the LBS,
or data the LBS learns by observing the user’s activities. More importantly,
monetisation may depend on inferences drawn from the data, possibly combined
with data from other sources (Facebook, for instance, has contracts with large
data brokers).14

2.3 Involved Parties

In the technical literature, a so-called “adversary” is everyone that may observe
the user’s location data. In the following, as a preparation for applying the
CI heuristic, we elaborate on the most common entities that may observe user
location data. With user we refer to the human engaging with an LBS by means
of a mobile device (MD). The mobile device may be any piece of hardware
manufactured by a hardware manufacturer (HM), such as a smart phone or
tablet computer, which is able to determine its current location. On the software
side, the mobile device may run software developed by multiple parties. The
operating system (OS) is the software that is loaded on the mobile device when
powered on. The operating system manufacturer (OSM) may be different from
the HM of the mobile device. However, the HM may have modified the operating
system in order to run its own services on the MD. Usually, the OS allows
the user to download and install mobile applications (MA), which have been
developed by a mobile application developer (MAD). The MA usually consists
of the program written by the MAD - the core-application - but may also

11Other such services are for example: Sonar, Banjo and Kismet.
12Examples include OBB Scotty, Visit Paris by Metro, Tube Map London Underground.
13Exceptions are for example: C2G (carpooling), Caches (Geo-Caching), MeetupGroup

(group meeting).
14K Hill, “Facebook Joins Forces With Data Brokers To Gather More Intel About Users For

Ads” available at http://www.forbes.com/sites/kashmirhill/2013/02/27/facebook-joins-
forces-with-data-brokers-to-gather-more-intel-about-users-for-ads/ (accessed 8
July 2016).

http://www.forbes.com/sites/kashmirhill/2013/02/27/facebook-joins-forces-with-data-brokers-to-gather-more-intel-about-users-for-ads/
http://www.forbes.com/sites/kashmirhill/2013/02/27/facebook-joins-forces-with-data-brokers-to-gather-more-intel-about-users-for-ads/
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include third party software (TPS) written by a third party software developer
(TPSD). To summarise, a user’s mobile device may run software provided by
the following parties: the HM, OSM, MAD and TPSD. Along with common
terminology, we use the term LBS to refer to the combined software of the MAD
and the TPSD, and use the terms core-application and TPS only if we need to
refer to this separately. The data that is sent and received by a mobile device
is usually transferred by one or several network operators (NO). Depending
on how the MA or TPS is implemented, the NO has access to the user’s data
in encrypted or unencrypted form. Finally, Government entities (Gv), such
as law enforcement agencies, tax authorities or intelligence agencies, may be
able to obtain access to the user’s data by means of warrants that allow for
eavesdropping or hacking.15

3 Introducing the Contextual Integrity (CI) Heuris-
tic

Contextual integrity (CI) is a concept introduced by Helen Nissenbaum to better
understand what is at stake with privacy and to uncover the issues that can arise
when sharing data. In her book, Privacy in Context,16 Nissenbaum introduces
the CI decision heuristic as a tool to determine whether a new socio-technical
practice violates informational norms and thereby infringes privacy. The CI
heuristic considers the interplay between context, roles, actors, attributes,
values, informational norms, and transmission principles. The key idea of this
framework is that information flows between people, and between people and
other entities, occur in a specific context, taking note that this context implies
specific informational norms and transmission principles. Such norms and
principles may, for instance, determine how the exchanged information can be
further disseminated. Specifically, user privacy is breached if information is
shared in disregard for a transmission principle implied in the context where the
information was first shared. For example, in the context of professional advice,
where a client might share information with her lawyer, one of the transmission
principles will be that the information is confidential. If the lawyer shares
this information with the client’s colleagues, the contextual integrity would be
violated, because the transmission principle under which the information was
first exchanged does not foresee a further information flow from the lawyer to
such others.

15A Landau “Making sense from Snowden: What’s significant in the NSA surveillance
revelations” (2013) 4 IEEE Security & Privacy 54-63.

16H Nissenbaum Privacy in Context: Technology, Policy, and the Integrity of Social Life
(Palo Alto: Stanford University Press, 2009).
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Table 1: Summary of the parties involved

Entity Acronym Description

Mobile Device MD Smart phone or tablet computer
with positioning capabilities

Hardware Manufacturer HM Company that manufactures MDs
such as Samsung or Apple

Operating System OS Software which enables the
usage of the hardware by MAs

Operating System Manufacturer OSM Company that developed the OS

Mobile Application MA Software that runs on top of
the OS

Mobile Application Developer MAD Company that developed the MA
core-application Software developed by the MAD

Third-Party Software TPS Any additional software that
is integrated with the MA

Third-Party Software Developer TPSD Company that developed the TPS

Location-based Service LBS
Service that utilizes the geo
location of users consisting
of core-application and TPS.

Location-based Service Provider LBSP Legal and technical entity
running the LBS

Network Operator NO Company that runs the physical
communication infrastructure

Government GV

Any governmental institution
with legal right to access
companies databases or
communication infrastructure
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The framework of contextual integrity refines the predictability of informational
flows and privacy expectations; it is not so much the average or the “general”
behaviour of people that will create these expectations, but rather the normative
framework that shapes what is considered as “reasonably expectable”. CI
is not about the regularity of behaviour but about legitimate expectations.
The importance attached to existing informational norms and transmission
principles may be qualified as conservative. However, the point of CI is not
that informational norms should not change, but that such change should be
determined by those sharing a context and not imposed by socio-technical
innovations. So, even if the CI heuristic can be qualified as conservative in
some respects, it acknowledges that rapid technological developments may
have advantages for society that justify change. This entails that emerging
socio-technical practices may allow for new informational norms that challenge
and reconfigure contextual integrity. However, not anything goes, and such
reconfiguration requires careful deliberation. Based on this, those concerned
may come to the conclusion that these new informational norms actually benefit
society. This, however, necessitates appropriate safeguards to prevent, reduce
and/or compensate the potential harm for those that suffer the consequences of
newly distributed information flows.

The CI heuristic includes nine steps that we briefly outline in the following:

1. Describe the new socio-technical practice in terms of information flows.

2. Identify the prevailing context of the new practice.

3. Add general information about the sender, receiver and referent that are
part of the practice.

4. Identify the transmission principles of the prevailing context.

5. Identify applicable entrenched informational norms.

6. Conduct a prima facie assessment on whether contextual integrity is
breached by analysing the results of the previous steps and by observing
whether entrenched norms have been violated.

7. Investigate what harms or threats to autonomy, freedom, power structures,
justice, fairness, equality, social hierarchy and democracy are implicated
by the new socio-technical practices.

8. Analyse how the practices directly impinge on values, goals, and ends of
the identified context.

9. Conclude the CI heuristic and analyse whether the violation of entrenched
norms is justified by the benefits of the new practice for the society,
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considering the fact that harms and benefits may be distributed in ways
that disadvantage parties that are already disadvantaged.

4 Applying the CI Heuristic

4.1 Choosing a Context: Gateway or Vanishing Point

In the following, we employ Nissenbaum’s contextual integrity (CI) heuristic
for the socio-technical practice of LBSs. A key challenge is the identification of
the prevailing context, required in step 2. In a sense the choice of the relevant
context is the gateway as well as the vanishing point of the entire exercise. The
idea behind contextual integrity is that privacy cannot be determined in general,
but depends on the context. In her book, Nissenbaum discusses a series of
specific contexts, which enable an investigation of relevant information flows in
a great level of detail and a concrete evaluation of specified scenarios.

The usage of MDs and MAs has become ubiquitous in our daily life and therefore
users engage with LBSs in many different situations. Each situation involves
various contexts, e.g. checking into a favourite café during a work break (leisure,
work); getting directions during weekend trips (holidays, leisure); searching for
a restaurant while being in an unfamiliar city during a business trip (business,
leisure). Instead of discussing all the possible contexts, we identify the context
of travel as the prevailing context of people engaging with LBSs. Since “travel”
can be subdivided into business (or other work-related) travel, leisure travel
(holiday) and migration (including illegal immigration), we will focus on business
and leisure, as migraation entails a very different set of informational norms
and transmission principles.

Our analysis can be seen as a case study that should sensitise readers (and
users) to the privacy risks of LBSs, showing what the heuristic adds to general
statements that qualify location data as sensitive data.

4.2 Socio-technical Practice in Terms of Information Flow

The first step of the CI heuristic requires us to explain how a new socio-
technical practice impacts information flows by either changing existing ones or
by generating new ones. We will analyse the information flows of LBSs under
the third step, when discussing the participants that exchange information.
Here we discuss information flows in terms of three types of personal data, as
described by the World Economy Forum (WEF): as volunteered, observed or
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inferred data. Volunteered data is data that an individual deliberately shares
and transmits over a communication network, for example postings, credit card
details or photographs. In the process of sharing volunteered data, additional
data are captured by service providers and third parties, often without the
user being aware of that collection, even if she has provided consent for this by,
for example, agreeing to the terms of service. This additional data is referred
to as observed data. Observed data often consists of behavioural data, such
as clickstream or location data. Finally, inferred data is the output of data
analysis, which can be based on either volunteered or observed data or both.

For a proper understanding of inferred data, we refer to Hildebrandt, who
introduces the notion of Big Data Space (BDS) to explain the complexity of the
influences of inferred data, due to the fact that “[. . . ] databases are fused or
matched, while the knowledge that is inferred can be stored, sold and re-used
in other databases”.17 When third parties that the user is unaware of observe
volunteered data, that volunteered data may also be considered as observed
data as will behavioural data, which may be similarly observed by parties the
user is not at all aware of. We therefore emphasise that a crucial aspect of the
concept of inferred data is that it is difficult, if not impossible, to foresee how
volunteered and observed data are used to create inferred data. In line with
that, we note that data that is observed while a person is using the LBS may
be combined with data from other sources, for example, with data revealed
in one of her online social network profiles or data stored with data brokers.
Indeed, inferred information usually serves to learn more details about a user.
This may be for the purpose of personalisation or advertising and we thus argue
that inferred information typically includes interests, habits and, for instance,
income level or health risks of an individual person, based on how her behaviour
matches inferred profiles mined from Big Data Space.

4.3 Identifying Prevailing Context

We observe that the context of travel is naturally related to the usage of
LBSs, because traveling includes a person’s journey, stay and departure from
certain locations, which may be known, anticipated or inferred by other people,
companies, governments and computing systems. Furthermore, choosing the
context of travel nicely illustrates the fact that users employ LBSs while being
busy with all kinds of activities, which implies that they are probably engaged
in different contexts at the same time. For example, a check-in during a business

17M Hildebrandt, “Location Data, Purpose Binding and Contextual Integrity: What’s the
Message?” (2014) in L Floridi (ed) Protection of Information and the Right to Privacy-A
New Equilibrium? Law, Governance and Technology Series, vol. 17, (Springer; Dordrecht)
31-62, at 35.



APPLYING THE CI HEURISTIC 107

meeting is part of a business context, but the check-in is also definitely an action
that is engaged in the user’s travel context, as a person must travel to reach
the location of the meeting.

In the Western world, people tend to take freedom of movement within and
between countries for granted. EU citizens, for instance, probably assume that
one does not require permission for moving from one place to another within
the EU, and expect that no questions will be asked when doing so. Similarly,
they may think that they have a right to travel unmonitored from surveillance.
This shows what Western people expect in terms of informational norms and
transmission principles. Arguably, specific forms of transport, such as traveling
by air, are monitored more closely than other types of transport. This is related
to the potential for terrorist attacks or illegal immigration. Within the EU, the
expectations around freedom of movement are tested in times of terrorist suicide
attacks and mass immigration following the crisis in the Middle East. Although
we focus on the subcontext of leisure (and business travel), informational norms
and transmission principles, in the context of such travel, will be challenged by
threats to public security. This implies that the context of public security may
overlap with that of travel, which highlights that the choice of the prevailing
context has major implications for the outcome of the heuristic. In section 5 we
will return to this point.

4.4 Identifying Sender, Receiver and Referent

We consider two cases for the identification of the sender, receiver and referent
of information flows in LBSs. The first case illustrates the sender, receiver
and referent from the perspective of a normal user, whereas the second case
illustrates what is going on “behind the scenes”. The key difference is that in
the first case, the Location-based Service Provider (LBSP) is seen as a data
processor that operates to serve the user, whereas in the second case, the LBSP,
along with other entities, turns out to be a data controller that is processing
the data for their own benefit.

Figure 1 shows the functionality of an LBS from the normal user’s perspective.
First, user A sends a request to the LBS, revealing information that is necessary
to obtain the service and additional implicit information. For LBSs such as
Google Maps, the LBSP replies to the request, while storing and analysing the
received (and observed) data “to further improve its service”. For LBSs such as
Foursquare or Highlight, the LBSP may additionally send location data of user
A to other users of the LBS. In such a case, the user typically defines the set of
intended receivers.
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Figure 1: LBSP from a normal user’s perspective (user is data controller).

Figure 2 illustrates the more comprehensive setting of how location data is
disseminated in LBSs. There are two major differences to the previous case:
First, we now understand that, besides the LBSP, all other entities that run
software on the MD, such as the TPSD or the OSM, may access the user’s
location data.18 Second, we note that location data is not only transmitted
when the user actively uses the LBS, such as during a Foursquare check-in, but
may also be accessed while the LBS is running in the background. In the latter
case as the information flow is not intentionally sent by the user, the receiving
party can be seen as the sender (it actually sends the information from the
sender’s device or application to itself).

While there is enough evidence that sensitive data is transmitted from smart
devices to remote destinations,19 there is little knowledge on how the different
entities depicted in Figure 2 utilise the user’s location data. The LBSP, TPSD,
OSM and HM may use the data (possibly (pseudo)anonymised) to optimise and
personalise their services, to combine it with other data from their services,20

or to sell the data to other third parties such as data brokers or advertising
networks. Data brokers collect, aggregate and infer information from big data,

18T Book, Theodore, Adam Pridgen, and Dan S. Wallach. “Longitudinal analysis of android
ad library permissions.” arXiv preprint arXiv:1303.0857 (2013).

19X Wei et al, “ProfileDroid: Multi-Layer Profiling of Android Applications” (2012)
Proceedings of the 18th Annual International Conference on Mobile Computing and
Networking.

20From a legal perspective any such processing requires of a legal ground and a specific,
explicit and legitimate purpose that restricts the use of personal data. However, before
discussing the legal constraints, we check what is technically possible and feasible in view of
current business models.



APPLYING THE CI HEURISTIC 109

Figure 2: Overview of entities potentially learning a user’s location data (user
is not data controller).

while online advertising networks monetise users’ behavioural data via targeted
advertisements21. Two further entities may receive location data of users
engaging with LBSs. First, the network provider (NP) since it is the provider
of the communication infrastructure. Secondly, the government (Gv) since it
may gain access to the data via traffic eavesdropping,22 or by obtaining access
to the LBSP’s databases through the application of a warrant, or by hacking,
or even simply by using the service themselves.23

Finally, Figure 3 illustrates that there is an actual information flow back to the
user. This may be in the form of online advertisements or service personalisation
that are based on the profile that has been created about the user. Location
data is one of the few cases where we have evidence that it is being used for

21L Olejnik et al, “Selling off Privacy at Auction” (2014) Network & Distributed System
Symposium 1-15

22M Lee, “Secret ‘BADASS’ Intelligence Program Spied on Smartphones” available at https:
//theintercept.com/2015/01/26/secret-badass-spy-program/ (accessed 8 July 2016)

23C Paton, “Grindr urges LGBT community to hide their identities as Egypt
persecutes nation’s gay community” available at http://www.independent.co.uk/news/
world/africa/grindr-urges-lgbt-community-to-hide-their-identities-as-egypt-
persecutes-nations-gay-community-9757652.html (accessed 8 July 2016). Note that in
most jurisdictions warrants are required for remote access to computing systems.

https://theintercept.com/2015/01/26/secret-badass-spy-program/
https://theintercept.com/2015/01/26/secret-badass-spy-program/
http://www.independent.co.uk/news/world/africa/grindr-urges-lgbt-community-to-hide-their-identities-as-egypt-persecutes-nations-gay-community-9757652.html
http://www.independent.co.uk/news/world/africa/grindr-urges-lgbt-community-to-hide-their-identities-as-egypt-persecutes-nations-gay-community-9757652.html
http://www.independent.co.uk/news/world/africa/grindr-urges-lgbt-community-to-hide-their-identities-as-egypt-persecutes-nations-gay-community-9757652.html
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Figure 3: Information flow back to the user in form of personalization.

the creation of such a user profile.24 But these profiles do not necessarily imply
an information flow back to the user as they may also be used to exclude an
individual from a service, premium, from employment, education or simply from
access to a building or compound. Similarly, police intelligence increasingly
employs location data for crime mapping, thus targeting individuals based on
their location at so-called “hot spots”.

4.5 Identifying Principles of Transmission

Although there are many reasons for people to travel, most types of offline
travel activities - i.e. travel without using online LBSs - include the following
information flows: a company, such as a railway company or hotel, sells tickets or
rents accommodation that indicate the traveller’s current, past or future location
at certain times. Due to space constraints, we elaborate on the transmission
principle in relation to the examples of a train company and a hotel but note that
our reasoning can be applied to many other scenarios, such as any kind of travel
activity that requires a reservation. Activities that require no reservation, like
buying museum tickets with cash, may entail fewer or less extensive information
flows in an offline scenario.

A leisure trip usually includes booking a means of transportation, booking hotels
and telling family or friends about the trip. For the means of transportation,
let us consider the example of a train ride. The information exchanged with
the train company depends on the way the ticket was purchased. In the most

24Joseph Turow et al, “Americans Reject Tailored Advertising and three Activities that
Enable it.” (2009) SSRN 1478214.



APPLYING THE CI HEURISTIC 111

anonymous case, the ticket is purchased at a counter or machine and paid
with cash. In this case no information is exchanged but that an unidentified
passenger intends to travel a certain route. If, however, a credit card is used,
then more information is included in the sale, allowing the train company to
link travels booked with the same credit card.25 Furthermore, the credit card
company will record the location of the user along with the purchased product.
While the credit card company may have legitimate reasons for collecting this
information, such as fraud detection, we note that this practice may not be
part of users’ legitimate expectations and would justify a CI analysis of its own.
Finally, if the purchase was completed using some other account information,
such as through a membership in a bonus program or via an online account,
the information flow between the traveller and a railway company will include
additional details on the traveller such as age, billing address and details of the
journey such as time/place of departure/arrival. Regardless of how the booking
was completed, the flow of information is governed under several transmission
principles: reciprocity and consent as the information is necessary for the
monetary exchange for a service; necessity, accuracy and completeness of data
because without the correct information, the railway company is not able to
issue the correct train ticket; purpose binding because the user has a reasonable
expectation that the railway company will only use this information for selling
the ticket; and confidentiality because the traveller expects to keep records
about her journeys private.

The information a traveller needs to reveal to the hotel is governed by the same
transmission principles. With respect to the traveller’s family and friends, a
traveller may inform them with various details about her journey. The involved
transmission principles are reciprocity since it is common that friends and
colleagues inform each other of their travel plans; or confidentiality when it is
clear that the traveller does not want a friend to pass on information about her
travel plans. We note that anyone with information on someone’s travel could
infer more or less accurate real-time whereabouts of this person. For instance, a
person knowing that someone stays in a hotel for a certain period is able to infer
that this person is likely to be in the hotel during night. A similar argument
can be made based on knowing that someone takes a train at a specific time.

25EU data protection law may prohibit this, but the technology does allow for such linking
of different data. Due to the opacity of actual data flows, caused by complexity as well as
trade secrets or IP rights, it is difficult to establish which data are actually linked. Precisely
for that reason it is pertinent to take into account what is technically feasible. When
composing legislation that prohibits such behaviour it seems wise to focus on preventing that
such exchanges are feasible (technical and economic disincentives), e.g. by imposing data
protection by default coupled with adequate enforcement mechanisms (administrative fines
and tort liability). This is precisely what the upcoming GDPR does (art. 23 GDPR imposes
a legal obligation to develop data protection by default and design; art. 83.6 determines that
fines of up to 4% of global turnover can be imposed by the supervisory authority).
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In an offline context, however, such inferences are always based on guesses and
have a limited accuracy.

We note that – especially in data-driven scenario’s - the outlined primary
information flows may result in subsequent information flows directed to tax
authorities (for fraud detection), justice and police (for criminal investigations)
and intelligence services (for the prevention of threats to national security or the
gathering of intelligence information). In this section we focus on the primary
information flows, generated in a commercial context. We also note that in
the subcontexts of work-related travel and immigration extra information flows
may occur, as employers or immigration services may either tap into existing
information flows or establish their own infrastructure to keep check of the
location of their employees or potentially illegal immigrants.

4.6 Locating Applicable Entrenched Informational Norms and
Points of Departure

As in the case of our reasoning about transmission principles, we argue that the
entrenched informational norms and points of departure are similar for most
types of leisure travel, though it should be clear that in the sub-contexts of
work-related travel and immigration other informational norms will be at stake.
In the following we distinguish between two cases of information collected in
offline traveling activities. First, we address the expectations of how a service
provider will use the location data. Second, we examine the circumstances under
which a company is allowed to share information on the traveller’s location with
other entities.

A train traveller or hotel guest can expect that the information she provided
to the railway or the hotel is in some sense used for an internal review of their
business processes. The traveller or hotel guest should not expect an unknown
business model based on the monetisation of her location data. For example,
every company needs to aggregate basic statistics about its customers, but a
railway company sending advertisements to their customers that include detailed
information about the travel behaviour of a particular customer would not be
in line with entrenched informational norms. A judgment on whether these
norms are violated if the customer data is transferred to another organisation
depends, amongst others, on the type of organisation. For example, selling
customer information to a data broker can be problematic even if they are
pseudonymised, because this implies that data brokers learn about the traveling
behaviour of people with whom they never had any business. However, access to
customer data based on a legal obligation, such as tax law, may be acceptable
to the extent that tax authorities must be capable of inspecting a company’s



APPLYING THE CI HEURISTIC 113

accounting system. Further problems arise if law enforcement, immigration
services and intelligence services gain unrestricted or mostly invisible access to
these types of data. Several years ago, the Dutch navigator TomTom found
its reputation damaged when users found out that their aggregated data were
used to predict traffic violations at certain road tracks.26 Such examples clarify
that in a travel context, people do not expect their location data (and what can
be inferred from them) to end up with third parties whose access they cannot
foresee. Some would claim that even if they would – cynically – expect this, it
would still violate their reasonable expectation of privacy concerning this travel
data.

4.7 Prima Facie Assessment

The purpose of the prima facie assessment is to determine whether there are
red flags attached to changes or violations of entrenched informational norms
due to a new socio-technical practice or if an entirely new information flow
is being created. It is easy to see that both are the case. LBSs change the
described information flows, because they generate, store and mine not merely
volunteered data (as was always the case) but also massive flows of behavioural
data that were simply non-existent before the massive employment of web
services. Buying a train ticket hardly gave the train company any insight on
the buyer’s location, besides perhaps the location of the purchase. Offering
the purchase of tickets via an app, however, may allow the train company to
constantly track the user.27 Entirely new information flows are being generated
since numerous companies, such as LBSP, TPSD, OSM, HM and third parties,
potentially gain direct access to a traveller’s location data whenever she is using
LBSs.

4.8 Evaluation I

In the first part of the evaluation, we assess how the new socio-technical practice
generates threats to autonomy, potential harms, how it affects the existence
of freedom, power structures, justice, fairness, equality, social hierarchy, and
democracy.

26A Preuschat and H Luttikhedde, “TomTom to Bar Police Data Use” available at http:
//www.wsj.com/articles/SB10001424052748703922804576300390277973646 (accessed 8 July
2016).

27JP Achara et al, “Detecting Privacy Leaks in the RATP App: How we Proceeded and
what we Found” (2014) 10 Journal of Computer Virology and Hacking Techniques 229-238.

http://www.wsj.com/articles/SB10001424052748703922804576300390277973646
http://www.wsj.com/articles/SB10001424052748703922804576300390277973646
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As we have laid out in Section 2.3 and Section 4.4, various entities may gain
access to accurate location data. This may be either because the user herself
transmits location data (volunteered data) or because some software, running
on the user’s MD, is covertly transmitting location data to second or third
parties (observed data, whether with or without consent, whether legal or
illegal). From a privacy perspective this is highly problematic, because the
collection and analysis of accurate location information allows for the inference
of highly sensitive information about an individual. Users of LBSs may be
confronted with these inferences either immediately or in the future, where the
‘future’ could be minutes, days, weeks and even up to years and decades ahead
since location data, once available, may persist in Big Data Space.28

The power structure and fairness in the market is threatened, because the user
may be disadvantaged when negotiating with a company that has access to
her location data. For example, an LBS user may find herself in a situation
where she has to pay a higher health insurance premium or is even rejected for
insurance. If an LBSP, or any TPSD whose software is embedded in the LBS,
tracks the user’s whereabouts it may sell this location data to a data broker
specialised in health risk assessment. The analysis of this data broker may be
based on the user being relatively more often in health related facilities, which
may result in assigning this user a higher health risk. An insurance company
that consults the data broker may then decide that it either increases premiums
or refuses insurance all together. Note that in this scenario the user would have
no idea how the insurance company reached its decision, nor would she be able
to correct false predictions29 about her health. One could think of numerous
other examples of how the user would be disadvantaged when negotiating with
an entity that knows her whereabouts. The traveller’s autonomy is at stake,
because she is unable to inspect and correct the inferences made in the BDS.
This may have severe consequences, including unwarranted or even prohibited
discrimination.

There are further implications in recent revelations which have shown that
intelligence agencies have a strong interest in location data to enhance their
surveillance systems.30. While one can only speculate on how this data is being

28On the threats that emerge in the combination of location and other types of tracking see
e.g. JH Ziegeldorf et al, “Privacy in the Internet of Things: Threats and Challenges” (2014) 7
Security and Communication Networks 2728–42.

29Inferences made by behavioural advertisers have shown to be wrong: R Ashwini et al,
“What do They Know About me? Contents and Concerns of Online Behavioral Profiles”
(2015) arXiv preprint arXiv:1506.01675.

30B Gellman and A Soltani, “NSA Tracking Cellphone Locations Worldwide, Snowden
Documents Show” available at http://www.washingtonpost.com/world/national-security/
nsa-tracking-cellphone-locations-worldwide-snowden-documents-show/2013/12/
04/5492873a-5cf2-11e3-bc56-c6ca94801fac_story.html and J Ball, “Angry Birds
and ’Leaky’ Phone Apps Targeted by NSA and GCHQ for User Data” available at

http://www.washingtonpost.com/world/national-security/nsa-tracking-cellphone-locations-worldwide-snowden-documents-show/2013/12/04/5492873a-5cf2-11e3-bc56-c6ca94801fac_story.html
http://www.washingtonpost.com/world/national-security/nsa-tracking-cellphone-locations-worldwide-snowden-documents-show/2013/12/04/5492873a-5cf2-11e3-bc56-c6ca94801fac_story.html
http://www.washingtonpost.com/world/national-security/nsa-tracking-cellphone-locations-worldwide-snowden-documents-show/2013/12/04/5492873a-5cf2-11e3-bc56-c6ca94801fac_story.html
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used, the very existence of such programs threatens society in several ways. A
government with access to location data of a large majority of the population is
able to determine which people have contacts with refugees or protesters and
could thus effectively prohibit or even preempt demonstrations or free speech.31

These threats to democracy and justice are also simultaneously threats to
freedom and equality since authoritarian states may imprison or discriminate
people based on their location data (mobility) and the inferences drawn from
them. Finally, the US government uses location data to coordinate drone strikes
to kill people qualified as enemy combatants without due process and with
disastrous results for those standing around (qualified as collateral damage).
Though this concerns issues of extraterritorial jurisdiction and international
relations, which fall outside the scope of this article, we note that it has a major
impact on attempts to establish democracy and the rule of law at the global
level.

4.9 Evaluation II

In the second part of the evaluation, we elaborate on how the socio-technical
practice of LBS directly impinge on the values, goals, and ends of the context of
travel. This particular context is highly relevant for the freedom of movement,
and for the fundamental right to be left alone, which entails that by default, it
is no one’s business where a person travels. However, the usage of MDs and
LBSs enables the collection of accurate location data that provides evidence
on where a traveller went, for how long and how often. Therefore, the freedom
and anonymity of traveling no longer exists as they did, because unforeseeable
commercial enterprises as well as governmental agencies may gain access to
this information, aggregate it and make it machine searchable. Furthermore,
whereas our journeys usually had no impact on other contexts of our life such
as business or healthcare, due to the business model of LBSs and increasing
governmental surveillance activities, inferences made from location data may
reach parties outside the context of travel, with unforeseeable consequences in
other contexts, such as employment, insurance and law enforcement.

http://www.theguardian.com/world/2014/jan/27/nsa-gchq-smartphone-app-angry-birds-
personal-data (both accessed 8 July 2016)

31On the use of location data by government agencies see e.g. SJ Nouwt et al “Power and
Privacy: the Use of LBS in Dutch Public Administration” in B Van Loenen, JWJ Besemer
and JA Zevenberger (eds) SDI Converngence. Research, Emerging Trends, and Critical
Assessment (Optima Rotterdam; Graphic Communication 2009) 75–87.

http://www.theguardian.com/world/2014/jan/27/nsa-gchq-smartphone-app-angry-birds-personal-data
http://www.theguardian.com/world/2014/jan/27/nsa-gchq-smartphone-app-angry-birds-personal-data
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4.10 Conclusion

Our evaluation shows that the new socio-technical practice of LBSs comes with
significant threats for their users. Organisations may gain access to accurate
location information, which enables them to infer sensitive information. These
inferences may be used for unknown purposes, and transferred or sold by other,
unforeseeable organisations. This may lead to an individual being disadvantaged
due to the knowledge these organisations have about her. Even worse, people
have no practical means to realise or escape this situation since the collection,
transfer and processing of their location data is entirely opaque. Furthermore,
individuals are mostly unaware of and unable to correct false inferences, as well
as unable to object to unfair targeting. Finally, as we have argued, the new
socio-technical practice introduces threats not only to individuals, but also to
society at large.

We acknowledge that LBSs are undoubtedly useful and may enhance our daily
lives. Solutions like PocketFinder may help to prevent harm and danger to
children and elderly. Location data may serve to identify credit card fraud or to
find stolen vehicles. If the collection of location data happens in a transparent
way with obvious ways for an individual to opt-out and to control inferences
being made from her location data, we would accept that the new informational
norms may be beneficial and should be embraced. However, the hidden collection
of location data by numerous entities capable of using this data in unforeseeable
ways is not justifiable and clearly violates the integrity of the context of leisure
travel. As this implies a violation of the reasonable expectation that people
have concerning their privacy, this should be considered an unjustified breach
of privacy.

5 The Complexities of Intertwined Contexts

LBSs are ubiquitous in their nature and becoming increasingly omnipresent.
As we have seen above, a crucial step in Nissenbaum’s decision heuristic is
defining the prevailing context. This raises the question of what counts as
a context and how one can identify the prevailing context. A context can
be seen as an overarching social institution, an architecture that attributes
roles and mutual expectations, which guide the interactions between people.
Institutions – in the sociological sense of the term – determine how behaviours
are “read” and which actions are deemed appropriate. A context in this sense
entails the institutional environment that hosts more specific institutions, such
as for instance marriage, church, school or corporate enterprise, that are part
of, respectively, the contexts of family life, religion, education or economics.
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Depending on the context, different informational norms and transmission
principles will apply and prescribe the appropriateness of the information
flows. As indicated in the previous section, this entails that the choice of the
prevailing context is both the gateway and the vanishing point of the CI decision
heuristic.32

The assessment of contextual integrity and its violation becomes complex when
the assessor has to deal with two or more (sub)contexts. Multi-layered and
overlapping contexts make it rather difficult to pinpoint only one “right” context
as the prevailing one. Not only will a service rendered to the subject trigger
sharing of location data, but, as we have seen above, location data is shared on
many levels simultaneously and subsequently. Such sharing may involve various
contexts, for instance, a commercial context (behavioural advertising based on
shared location data captured by the LBS), a health context (LBS activated
when traveling to a hospital) or a work-related context (LBS activated when
commuting or travelling for one’s professional occupation). This renders the
analysis of an isolated information flow inadequate as a criterion to decide on
the prevailing context. Therefore, we have opted for the travel context, which
is at stake in each of the scenarios where LBSs are employed.

Even so, one could argue that in each of the scenarios the overarching context is
that of economics, which would imply competing prevailing contexts. With an
eye to advancing “the state of privacy”, Nissenbaum has revisited her theory to
defend it against misconceptions by policy makers. Recalling her definition of
context as a social domain or social sphere that provides organising principles
for legitimate privacy expectations, she differentiates her understanding of
context from three others. First, from context as a technology system or
platform, second from context as a business model or business practice, and,
third from context as sector or industry.33We are not sure that this resolves
the problem of competing prevailing contexts, since commerce is itself a social
domain that penetrates many other social domains. The problem may be that
social domains are (no longer) mutually exclusive. Since choosing a different
prevailing context might lead to a completely different outcome, as entrenched
transmission principles and informational norms will differ. This leads to the
question of who gets to decide on the choice of the prevailing context: the
service provider, the data subject, the people, the social scientist, the ethicist?
Who is the assessor?

If we take into account that different contexts lead to different results, qualifying
32In that sense context seems to be given rather than the result of struggles and

reconfigurations, see the praise and the critique of R Bellanova “Waiting for the barbarians
or shaping new societies? A review of Helen Nissenbaum’s Privacy In Context (Stanford:
Stanford University Press, 2010) (2011) 16 Information Polity 391-395, notably at 394.

33H Nissenbaum (2015), see note 6 above.
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a context as prevailing has far-reaching implications. One could therefore
conclude that the choice of context is not only the gateway to the CI decision
heuristic, but also its vanishing point. Once the heuristic has progressed beyond
the second step, potentially conflicting norms and principles that pertain to
other contexts have become invisible. In our case, to come to a sustainable
conclusion as to violations of CI in the case of LBSs, we would need to develop
the decision-heuristic for a number of relevant contexts, such as e.g. economics,
travel, health and education, depending on the situation or scenario. This could
lead to conflicting transmission principles and informational norms and would
basically require deciding which context should be qualified as the primary or
overruling context amongst several prevailing contexts. It is not obvious that
this decision can be made at a general level for each instance where LBSs are
employed. If that means that we must decide per situation which context is
primary, the heuristic no longer provides clear guidelines to evaluate the impact
of LBS on contextual integrity. We believe, however, that this rather tricky
challenge is not something we should resolve. On the contrary, it sensitises us
to the fact that location is no longer equivalent with context, as it perhaps used
to be (with separate spaces for work, family life, religious worship and leisure
time). It also means that the principle of purpose limitation may be a more apt
criterion to decide on the legitimacy of an information flow (as well as other
types of processing), taking into account the context(s) on a case-by-case basis.

6 Contextual Integrity and Purpose Limitation

6.1 The legal obligation of purpose limitation (PL

Contextual integrity and the legal obligation of purpose limitation (PL) share
some common ground. Both require for the flow and distribution of personal
data to be appropriate, assuming that both collecting and further processing
of personal data should be limited. Both look beyond collection, though
PL regards any form of personal data processing (including analysis) while
contextual integrity seems to be restricted to transmission of personal data.
Also, the CI decision heuristic concerns an ethical inquiry, whereas PL is a legal
obligation within the jurisdiction of the European Union (EU). Before analysing
the CI decision heuristic from the legal perspective, we will first explain the
background and content of the legal obligation of PL.

The legal obligation of purpose limitation derives from the OECD Fair
Information Principles, as formulated in 1980.34 Within the context of EU data

34OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal
Data, 23 September 1980, updated in 2013, available at http://www.oecd.org/sti/ieconomy/

http://www.oecd.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
http://www.oecd.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
http://www.oecd.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
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protection law, it seems to be one of the most crucial characteristics of the
protection of personal data (as specified in art. 8 of the Charter of Fundamental
Rights of the EU, which defines the fundamental right to data protection). We
will now discuss five points to be made for a proper understanding of PL within
the legal framework of the EU.

First of all, the 1995 EU Data Protection Directive (DPD), as well as
the upcoming General Data Protection Regulation (GDPR),35 require that
processing of personal data is based on a specific and legitimate purpose made
explicit by the data controller. The data controller is defined as the entity that
decides the purposes and the means of personal data processing, and is held
liable for compliance with the DPD (art. 6).36 “Purpose” thus serves, first,
to define who is responsible for personal data processing, while also, second,
providing the person whose data are processed (the data subject) with a clear
idea of what they can be used for. Purpose thus determines the relationship
between sender and receiver of the data, and includes the case of behavioural
data, where the receiver can be seen as actually sending the data to itself.
PL, then, seals the relationship between data subject and data controller, and
forces the controller to somehow make sure that the data subject “knows” how
her data may be used. Depending on the circumstances, the purpose can for
instance be specified in a statute (e.g. if the tax administration requires LBS
data to determine fraud), or be announced in the terms and conditions of a web
service (e.g. specifying that location data will be used for marketing purposes).
In the latter case, we may doubt whether the users of the service are aware of
the purpose, considering the lengthy privacy policies that hide such information.
Especially if the legal ground for the processing concerns “the legitimate interest
of the data controller” (as in the case of Google’s search engine), the legitimacy
of the processing will have to be evaluated on a case-by-case basis to check to
what extent the rights and interests of the data subject are being respected.37

oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
(accessed 14 August 2016).

35See note 12 above
36Art. 6 DPD (and art. 5 GDPR) stipulates purpose limitation and holds the data controller

liable. Art. 2(d) DPD (and art. 4.7 GDPR) specifies that the data controller is the entity
that determines the purpose and means of the processing of personal data.

37This relates to the so-called f-ground for legitimate processing of personal data (art. 7.f
DPD, art. 6.1.f GDPR), which allows for processing on the ground of necessity “for the
purposes of the legitimate interests pursued by the controller of by the third party or parties
to whom the data are disclosed, except where such interests are overridden by the interests
for fundamental rights and freedoms of the data subject which require protection (. . . ).” In
CJEU 13th May 214, C-131/12 (Google Spain v Costeja González), the European Court of
Justice of the EU decided that Google Spain processes the personal data of those listed in the
search results on the basis of the legal ground of art. 7.f and found that the economic interest
of the search engine provider can - in general - not overrule the fundamental rights of the
data subject.
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Second, art. 6.1(a) of the upcoming General Data Protection Regulation states
that processing is allowed if “the data subject has given consent to the processing
of his or her personal data for one or more specific purposes.” In the case of LBSs,
this requirement is often sidestepped by demanding consent for the re-use of the
location data for the purpose of marketing or monetisation (though the latter
is hardly ever made explicit). If such additional consent is refused, the service
provider usually simply refuses to contract. Art. 7.4 of the GDPR, however,
stipulates that “[w]hen assessing whether consent is freely given, utmost account
shall be taken of whether, inter alia, the performance of a contract, including
the provision of a service, is conditional on consent to the processing of personal
data that is not necessary for the performance of that contract.” This would
basically mean that PL cannot be eroded by forcing consent for secondary
purposes on those who wish to access an LBS. When this stipulation comes
into force (in May 2018), LBSs may have to change their business model by, for
instance, charging a fee instead of relying upon the monetisation of location
data.

Third, the current DPD requires that data controllers do not process personal
data for purposes that are incompatible with the purpose they have explicitly
specified when initiating the processing of the data (at the time of first collection).
Though it seems that the OECD Guidelines allowed for a person to give consent
to process her data for other or even any purposes,38 the DPD clearly stipulates
that purpose binding holds, even in the case of consent.39 This means that even
under current law, consent to process one’s data for whatever purpose is not
valid. It also entails that reuse of personal data for incompatible purposes is only
lawful after the data have been fully anonymised, or after informed and freely
given consent has been obtained for the new purpose (taking into account art.
7.4 as discussed above).40 Together with the proportionality principle, European
law thus prevents excessive processing of personal data. The proportionality
principle refers to art. 9 DPD and stipulates that the processing of personal
data needs to be adequate, relevant, and not excessive in relation to its purpose.

Fourth, to the extent that data processing infringes the privacy of a person, the
38Art. 9 of the OECD Guidelines formulates the purpose specification principle; art. 10 the

use limitation principle. According to art. 10, however, data can be used for other purposes
“with the consent of the data subject or by authority of law”. This can be read as meaning
that one can consent to waive one’s right to use limitation.

39EU law requires that processing of personal data is based on one of six legal grounds
that legitimate the processing of personal data (art. 7 DPD, art. 6 GDPR); consent is one of
these legal grounds. On top of this requirement, the purpose must be explicitly specified and
processing must be restricted to the specified purpose or one that is compatible (art. 6 DPD,
art. 5 GDPR). This requirement cannot be waived.

40See, however, Art. 29 WP Opinion 5/2014, WP216 on anonymisation techniqes, that
seems to pratically rule out effective full anonymisation. This entails that such “anonymisation”
must be qualified as pseudonymisation from the perspective of the law.



CONTEXTUAL INTEGRITY AND PURPOSE LIMITATION 121

proportionality principle also relates to the issue of whether such processing is
proportional, considering the legitimate aim it serves. This links the DPD with
art. 8 of the European Convention of Human Rights (ECHR) that enshrines the
right to privacy. Art. 8 determines that whenever a measure infringes the privacy
of a person, the measure that constitutes the interference must be justified on
the basis of a triple test. First, the infringement must be directed to a legitimate
aim. Such aims are limitatively summed up in art. 8.2, but formulated in such
a broad manner that this is seldom a problem. Second, the infringement must
be “in accordance with the law”, meaning that the infringement is based on a
legal norm that is accessible and foreseeable while incorporating the necessary
safeguards for the person whose privacy is infringed. Relevant safeguards may
regard the limitation of the scope and the duration of the infringement, a right
to object and the need to obtain a warrant or permission from an independent
authority.41 Third, the infringement must be necessary in a democratic society,
which implies – according to the case law of the European Court of Human
Rights – that there is a pressing social need for the infringing measure.42 This
– third – part of the triple test, is interpreted in terms of proportionality; the
infringement must be proportional to the aim served, meaning that the measure
is appropriate to achieve the aim and not excessive in relation to the aim. The
proportionality principle of art. 8.2 of the ECHR regards the processing of
personal data only insofar as it infringes one’s privacy. Though processing credit
card data for the sale of LBSs falls within the scope of the DPD, it is not an
infringement of one’s privacy. The processing of location data by the provider
of an LBS may, however, constitute an infringement if it violates a person’s
reasonable expectation of privacy, notably when data are shared with third
parties that link the data with other information to gain a more complete insight
into a person’s social network or life style. If that third party is a government
agency art. 8 will definitely apply. Since the ECHR provides a person within
the jurisdiction of the Council of Europe with rights against their governments,
it is not obvious that art. 8 always applies to the processing of personal data
by other third parties. The so-called direct and indirect horizontal effect of art.
8 may extend the protection to privacy infringements by private parties. Direct
horizontal effect refers to e.g. tort law, that could render an LBSP liable for
harm caused if it infringes the privacy of its customers (e.g. by sharing location
data with parties capable of building invasive profiles with additional data).43

Indirect horizontal effect refers to a positive obligation of the state to protect its
41Cf. e.g. ECrHR, 29 June 2006, Weber and Saravia v Germany, Appl. Nr. 54934/00,

which sums up the safeguards relevant for a measure being qualified as ‘in accordance with
the law’, § 95.

42Cf. e.g. ECtHR, 26 April 1979, The Sunday Times v UK (Series A no 30), § 62.
43Cf. e.g. E Frantziou, “The Horizontal Effect of the Charter of Fundamental Rights of the

EU: Rediscovering the Reasons for Horizontality” (2015) 21 European Law Journal 657-679,
at 666. Frantziou distinguishes between direct and indirect horizontal effect and positive
obligations. For the sake of space constraints, we will not enter this discussion, but we note
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citizens against privacy infringements by private parties. Considering the fact
that the fundamental right to data protection explicitly requires Member States
of the EU to implement this right in relation to non-state actors, such positive
obligations may indeed give rise to liability of the state on the nexus of privacy
and data protection.Indirect horizontal effect refers to a positive obligation
of the state to protect its citizens against privacy infringements by private
parties. Considering the fact that the fundamental right to data protection
explicitly requires Member States of the EU to implement this right in relation
to non-state actors, such positive obligations may indeed give rise to liability of
the state on the nexus of privacy and data protection.44

To determine the meaning of a legal text that has force of law, such as the DPD
or the upcoming GDPR, lawyers will usually refer to relevant case law, which
also has “force of law”. Based on art. 29 of the DPD, however, a Working Party
was established to advise on the interpretation of the DPD. Though itssuch
interpretations isare not legally binding, it hasthey have considerable authority
and its Opinions must be considered when deciding the meaning of element of
the DPD. In 2013, the Art. 29 Working Party issued an Opinion to clarify the
meaning of the principle of purpose limitation that further elucidates how this
legal obligation operates and how data controllers should implement purpose
binding in their personal data life cycle management.45 The Working Party
notably concerns itself with the interpretation of what constitutes a compatible
or incompatible purpose, since this determines when processing is no longer
lawful. The Working Party notably concerns itself with the interpretation of
what constitutes a compatible or incompatible purpose, since this determines
when processing is no longer lawful.46 A change of purpose will usually be
relevant when personal data are reused or recycled in relation to other business
models or by third parties that may provide entirely different services that
cannot be understood as serving a compatible purpose. For instance, if an LBS
stores location data for longer than strictly necessary to fulfil the contract (to
provide friends with one’s location, to offer promotions of nearby shops, to
calculate the invoice), the LBS needs to check whether this is still compatible
with the specified purpose it explicitly expressed when to offer promotions

her argument (at 672-3) that horizontal effect also relates to the fact that fundamental rights
are not merely individual interests but also collective goods.

44Also, art. 82.1 GDPR requires that “Any person who has suffered material or non-
material damage as a result of an infringement of this Regulation shall have the right to
receive compensation from the controller or processor for the damage suffered.” Art. 82.2
states that “Any controller involved in processing shall be liable for the damage caused by
processing which infringes this Regulation. A processor shall be liable for the damage caused
by processing only where it has not complied with obligations of this Regulation specifically
directed to processors or where it has acted outside or contrary to lawful instructions of the
controller.”

45Art. 29 WP, Opinion 03/2014, WP 203 on purpose limitation.
46Ibid, at 20-36.
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of nearby shops, to calculate the invoice), the LBS needs to check whether
this is still compatible with the specified purpose it explicitly expressed when
first processing the data. The Opinion clarifies that compatibility as to the
original purpose must be decided on a case to case basis, taking into account
the following key factors:47

1. The relationships between the purposes for which the personal data have
been collected and the purposes of further processing;

2. The context in which the personal data have been collected and the
reasonable expectations of the data subjects as to their further use;

3. The nature of the personal data and the impact of the further processing
on the data subjects;

4. The safeguards adopted by the controller to ensure fair processing and to
prevent any undue impact on the data subjects.

As to the further use of location data, this entails, first, that reuse for an
entirely unrelated purpose (e.g. tax fraud detection) is problematic. Second,
it implies that the fact that sensitive data may be inferred from location data
indicates the need to be cautious about concluding that a purpose is compatible,
notably when such data or their inferences can have adverse effects on a data
subject (rejection for an insurance or a job interview, detailed monitoring by
law enforcement agencies based on risk assessments that rely in part on location
data, paying a higher price for consumer goods due to having visited shops on
the high end of the market). Third, much will depend on the question of whether
adequate safeguards have been implemented, for instance, pseudonymisation
of energy usage data that include location data. Interestingly, the Working
Party finds that the context in which the data have been collected is a key
factor to determine the compatibility of the purpose. This links with the idea
of contextual integrity, though we note that context is only one of the key
factors, rather than the sole criterion to decide the legitimacy of personal data
processing.

6.2 Interfacing CI and PL

Some authors believe that the PL obligation is a consecration of Nissenbaum’s
CI theory.48 Others believe that the CI theory is not very relevant for non-
US jurisdictions that have a framework of general data protection law that

47Ibid, at 23-27.
48F Dumortier, “Facebook and Risks of ‘De-contextualization’ of Information” in S Gutwirth,

Y Poullet and P De Hart (eds) Data Protection In a Profiled World (Springer; 2010) 119-137.
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incorporates PL.49 As a point of departure we note that, though her theory
may be used to add clarity to the legal framework, CI covers only the flow of
information and depends entirely on the original context of disclosure.

As such, firstly, the scope of PL within the legal framework is broader than
merely the transmission and distribution of personal data within an identifiable
context, as it includes any processing operations performed on personal data that
are stored (where no data flow is at stake). We note that EU data protection
law holds specific protection for location data, even if it cannot be qualified as
personal data.50

Second, the scope of PL is broader in that it considers the processing of personal
data in other contexts without assuming that such processing is necessarily
illegitimate whenever it takes place in another context. PL depends on the
declared intent of – and the usage by - the data controller, taking into account
the context of collection.

Third, the scope of protection generated by PL may be eroded if data controllers
specify a broad purpose or a whole range of purposes when they collect the
data. In that case, PL may provide little protection other than forcing data
controllers to determine and make explicit the relevant purposes before they
start processing. The requirement of specificity should actually prevent overly
broad purpose determinations, but so far both private and public entities often
resort to either very broad formulations of purposes (e.g. “to improve the
provision of services”), or to whole series of specific purposes (e.g. to detect
tax fraud and social security fraud, or to achieve compliance with the principle
of ‘collect only once’ in the context of e-government). As a matter of fact, the
lack the protection caused by broad definitions or multiple disparate purposes
is due a lack of enforcement; if data protection authorities were to have the
competence to impose adequate fines, the requirement of explicit specification
should be sufficient to prevent erosion of the obligation. A similar lack of the
protection is inherent in the notion of context. Notably, policy makers, courts
or data controllers may decide that in the case of LBSs the prevailing context is
commercial, whatever other context is at stake. The same goes for the prevailing
context of national and public security, which often overrules any context, even
the commercial one. The lack of the protection offered by CI due to either
the overruling context of commerce or that of public security is inherent in the

49CJ Bennet, “Book Review: Nissenbaum, Helen (2010) Privacy in Context: Policy and
the Integrity of Social Life. Stanford: Stanford University Press” (2011) 8 Surveillance and
Society 541-543, at 542-543.

50See notably art. 9 ePrivacy Directive 2002/58/EC, concerning the processing of personal
data and the protection of privacy in the electronic communications sector. On the
intricacies concerning the legal regime for location data, see C Cuijpers and BJ Koops,
“How Fragmentation in European Law Undermines Consumer Protection: the Case of
Location-Based Services” (2008) 33 European Law Review 880–897.
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difficulty of identifying the prevailing context, especially when more than one
prevailing context is at stake, depending on one’s perspective.

Fourth, PL is a legal obligation that creates civil and administrative liability
for data controllers, whereas CI is an ethical theory that invites citizens, policy
makers and business undertakings to consider what should count as appropriate
data flows and appropriate distribution of personal data. Though a law that
does not even aim to achieve justice cannot be qualified as law in a constitutional
democracy, the law is both more and less than ethics. Law also aims for legal
certainty and purposefulness. This implies that its scope is both more restricted
than ethics (for instance, if achieving justice is at odds with legal certainty,
notably where people disagree about what is just in a particular context) and
broader (for instance, where no agreement can be found on what constitutes an
appropriate and properly distributed information flow, the law will provide for
legal certainty and decide on such issues in line with PL and proportionality).

Taking account of these differences, we shall now see how context fits into the
decision on the lawfulness of reuse of personal data, by referring to the second
key factor for determining whether its purpose is compatible with the initial,
explicitly specified purpose. As discussed above, this key factor concerns “the
context in which the personal data have been collected and the reasonable
expectations of the data subjects as to their further use.” Indeed, this implies
two things. First, it implies that processing personal data should be aligned with
the reasonable expectations that come with the context where they were first
collected. This points to the relevant transmission principles and informational
norms of the CI heuristic. Second, it implies that processing such data in
another context is not prohibited, but that to determine the legitimacy of
cross-contextual processing, the expectations raised in the original context are
critical. In a sense, this key factor seems to integrate the CI heuristic into
the determination of the compatibility of the purpose. At the same time, it
does not make the CI heuristic decisive as other key factors must be taken into
consideration. As a consequence, the original context does not over-determine
the judgement on whether or not the processing of location data is legitimate,
though it plays a key role.

In art. 35 of the upcoming GDPR, a new legal obligation is established that
requires data controllers that wish to employ new technologies to assess whether
these technologies generate high risks for rights and freedom of individuals.
If this is the case, the controller should perform a data protection impact
assessment (DPIA).51 We note that the CI decision heuristic provides an

51Art. 35.1 GDPR: “Where a type of processing in particular using new technologies, and
taking into account the nature, scope, context and purposes of the processing, is likely to
result in a high risk to the rights and freedoms of natural persons, the controller shall, prior to
the processing, carry out an assessment of the impact of the envisaged processing operations
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interesting framework for such an assessment, while the DPIA has the added
advantage of requiring an assessment of mitigating measures,52 thus integrating
the notion of data protection by design and default into the assessment.53 It is
pivotal that users of LBS have access to ways and means to protect themselves
against persistent tracking and tracing.54 However, by imposing DPbD, the
GDPR obliges providers to develop architectures on their side that protect
location privacy, which seems crucial to incentivise the market for DPbD.55 We
therefore believe that the CI heuristic and the DPIA should inspire and test
each other, notably with respect to the assessment of the risks to the rights
and freedoms of individuals. This would enable a more stringent assessment of
how PL and CI contribute to reducing such risks, while providing users with
a better grasp of how they may be targeted based on the location data they
leak. On top of that, the force of law that “backs” PL, in combination with
legal obligations to conduct a DPIA and to implement DPbD, should create a
market for socio-technical design solutions that support PL.

7 Conclusion

In this work, we investigated the privacy implications for users engaging in
LBSs and the sharing of their location data with remote services. We used
Nissenbaum’s CI heuristic as a framework to perform the assessment in a
structured way. We applied CI to our case and we modeled all involved
parties that may get access to location data and further modeled the relevant
information flows. This revealed that users rarely share their location data with
only the LBSP but end up sharing the data with a series of other entities, such
as TPSD, OSM, HM or the Gv.

The context in which a user revealed her location is key in Nissenbaum’s heuristic
when evaluating whether the user’s privacy has been breached. Unfortunately,
LBSs are used in such a ubiquitous manner that it is impossible to conduct the

on the protection of personal data. A single assessment may address a set of similar processing
operations that present similar high risks.”

52Art. 35.7.d GDPR.
53In art. 25 GDPR a new legal obligation requires ‘data protection by default and by

design’. See M Hildebrandt and L Tielemans, “Data Protection by Design and Technology
Neutral Law” (2013) 29 Computer Law & Security Review 509–521.

54See e.g. F Brunton and H Nissenbaum, Obfuscation: A User’s Guide for Privacy and
Protest (2015) The MIT Press. M Herrmann et al, “Optimal Sporadic Location Privacy
Preserving Systems in Presence of Bandwidth Constraints” (2013) 12th ACM Workshop on
Workshop on Privacy in the Electronic Society 167-178.

55See e.g. M Herrmann et al, “Practical Privacy-Preserving Location-Sharing based services
with aggregate statistics” (2014) Proceedings of the 2014 ACM Conference on Security and
Privacy in Wireless & Mobile Networks 87-98.
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CI heuristic for every possible context in which users may find themselves when
engaging with LBSs. This is not a drawback of the CI heuristic, but inherent
in the use of mobile devices that result in the integration and overlapping of
different contexts at the same time and the same place. In the case of LBSs,
we found that the prevailing context is that of travel, though one can argue
that it will often coincide with the prevailing contexts of commerce and public
security. Focusing on the context of travel, we show that LBSs create new
information flows and alter existing ones with the result that numerous parties
obtain users’ accurate location, resulting in threats to the user’s fair treatment,
her autonomy, and other fundamental rights and freedoms. This is because
location data exposed via mobile applications may be recorded by LBSs for an
unlimited period of time and can be exchanged with a wide variety of parties
(even though this would be unlawful under EU law). A user’s location data may
thus be combined with lifelong movement profiles, which are machine searchable
and could be used in many unforeseeable ways to draw inferences about the
individual, even far into the future. This in particular is an issue since the user
has few effective means to access, let alone control, the information flows that
instigate personalised targeting. To assess the extent to which control is lost,
and whether this violates reasonable expectations of privacy, we considered the
concept of contextual integrity in relation to the principle of purpose limitation.

From a legal perspective, the processing of personal data within the scope of
the DPD (and the upcoming GDPR) requires a legitimate, specific and explicit
purpose, which restricts the proliferation of location data and the inferences
it affords. Currently, however, the requirements of legitimacy, specificity and
explicitness are often circumvented by LBSP by formulating very broad terms
of use hidden in lengthy terms of service or privacy policies, or by trading free
services for extensive invisible profiling. We hope and expect that the upcoming
GDPR will enable a more effective enforcement that makes potential usage of
location data foreseeable and enables data subjects to object to the processing
of excessive or irrelevant data. In its Opinion on purpose limitation the Art.
29 Working Party has clarified that the context is key when assessing whether
the purpose of processing is compatible with the original purpose. This context
argument nicely links PL to Nissenbaum’s CI heuristic and we elaborate on the
differences and similarities of the two: Firstly, PL is a broader concept because
CI determines privacy violations only if data is being transmitted, whereas
PL concerns all types of processing, including analytics. PL is also broader
because a violation of PL does not necessarily depend on the context; processing
the data in the same context for another purpose may be a violation of PL,
where it may be acceptable in terms of CI (depending on whether it violates an
informational norm of that context). Secondly, whereas PL may be circumvented
by entities stating very general purposes or a long series of specific purposes
allowing for almost any processing, CI may be circumvented by defining the
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prevailing context in a way that enables it to overrule informational norms
and transmission principles of overlapping prevailing contexts, notably those
of commerce and public security. In that sense much depends on enforcement
in the case of PL and the perspective taken by the assessor in the case of CI.
Thirdly, CI is an ethical theory that offers a structured approach to reflect on
and assess privacy as contextual integrity, whereas PL is a legal obligation, that
has legal effect such as liability and the right to object.

Context is everything, but not everything is context. Purpose limitation enables
both foreseeability and holding LBSP to account in a court of law, if the law
is enforced. We conclude that both concepts are pivotal for a sustainable and
responsible employment of location data, noting that the CI decision heuristic
should inform the templates of the Data Protection Impact Assessment that
will soon be a legal obligation within EU jurisdiction.
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Abstract. Over the last decade, mobile devices and mobile
applications have become pervasive in their usage. Although
many privacy risks associated with mobile applications have been
investigated, prior work mainly focuses on the collection of user
information by application developers and advertisers. Inspired by
the Snowden revelations, we study the ways mobile applications
enable mass surveillance by sending unique identifiers over
unencrypted connections. Applying passive network fingerprinting,
we show how a passive network adversary can improve his ability
to target mobile users’ traffic.
Our results are based on a large-scale automated study of mobile
application network traffic. The framework we developed for this
study downloads and runs mobile applications, captures their
network traffic and automatically detects identifiers that are sent
in the clear. Our findings show that a global adversary can
link 57% of a user’s unencrypted mobile traffic. Evaluating two
countermeasures available to privacy aware mobile users, we find
their effectiveness to be very limited against identifier leakage.

1 Introduction

Documents that have been revealed by the former NSA contractor Edward
Snowden shed light on the massive surveillance capabilities of the USA
and UK intelligence agencies. One particular document released by the
German newspaper Der Spiegel describes the ways in which traffic of mobile
applications (apps) is exploited for surveillance [15]. The document, which reads
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“Exploring and Exploiting Leaky Mobile Apps With BADASS,” provides a unique
opportunity to understand the capabilities of powerful network adversaries.
Furthermore, the document reveals that identifiers sent over unencrypted
channels are being used to distinguish the traffic of individual mobile users with
the help of so-called selectors. Similar revelations about the use of Google cookies
to target individuals imply that BADASS is not an isolated incident [11,34].

While it is known that a substantial amount of mobile app traffic is unencrypted
and contains sensitive information such as users’ location or real identities [23,
35, 43], the opportunities that mobile traffic offers to surveillance agencies may
still be greatly underestimated. Identifiers that are being sent in the clear,
may allow the adversary to link app sessions of users and thus to learn more
information about the surveilled users than he could without. The purpose
of this study is to evaluate this risk and to quantify the extent to that it is
possible to track mobile app users based on unencrypted app traffic.

To this end we present a novel framework to quantify the threat that a
surveillance adversary poses to smartphone users. The framework automates
the collection and analysis of mobile app traffic: it downloads and installs
Android apps, runs them using Android’s The Monkey [17] tool, captures the
network traffic on cloud-based VPN servers, and finally analyzes the traffic
to detect unique and persistent identifiers. Our framework allows large-scale
evaluation of mobile apps in an automated fashion, which is demonstrated by
the evaluation of 1260 apps. We choose the apps among all possible categories
of the Google Play store and of different popularity levels.

Our study is inspired by a recent work by Englehardt et al. [25]. They studied the
surveillance implications of cookie-based tracking by combining web and network
measurements. The evaluation method they use boils down to measuring the
success of the adversary by the ratio of user traffic he can cluster together.
We take a similar approach for automated identifier detection but we extend
their work to capture non-cookie-based tracking methods that are suitable for
user tracking. Moreover, we show how TCP timestamp-based passive network
fingerprinting can be used to improve the clustering of the traffic and may allow
to detect the boot time of Android devices.

1.1 Contributions

Large-scale, automated study on surveillance implications of mobile
apps. We present an automated analysis of 1260 Android apps from 42 app
categories and show how mobile apps enable third party surveillance by sending
unique identifiers over unencrypted connections.
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Table 1: Unique smartphone identifiers present on Android, an overview.

Name Persistence Permission
Android ID until a factory reset None
MAC Address lifetime of the device ACCESS_WIFI_STATE
IMEI lifetime of the device READ_PHONE_STATE
IMSI lifetime of the SIM card READ_PHONE_STATE
Serial number lifetime of the device None [41]
SIM serial number lifetime of the SIM card READ_PHONE_STATE
Phone number lifetime of the SIM card READ_PHONE_STATE
Google Advertising ID until reset by the user ACCESS_NETWORK_STATE,

INTERNET

Applying passive network fingerprinting for mobile app traffic
exploitation. We show how a passive network adversary can use TCP
timestamps to significantly improve the amount of traffic he can cluster. This
allows us to present a more realistic assessment of the threat imposed by a
passive adversary. Further, we show how an adversary can guess the boot time
of an Android device and link users’ traffic even if they switch from WiFi to
3G or vice versa.

Evaluation of the available defenses for privacy aware users. We
analyze the efficacy of two mobile ad-blocking tools: Adblock Plus for
Android [12] and Disconnect Malvertising [13]. Our analysis shows that these
tools have a limited effect preventing mobile apps from leaking identifiers.

2 Background and Related Work

Android apps and identifiers. Android apps and third-parties can access
common identifiers present on the smartphone, such as MAC address, Google
Advertising ID or IMEI number. We call these identifiers smartphone IDs. An
overview of the Android smartphone IDs can be found in Table 1. Developers
may also choose to assign IDs to users (instead of using smartphone IDs), for
identifying individual app installations or simply to avoid asking for additional
permissions [10]. We refer to such identifiers as app assigned IDs.

Privacy implications of mobile apps. Although privacy implications of
Android apps have been extensively studied in the literature [24,27,29], prior
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work has mainly focused on the sensitive information that is collected and
transmitted to remote servers. Xia et al. showed that up to 50% of the
traffic can be attributed to the real names of users [43]. Enck et al. developed
TaintDroid [24], a system-wide taint analysis system that allows runtime analysis
and tracking of sensitive information flows. While it would be possible to use
TaintDroid in our study, we opted to keep the phone modifications minimal and
collect data at external VPN servers. This allows us to have a more realistic
assessment of application behavior and adversary capabilities.

Our work differs from these studies, by quantifying the threat posed by a passive
network adversary who exploits mobile app traffic for surveillance purposes. We
also show how the adversary can automatically discover user identifiers and use
passive network fingerprinting techniques to improve his attack.

Passive network monitoring and surveillance. Englehardt et al. [25] show
how third-party cookies sent over unencrypted connections can be used to cluster
the traffic of individual users for surveillance. They found that reconstructing
62-73% of the user browsing history is possible by passively observing network
traffic.

In addition to using identifiers to track smartphones, an eavesdropping adversary
can use passive network fingerprinting techniques to distinguish traffic from
different physical devices. Prior work showed that clock skew [31,33,44], TCP
timestamps [22, 42] and IP ID fields [20] can be used to remotely identify hosts
or count hosts behind a NAT. In this study, we use TCP timestamps to improve
the linking of users’ mobile traffic in short time intervals. We assume the
adversary to exploit TCP timestamps to distinguish traffic of users who are
behind a NAT. Moreover, we demonstrate how an adversary can discover the
boot time of an Android device by exploiting TCP timestamps.

3 Threat Model

In this paper we consider passive network adversaries whose goal is to link app
traffic of smartphone users. The adversaries observe unique identifiers that are
being transmitted from mobile apps in the clear and apply network fingerprinting
techniques. We consider that the adversaries cannot break cryptography or
launch MITM attacks such as SSLstrip [32].

We distinguish between two types of passive adversaries: A global passive
adversary, who can intercept all Internet traffic at all time; and a restricted
passive adversary who can only observe a limited part of the network traffic.
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Both adversaries have the capability to collect bulk data. This may be achieved
in various ways, such as tapping into undersea fiber-optic cables; hacking routers
or switches; intercepting traffic at major Internet Service Providers (ISP) or
Internet Exchange Points (IXP) 3.

There can be several models in which an adversary may have limited access
to the user’s traffic. In this study we evaluate adversaries whose limitation
is either host-based or packet-based. The host-based adversary is only able to
see traffic bound to certain hosts; for example, because the adversary is only
able to obtain warrants for intercepting traffic within its own jurisdiction. The
packet-based adversary may only have access to a certain point in the Internet
backbone and thus miss traffic that is being sent along other routes. For both
adversaries, we evaluate the success based on different levels of network coverage
(Section 7.2). We simulate partial network coverage by randomly selecting
hosts or packets to be analyzed depending on the model. For instance, for the
host-based model with 0.25 network coverage, we randomly pick one-fourth of
the hosts and exclude the traffic bound to remaining hosts from the analysis.

4 Data Collection Methodology

4.1 Experimental Setup

We present the experimental setup4 that is used for this paper in Fig. 1. It
includes a controller PC, two smartphones and two VPN servers for traffic
capture. The main building blocks of our framework are as follows:

Controller PC. The Controller PC runs the software that orchestrates the
experiments and the analysis. It has three main tasks: 1) installing apps on the
smartphones and ensuring that the experiment runs smoothly, e.g. checking the
phone’s WiFi and VPN connections, 2) sending SSH commands to the remote
VPN servers to start, stop and download the traffic capture, 3) analyzing the
collected data.

Smartphones. We conducted our experiments with two Samsung Galaxy SIII
Mini smartphones running Android version 4.1.2. We rooted the phones to
address issues such as storage and uninstallation problems. Although we

3All these methods are feasible, as illustrated by the Snowden revelations [7, 28].
4The source code of the framework, as well as the collected data will be made available to

researchers upon request.
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Figure 1: Our setup in this study consists of a Controller PC that manages the
experiments, two Android phones that run apps, and two VPN servers that
capture the network traffic.

considered using the Android emulator as in other works [23, 36, 38], our
preliminary tests [39] showed that the number of transmitted identifiers is
significantly less in the emulator compared to the same setting with a real
smartphone and the emulator lacks certain identifiers, such as the WiFi MAC
address. We also chose not to intercept system API calls or instrument the
operating system, such as in [24, 26], since we preferred a simpler and more
portable solution.

The Monkey. We use The Monkey [17] tool to automate the experiments
and simulate the user interaction at large scale. The Monkey generates a
pseudo-random event stream that includes touch, motion and keyboard events.

Traffic Capture. The network traffic is captured by two remote VPN servers,
using the dumpcap [5] command line tool. Using VPN servers, we could capture
all the network traffic and not only HTTP traffic, which would be the case
with an HTTP proxy. Also, since we record the traffic on remote machines,
we ensure that there is no packet drop due to lack of buffer space on resource
constrained devices [14]. However, we captured traffic locally on the phone
during the evaluation of ad-blockers for Android. These tools use a proxy
or VPN themselves to block ads. Since Android does not allow simultaneous
VPN connections, we captured the traffic locally by running tcpdump on the
smartphones. To ensure comparability, we exclude all the captures where we
observed packet drops from the analysis (20% of the cases, 171 apps in two
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experiments).

Traffic parser. For parsing the captured network traffic, we developed a
Python script based on the dpkt [3] packet parsing library. The script allows
us to decode IPv4 and IPv6 datagrams, reassemble TCP streams, decompress
compressed HTTP bodies and to parse GRE and PPTP encapsulation used
by the VPN. We extract HTTP headers and bodies, packet timestamps, IP
addresses and port numbers from the packets for later use. Since it is outside of
the scope of this study, we did not decrypt SSL/TLS records. However, for the
TCP timestamp analysis described in Section 6 it is beneficial, yet not necessary,
to extract TCP timestamps from all TCP packets, including the ones from
encrypted HTTPS traffic. Note that this is within our adversary model, because
TCP headers are sent in the clear and thus available to a passive adversary.

Having described the main building blocks of the experimental setup, now we
outline the different modes and steps of the experiments:

Experiment modes. We run experiments in two different modes to evaluate
the difference in identifier transmission; i) if the app is simply opened and ii) if
the user actually interacts with the app. We refer to the former as startscreen
experiment and to the latter as interactive experiment. The Monkey is used to
simulate user interaction in the interactive experiments.

Evaluation of ad-blocker apps. We evaluate the effect of apps that block
ads and trackers. While those apps are not specifically designed to prevent
identifier leakage, they may still reduce the number of identifiers being sent
in the clear. Specifically, we repeated the experiment of the top-popularity
apps after we installed and activated the ad-blocker apps Adblock Plus for
Android [12] and Disconnect Malvertising [13].

Steps of the experiment. Our framework executes the steps of the
experiments in an entirely automated fashion. The Controller PC connects the
smartphone to the VPN server by running a Python based AndroidViewClient [4]
script that emulates the touch events necessary to start the VPN connection
on the smartphone. Since installing all the apps at once is not possible due to
storage constraints, our framework conducts the experiment in cycles. In each
cycle we install 20 apps and then run them sequentially5. The apps for each
cycle are randomly chosen from the entire set of apps, with the condition that
each app is only picked once. Before running an app, the Controller PC kills the
process of the previous app. This way we are able to prevent the traffic of the
previously tested app mistakenly being recorded for the subsequent app. After
finished running the 20 apps, the Controller PC runs all 20 apps a second time

5We chose 20 since this was the maximum number of apps that can be installed on an
Android emulator at once, which we used in the preliminary stages of the study.
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in the same order. Running each app twice enables the automated detection
of identifiers outlined in Section 5.1. Finally, the Controller PC completes the
current cycle by uninstalling all 20 apps.

4.2 Obtaining Android Applications

To obtain the Android apps, we developed scripts for crawling the Google Play
store and, subsequently, to download APK files. Our scripts are based on
the Python Selenium [16] library, the APK downloader browser extension and
webpages [1]. Using this software, we crawled the entire Play Store and obtained
information on 1, 003, 701 different Android apps. For every app we collected
information such as number of downloads, rating scores and app category. This
allows us to rank the apps of every category according to their popularity.

For every app category we choose 10 apps from three different popularity
levels: top-popularity, mid-popularity and low-popularity. While we use the most
popular apps for the top-popularity category, we sample the mid-popularity
and low-popularity apps from the 25th and 50th percentiles from each category.
At the time we conducted the crawl, there were 42 different app categories and
we therefore obtained a total of 1260 (42× 10× 3) apps. The average time for
evaluating one app is 64 seconds.

5 Analysis Methodology

In the following we show how an adversary is able to extract identifiers from
network traffic and then use these identifiers to cluster data streams, i.e. linking
data streams as belonging to the same user. This is the same that an adversary
with the goal of surveilling Internet traffic would do, i.e. extracting and applying
a set of selectors that match unique and persistent mobile app identifiers.

5.1 Identifier Detection

Suitable identifiers for tracking need to be persistent and unique, i.e. the
same ID cannot appear on different phones and IDs need to be observable over
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multiple sessions. Our framework automatically detects such unique identifiers
in unencrypted mobile app traffic. While the overall approach is similar to the
one in [18,25] we extend the cookie-based identifier detection technique to cover
mobile app traffic. We assume that the smartphone IDs (such as Android ID
or MAC address) are not known a priori to the adversary. The adversary has
to extract IDs based on the traffic traces only. Yet, we use smartphone IDs as
the ground truth to improve our automated ID detection method by tuning its
parameters.

For finding identifiers, we process HTTP request headers, bodies and URL
parameters. Specifically, the steps of the unique identifier detection are as
follows:

• Split URLs, headers, cookie contents and message bodies using common
delimiters, such as “=”, “&”, “:”, to extract key-value pairs. Decode
JSON encoded strings in HTTP message bodies.

• Filter out cookies with expiry times shorter than three months. A tracking
cookie is expected to have a longer expiry period [25].

• For each key-value pair, we construct an identifying rule set and add it to
the potential identifier list. This is the tuple (host, position, key), where
host is extracted from the HTTP message and position indicates whether
the key was extracted from a cookie, header or URL.

• Compare values of the same key between runs of two smartphones.

• – Eliminate values if they are not the same length.
– Eliminate values that are not observed in two runs of the same app

on the same smartphone.
– Eliminate values that are shorter than 10 or longer than 100

characters.
– Eliminate values that are more than 70% similar according to the

Ratcliff-Obershelp similarity measure [21].

• Add (host, position, key) to the rule set.

We tuned similarity (70%) and length limits (10, 100) according to two criteria:
minimizing false positives and detecting all the smartphone identifiers (Table 1)
with the extracted rule set. We experimented with different limit values and
picked the values that gave us the best results based on these criteria. A more
thorough evaluation of these limits is omitted due to space constraints, but
interested readers can refer to [18,25] for the main principles of the methodology.
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5.2 Clustering of App Traffic

While the ultimate goal of the adversary is to link different app sessions of the
same user by exploiting unique identifiers transmitted in app traffic, the first
challenge of the adversary is to identify the traffic of one app. An app may open
multiple TCP connections to different servers and linking these connections can
be challenging. The user’s public IP address is not a good identifier: several
users may share the same public IP via a NAT. Moreover, IP addresses of
mobile phones are known to change frequently [19].

In this work we consider two different clustering strategies. In the TCP stream
based linking, the attacker can only link IP packets based on their TCP stream.
The adversary can simply monitor creation and tear down of TCP streams and
ensure that the packets being sent within one stream are originating from the
same phone. The second, more sophisticated strategy employs passive network
fingerprinting techniques to link IP packets of the same app session. We will
refer this technique as app session based linking and outline it in Section 6.

Following Englehardt et al. [25] we present linking of the user traffic as a graph
building process. We use the term node to refer to a list of packets that the
adversary is certain that they belong to the same user. As explained above,
this is either a TCP stream or an app session. For every node the adversary
extracts the identifying rule set (host, position, key) as described in Section 5.1.
Starting from these nodes, the adversary inspects the content of the traffic and
then tries to link nodes together to so-called components.

Therefore, the attacker will try to match a node’s identifiers to the identifiers of
the existing components. We account for the fact that some developers do not
use the smartphone ID right away as identifier, but derive an identifier from it
by hashing or encoding. Thus the clustering algorithm will also try to match
the SHA-1, SHA-256, MD5 and murmur3 hashes and base64 encoded form of
the identifiers. For every node, there exist three possibilities when comparing
the node’s identifiers to a existing component’s identifiers:

1. The node’s value (or its derivative) matches the identifiers of
an existing component: The node will be added to the component and
the respective identifiers are being merged, i.e. the newly added node may
include identifiers not yet included in the component.

2. None of the node’s identifiers or their derivatives can be
matched to an existing component: The node creates its own
component which is disconnected from all other components.
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3. The node shares identifiers with multiple components: These
components are merged together and the node is added to this component.

For the remainder of this paper, we refer to the component that contains
the highest number of nodes as the Giant Connected Component (GCC).
Furthermore, we define the ratio of number of nodes in GCC to the number
of nodes in the whole graph as the GCC ratio. The GCC ratio serves as a
metric for measuring the adversary’s success for linking users’ traffic based on
the amount of traffic he observes.

5.3 Background Traffic Detection

The Android operating system itself also generates network traffic, for example
to check updates or sync user accounts. Although we find in our experiments
that the Android OS does not send any identifiers in the clear, we still take
measures to avoid that this traffic pollutes our experiment data. Particularly,
we captured the network traffic of two smartphones for several hours multiple
times without running any app. A complete overview of all HTTP queries made
during such captures can be found in [40]. We excluded all the HTTP requests
to these domains during the analysis stage. Although we excluded background
traffic from our analysis, the adversary may try to exploit the background traffic
in a real-world attack.

6 Linking Mobile App Traffic with TCP Times-
tamps

In this section we elaborate on the adversary’s ability to employ passive
fingerprinting techniques to link different IP packets originating from the same
smartphone. As mentioned in Section 5.2, this gives a significant advantage to
the adversary when clustering the user traffic. In particular, the adversary is
able to analyze TCP timestamps for this task as they are commonly allowed by
the firewalls [33].

TCP timestamps are an optional field in TCP packets that include a
32-bit monotonically increasing counter. They are used to improve the
protocol performance and protect against old segments that may corrupt
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TCP connections [30]. While the exact usage of TCP timestamps is platform
dependent, our inspection of the Android source code and capture files from
our experiments revealed that Android initializes the TCP timestamp to a
fixed value after boot and uses 100Hz as the timestamp increment frequency [2].
Thus, at any time t, TCP timestamp of a previously observed device can be
estimated as follows: TSt = TSprev + 100 × (t − tprev), where TSprev is the
timestamp observed at tprev and (t− tprev) is the elapsed time. The adversary
can therefore link different visits from the same device by comparing the observed
TCP timestamps to his estimate. Prior studies have shown that distinguishing
devices behind a NAT using TCP timestamps can be done in an efficient and
scalable manner [22,37,42].

Figure 2: TCP timestamp vs. capture time plot of Angry Birds Space app
follows a line with a slope of 100, which is the timestamp resolution used by
Android. Different TCP sessions, indicated by different colors, can be linked
together by exploiting the linearity of the TCP timestamp values.

Fig. 2 demonstrates the linear increase of the TCP timestamps of a phone
running the “Angry Bird Space” app. To demonstrate the linkability of TCP
streams, every point in Fig. 2 is colored based on its TCP source and destination
port. The straight line shows that the adversary can easily link different TCP
streams of the same device by exploiting the linearity of the timestamps. The
adversary is also able to consider TCP timestamps of encrypted communications,
because TCP timestamps are sent unencrypted in the packet headers. This
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allows adversaries within our threat model to further increase the success of
the linking. Furthermore, TCP timestamps can be used to link traffic even
if the user switches from WiFi to mobile data connection or vice versa [40].
Finally, the linking is still feasible even if the adversary misses some packets,
for instance, due to partial coverage of the network.

Limitations. During the background traffic detection experiments, we observed
cases in which TCP timestamps are not incremented linearly. Consulting the
Android System Clock Documentation, we determined that the CPU and certain
system timers stop when the device enters the deep sleep state [9]. This power
saving mechanism is triggered only when the screen is off and the device is not
connected to the power outlet or USB port. Therefore, the phone will never go
into deep sleep when a user is interacting with an app and the TCP timestamps
will be incremented in a predictable way, allowing the linking of the traffic by
app sessions.

Implications for traffic linking. We will assume the adversary can use TCP
timestamps to cluster packets generated during the use of an app (app session),
as the phone never enters deep sleep mode when it is in active use. As mentioned
in Section 5.2, we will refer to this as app session based linking.

Android boot time detection. In addition to linking packets from different
TCP streams, TCP timestamps can also be used to guess the boot time of
remote devices [6]. Among other things, boot time can be used to determine if
the device is patched with critical updates that require a reboot. Since it is not
directly related to traffic linking attack considered in the study, we explain the
boot time detection methodology in the unabridged version of this paper [40].

7 Results

7.1 Identifier Detection Rules

We present in Table 2 an overview of the identifying rule set that we detected
by the methodology explained in Section 5.1. Recall that identifying rules
correspond to “selectors” in the surveillance jargon, which allow an adversary
to target a user’s network traffic. In total we found 1597 rules with our method,
of which 1127 (71%) correspond to a smartphone ID or its derivative. Our
results show that the Android ID and Google Advertising ID are the most
frequently transmitted smartphone IDs, accounting for 72% (812/1127) of the
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Table 2: The extracted ID detection rules and corresponding smartphone IDs.
SID: Smartphone ID, AAID: App Assigned ID.

Exp.
Mode

App
popu-
larity

Android
ID

Google
Ad
ID

IMEI MAC Other
SIDs

AAIDs Total
ID
Rules

Interactive top 165 111 63 29 16 193 577
Startscreen top 115 56 45 19 11 91 337
Interactive mid 56 28 20 6 5 60 175
Startscreen mid 48 28 16 5 4 40 141
Interactive low 73 61 22 15 8 53 232
Startscreen low 47 24 16 7 8 33 135

Total 504 308 182 81 52 470 1597

Table 3: Examples rules found in the constructed identifying rule set. The
values are modified to prevent the disclosure of real identifiers of the phones
used in the study.

Host Position Key ID Value

data.flurry.com Body offset60 Android ID AND9f20d23388...

apps.ad-x.co.uk URI custom_data Unknown 19E5B4CEE6F5...meta_udid
apps.ad-x.co.uk URI macAddress WiFi MAC D0:C4:F7:58:6C:12

alog.umeng.com Body header, IMEI 354917158514924device_id

d.applovin.com Body device_info, Google Ad ID 0e5f5a7d-a3e4-...
idfa

total. We group the least commonly transmitted smartphone IDs under the
Other Smartphone IDs column, which include the following: device serial number,
IMSI, SIM serial number and registered Google account email. Furthermore,
we found 29% of the extracted rules to be app-assigned IDs.

Analyzing the extracted rules for the top-popularity, interactive experiments,
we found that 50% of the identifiers are sent in the URI of the HTTP requests
(291 rules). In 39% (225) of the rules, the IDs are sent in the HTTP request
body, using the POST method. Only 3% (18) of the cases, the identifier was
sent in a cookie. The average identifier length in our rule set is 26.4 characters.
A sample of identifying rules is given in Table 3.

After extracting identifier detection rules, we apply them to the traffic captured

data.flurry.com
apps.ad-x.co.uk
apps.ad-x.co.uk
alog.umeng.com
d.applovin.com
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Table 4: The most common third-party hosts found to collect at least an
identifier over unencrypted connections. The listed hosts are contacted by
the highest number of apps (based on 420 top-popularity apps, interactive
experiment).

Host # Apps Collected IDs
data.flurry.com 43 Android ID
ads.mopub.com 32 Google advertising ID

apps.ad-x.co.uk 22 Google advertising ID, IMEI,
Serial number, Android ID

alog.umeng.com 16 IMEI
a.applovin.com 16 Google advertising ID

during the experiments. Due to space constraints we present the detailed results
on the transmitted IDs in the unabridged version of this paper [40].

Moreover, analyzing the traffic captures of the top-popularity apps, we found
that certain apps send precise location information (29 apps), email address
(7 apps) and phone number (2 apps) in the clear. Together with the linking
attack presented in this paper, this allows an adversary to link significantly
more traffic to real-life identities.

We found that 1076 different hosts were contacted over unencrypted connections
during the experiments for the top-popularity apps in the interactive mode.
The data.flurry.com domain is the most popular third-party domain collecting
Android ID from 43 different apps (Table 4). Note that data.flurry.com received
a notable mention in the slides of the BADASS program [15] for its identifier
leakage.

7.2 Traffic Clustering

Here we evaluate the adversary’s success in terms of unencrypted app traffic
ratio (GCC ratio) that he can link together in different settings. We follow the
analysis methodology explained in Section 5.2 and present clustering results
for 100 randomly selected combinations of 27 apps. We pick 27 apps since it is
the average number of apps used per month according to a recent survey [8].
Running 100 iterations with a different combination of (27) apps allowed us
to reduce the variance between different runs and account for all the studied
apps. We only consider apps that send at least one HTTP request and calculate
the GCC ratio based on the unencrypted traffic. For the top-popular apps in
interactive mode, these account for 69% of the apps. For simplicity, we will

data.flurry.com
ads.mopub.com
apps.ad-x.co.uk
alog.umeng.com
a.applovin.com
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(a) GCC ratio for the top-popularity apps,
shown for TCP stream and app session based
linking.

(b) GCC ratio for apps of different popularity
levels for interaction mode.

(c) GCC ratio for top-popularity apps, shown
for interaction and startscreen mode.

(d) GCC ratio for the top-popularity apps,
shown while using different privacy enhancing
tools.

(e) GCC ratio for the top-popularity apps,
shown for different network coverage levels of
a host based restricted adversary.

(f) GCC ratio for the top-popularity apps,
shown for different network coverage levels
of a packet based restricted adversary.
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present the clustering results for only one phone and a single run of each app.
The results from two phones did not have any significant difference.

Effect of using TCP timestamps for traffic linking. The left boxplot in
Fig. 3a, shows that when the adversary does not take TCP timestamps into
account (TCP stream based linking), he can cluster 25% of users’ unencrypted
traffic. However, by exploiting TCP timestamps he can increase the GCC ratio
to 57%.

Effect of app popularity Fig. 3b shows that popularity has a significant
impact on the linking success of the adversary. The most popular apps allow
the adversary to cluster 57% of the unencrypted traffic, while the apps from
the mid-popular and low-popular level result in a GCC ratio of 32% and 28%,
respectively.

Due to space constraints, we will only present results for the apps from the
top-popularity level in the rest of this section.

Effect of user interaction. Fig. 3c shows the GCC ratio for two different
experiment modes, interaction and startscreen. Although, the number of
identifiers sent in two modes are significantly different (577 vs. 337), the graph
shows a similar GCC ratio around 53% for two modes. A possible explanation
is that the identifiers that enable linking are already sent as soon as the app is
started.

Effect of countermeasures. Fig. 3d shows that both ad-blocking apps provide
a limited protection against linking of the app traffic. Using Adblock Plus leads
to an average linking of 50%. Disconnect Malvertising performs better, with a
GCC rate of 38%, reduced from 57%.

Restricted adversary. Fig. 3c shows that an adversary that can only intercept
traffic to 50% of the hosts can link up to 38% of the unencrypted mobile app
sessions. For the packet based restricted adversary model, we observe that an
adversary with a limited coverage of 25% of the user’s packets can still link 37%
of all app sessions together (Fig. 3d). In both models restricted adversary’s
success grows almost linear with his network coverage. Note that packet based
restricted adversary can link significantly more traffic than the host-based model
for the same network coverage ratio. This may be due to being able to observe
packets from more hosts which will allow to link apps across sessions.
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8 Limitations

Some apps may not be fully discovered by The Monkey, leading to an incomplete
view of the network traffic. Also, apps that require user logins may not be
sufficiently analyzed by our automated methodology. For those reasons, our
results should be taken as lower bounds.

While we assume that the smartphones can be distinguished by their TCP
timestamps, some middleboxes may interfere with user traffic. Firewalls, proxies
or cache servers may terminate outgoing HTTP or TCP connections and open a
new connection to the outside servers. Furthermore, end-user NAT devices may
have various configurations and hence behave differently compared to enterprise
NATs. In such cases, the adversary’s ability to link traffic by TCP timestamps
may be reduced.

We used rooted Android phones in our experiments. Although rooting the
phones may introduce changes in the observed traffic, we assumed the changes
to be minimal.

9 Conclusion

The revealed slides of the BADASS program have shown that unencrypted
mobile app traffic is exploited for mass surveillance. Identifiers sent in the clear
by the mobile applications allow targeting mobile users, linking of their traffic
and building a database of their online activities.

In this study, we evaluated the surveillance threat posed by a passive network
adversary who exploits mobile app traffic for surveillance purposes. We presented
a novel framework that automates the analysis of mobile app network traffic.
Our framework and methodology is designed to be flexible and can be used in
other mobile privacy studies with slight modifications.

Our results show that using TCP timestamps and unique identifiers sent in
the unencrypted HTTP traffic, a global adversary can cluster 57% of users’
unencrypted mobile app sessions. We demonstrated that a passive adversary
can automatically build a rule set that extracts unique identifiers in the observed
traffic, which serves as a “selector” list for targeting users.

Our results suggest that popular apps leak significantly more identifiers than
the less popular apps. Furthermore, while interacting with the app increases
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the number of leaked identifiers, solely starting an app amounts to the same
attack effectiveness.

We evaluated two countermeasures designed to block mobile ads and found that
they provide a limited protection against linking of the user traffic. Encrypting
mobile app traffic can effectively protect against passive network adversaries.
Moreover, a countermeasure similar to HTTPS Everywhere browser extension
can be developed to replace insecure HTTP connections of mobile apps with
secure HTTPS connections on the fly.
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Abstract. Location-sharing-based services (LSBSs) allow users
to share their location with their friends in a sporadic manner.
In currently deployed LSBSs users must disclose their location
to the service provider in order to share it with their friends.
This default disclosure of location data introduces privacy risks.
We define the security properties that a privacy-preserving LSBS
should fulfill and propose two constructions. First, a construction
based on identity based broadcast encryption (IBBE) in which
the service provider does not learn the user’s location, but learns
which other users are allowed to receive a location update. Second,
a construction based on anonymous IBBE in which the service
provider does not learn the latter either. As advantages with
respect to previous work, in our schemes the LSBS provider
does not need to perform any operations to compute the reply
to a location data request, but only needs to forward IBBE
ciphertexts to the receivers. We implement both constructions
and present a performance analysis that shows their practicality.
Furthermore, we extend our schemes such that the service provider,
performing some verification work, is able to collect privacy-
preserving aggregate statistics on the locations users share with
each other.

1 Introduction

The emergence of mobile electronic devices with positioning capabilities (e.g.
through the Global Positioning System, GPS), such as smartphones and
tablet computers, has fostered the appearance of a wide variety of Location
Based Services (LBSs). With these services, users can find nearby places of
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interest, share their location with friends, and obtain information about their
surroundings.

Location-sharing-based services (LSBSs) permit users to share their current
location or activity with other people. The shared location data may be in
the form of GPS coordinates, although in GeoSocial Networks (GSN), such
as Foursquare and Facebook-check-in, it is common that users announce their
location in a more socially meaningful way by providing the venue (e.g., name
of the restaurant) at which they are currently present. The action is commonly
referred to as check-in. Every day millions of users enjoy GSN and share millions
of locations with each other.3

While LSBSs are indeed useful, the disclosure of location data raises significant
privacy concerns. Service providers and other third parties with access to
accurate location data can infer private user information, such as their movement
patterns, home address, lifestyle and interests [26]. Further, making these
inferences is even easier if users share the venue rather than just submitting
coordinates, as any uncertainties introduced by possible inaccuracies in the
GPS coordinates are removed. We note that, although GSNs offer configurable
privacy settings [27], they are still privacy invasive, as the LSBS provider learns
the users’ location regardless of the privacy settings.

Location Privacy Preserving Mechanisms (LPPMs) that implement obfuscation
strategies, such as adding dummy locations [35] or reducing precision [31],
are unsuitable for LSBS. This is because, when transmitting an obfuscated
location to the service provider, the service provider naturally is only able
to forward this obfuscated location to the user’s friends. This conflicts with
the main functionality of LSBSs. Therefore, LPPMs have been proposed in
which users share keys allowing them to encrypt and decrypt their location
data [23,44]. In those solutions, the LSBS provider stores encrypted location
data and computes the reply for a user requesting location data of her friends.
A provider offering such an LSBS is unable to learn statistics about its users’
whereabouts. Consequently, this renders the common business model of offering
a free service in exchange for the users’ data impossible. An alternative is to
offer a paid service, but this might only be feasible if the fees are sufficiently
low.

In this paper we propose two schemes based on identity-based broadcast
encryption [21]. The first protocol reveals the identities of the friends that
should receive location information to the LSBS provider and also to the other
receivers of that location information. In the second protocol, those identities
are hidden towards the service provider as well as towards other users (including

3https://foursquare.com/about/
http://www.socialbakers.com/blog/167-interesting-facebook-places-numbers

https://foursquare.com/about/
http://www.socialbakers.com/blog/167-interesting-facebook-places-numbers
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the receivers of the location update), thanks to the use of anonymous identity-
based broadcast encryption. The advantage over existing work is that in our
schemes the LSBS provider does not need to perform complex operations in
order to compute a reply for a location data request, but only needs to forward
data. This reduces the cost of an LSBS provider that is then able to offer
its service for a lower price if pursuing a subscription-based business model.
Furthermore, we extend our schemes such that the service provider is able to
collect privacy-preserving statistics on the locations shared by the users. This
extension does require the LSBS provider to perform additional computations.
The obtained statistics could be monetized to compensate for this additional
overhead or to facilitate a free service.

We have implemented both schemes on a Samsung S III mini smartphone
and provide results on the computation time, bandwidth overhead and energy
consumption. Our evaluation shows that the performance of the first scheme
is independent of the number of users in the system. Furthermore, it imposes
minimal computational and bandwidth overhead on both, the LSBS provider
and the users’ mobile devices. In the second scheme a user is able to choose
a trade-off between privacy, computation and bandwidth overhead. We study
this trade-off and provide recommendations to increase the level of privacy for
the same amount of resources.

The remainder of this paper is structured as follows. In Section 2, we review
previous work on privacy-preserving location-based services and argue that
none of the existing approaches is suitable for implementing privacy-preserving
LSBSs. We define privacy-preserving LSBS in Section 3. In Section 4, we
introduce our two schemes. We provide a detailed performance analysis showing
the feasibility of our approach in Section 5. In Section 6, we extend our schemes
to allow for aggregate statistics collection. We discuss our approach and results
in Section 7. Finally, in Section 8 we conclude our work.

2 Related Work

In this section we review obfuscation-based LPPMs and argue that they are not
suitable for protecting location privacy in LSBS. Subsequently, we review LPPMs
that rely on cryptographic primitives. Some of them have been deliberately
designed for protecting location privacy in LSBS; others have a more general
purpose. Our evaluation shows that obfuscation-based LPPMs are not suitable
for privacy-preserving LSBS and that our system has several advantages over
existing privacy-preserving LSBS.
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Other works have examined location privacy in GSNs considering a different
threat model. Gambs et al. [27] and Vicente et al. [47] review several GSNs
and analyze their privacy issues. However, in their privacy evaluation, they do
not consider it to be a privacy breach if the service provider learns the user
locations. An analysis of the inferences that can be made about users based on
where they check-in while using Foursquare is provided by Pontes et al. [43].

2.1 Obfuscation-based LPPMs

While works like [23,44] have already noted that LPPMs based on anonymization
and precision-reduction are not suitable to protect location privacy in LSBS, we
provide here a more detailed evaluation. We therefore follow the categorization
in [46] which distinguishes between these four obfuscation strategies: location
hiding, perturbation, adding dummy regions, and reducing precision. In the
following we argue that none of these obfuscation-based LPPMs are applicable
to protect location privacy in LSBSs. We therefore consider the following LSBS
application scenario: A user A is currently at one of her favorite locations and
wishes to share this information with her friends. This could be either because
A simply wants to inform her friends, or to enable them to join her at this
place.

The location hiding strategy [5] consists of not sending the location data to the
LBS and is thus impractical. In this case user A would not be able to share her
location with her friends. Some LPPMs propose to change pseudonyms after
a period of location hiding [32,37]. However, this is also impractical, because
the check-in is supposed to be received by the same set of friends and therefore
identifies user A. LPPMs that rely on perturbation submit a location different
from A’s actual location [34]. As a rather inconvenient result, the user’s friends
learn a wrong place and if they decide to join their friend, they would realize
upon arriving that A is actually not present there. The adding dummy regions
strategy [35] consists of submitting fake locations along with the user’s actual
location. In this case A would check-in at several places and her friends could
not distinguish real from fake check-ins. Finally, with the reducing precision
strategy [31] A would send a cloak region that contains her current location,
but she would not reveal her precise whereabouts, making it extremely difficult
for her friends to find her. We note that with all obfuscation strategies, users
could rely on personal contact in order to obtain A’s precise location after
learning the obfuscated location. However, such a system would have significant
usability issues. The key limitation of these techniques is that they do not make
a distinction between information revealed to friends and to the service provider.
Thus, in order to protect their location information towards the service provider,
users must lower the quality of location information shared with their friends.
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2.2 Cryptographic LPPMs

Freudiger [25] proposes that users should use symmetric or asymmetric
encryption and use the service provider solely as a rendez-vous point to exchange
encrypted data. Longitude by Dong and Dulay [23] propose to use proxy-
encryption, which guarantees that the service provider is not able to learn
the location update and, furthermore, that the ciphertext can be modified by
the service provider such that only intended receivers are able to successfully
decrypt. Puttaswamy et al. [44] propose a scheme which combines encryption
with location transformation in order to build a location-based application, such
as privacy-preserving LSBS. As already mentioned in Section 1 the proposed
LPPMs impose a computational overhead at the LSBS provider, which makes
offering such a service more expensive. In our schemes the cost for the LSBS
provider is kept at a minimum in order to make running such a service as
cheap as possible. Furthermore, the service provider can decide to engage in
additional computation overhead and therefore obtain statistics about its users’
whereabouts. We note that this overhead is kept low since the service provider
only needs to forward data and verify zero-knowledge proofs, whose cost can be
reduced using batch verification. Note however that our scheme, in contrast to
the works mentioned above, introduces a trusted key generation center.

Carbunar et al. [17] propose privacy preserving protocols for badge and mayor
applications in GSNs. While this is closely related to our work, their scheme
does not allow users to exchange their locations.

In privacy-preserving friend nearby notification, users can privately learn
whether a friend is in close proximity. Such a service can be realized by
homomorphic encryption [49], private equality testing [41] and private threshold
set intersection [39]. These protocols are different from our solution, because
in privacy-preserving location sharing protocols, location updates are sent to
friends regardless of their current location, i.e. regardless of how close they are.

Bilogrevic et al. [6] propose two protocols to allow users to compute a fair
rendez-vous point in a privacy preserving manner. This differs from our work in
that we focus on location sharing, and not on deciding on where to meet after
a group of users has deliberately decided to do so.

Popa et al. [162] propose a privacy-preserving protocol to compute aggregate
statistics from users’ location updates. However, in this protocol users do not
share their location with other users.

Finally, some works employ Private Information Retrieval (PIR) so that the users
retrieve information (e.g., points of interest) related to their surroundings [30,42].
PIR could in principle be employed to build privacy-preserving LSBS. However,
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Figure 1: System Model of a privacy-preserving LSBS. The key generation
center sets up the public parameters and provides users with secret keys. The
service provider transfers messages between users.

PIR operations are rather costly at the service provider side which we again
argue that introduces intolerable overhead for a service provider.

3 Definition of Privacy for LSBS

Our LSBS involves the following parties: a key generation center, a service
provider P and a set of users Ui for i = 1 to n. Figure 1 shows the parties in
the system.

A privacy-invasive protocol that realizes the desired functionality works as
follows. A user Ui sends a message to the service provider that indicates the
place loc that Ui wishes to share, and the set S ⊆ [1, n] of users Uj (j ∈ S)
that should learn that Ui shares loc. Then the service provider forwards to
users Uj ∈ S the message (Ui, loc) to inform them that Ui has shared loc. As
can be seen, this protocol is privacy-invasive. The service provider learns the
location loc that Ui shares, and the identities of the users Uj (j ∈ S). The
privacy properties that our LSBS should fulfill are the following:

Sender Privacy. No coalition of users U /∈ S and service provider P should
learn any information on loc.
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Receiver Privacy. No coalition of users Uj such that j 6= {i, j∗} and service
provider P should learn any information on whether j∗ ∈ S or j∗ /∈ S.

Our schemes in Section 4 are secure against active adversaries, i.e., adversaries
that deviate in any possible way form the protocol execution. The security of our
schemes relies on the security of identity based broadcast encryption. The key
generation center is trusted, which is an assumption that every identity-based
cryptographic scheme makes.

4 Constructions of LSBS

Our schemes are based on identity-based broadcast encryption, which we describe
in Section 4.1. In Section 4.2, we describe the sender private scheme, which
fulfills the sender privacy property. In Section 4.3, we describe the fully private
scheme, which fulfills both the sender privacy and the receiver privacy properties.

4.1 Identity-Based Broadcast Encryption

Broadcast encryption allows a sender to encrypt a message m to a set of receivers
S ∈ [1, n], so that no coalition of receivers not in S can decrypt. A broadcast
encryption scheme consists of the following algorithms:

Setup(1λ, n, `). On input the number of users n, the security parameter 1λ, and
the maximum size ` ≤ n of a broadcast recipient group, output the public
key pk and the secret key sk.

KeyGen(i, sk). On input an index i and the secret key sk, output a secret key
di for user Ui.

Enc(pk, S,m). On input the recipient group S ∈ [1, n], the public key pk and
the message m, output the ciphertext c.

Dec(pk, di, c). On input the public key pk, the secret key di of user Ui and a
ciphertext c, output m if i ∈ S or else the failure symbol ⊥.

In IBBE, a trusted key generation center KGC creates the parameters and
computes the secret keys of the receivers. Note that the secret key sk allows the
decryption of every ciphertext. If ciphertexts c do not reveal the set of receivers
S, the broadcast encryption scheme is anonymous.
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4.2 Sender-Private LSBS

Our sender-private LSBS (SPLS) uses an IBBE scheme that is not anonymous.
In such a scheme, ciphertexts c contain a description of the recipient group S .
Our scheme works as follows:

Setup Phase. KGC executes the setup algorithm Setup(1λ, n, `) on input the
security parameter 1λ, the number of users n and the maximum size ` ≤ n,
publishes the public key pk and stores the secret key sk. Users obtain pk.

Registration Phase. Each user Ui registers with the service provider by
sending the index i. Additionally, Ui receives the key di from KGC, which
runs KeyGen(i, sk).

Main Phase. To share a location loc, a user Ui runs c ← Enc(pk, S, i||loc) and
sends c to the service provider P. P gets S from c and sends c to the
users Uj (j ∈ S). Each user Uj runs Dec(pk, dj , c) to output the message
i||loc.

We note that the registration and main phases can be interleaved, i.e., users
can join our SPLS dynamically.

Our scheme fulfills the sender privacy property. The IBBE scheme ensures that
no coalition of service provider P and users U /∈ S can decrypt a ciphertext c
computed on input S. However, this scheme does not fulfill the receiver privacy
property. Since the IBBE scheme is not anonymous, the ciphertext c reveals
the identity of the receivers Uj (j ∈ S).

Construction of IBBE

In Section 5, we instantiate our SPLS with a broadcast encryption scheme in
order to implement it and evaluate its performance. Broadcast encryption was
first formalized by Fiat and Naor [24]. The first fully collusion secure broadcast
schemes, i.e., schemes where security holds even if all the users not in the
recipient group S collude, were described in [40]. The first public key broadcast
encryption scheme was proposed in [22].

In the schemes mentioned above, the size of the ciphertext grows linearly with
the size of the recipient group. Boneh, Gentry and Waters [9] proposed the first
schemes with constant size ciphertexts. Their schemes have selective security,
i.e., the adversary should decide the target recipient group to be attacked before
the setup phase. Identity-based broadcast encryption was proposed in [21],
which describes also selectively secure schemes.
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Broadcast encryption and identity-based broadcast encryption with adaptive
security was first achieved in [28]. These schemes achieve constant size
ciphertexts in the random oracle model and under q-based assumptions. In [48]
and [36], broadcast encryption schemes secure under static assumptions are
proposed. In [36], an identity-based broadcast encryption scheme secure under
static assumptions is also proposed, but it only achieves selective security.

The main property of identity-based broadcast encryption is that the scheme
is efficient when the total number of users n is exponential in the security
parameter 1λ. Since our SPLS could have millions of users, schemes that,
despite having constant size ciphertexts, have public key or user secret keys of
size that grows linearly with n are less suitable. Therefore, we instantiate our
SPLS with the adaptively secure identity-based broadcast encryption in [28].
This scheme, which is secure in the random oracle model, in addition to constant
size ciphertexts, has a public key of size independent of n that grows linearly
with ` and user decryption keys di of constant size. The scheme in [28] employs
bilinear maps.

Bilinear maps Let G, G̃ and Gt be groups of prime order p. A map e :
G× G̃→ Gt must satisfy bilinearity, i.e., e(gx, g̃y) = e(g, g̃)xy; non-degeneracy,
i.e., for all generators g ∈ G and g̃ ∈ G̃, e(g, g̃) generates Gt; and efficiency, i.e.,
there exists an efficient algorithm BMGen(1k) that outputs the pairing group
setup (p,G, G̃,Gt, e, g, g̃) and an efficient algorithm to compute e(a, b) for any
a ∈ G, b ∈ G̃. If G = G̃ the map is symmetric and otherwise asymmetric.

Let (E,D) be a secure symmetric key encryption scheme. The scheme in [28]
works as follows:

Setup(1λ, n, `). On input the number of users n, the security parameter 1λ,
and the maximum size ` ≤ n of a broadcast recipient group, run (p,G,
Gt, e)← BMGen(1λ). Set g1, g2 ← G. Set α, β, γ ← Zp. Set ĝ1 ← gβ1 and
ĝ2 ← gβ2 . Set pk = (p,G,Gt, e, n, `, gγ1 , g

γ·α
1 , {gαj1 , ĝα

j

1 , gα
k

2 , ĝα
k

2 : j ∈ [0, `],
k ∈ [0, `− 2]}). Output pk and the secret key sk = (α, γ).

KeyGen(i, sk). On input an index i and the secret key sk, pick random ri ← Zp
and output

di = (i, ri, hi = g
γ−ri
α−i

2 )

Enc(pk, S,m). On input the recipient group S ∈ [1, n], the public key pk and
the message m, set τ ← {0, 1}O(λ). Set F (x) as the (` − 1)-degree
polynomial that interpolates F (i) = H(τ, i) for i ∈ S and F (i) = 1 for
i ∈ [n + j] with j ∈ [k + 1, `], where H : {0, 1}O(λ) × [1, n] → Zp is a
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hash function modelled as a random oracle. Set k = |S| and parse S as
{i1, . . . , ik}. Set ij ← n + j for j ∈ [k + 1, `]. Set P (x) =

∏`
j=1(x − ij).

Set t ← Zp and set K ← e(g1, ĝ2)γ·α`−1·t. Set Hdr ← 〈C1, . . . , C4〉 =
〈ĝP (α)·t

1 , gγ·t1 , g
F (α)·t
1 , e(g1, ĝ2)α`−1·F (α)·t〉. Compute C ← E(K,m) and

output c = (τ,Hdr, C, S).

Dec(pk, di, c). On input the public key pk, the secret key di and a ciphertext c,
parse di as 〈i, ri, hi〉, c as (τ,Hdr, C, S) and Hdr as 〈C1, . . . , C4〉. Define
P (x) as above and compute F (x) from τ as above. Set

Pi(x) = x`−1 − P (x)
(x− i) , Fi(x) = F (x)− F (i)

(x− i) ,

and ei = − ri
F (i)

and
K ← e(C1, hi · gei·Fi(α)

2 ) · e(C2 · Cei3 , ĝ
Pi(α)
2 )/Cei4 .

Output m ← D(K,C).

We note that a user of LSBS usually shares her location with the same recipient
group, i.e., with her friends. Therefore, broadcast encryption is used to share a
symmetric key with that recipient group, and messages are encrypted using an
efficient symmetric key encryption scheme. Broadcast encryption is used again
only when the recipient group changes or when the symmetric key should be
renewed for security reasons.

4.3 Fully-Private LSBS

Our fully-private LSBS (FPLS) uses an anonymous IBBE scheme. In such
scheme, ciphertexts c do not reveal the recipient group. The setup and
registration phases of this scheme work as the ones described in Section 4.2.
The main phase works as follows:

Main Phase. To share a location loc, a user Ui runs c ← Enc(pk, S, i||loc) and
sends c to the service provider P . P forwards c to every user Uj such that
j 6= i. Each user Uj runs Dec(pk, dj , c) to get either the message i||loc or
⊥.

As in the construction in Section 4.2, this scheme fulfills the sender-private
property. Additionally, this scheme fulfills the receiver privacy property. Since
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the IBBE scheme is anonymous, the ciphertext c does not reveal the identity of
the receivers Uj (j ∈ S).

This construction requires location updates to be broadcast to all users.
Therefore, we propose a variant that allows to trade-off communication
efficiency and location-privacy. In this variant, the map is divided into regions
reg1, . . . , regr and users reveal to the service provider the region where they are
located and the region from where they would like to receive location updates.

Region Phase. A user Ui sends to the service provider the region to which
location updates she wishes to receive should be associated.

Main Phase. To share a location loc ∈ reg, a user Ui runs c ← Enc(pk, S, i||loc)
and sends (c, reg) to the service provider P . P forwards c to every user Uj
such that j 6= i and reg equals the region sent by Uj in the Region Phase.
Each user Uj runs Dec(pk, dj , c) to get either the message i||loc or ⊥.

Construction of Anonymous IBBE

In Section 5, we instantiate our FPLS with an anonymous broadcast encryption
scheme in order to implement it and evaluate its performance. Barth et al. [4]
propose an anonymous broadcast encryption scheme secure in the random oracle
model where the ciphertext size is O(S). The public key size is O(n), while
user secret keys and decryption time are constant. Libert et al. [38] proposed
a scheme with the same asymptotic performance but secure in the standard
model.

Recently, a scheme with public key size O(n), secret key size O(n), ciphertext
size O(rlog(nr )), where r is the set n − S, and constant decryption time was
proposed in [1]. Despite the fact that in this scheme ciphertexts do not grow
linearly with n, actually O(rlog(nr )) is asymptotically larger than O(n− r) for
large values of r, which are likely in our FPLS. Furthermore, the scheme in [1]
does not provide anonymity with respect to users who are able to decrypt, i.e.,
those users can find out the identity of the other users who can decrypt.

We modify the scheme in [4] so that it employs as building block an anonymous
identity-based encryption scheme instead of a key-private public key encryption
scheme. This allows users to employ their identities as public keys. Such
modification was suggested in Barth et al. [4] and security follows from the
security of the original scheme.

An identity-based encryption (IBE) scheme consists of the algorithms (IBESetup,
IBEExtract, IBEEnc, IBEDec). The algorithm IBESetup(1λ) outputs parameters
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params and master secret key msk. IBEExtract(params,msk, id) outputs the
secret key skid for identity id. IBEEnc(params, id,m) outputs ct encrypting m
under id. IBEDec(params, skid , ct) outputs message m encrypted in ct.

An IBE scheme is anonymous [2] if it is not possible to associate the identity
used to encrypt a message m with the resulting ciphertext. We employ the
scheme in [8], which is anonymous [10], to implement the anonymous broadcast
encryption scheme.

Another building block of the anonymous IBBE scheme is a strongly existentially
unforgeable signature scheme. A signature scheme consists of algorithms (Kg,
Sign,Vf). Kg(1λ) outputs a key pair (ssk, vsk). Sign(ssk,m) outputs a signature
s on message m. Vf(vsk, s,m) outputs accept if s is a valid signature on m and
reject otherwise. We employ the scheme secure in the random oracle model
proposed in [7].

The remaining building block is a secure symmetric key encryption scheme
(E,D). We employ the advanced encryption standard [20]. The anonymous
IBBE scheme works as follows.

Setup(1λ, n, `). Choose a group G of primer order p where CDH is hard and
DDH is easy and pick a generator g ∈ G. Choose a hash function
H : G→ {0, 1}λ which is modeled as a random oracle. Compute params
and msk via IBESetup(1λ). For i = 1 to n, pick random ai ← Zp. Output
Output pk = (G, g, ga1 , . . . , gan , H, params) and sk = (msk, a1, . . . , an).

KeyGen(i, sk). On input an index i and the secret key sk, compute a secret key
ski ← IBEExtract(params,msk, i). Output di = (ski, ai).

Enc(pk, S,m). On input the recipient group S ∈ [1, n], the public key pk and
the message m, execute the following steps.

1. Compute (ssk, vsk)← Kg(1λ).
2. Pick a random symmetric key K.
3. Pick random r ← Zp and set T = gr.
4. For each tuple (i, gai) ∈ S, set the ciphertext

ci ← H(gair)||IBEEnc(params, i, vsk||gair||K).
5. C1 is the concatenation of all ci ordered by the values of H(gair).
6. Compute C2 = EK(m).
7. Sign s ← Sign(ssk, T ||C1||C2).
8. Return the ciphertext C = s||T ||C1||C2.
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Dec(pk, dj , c). On input the public key pk, the secret key dj and a ciphertext
c, execute the following steps.

1. Calculate l = H(T aj ).
2. Find cj such that cj = l||c for some cj in C1.
3. Calculate p← IBEDec(params, skj , cj).
4. If p is ⊥, return ⊥.
5. Parse p as vsk||x||K.
6. If x 6= T aj , return ⊥.
7. If Vf(vsk, s, T ||C1||C2) outputs accept, then output m = DK(C2) else
⊥.

We remark that, if the user is not in the recipient group and therefore she
cannot decrypt, the decryption algorithm only requires the computation of a
hash function.

5 Performance Analysis

Location-sharing-based applications are usually run on a mobile device, such as a
smartphone or a tablet computer. Therefore, the available resources at the client
side are limited in terms of computational power and bandwidth when on mobile
connection. Furthermore, mobile devices usually have a rather low battery
capacity. Thus an application must use the CPU or mobile communication
interfaces, such as WiFi or 3G, as moderate as possible in order not to drain
the battery too much. In order to evaluate the overhead of our schemes, we
implemented them in the C programming language using the Pairing-Based
Cryptography4 (PBC) library. Subsequently, we imported the schemes within
Android application using Android’s Native Development Kit5 (NDK) and
tested the application on a Samsung S III mini (1 GHz dual-core CPU) which
runs the CyanogenMod6 operating system.

In the following we provide the additional overhead imposed by our schemes.
This overhead is due to the computation of cryptographic operations and due
to the transmission of key material and ciphertexts. Mobile applications for
LSBSs, such as Foursquare, are used on a large user base and the overhead
imposed by these services is accepted in practice.

4http://crypto.stanford.edu/pbc/
5https://developer.android.com/tools/sdk/ndk/index.html
6http://www.cyanogenmod.org/

http://crypto.stanford.edu/pbc/
https://developer.android.com/tools/sdk/ndk/index.html
http://www.cyanogenmod.org/
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For the energy consumption of our schemes, we measure the different current
consumption of the phone when the CPU is idle and when the CPU load of
one core is at the maximum. We found that the difference is 150 mA at 3.8
V and thus that the power consumption is 570 mW if one CPU core is at full
load. Please note that we could not use PowerTutor7 to estimate the energy
consumption of our schemes, because PowerTutor was designed for a Nexus 1
mobile phone. Although PowerTutor does also run on our Samsung S III mini,
the energy measurements are likely to be inaccurate, because both phones have
a different CPU and we found that PowerTutor is unable to read the traffic
sent and received on our phone. For the runtime estimation of our schemes, we
executed our protocols 50 times and computed the average. Multiplying the
runtime with the power consumption equals to the energy consumption of our
schemes.

The energy consumption of data transmission via a mobile interface, such as
WiFi and 3G, turns out to be significantly more difficult. This is because
the actual energy consumption for sending and receiving data depends on
many factors, such as amount of data, time between two consecutive data
transmissions and network reception. We therefore use Balasubramanian et
al. [3] work to outline ways to minimize the energy consumed by our schemes.

5.1 Evaluation of the Sender-Private LSBS

The complexity of the Gentry and Waters [28] scheme that we employ for our
SPLS only depends on the size of the maximal broadcast group l. This means
that for a given l, the computational and bandwidth overhead for computing
the symmetric key stays constant, regardless of n (the number of users in the
system) or k (actual receiver of a broadcast message). We therefore limit our
evaluation to the system parameter l.

As we can see in Figure 2a the time for creating the symmetric key increases
polynomially with l. For a reasonably large l, such as 100, our phone needs 8.66
seconds to compute the symmetric key in the encryption protocol and 7.42 in
the decryption protocol. While this appears to be rather high, we must stress
that a user is able to reuse a symmetric key until the broadcast group changes
or the key got compromised. Therefore, a single symmetric key can be used
for thousands of location shares. Furthermore, as we can see in Figure 2b, the
actual energy consumed for computing a symmetric key is 4.94 Joule for the
encryption protocol and 4.23 Joule for the decryption protocol, which is very
low. The capacity of the standard battery of a Samsung S III mini (3.8 V and

7http://powertutor.org/

http://powertutor.org/
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1500 mAh) is 20520 Joule and therefore computing even dozens of symmetric
keys per day would not drain the battery too much.

We show the bandwidth overhead of the FPLS in Figure 2c. For creating a
new symmetric key a user needs to send 788 byte of data to the receiver of
the broadcast group. Please note that even for k > 1 the user only needs to
send 788 byte instead of k× 788 byte, because the service provider forwards the
traffic to the intended receivers. The public key of our scheme grows linearly in l.
However, please note that the public key only needs to be sent very rarely. This
is when a user signs up for the service, the new user receives the public key from
the service provider, and if the service provider decides to increase/decrease
the size of the maximal broadcast group and thus changes the parameter l. In
those cases, all the users in the system receive the new public key.
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Figure 2: Runtime, energy consumption and bandwidth overhead of the SPLS
for increasing l and fixed n = 1000 and k = 5.

5.2 Evaluation of the Fully-Private LSBS

In the following we will first show that the computational overhead that is
imposed by the FPLS is feasible for current mobile devices. Subsequently we
will show that the FPLS imposes a significant bandwidth overhead. This is a
problem for two reasons. Firstly, data plans usually include a fixed data volume
to be transmitted before either the speed of the connection gets throttled or
additional costs incur. Secondly, using mobile communication interfaces, such as
3G or WiFi, is expensive in terms of energy and therefore sending and receiving
higher amounts of data additionally drains the battery. However, we make
several suggestions on how our protocol should be deployed to significantly
reduce the energy consumption, although the transferred data volume remains
the same. Furthermore, as introduced in Section 4.3, the concept of big regions
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greatly helps in making the FPLS feasible. We therefore consider the FPLS as
a protocol which allows a very broad-ranged trade-off between location privacy
and performance for users that do not wish to reveal their friendship graph. At
the one extreme a very high level of location privacy is possible if the user is
willing to spend the necessary resources. On the other extreme a user reveals
accurate location information towards the service provider and thereby decreases
the amount of data that is received.

As we can see in Figure 3a, the computation and energy overhead for encryption
grows only linearly in k and is therefore lower than in the SPLS. Figure 3b
shows that the overhead for decryption is about two magnitudes lower than in
the SPLS. Furthermore, Figure 3b shows the computation and energy overhead
for fail-decryptions. These are the resources a user needs to spend in order to
determine that a location update is actually not for her. Recalling the battery
capacity of 20520 Joule, we can see that in terms of computational overhead
the FPLS allows for sharing multiple locations per day and receiving thousands
of location updates.

As already mentioned the main drawback of the FPLS is the data a user receives
due to flooding. Figure 3c shows the lengths of a ciphertext as k increases.
In [17], the authors state that the very majority of users has less than 100
friends. Therefore, we can assume most ciphertexts to have a length of at most
60 kB. If an LSBS would have 1 million users, this would result in approximately
106 × 60kB = 57.22 GB of data every user receives per day. Clearly, this is
not feasible. However, choosing a big region such that only 0.01% of all the
world-wide location updates are received results in a bandwidth overhead of
5.86 MB per day.

The energy that is consumed for receiving data can be optimized with two
measures. Firstly, receiving data via the WiFi interface consumes significantly
less energy than receiving the same amount of data via 3G interface [3] (§ 3.6).
For example receiving 500 kB of data via 3G consumes around 19 Joule and only
5 Joule via WiFi. Secondly, as noted in [3] (§ 3.6.1), the energy consumption
strongly depends on the inter-transfer time between downloads. For example,
receiving 50 kB transmissions with inter-transfer time 1 second consumes
around 5 Joule, while it consumes 10 Joule if the inter-transfer time is 9
seconds. We therefore suggest: (i) to receive most of the traffic when a WiFi
connection is available; (ii) that the service provider caches location updates
for a certain period and sends them all at once in order to have few but large
data transmissions to the users.
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Figure 3: Runtime, energy consumption and bandwidth overhead of the FPLS
for increasing k and fixed n = 1000.

6 LSBS with Aggregate Statistics Collection

In our scheme, the service provider acts as a channel between users. The
service provider relays messages between the sender and the receivers, but
learns nothing about the content of the messages sent. The business model of
currently deployed LSBS relies on learning user check-ins. Service providers use
that information in order to, e.g., give recommendations on most visited places
and give discounts to users that check-in a number of times at a particular
location.

We describe how our scheme can be extended to allow the service provider to
collect aggregated data on how many times users visit each of the locations. In
this extension, each time a user checks-in, the user increases a committed counter
for that location. This committed counter is hidden from the service provider.
However, after a number of check-ins, the user can choose to disclose the counter
of one of the locations in order to, e.g., get a discount. The commitment ensures
that the user cannot cheat and open the committed counter to a different value.

We note that, in currently deployed LSBS, users can check-in at a certain
location without being present at that location. The countermeasure against
that is that the wrong location disclosed to the service provider is also disclosed
to the user’s friends, which can cause annoyance.

Our extension provides the same countermeasure. Using zero-knowledge proofs,
the user proves to the service provider that the location shared with her friends
equals the location whose committed counter is increased. In order to do
that, we make the following modification in our scheme. Instead of employing
symmetric key encryption to encrypt the location message, we employ public
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key encryption. The key output when decrypting the broadcast encryption
ciphertext is an ElGamal private key, while the corresponding public key is
transmitted along with the broadcast encryption ciphertext.

In [17], a scheme that employs hardware devices at the physical location in order
to ensure that users can check-in only if they are at the location is proposed.
It is also possible to extend our scheme with hardware devices to achieve that
property.

We note that the total number of locations where a user can check-in is usually
large. The user should maintain a committed counter for each of the locations
and, at each check-in, increment it without disclosing the location or the value
of the counter, yet proving that the location equals the location shared with
her friends. If we employ Pedersen commitments, this operation would have a
cost linear on the total number of locations, which would make it impractical.
In order to have a cost independent of the total number of locations, we employ
P-commitments [33], which are based on vector commitments.

6.1 Cryptographic Building Blocks

We recall the notation for zero-knowledge proofs and the definitions of P-
commitments in [33].

Zero-Knowledge Proofs of Knowledge

We employ of classical results for efficient zero-knowledge proofs of knowledge
(ZKPK) for discrete logarithm relations [11,12,16,18,19,45]. In the notation
of [14], a protocol proving knowledge of exponents w1, . . . , wn satisfying the
formula φ(w1, . . . , wn) is described as

Kw1, . . . , wn : φ(w1, . . . , wn) (1)

Here, we use the symbol “ K” instead of “∃” to indicate that we are proving
“knowledge” of the exponents, rather than just its existence. The formula
φ(w1, . . . , wn) consists of conjunctions and disjunctions of “atoms”. An atom
expresses group relations, such as

∏k
j=1 g

Fj
j = 1, where the gj are elements of

prime order groups and the Fj ’s are polynomials in the variables w1, . . . , wn.

There exist practical zero-knowledge proofs for the types of relations required
in our protocols. We refer to Camenisch et al. [13, 15] for details.
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Extended zero-knowledge formulas A proof system for (1) can be transformed
into a proof system for the following more expressive statements about secret
exponents (wi)i = sexps and secret bases (gi)i = sbases:

Ksexps, sbases : φ(sexps, bases ∪ sbases) (2)

The transformation uses a blinded base g′i = gihρi for every gi. It adds h and all
g′i to the public bases, ρi to the secret sexps, and rewrites gFji into g′i

Fjh−Fjρi

for all i, j. Finally, we observe that the proof system supports pairing product
equations

∏k
j=1 e(gj , g̃j)Fj = 1 in groups of prime order |G| with a bilinear

map e : G × G̃ → Gt, by treating the target group as the group of the proof
system—we focus on the special case of i = j for simplicity: the embedding
for secret bases is unchanged, except for the case in which both bases in a
pairing are secret. In the latter case, e(gj , g̃j)Fj needs to be transformed into
e(g′j , g̃′j)Fje(g′j , h̃)−Fjρje(h, g̃′j)−Fj ρ̃je(h, h̃)−Fjρj ρ̃j .

Macro notation for zero-knowledge statements We use a macro language
to specify named proof components that can be reused as sub-components of
larger proofs. For example, we may define a proof macro for the long division
of a by q as follows: Div(a, q) 7→ (b) ≡ Ka, q, b, r : a = b ∗ q + r ∧ r < b ∧ 0 ≤
a, b, q, r ≤

√
|G| ∧ b > 1. Semantically, the function Div states that the division

of a by q gives b with remainder r. Secret a is interpreted as an initial value
and secret b as a new value. In terms of cryptography, it is simply syntactic
sugar, but important sugar as demonstrated by the long list of side conditions
to guarantee a unique positive solution modulo the order of G. Proving these
inequalities is itself non-trivial and could be further expanded using macros.

Named proof components can be used in further higher-level proofs without
their details being made explicit. For example, the proof K. . . , a, q, b : · · · ∧ b =
Div(a, q) can from now on be used in proof expressions instead of the complex
restrictions above. All variables within the component declaration (e.g., variables
a, q, b in Div(a, q) 7→ (b)) can be re-used in the high level proof. Variables
whose knowledge is proved, but that are not in the declaration, are considered
inaccessible to the higher-level proof.

P-commitments

A vector commitment scheme allows Alice to succinctly commit to a vector
x = 〈x1, . . . , xn〉 ∈ Mn such that she can compute an opening w to xi and can
replace xi by a new value x′i by updating her commitment, such that both w
and the update value is of size independent of i and n. A vector commitment
scheme consists of the following algorithms.
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Setup(1k, `). On input the security parameter 1k and an upper bound ` on the
size of the vector, generate the parameters of the commitment scheme par ,
which include a description of the message spaceM and a description of
the randomness space R.

Commit(par ,x, r). On input a vector x ∈ Mn (n ≤ `) and r ∈ R, output a
commitment com to x.

Prove(par , i,x, r). Compute a witness w for xi.

Verify(par , com, x, i,w). Output accept if w is a valid witness for x being at
position i and reject otherwise.

Update(par , com, i, x, r, x′, r′). On input a commitment com with value x at
position i and randomness r, output a commitment com′ with value x′ at
position i and randomness r′. The other positions remain unchanged.

A commitment scheme must be hiding and binding. The hiding property requires
that any probabilistic polynomial time (p.p.t.) adversary A has negligible
advantage in guessing which of two vectors x of values of its choice has been
used to compute a challenge commitment. The binding property requires that
any p.p.t. adversary A has negligible advantage in computing a vector x of
length n, randomness r, a value x, a position i ∈ [1..n] and a witness w such
that x[i] 6= x but the commitment com ← Commit(par ,x, r) can be opened to
x at position i using w.

A P-commitment scheme is a secure vector commitment scheme that supports
three ZKPKs.

Create. A proof of correct commitment generation that proves knowledge
of (x, r) such that Commit(par ,x, r) = com. We call the proof macro
Create(x) → (com, r, (wi)i) as it proves that a P-commitment was
correctly initialized to the vector x. The prover can then use this
commitment in subsequent proof steps. To simplify our macro notation,
we use M = (com, r, (wi)i) as a shorthand for the collection of com, r,
and different wi values and refer to it as the memory of a P-commitment
proof.

Get. A proof of a witness w that a value x was committed to in com at position
i.

Get(M, i)→ (x) ≡

Kx, i,w :

Verify(par , com, x, i,w) = accept ∧ i ∈ [1, n]
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Set. A proof that a commitment com′ is an update of commitment com at
position i. This proof is slightly more involved because it requires the
prover to prove knowledge of the old vector value for the updated position
to bind the old and the new commitment together:

Set(M, i, x′)→ (M ′) ≡

Kx[i], x′, i, r, r′,w :

com′ = Update(par , com, i,x[i], r, x′, r′) ∧

Verify(par , com,x[i], i,w) = accept ∧ i ∈ [1, n]

6.2 Construction

As mentioned above, in this extension the location message m is encrypted
using an ElGamal encryption c = (c1, c2) = (yr · m, gr), where y = gx is
the public key and x is the secret key. The secret key is encrypted in the
broadcast encryption ciphertext, while the public key is transmitted along with
the broadcast encryption ciphertext. We employ a zero-knowledge proof of
knowledge of m encrypted to in c:

Km, t : e(c1, g) = e(m, g) · e(t, g) ∧ e(t, g) = e(y, c2)

In our scheme, the indices (i1, . . . , in) of the committed vector will be the
locations, and n is the total number of locations. We note that the schemes
proposed in [33] to implement P-commitments employ a structure preserving
signature (SPS) scheme to sign together an index i with the generator gi
for position i in the parameters of the commitment scheme. SPS sign group
elements, and therefore we can prove in zero-knowledge equality between the
location message m encrypted in c and the index i of the P-commitment. Sender
and receivers employ a table or a hash function to map a location to an element
of group G.

In the registration phase, the service provider executes Setup(1k, `), where ` is
the number of locations, and sends par to the users. Then, each user creates a
vector x = (0, . . . , 0) of size `, picks r ∈ R and runs Commit(par ,x, r) to get
com. The user sends com to the service provider, along with a proof

Kx : Create(x)→ (M) ∧ x = (0, . . . , 0)

where M = (com, r, (wi)i). This proof initializes the counters for each of the
locations to 0 and can be done very efficiently in the P-commitment schemes
in [33].
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In the main phase, when a user sends a broadcast ciphertext to the service
provider for location i encrypted in ciphertext (c1, c2), the user sets x[i]′ =
x[i] + 1, picks random r′ ∈ R and runs Update(par , com, i,x[i], r,x[i]′, r′) to get
com′. The user sends com′ to the service provider, along with a proof

Ki, t,x[i],x[i]′ :

e(c1, g) = e(i, g) · e(t, g) ∧ e(t, g) = e(y, c2)∧

Set(M, i,x[i]′)→ (M ′) ∧ x[i]′ = x[i] + 1

The user proves that she increments the committed counter for the same location
in the message encrypted in c. We recall that the cost of this proof is independent
of the number of locations. When the service provider receives the broadcast
encryption ciphertext, the ElGamal ciphertex and public key, the commitment
com′ and the proof, the provider verifies the proof. If it is correct, then the
provider replaces the stored com by com′ and sends the broadcast encryption
ciphertext and the ElGamal ciphertext and public key to the receivers. The
receivers decrypt first the broadcast encryption ciphertex to get the ElGamal
secret key, which is used to decrypt the ElGamal ciphertext and get the sender’s
location.

When a user wishes to open the counter corresponding to one of the locations,
she can use algorithm Prove(par , i,x, r) to compute a witness w for location i
and send (x[i], i,w) to the provider. The service provider runs Verify(par , com,
x[i], i,w) and accepts the value of the counter x[i] if the verification is successful.
Alternatively, the user can also prove statements about the committed counter
in zero-knowledge, e.g., prove that the counter has surpassed a threshold that
entitles her to receive a discount. The proof Get is employed for this purpose.

The security of this extension relies on the security of P-commitments. The
hiding property, along with the zero-knowledge property of proofs of knowledge,
ensures that the service provider does not learn the values of the committed
counters or the locations whose counters are increased. Additionally, the binding
property of P-commitments and the extractability of proofs of knowledge ensure
that the committed counters are updated correctly and that they cannot be
opened to a wrong value.

7 Discussion

The computation overhead of the SPLS is mainly due to the creation of a
symmetric key. An actual location sharing operation is then encrypted using
a fast encryption scheme, such as AES. While we note that the symmetric
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key of the SPLS can be reused for many location sharing operations, we argue
that even computing several symmetric keys per day is feasible. Firstly, as
our evaluation shows computing symmetric keys consumes very little energy
and can thus be done several times without draining the battery. Secondly,
since modern smartphones have multi-core processors embedded, one core can
be occupied for creating a symmetric key while the phone is still usable for
other operations, such as email checking or surfing the web. All in all we thus
argue that on the user side our scheme imposes negligible overhead to the user’s
device.

The FPLS on the other hand imposes a significant bandwidth overhead. However,
we note that it is to the best of our knowledge the only scheme that allows a
user to hide her friends without relying on proxies, such as in [44]. It does so
by offering a privacy/performance trade-off, which has been proposed before in
schemes for privacy-preserving LSBS [44]. Note that the FPLS is not vulnerable
to velocity-based attacks [29] for two reasons. Firstly location updates happen
sporadically and not continuously and hence big regions are much harder to
correlate. Secondly, and more importantly, the big regions are much bigger
than in k-anonymity schemes, such as [31].

We note that our schemes are also suitable to implement other services, such
as social recommendation applications. This is because in practice users can
share arbitrary information in the ciphertext. Instead of encrypting location
information, users could share their reviews, such as how they like the food in
a particular restaurant. Furthermore, the low overhead of the SPLS and the
strategy of reusing symmetric keys would allow to use the scheme for location
tracking applications. Such applications require rather frequent location updates
instead of sporadic ones, which is usually the case for check-in applications.
Furthermore, we note that our schemes are more efficient than a unicast
solution in which every user sends an encrypted location update to each of her
friends. This is because in our schemes the user only needs to transmit the
encrypted location update to the service provider that is then forwarding it to
the recipients or all users of the service, respectively. This consumes significantly
less bandwidth and also less energy than in the unicast solution.

Although in the setup routine of the SPLS, as well as the FPLS, the service
provider initially needs to commit to a maximal number of users n, we note
that even if there are more than n users in the service, the service provider does
not need to re-initialize the service. In the SPLS, n is only used for checking
that l ≤ n. This condition, however, is maintained if it was true before and
n increases. In the FPLS, the scheme’s public key can be extended, because
the gai with i > n can be computed when necessary and distributed among all
users of the service.
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Besides location-sharing, badge and mayorship protocols are another main
functionality of a GSN. For the latter privacy preserving protocols have been
proposed in [17]. We note that it would be possible to combine both approaches
to build a privacy-preserving GSN.

8 Conclusions

We have defined the privacy properties that an LSBS should provide and
we have proposed two LSBS based on identity-based broadcast encryption.
Both constructions allow a user to share her location with her friends without
disclosing it to the service provider. The first construction discloses to the
service provider the receivers of a location update, while the second does not.
As advantages from previous work, in our schemes the LSBS provider does not
need to perform complex operations in order to compute a reply for a location
data request, but only needs to forward IBBE ciphertexts to the receivers.
This allows to run a privacy-preserving LSBS at significantly lower costs. We
implement both constructions and present a performance analysis that shows
their practicality. Furthermore, we extend our schemes such that the service
provider, performing some verification work, is able to collect privacy-preserving
statistics about the places users share among each other. This could be a way
to monetize the privacy-preserving LSBS.
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Abstract. Various Location Privacy-Preserving Mechanisms
(LPPMs) have been proposed in the literature to address the
privacy risks derived from the exposure of user locations through
the use of Location Based Services (LBSs). LPPMs obfuscate
the locations disclosed to the LBS provider using a variety of
strategies, which come at a cost either in terms of quality of
service, or of resource consumption, or both. Shokri et al.
propose an LPPM design framework that outputs optimal LPPM
parameters considering a strategic adversary that knows the
algorithm implemented by the LPPM, and has prior knowledge
on the users’ mobility profiles [23]. The framework allows users
to set a constraint on the tolerable loss quality of service due to
perturbations in the locations exposed by the LPPM. We observe
that this constraint does not capture the fact that some LPPMs
rely on techniques that augment the level of privacy by increasing
resource consumption.
In this work we extend Shokri et al.’s framework to account
for constraints on bandwidth consumption. This allows us to
evaluate and compare LPPMs that generate dummies queries
or that decrease the precision of the disclosed locations. We
study the trilateral trade-off between privacy, quality of service,
and bandwidth, using real mobility data. Our results show
that dummy-based LPPMs offer the best protection for a given
combination of quality and bandwidth constraints, and that, as
soon as communication overhead is permitted, both dummy-based
and precision-based LPPMs outperform LPPMs that only perturb
the exposed locations. We also observe that the maximum value of
privacy a user can enjoy can be reached by either sufficiently
relaxing the quality loss or the bandwidth constraints, or by
choosing an adequate combination of both constraints. Our results
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contribute to a better understanding of the effectiveness of location
privacy protection strategies, and to the design of LPPMs with
constrained resource consumption.

1 Introduction

Location Based Services (LBSs) enable users to, among others, let their friends
know where they are, find nearby points of interest, or obtain contextual
information about their surroundings. The typical LBS implementation is
such that user locations are by default disclosed to the LBS provider. This
raises privacy concerns, as location information is known to reveal potentially
sensitive private information (e.g., visiting the mosque, church, or temple
reveals religious beliefs). A variety of Location Privacy-Preserving Mechanisms
(LPPMs), e.g., [5, 7, 17], have been proposed in prior research to mitigate these
concerns. To do so, these mechanisms obfuscate user locations before sending
them to the LBS provider.

The great majority of LPPMs in the literature are designed considering a non-
strategic adversary. This assumes that the adversary is unaware of the LPPM
obfuscation algorithm, and that he has no prior knowledge on the users’ mobility
profiles. However, both the LPPM’s internal algorithm and the user mobility
patterns leak information that can be exploited by the adversary to reduce her
estimation error when locating users [21]. Hence, designs and evaluations that
neglect such information overestimate the level of privacy protection offered by
the LPPM.

Shokri et al. [23] proposed a framework to design LPPM with optimal parameters
considering an adversary that has (and exploits) information on: i) the LPPM
algorithm implemented; and ii) the mobility profile of the user. This framework
facilitates the design of LPPMs that maximize the location estimation error
of strategic adversaries. Furthermore, the framework allows users to establish
a maximum tolerated quality of service loss stemming from the use of the
LPPM. The framework is suitable to model LBSs in which users only reveal
their location sporadically, i.e. subsequent location exposures of the same user
are assumed to be sufficiently apart in time that it is not possible to link them
as related to the same individual. Examples of applications in which location
revelations are sporadic include check-in services [1], or services for finding
nearby points of interest [2].

The problem statement in Shokri’s framework [23] does not consider constraints
on resources utilization (e.g., bandwidth, battery consumption). These are
however likely to be a concern for users in reality, since LBSs are mostly accessed
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from resource-constrained mobile devices. Our first contribution is to extend
the framework to account for resource limitations.

Prior research has only applied the framework to the design of perturbation-
based mechanisms, i.e., LPPMs that modify the location that is disclosed to
the LBS provider. As second contribution, we model two other popular privacy-
preserving strategies in the context of the framework. Both types of mechanisms
increase the adversary’s uncertainty on the user’s actual position by raising the
number of locations from which the user could have issued a query. In dummy-
based mechanisms [14, 16, 26] the LPPM sends fake locations to the LBS server
along with the actual user requests. In precision-based mechanisms [9,11,25]
the LLPM decreases the precision of the disclosed location sent to the LBS
provider, so that there is a bigger geographical region in which they user might
be located.

Contrary to the perturbation-based LPPMs considered by Shokri et al. [23],
dummy-based and precision-based LPPMs may consume more resources (e.g.,
bandwidth and battery) in order to conceal the user’s location. Our third
contribution is a study of the trilateral trade-off between quality of service,
bandwidth consumption, and privacy using these LPPMs as case study. We find
that for the considered LPPMs both quality loss and bandwidth constraints can
be traded for privacy. In fact, the maximum achievable level of privacy can be
reached either when the quality loss constraint is sufficiently loose (as in [23]),
when sufficient bandwidth is allowed, or when an adequate combination of both is
allowed. Our simulations show that, for given bandwidth and quality constraints,
dummy-based LPPMs offer better protection than precision-based LPPMs. This
is because dummy-based LPPMs have more degrees of freedom than precision-
based LPPMs in choosing the cover locations, and hence can better exploit
the available resources. Finally, both dummy-based and precision-based offer
a better privacy level than just perturbation for the same quality of service,
provided that the system can tolerate the introduction of a communication
overhead.

The rest of this paper is organized as follows: the next section gives an overview
of the state of the art in location privacy-preserving systems design. Section 3
describes the system and adversarial models, as well as the constraints imposed
on the design; and Section 4 revisits Shokri et al.’s framework. We describe the
linear programs to compute different classes of resource-consuming LPPMs in
Section 5, and validate them against real data in Section 6. Finally, we conclude
in Section 7.
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2 Related Work

It is widely accepted that the disclosure of location data entails a privacy risk:
Hoh et al. show that car driving traces enable the inference of the drivers’ home
addresses [13]; this information by itself, or together with the driver’s work place,
can be used to re-identify anonymous traces [10,15]. Furthermore, Freudiger
et al. point out that a people’s mobility patterns are persistent and unique [8].
Therefore, users are identifiable by the LBS even if they only share their location
during a short period of time. Once location data is identifiable, it may reveal a
detailed picture of the person’s habits, lifestyle, and preferences [3]. To counter
this threat various obfuscation-based Location Privacy Preserving Mechanisms
(LPPMs) been proposed in the literature. These mechanisms obfuscate the
revealed locations and thus prevent (or at least limit) the possible inferences
that could be made from the data.

Following the categorization proposed by Shokri et al. [21] we briefly introduce
the existing obfuscation strategies and refer the reader to [20] for a more detailed
review. Pertur-bation-based LPPMs [12,17] modify a user’s reported location
such that at least two users might be associated to a location. Pseudonymization-
based LPPMs regularly change the identity with which users identify themselves
to the LBS provider, in order to prevent the linkage of two subsequent user
locations, thus preventing the adversary from reconstructing the trajectories
followed by the users of the system. These LPPMs can be combined with hiding-
based LPPMs, which allow users to sometimes hide their location [6], further
decreasing the adversary’s capability to link location exposures. Precision-based
LPPMs [4, 9, 11, 25] reduce the granularity of the location data revealed to the
provider, so that it is not possible to pinpoint the exact location of a user within
a geographical region. Finally, dummy-based LPPMs [14,16,26] automatically
generate queries with fake position data that are indistinguishable from the
users’ real queries. Here the adversary is unable to determine whether the
location associated with a query corresponds to the user’s actual position, or is
a decoy.

Shokri et al. have proposed methods to quantify and systematically evaluate
the level of privacy provided by obfuscation-based LPPMs [21, 22]. They
formalize the obfuscation process performed by the LPPM, as well as the attack
strategies that an adversary can use to invert the location transformations
made by the LPPM. They measure privacy as the expected error of a strategic
adversary when estimating the actual location of a user. This quantitative
approach is a cornerstone of their LPPM design framework, where they propose
a systematic method to design LPPMs that are optimal with respect to strategic
adversaries, who are aware of the LPPM’s internal operation and the users’
mobility profiles [23].
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This framework allows users to indicate the maximum quality loss (derived from
the use of the LPPM) that they are willing to tolerate. The design framework
then outputs a set of parameters for the LPPM that maximize the error of the
adversary when attempting to locate users. Our work builds on this framework
and extends it to account for not only quality loss, but also for limitations on
bandwidth consumption.

Finally, we note that there are other approaches to building location privacy
systems that are not based on obfuscation strategies and are thus out of the
scope of this paper. This includes cryptographic approaches such as those based
on Private Information Retrieval protocols [18].

3 System Model

In this paper, we extend the framework by Shokri et al. [23] to account for
bandwidth constraints in Location Privacy Preserving Mechanisms (LPPMs).
Therefore, we follow the framework’s system model and definitions and augment
them when needed to account for bandwidth constraints. The focus of the
framework is on user-centric mechanisms, in which the configuration of the
LPPM is decided on independently by each user, without knowledge about other
users in the system. Thus, without loss of generality, we restrict our model
and analysis to a single user. We note that cloaking mechanisms, in which the
geographical region disclosed is chosen taking into account the positioning of a
set of users [11], can also be modeled as user-centric mechanisms because their
privacy guarantees depend only on the size of the region [24].

User model: Similarly to prior work [23] we consider that the user moves
around in a finite geographical area that is divided into M discrete regions
R = {r1, r2, . . . , rM}. Users only expose their location r ∈ R sporadically to
an LBS provider in order to obtain a service. A user’s LBS usage pattern is
described by her mobility profile ψ(r),

∑
r ψ(r) = 1, a probability distribution

describing her likelihood of being at location r when querying the LBS. We make
no particular assumption on the users’ mobility patterns, i.e., we impose no
restrictions on the profiles ψ(r). As usage is sporadic, the locations from which
the user accesses the service at different time instants are independent from
each other. Therefore, the mobility profiles only describe the frequency with
which users’ visit locations, and does not contain information about transitions
between regions.

Location privacy-preserving mechanism: The user runs in her personal
device an LPPM that transforms her real location r ∈ R into a pseudo-location
r′ ∈ R′. This transformation is made according to a probability distribution
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f(r′|r) = Pr(r′|r). The pseudo-location r′ is exposed to the LBS provider
instead of her actual location r. Shokri et al. [23] consider that R′ = R. In
this work we extend R′ to be the powerset of R except the empty set; i.e.,
R′ = P(R)−{∅}. Hence, i) pseudo-locations r′ may or may not contain the real
location r; and ii) differently from prior work [23], in which pseudo-locations r′
are formed by one region in R, here r′ may be formed by one or more regions
ri in R.

Adversary model: We consider that the user wants to protect her real location
towards a passive adversary that has access to the locations exposed to the LBS.
This adversary could be the LBS provider, an eavesdropper of the user-provider
communication, or other LBS subscribers with which exposed locations are
shared. We assume that the adversary knows the users’ profiles ψ(r), which
can be inferred, for instance, using existing learning techniques [21].

Following prior work [23] we model the adversary’s strategy as a probability
distribution h(r̂|r′) = Pr(r̂|r′). This distribution describes the probability that,
given an exposed location r′, the estimated location r̂ corresponds to the user’s
real position r. We measure the privacy loss as the adversary’s expected error
in this estimation r̂ given that the real location is r. We model the adversarial
error as a function dp(r̂, r) that depends on both the user’s privacy criteria and
on the semantics of the location [23]; as well as on the transformation function
f(r′|r) implemented by the LPPM. (We provide examples of functions dp(·)
that are adequate for particular LPPMs in Section 5.)

Quality of service: Users expect to obtain relevant information from their
queries to the LBS. Because the response of the LBS to a query depends on the
observed location r′, and not on the real location r, the information contained in
the response may be of less utility to the user than that contained in a response
to a query in which r is exposed. Given an LPPM f(·), the expected quality loss
suffered by the user can be computed as:

E[Qloss(ψ, f, dq)] =
∑
r,r′

ψ(r)f(r|r′)dq(r′, r) . (1)

In this formula ψ(r) represents the prior probability of the user accessing the
LBS from location r (i.e., according to her mobility profile); f(r′|r) represents
the probability of exposing r′ given that the user is at r; and the function
dq(r′, r) represents the quality loss resulting from exposing r′ instead of r to the
LBS provider. (We provide examples of dq(·) functions adequate for particular
LPPMs in Section 5.) In layman words, E[Qloss(ψ, f, dq)] reflects the average
discontent experienced by users when utilizing an LPPM.
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We assume that the user imposes a maximum tolerable service quality loss
Qmax

loss . The LPPM output must satisfy the constraint E[Qloss(ψ, f, dq)] < Qmax
loss .

Bandwidth constraints: The fact that Shokri et al. consider R′ = R implies
that the LPPM never incurs in communication overhead when sending r′ instead
of r. Since we have setR′ = P(R)−{∅}, sending r′ may require more bandwidth
than sending r (e.g., if r′ is composed by several regions in R). LBSs are mostly
accessed from mobile devices which in general have restricted connectivity and
limited resources, and hence users may want to limit the overhead introduced
by the LPPM. We extend the existing model [23] to account for this fact by
defining the expected bandwidth overhead incurred by LPPM f(·) as:

Bcost(ψ, f, db) =
∑
r,r′

ψ(r)f(r|r′)db(r′, r) , (2)

In this formula ψ(r) and f(r′|r) have the same role as in Eq. (1). The function
db(r′, r) represents the additional cost in terms of bandwidth derived from
exposing r′ instead of r. (We provide examples of db(·) functions adequate for
particular LPPMs in Section 5.)

We assume that the user imposes a maximum tolerable bandwidth Bmax
cost . As

with quality loss constraints, the LPPM must satisfy Bcost < Bmax
cost .

We note that, although we only consider limitations on communication overhead,
the function db(·) can model other constraints related to resource consumption
resulting from exposed pseudo-locations that may be formed by several regions,
e.g., the increase in battery consumption needed to send more packets, or to
process more responses.

Privacy: The level of privacy enjoyed by users depends on the attack strategy
deployed by the adversary. Following the definition by Shokri et al. [21, 23] we
measure the expected privacy of the user as:

Privacy(ψ, f, h, dp) =
∑
r,r′,r̂

ψ(r)f(r′|r)h(r̂|r′)dp(r̂, r) . (3)

Each summand in this equation represents the probability that the user obtains
a privacy level dp(r̂, r), when she accesses the LBS from location location r,
exposes pseudo-location r′, and the adversary estimates r̂ given the observation.

Figure 1 illustrates the relationships between the different elements of this
model. Note that we consider that the defense (resp., the attack) takes into
account the attack (resp., the defense) implemented by the adversary (resp.,
the user), as well as the user’s mobility profile and her constraints in terms of
bandwidth and quality of service.
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Figure 1: System model

4 Game Theory in Location Privacy

In this section we revisit the design methodology proposed by Shokri et al. in
prior work [23]. This method allows the user to choose optimal parameters for
the LPPM f(·), given an adversary that implements the optimal attack h(·)
against this defense. Given a user mobility profile ψ(r) and quality of service
constraint Qmax

loss , the method models the design of the optimal LPPM as an
instance of a zero-sum Bayesian Stackelberg game.

The Stackelberg competition in the context of location privacy is stated as
follows: a leader (the user), commits first to an LPPM f(·) that satisfies the
quality constraint Qmax

loss . For this purpose the LPPM takes the user’s actual
location r as input, and outputs a pseudo-location r′. Upon observing the
exposed location, a follower (the adversary), estimates the real location through
the attack h(·), taking into account both the user’s profile ψ(r) and the LPPM
f(·) chosen by the user. The adversary ‘pays’ an amount dp(r̂, r) to the user
that represents the estimation error from the adversary’s perspective, and the
location privacy gain from the user’s perspective.

Both players aim at maximizing their payoffs: the adversary tries to minimize
the amount to pay (i.e., minimize her estimation error), while the user tries
to maximize this amount (i.e., maximize her location privacy). The game is
zero-sum, as the adversary’s information gain equals the privacy lost by the
user, and vice-versa. It is also a Bayesian game since the adversary only has
access to probabilistic data about the user’s real location; i.e., her information
on the user is incomplete.
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Figure 2: Toy example (R = {r1, . . . , r9}): a) Real user location; b)
Perturbation-based LPPM R′ = R; c) Dummy-based LPPM; d) Reducing
precision-based LPPM.

4.1 Perturbation-based LPPM

Shokri et al. validate their framework by applying it to the design of
perturbation-based strategies. In this scenario R′ = R, and hence the pseudo-
locations r′ output by the LPPM are formed by one region ri ∈ R, which may
or may not be equal to the real location r. Let us consider the toy example in
Fig. 2a, in which the area R is formed by 9 regions, and where the user queries
the LBS provider from location r5. Two possible pseudo-locations r′ are shown
in Fig. 2b, depicted in black and gray. Note that the black r’ coincides with
the real user location r = r5, while the grey pseudo-location r’= r7 does not.

Solution: We now present the linear programs developed in prior work [23] to
compute the optimal perturbation and attack strategies f(·) and h(·). These
linear programs compute the theoretic equilibrium of the game described above.
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The user runs the following linear program to find the optimal parameters for
her perturbation-based LPPM:

Choose f(r′|r), xr′ ,∀r, r′ that

maximize
∑
r′

xr′ (4)

subject to

xr′ ≤
∑
r

ψ(r)f(r′|r)dp(r̂, r), ∀r̂, r′ (5)

∑
r

ψ(r)
∑
r′

f(r′|r)dq(r′, r) ≤ Qmax
loss (6)

∑
r′

f(r′|r) = 1, ∀r (7)

f(r′|r) ≥ 0, ∀r, r′ (8)

The decision variable f(r′|r) represents the LPPM algorithm, while xr′

represents the expected privacy of the user (see Appendix A). The inequalities
defined by Eq. (5) express the privacy constraint, ensuring that f(r′|r) is chosen
to maximize xr′ ; while the inequalities defined by Eq. (6) express the quality
constraint, ensuring that the expected quality of service loss is at most Qmax

loss .
Finally Eq. (7) and (8) ensure that f(·) is a proper probability distribution.

On the other hand, the adversary runs the following linear program to obtain
the optimal attack function h(r̂|r′), which minimizes privacy when the user
implements a perturbation-based LPPM f(r′|r):
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Choose h(r̂|r′), yr, ∀r, r′, r̂, andzq ∈ [0,∞) that

minimize
∑
r

ψ(r) yr + zqQmax
loss (9)

subject to

yr ≥
∑
r̂

h(r̂|r′)dp(r̂, r) + zqdq(r′, r),∀r, r′ (10)

∑
r̂

h(r̂|r′) = 1,∀r′ (11)

h(r̂|r′) ≥ 0,∀r′, r̂ (12)

zq ≥ 0 (13)

The decision variable h(r̂|r′) represents the adversary’s attack strategy on the
LPPM algorithm, and yr the expected privacy of the user (see Appendix A).
The variable zq acts as shadow price for the quality. It expresses the loss (gain)
in privacy when the maximum tolerated expected quality loss Qmax

loss decreases
(increases) by one unit. We refer the reader to Shokri’s prior work for more
details on the meaning of this variable [23]. The inequalities defined by Eq. (10)
represent constraints on privacy, ensuring that h(r̂|r′) is chosen to minimize
privacy given the quality constraints; and Eqs (11) and (12) ensure that h(·) is
a proper probability distribution. Finally Eq. (13) ensures that the trade-off
between quality and privacy expressed by zq is non-negative.

Quality, Bandwidth, and privacy constraints: Perturbation-based
LPPMs output one-sized regions r′ ∈ R′ = R. This determines the functions
used to model the constraints imposed by the user. Since pseudo-locations
and real locations have the same size, there is no communication overhead
in the model. Therefore, the bandwidth constraint Bmax

cost does not affect the
optimization and does not appear in the linear programs.

Furthermore, in this setting both the quality and the privacy constraints can
be expressed in terms of the distance between the exposed location r′ (resp.,
the inferred location r̂) and the actual user location r [23]. For the sake of
simplicity, in our experiments for perturbation-based LPPMs we model both
dq(r′, r) and dp(r̂, r) as the Manhattan distance between the two locations (e.g.,
dp(r̂, r) = ‖r̂ − r‖1).
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5 Bandwidth-consuming LPPMs

In this section we model two popular families of Location Privacy-Preserving
Mechanisms (LPPMs) in the literature that consume extra bandwidth to increase
users privacy: dummy-based LPPMs, and precision-based LPPMs. To model
these strategies we extend the game-theoretic approach outlined in the previous
section to also account for bandwidth constraints. We describe two linear
programs that output the user’s optimal LPPM f(·) and the adversary’s optimal
attack h(·), while respecting the quality and bandwidth constraints.

5.1 Dummy-based LPPM

Dummy-based LPPMs automatically generate dummy queries that are sent to
the LBS provider along with the user’s real queries [14, 16, 26]). The dummy
queries contain fake locations and their goal is to increase the adversary’s
estimation error on the user’s real location, since for the adversary all received
locations are equally likely to correspond to the user’s actual position.

A dummy-based LPPM f(r′|r) outputs pseudo-locations r′ from R′ = P(R′)−
{∅} formed by one or more non-contiguous regions ri ∈ R, which may or may
not contain the real location r. In the toy example shown in Fig. 2c we can
see two possible outputs r′ when the user sends one dummy query formed by
two regions. The black pseudo-location r’= {r2, r5} contains the real location
r = r5, while the grey pseudolocation r’= {r3, r8} does not. In the latter
case the LPPM no only generates decoy locations, but also perturbs the user’s
position.

Solution: The linear program to compute the optimal dummy-based LPPM
is similar to the perturbation-based case, with one important difference: it
includes a set of inequalities to ensure that the expected communication overhead
associated to the use of dummies does not exceed the maximum expected
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bandwidth consumption Bmax
cost :

Choose f(r′|r), xr′ ,∀r, r′ that

maximize
∑
r′

xr′ (14)

subject to

xr′ ≤
∑
r

ψ(r)f(r′|r)dp(r̂, r), ∀r̂, r′ (15)

∑
r

ψ(r)
∑
r′

f(r′|r)dq(r′, r) ≤ Qmax
loss (16)

∑
r

ψ(r)
∑
r′

f(r′|r)db(r′, r) ≤ Bmax
cost (17)

∑
r′

f(r′|r) = 1, ∀r (18)

f(r′|r) ≥ 0, ∀r, r′ (19)

The inequalities defined by Eqs (15), (16), (18), and (19) have the same role
as in the perturbation-based case. Eq. (17) adds the bandwidth constraint, so
that the expected bandwidth consumption does not exceed Bmax

cost .

From the adversary’s point of view, the linear program used to compute the
optimal attack h(r̂|r) differs from the perturbation-based case in that we
introduce a new shadow price z1 in Eq. (25). This new decision variable models
the relation between privacy and bandwidth in the same manner as zq models
the relation privacy between privacy and quality. We obtain:
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Choose h(r̂|r′), yr, ∀r, r′, r̂, zq ∈ [0,∞), zb ∈ [0,∞) to

minimize
∑
r

ψ(r) yr + zqQmax
loss + zbBmax

cost (20)

subject to

yr ≥
∑
r̂

h(r̂|r′)dp(r̂, r) + zqdq(r′, r)

+ zbdb(r′, r),∀r, r′ (21)∑
r̂

h(r̂|r′) = 1,∀r′ (22)

h(r̂|r′) ≥ 0,∀r′, r̂ (23)

zq ≥ 0 (24)

zb ≥ 0 (25)

Quality, bandwidth, and privacy constraints: As the dummy-based
LPPM transmits dummy locations to the LBS provider, the functions dq(r′, r)
and db(r′, r), which express the constraints on quality and bandwidth, need to
take into account that pseudo-locations r′ can be composed by several regions.

With respect to the quality of service function dq(r′, r) we distinguish two cases.
If the actual location r is among the regions contained in the pseudo-location r′,
then the quality loss is zero, as the user receives a response corresponding to her
real location r. Formally, dq(r′, r) = 0, ∀r′ : r ∈ r′. If on the other hand the real
location is not within the exposed pseudo-location, we assume that the response
for the nearest location will provide the most useful response to the user, and
thus measure the quality loss as the minimum of the distances between the real
location and each of the locations ri contained in r′. For instance, considering
the Manhattan distance, dq(r′, r) = minri∈r′ ‖ri − r‖1, ∀r′ : r /∈ r′.

The bandwidth function db(r′, r) takes into account that the system sends and
receives more traffic when dummies are implemented. This extra bandwidth
consumption may be due to an increase in the length of the query if all dummies
are sent in one request; or to an increase in the number of queries if dummies are
sent in separate requests. In this paper we consider that each dummy increases
the bandwidth overhead by 2 units: one unit for uploading and one unit for
downloading. Formally: db(r′, r) = (

∑
ri∈r′ 2)− 2.
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As in the perturbation-based case, the privacy function dp(r̂, r) considers the
locations r̂, r ∈ R and hence this function does not need to be modified.

5.2 Precision-based LPPM

Precision-based LPPMs reduce the precision of the location exposed by disclosing
a larger region [9, 11,25]. This makes it hard for the adversary to pinpoint the
exact location of the user. As in the previous case, the LPPM f(r′|r) outputs
pseudo-locations r′ from R′ = P(R′) − {∅}, but in this case r′ is formed by
a set of one or more contiguous regions ri ∈ R that may or may not contain
the real location r. The locations contained in r′ form the region that is sent
to the LBS provider. In the toy example shown in Fig. 2d, we can see two
possible outputs r′ when the precision is halved by exposing two regions. The
black pseudo-location r’= {r5}

⋃
{r6} contains the real location r = r5, while

the grey pseudo-location r’= {r7}
⋃
{r8} does not. In the latter case the LPPM

no only exposes decoy locations, but also perturbs the user’s position.

Solution: The bandwidth consumed by a precision-based LPPM strongly
depends on the type of information required by the LBS. Let us consider an
LBS that returns nearby points of interest. When the user issues a request for
a large pseudo-location r′ (i.e., with reduced precision), the response contains
more points than when the pseudo-location is small, requiring more bandwidth.
This is similar to the dummy-based case but has different quality loss and
communication overhead, as explained below. Hence, the optimal defense
can be computed using the appropriate functions dq(·) and db(·) in the linear
program (Eqs (14)-(19)). We refer to this type of systems as nearby precision-
based LPPMs.

Now consider an LBS in which the provider returns the value of interest (e.g.,
traffic congestion) for a representative location within r′. In this case the LBS
response contains just one value independently of the size of the region, and
hence diminishing the precision does not increase the bandwidth consumption.
This is similar to the perturbation-based case, where there LPPM does not
incur in a communication overhead, but has different quality loss as explained
below. The optimal LPPM parameters can be computed using the appropriate
function dq(·) in the linear program (Eqs (4)-(8)). We denote these systems as
aggregated precision-based LPPMs.

Quality, Bandwidth, and privacy constraints: The quality loss introduced
by precision-based LPPMs depends on the type of system. For nearby precision-
based LPPMs there is no quality loss when the user’s actual location r is included
in r′, because the response includes the points of interest nearest to this location,
and thus dq(r′, r) = 0, ∀r′ : r ∈ r′. Otherwise, we measure the quality loss as



204 OPTIMAL SPORADIC LOCATION PRIVACY PRESERVING SYSTEMS IN PRESENCE OF
BANDWIDTH CONSTRAINTS

the minimum distance between the user location r and the locations contained
in r′ (dq(r′, r) = minri∈r′ ‖ri−r‖1, ∀r′ : r /∈ r′). For aggregated precision-based
LPPMs, in which the response is one representative value, larger regions r′
reduce the expected quality of service. In our experiments we measure the
quality loss as the average distance from the user location r to the regions
ri ∈ R in r′, i.e., dq(r′, r) =

∑
ri∈r′ ‖ri − r‖1/N , being N the number of regions

in r′.

The bandwidth consumption only increases for nearby precision-based LPPMs.
We define the function db(·), that describes the communication cost, as
db(r′, r) = (

∑
ri∈r′ 1) − 1, and add one unit of bandwidth for each extra

region ri included in r′.

The estimation of the adversary is a location r̂ ∈ R, and thus the privacy
constraint does not need to be modified.

6 Evaluation

The linear programs presented in the previous section output optimal LPPM
parameters. In this section we evaluate the trade-off between location privacy,
service quality, and communication overhead in different types of LPPMs. For
this purpose we measure the expected Privacy(ψ, f, h, dp) offered by an LPPM
for a given mobility profile ψ(r), using different combinations of maximum
tolerable expected quality loss Qmax

loss and expected bandwidth consumption
Bmax

cost . These constraints are modeled depending on the strategy followed by
the LPPMs as described in Sections 4.1, 5.1, and 5.2. For precision-based
LPPMs we distinguish between nearby precision-based LPPMs, which incur in
communication overhead but no quality loss; and aggregated precision-based
LPPMs, which do not consume extra bandwidth but reduce the quality of
service.

Existing Dummy-based LPPMs [14, 16, 26]: In these schemes the LPPM
algorithm selects a fixed number of requests bu containing dummy locations.
These dummy locations, which are sent to the LBS provider along with the real
request, are chosen depending on the user’s mobility profile. The real location
may be perturbed or not. We model existing dummy-based LPPMs as follows:
the user sets a value for the bandwidth consumption bu that establishes the
allowed communication overhead. Then r′ is chosen according to the user’s
mobility profile from all possible pseudo-locations that contain bu dummies. We
note that, in some proposed systems, dummies are chosen also depending on
previous exposures in order to resemble realistic movements. However, since
we limit our analysis to sporadic LBSs, in which the locations from which the
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user makes subsequent requests are not correlated, we do not consider past
exposures when selecting dummy locations.

Existing Precision-based LPPMs [9, 11,25]: In these schemes the user sets
a parameter that defines the precision of the exposed location. The real location
may be perturbed or not. We model existing precision-based LPPMs as follows:
Given that the user chooses a maximal precision reduction su, the LPPM selects
r′ from all pseudo-locations containing su contiguous regions ri ∈ R, such
that the following condition holds: ∀ri ∈ r′ : ‖ri − r‖1 ≤ su, considering the
Manhattan distance as quality loss function.

Existing attacks: Similarly to prior work [23] we evaluate LPPMs with
respect to Bayesian inference attacks [22]. This attack inverts the algorithm
implemented by the LPPM using the posterior probability distribution over all
locations given the user’s profile.

Optimal attacks: We also evaluate the different LPPMs against optimal
attacks. We test the performance of the optimal LPPM towards the optimal
attack output by the framework; and the performance of existing defenses
against the optimal attack against described in prior work which we repeat here
for convenience [23]:

Minimize
∑
r̂,r′,r

ψ(r)f(r′|r)h(r̂|r′)dp(r̂, r) (26)

subject to
∑
r̂

h(r̂|r′) = 1,∀r′, and h(r̂|r′) ≥ 0,∀r̂, r′ (27)

6.1 Experimental Setup

We use real mobility profiles obtained from the CRAWDAD dataset epfl/-
mobility [19] to evaluate the LPPMs’ performance. This dataset contains
GPS coordinates of approximately 500 taxis collected over 30 days in the San
Francisco Bay Area.

The level of privacy offered by the LPPMs depends on the size of the area of
interest, as well as on the number of regions M in which the area is divided.
These parameters define the size of the regions ri, and hence influence the
accuracy with which the adversary estimates the user location. When the choice
of parameters results in small regions ri, the adversary can locate the user with
more precision than when regions are big (e.g., a large region of interest divided
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in few regions). In the following we justify our choices for the size of the area
of interest and the number of regions used in our experiments.

Number of regions. The number of regions has a strong impact on the
running time of the optimization because the number of possible real locations,
pseudo-locations, and estimated locations define the number of inequalities
involved in the linear programs. In our evaluation we need to run a large
number of linear programs to test a significant sample of quality/bandwidth
constraint combinations. Hence, we need to choose an appropriate number of
regions in the area of interest to be able to run our experiments in reasonable
time.

Let us consider that the area of interest is divided with a grid of M = α× β
regions, with no particular restriction on the regions’ shape or size. In the
strategies considered in this paper, the number of real and estimated locations (r
and r̂) is the same, and equal to the cardinality of R, i.e., M = card(R) = α · β.
However, the number of possible pseudo-locations depends on the strategy
implemented by the LPPM. The perturbation-based LPPM transforms real
locations into one-region pseudo-locations, hence card(R′) = card(R). The
dummy-based strategy allows pseudo-locations to contain any combination
of non-contiguous locations, and we can compute the number of possibilities
for r′ as card(R′) =

∑M
i=1
(
M
i

)
. Finally, in the precision-based mechanisms

pseudo-locations contain combinations of contiguous locations. For simplicity
in our experiments for precision-based LPPMs we limit R′ to rectangular
pseudo-locations (this would make the pseudo-location r′ = {r4}

⋃
{r7}

⋃
{r8}

in Figure 2 ineligible). Therefore, the number of pseudo-locations is card(R′) =∑α−1
i=0

∑β−1
j=0 (α− i)(β − j).

We run the linear programs on an HP ProLiant DL980 G7 server with 512
GB RAM and 8 processors Intel E7 2860 with 10 cores each (total 80 cores)
using MATLAB’s linprog() function, and MATLAB’s parallel computing
capabilities. Table 1 shows the amount of time needed to compute an LPPM
function f(r′|r) for different grid sizes αxβ, averaged over combinations of
quality and bandwidth restrictions. As expected, the linear program running
time grows slower for perturbation-based LPPMs than for preci-sion-based
LPPMs, and dummy-based LPPMs quickly become intractable (in fact, we
could not compute any LPPM for a 5x5 grid).

While running the experiments we also noticed that when the size of the grid
increases MATLAB’s linear program solver could not find a solution for some of
the optimization problems. The percentage of successful optimizations for each
scenario is shown in the third column of Table 1. We note that other linear
program solvers could improve this percentage, as well as reduce the running
time of the optimization.
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Table 1: Performance times for different grid sizes

Perturbation-based
Grid size Mean Std % finished

2x2 0.22s (0.00 h) 0.26s 100.00
3x3 0.28s (0.00 h) 0.36s 100.00
4x4 0.39s (0.00 h) 0.34s 100.00
5x5 2.30s (0.00 h) 0.64s 100.00
6x6 16.21s (0.00 h) 5.20s 100.00
7x7 211.42s (0.06 h) 128.48s 100.00
8x8 679.58s (0.19 h) 336.75s 100.00
9x9 3437.09s (0.95 h) 1450.49s 100.00
10x10 13199.39s (3.67 h) 6660.02s 100.00

Dummy-based
Grid size Mean Std % finished

2x2 0.22s (0.00h) 0.18s 100.00
3x3 0.82s (0.00h) 0.33s 100.00
4x4 6710.29s (1.86h) 32653.84s 78.82

Precision-based
Grid size Mean Std % finished

2x2 0.29s (0.00 h) 0.10s 100.00
3x3 0.26s (0.00 h) 0.18s 100.00
4x4 0.84s (0.00 h) 0.35s 100.00
5x5 6.47s (0.00 h) 2.26s 100.00
6x6 68.51s (0.02 h) 39.74s 100.00
7x7 470.37s (0.13 h) 292.18s 96.88
8x8 1772.80s (0.49 h) 546.09s 72.84
9x9 7056.62s (1.96 h) 1570.97s 68.00
10x10 26223.24s (7.28 h) 6080.76s 63.64

For performance reasons, in our experiments we choose a grid size of 8x6 for
perturbation-based and precision-based LPPMs, and 4x3 for dummy-based
LPPMs. However, we must stress that a user only needs to run the linear
program optimization once to compute her optimal protection strategy, and
that the mobile device can outsource this operation to a trusted server via a
adequately secured connection. Therefore, in reality a larger number of regions
can be considered.

Area of interest size. Given a number of regions, the size of the area of
interest defines the adversary’s inference accuracy. Consider an area of 100 km2

divided by a 10x10 cartesian grid. The adversary can narrow his estimation of
the users’ location to at most 1 km2. If on the other hand the area is only 1
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Figure 3: Considered area in San Francisco.

Figure 4: User profile. The darker the region the higher the probability that
the user accesses the LBS from this location.

km2 the the adversary can tighten his estimation to 0.01 km2.

In order to make our experiments meaningful we select an area of 8× 6 km =
48km2 in Downtown San Francisco which we show in Fig. 3. We divide the area
in regions using a cartesian grid of 8x6 or 4x3, depending on the experiment.
These grid sizes allow the adversary to infer (with more or less accuracy) the
neighborhoods visited by the user. We note that in San Francisco frequent visits
to a neighborhood may reveal sensitive information, such as sexual orientation
(Castro district), financial status (Financial district), and cultural preferences
(Haight-Ashbury).

In [23] Shokri et al. demonstrate that the trade-offs between privacy and quality
constraints have the same tendency for different users, and that the maximum
level of privacy achievable by the LPPM depends on the user’s mobility profile.
We have run experiments for many individuals in the dataset and confirmed
these results. Therefore, without loss of generality, we only show results for
one user. We choose as target user the one for which more data is available
in the dataset, to have a good estimation of the user’s mobility profile. The
target user’s mobility profile, computed using 36 295 location exposures inside
Downtown San Francisco, is shown in Figure 4.
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6.2 Results

We separate our evaluation in three steps. First, we show that the optimal
dummy-based and precision-based LPPMs designed using the framework are
superior to state of the art LPPMs. Second, we evaluate the impact of quality
loss and bandwidth overhead constraints on the privacy provided by optimal
LPPMs. Finally, we compare the optimal dummy LPPM with the nearby
precision based LPPM in terms of privacy, bandwidth consumption and quality
loss.

We note that few points are missing in the figures. This is because MATLAB’s
optimization algorithm was not able to find the solution for these particular
combinations of constraints.

Perturbation-based LPPM

For the sake of completeness we make a performance analysis of the perturbation-
based LPPM used in prior work using our dataset [23]. The results are shown
in Fig. 5, where we compare the privacy offered by the optimal perturbation-
based LPPM towards the optimal attack output by the linear program, for
different expected quality loss constraints. Confirming previous results [23],
we observe that when the service quality constraint is loosened sufficiently
the level of privacy provided by the LPPM maxes out. This is because these
loose constraints allow the LPPM to choose pseudo-locations that do not leak
information that is useful for the attack. Therefore the best estimation of the
adversary is only dependent on his prior knowledge, i.e., the user’s mobility
profile. Once quality constraints are sufficiently loosened, the linear program
does can output parameters that do not fulfill tightly the quality constraint.
As a consequence the average expected quality loss grows slowly and stabilizes
around an optimal value that can be much smaller than the maximum tolerated
expected quality loss Qmax

loss .

Bandwith-consuming Optimal LPPMs vs. Existing LPPMs

Let us consider a case in which the quality loss allows the LPPMs to perturb
the real location; i.e., Qmax

loss > 0, and thus r′ does not necessarily contain r.
Given the considered grid sizes, we observe that as soon as some communication
overhead is allowed both optimal and existing LPPMs reach the maximum level
of privacy achievable.
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Figure 5: Perturbation-based LPPM: privacy level against the optimal attack;
and average expected quality loss.
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Figure 7: Dummy-based LPPM. (4x3 grid)

Hence, our analysis focuses on the case where the quality constraint does not
allow for perturbation, i.e., Qmax

loss = 0. In order to fairly compare optimal and
existing algorithms for every possible user constraint bu (resp., su), we construct
an existing dummy-based LPPM (resp., precision-based) as described above,
and evaluate its quality loss and bandwidth overhead. These values are used as
constraints in the linear programs described in Section 5, which output optimal
LPPM parameters that meet the same requirements than their corresponding
existing counterparts.

Figure 6 shows the results of the comparison depending on the bandwidth
constraint Bmax

cost . We observe that both the optimal defense and attack perform
better than their existing counterparts. Like with quality loss, if the bandwidth
constraint is sufficiently loosened the level of privacy maxes out. Note that
due to the running time of the algorithms the dummy-based strategy is tested
on a smaller grid, and hence the maximum privacy achievable, given by the
mobility profile, is lower than in the precision-based case. Finally, the aggregate
precision-based LPPM does not impose any bandwidth overhead (see Section 5)
and therefore the evaluation in in Fig. 6c considers different values for the
quality constraint Qmax

loss .

Trilateral Privacy, Quality, Bandwidth Trade-off

We now study the trade-off between privacy, quality, and bandwidth
consumption for dummy- and nearby precision-based LPPMs. We note that the
aggregate precision-based LPPM does not impose a bandwidth overhead, and
hence its performance is similar to that of the perturbation-based mechanism
shown in Figure 5, with a slight difference in the expected quality of service
loss.
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Figure 8: Precision-based LPPM. (8x6 grid)

Figures 7a and 8a show the impact of quality loss and bandwidth constraints
on privacy for the optimal dummy- and nearby precision-based LPPMs. As
expected, when no extra bandwidth consumption is allowed (Bmax

cost = 0) privacy
increases with the amount of perturbation allowed by the quality constraint. For
a given tolerable expected quality loss Qmax

loss , relaxing the bandwidth constraint
increases the level of privacy achievable until it maxes out. Similarly, loosening
the quality constraint increases the level of privacy for a given communication
overhead.

Next we examine the trade-off between the expected quality loss E[Qloss] and
expected bandwidth overhead E[Bcost] for given combinations of Qmax

loss and Bmax
cost .

Recall that when privacy maxes out, further loosening the quality constraint
slows the growth of the average expected quality loss. Similarly, the more
bandwidth is allowed the less expected quality loss needs to be traded-off for
privacy (see Figures 7b and 8b); and the more quality loss is allowed, the less
bandwidth needs to be used on average (see Figures 7c and 8c).

Dummy vs. Nearby Precision LPPMs

Finally, we compare dummy-based and nearby precision-based LPPMs in a 4x3
grid. Figure 9a shows the privacy level obtained by both algorithms for different
quality and bandwidth constraints (the former showed in the legend, and the
latter increased one unit at a time until privacy maxes out). Unsurprisingly,
in Fig. 9a we see that for the same combination on constraints, the dummy
LPPM performs better in terms of its achieved level of privacy. This is because
the optimal nearby precision-based LPPM is restricted to choose r′ ∈ R′ that
contain contiguous regions, while the optimal dummy-based LPPM has no
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Figure 9: Comparison of optimal dummy-pased LPPM vs. nearby precision-
based LPPM.

such contiguity restriction and can make the most of the allowed bandwidth
consumption.

With respect to bandwidth overhead, we can see in Fig. 9b that the expected
bandwidth consumption E[Bcost] of both algorithms is the same until E[Qloss]
stabilizes (i.e., when privacy maxes out). Once privacy has maxed out, the
expected bandwidth consumption stabilizes for the nearby precision-based
LPPM, but continues growing for the dummy-based LPPM. This is because we
consider rectangular contiguous pseudo-locations in the precision-based case
and therefore there are less eligible regions than in the dummy-based case,
where there is no such restriction. For instance, in a 3x3 grid precision-based
pseudo-locations can only be formed by 1, 2, 4, 6, and 9 contiguous regions
in R, while dummy-based LPPMs can output pseudo-locations containing any
combination of 1 to 9 regions. Hence, even if the bandwidth constraint is
loosened, the precision-based LPPM has fewer large pseudo-locations to choose
from, and thus consumes less bandwidth than the dummy-based strategy, which
can select more expensive alternatives.

In terms of quality loss, the dummy-based LPPM suffers more quality
degradation than the precision-based LPPM (see Fig. 9c). This is due to
the freedom of the dummy-based strategy to select any combination of locations.
This allows dummy-based LPPMs to squeeze the quality constraint more
efficiently than the precision-based strategy, which is limited to choosing
contiguous locations. The clusters at the end of the lines in the figure reflect
that the values E[Qloss] and E[Bcost] fluctuate slightly once they have stabilized
(Fig. 9b).
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7 Conclusions

Location Privacy-Preserving Mechanisms (LPPMs) mitigate privacy risks
derived from the disclosure of location data when using Location Based Services
(LBSs). Shokri et al. proposed in prior work a framework to design optimal
LPPMs towards strategic adversaries, aware of the LPPM algorithm and the
users’ mobility patterns [23], for applications in which users only reveal their
location sporadically. The proposed framework allows users to set a limit on
the maximum tolerated quality loss incurred by the LPPM, but it fails to
capture constraints on the resource consumption (e.g., bandwidth) introduced
by some LPPM strategies, such as sending dummies, or decreasing the precision
of exposed locations.

In this work we have extended Shokri et al.’s framework to allow the user to
specify a bandwidth constraint. Furthermore, we have modeled two popular
strategies to trade-off bandwidth for privacy: a scheme based on sending dummy
locations to the LBS, and a scheme based on reducing the precision of the
location sent to the LBS.

We have evaluated the performance of LPPMs that consume bandwidth using
the CRAWDAD taxi dataset. Our results show that the optimal dummy-
and precision- based LPPMs provide more privacy than their respective naive
counterparts. Furthermore, both LPPMs perform better than perturbation-
based strategies if communication overhead is allowed by the user, with dummy-
based LPPMs being the the best choice for a given combination of quality
and bandwidth constraints. Furthermore, the results of our simulations show
that users can achieve the maximum privacy allowed by their mobility profiles
by either permitting a sufficiently large quality of service loss, or bandwidth
consumption, or an adequate combination of both.
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A Privacy decision variables

In this section we sketch the derivation of the privacy decision variables used in
the linear programs in Sections 4.1 and 5. We refer the reader to [23] for more
details on the linear programs derivation.

Recall that in the Stackelberg approach the adversary knows the user’s choice of
LPPM f(·), as well as the user’s profile ψ(r). Hence, the adversary can compute
the posterior probability Pr(r|r′) that the user being at r when the exposed
pseudo-location is r′, as well as the probability Pr(r) of observing r′ as follows:

Pr(r|r′) = Pr(r, r)
Pr(r′) = f(r′|r)ψ(r)∑

r f(r′|r)ψ(r) , (28)

Pr(r′) =
∑
r

ψ(r)f(r′|r) . (29)

The goal of the adversary is to choose the estimated location r̂ that minimizes
the expected privacy of the user conditioned to the exposed location being r′:

min
r̂

∑
r

Pr(r|r′)dp(r̂, r) (30)

Combining Eqs (28), (29), and (30), we can express the unconditional expected
privacy that the user aims at maximizing as:∑

r′

xr′ , (31)
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where we have defined

xr′
.= min

r̂

∑
r

ψ(r)f(r′|r)dp(r̂, r′) . (32)

Shokri et al. note that xr′ can be transformed as a series of linear constraints
xr′ ≤ minr̂

∑
r ψ(r)f(r′|r)dp(r̂, r′),∀r and hence xr′ can be use as decision

variable representing the privacy offered by an LPPM.

Similarly, if we consider the attack h(r̂, r′) given that a true location is r and
corresponding exposed pseudo-location r′, the conditional expected user privacy
is: ∑

r̂

h(r̂|r′)dp(r̂, r) . (33)

Taking into account the prior knowledge of the adversary on the user’s profile
ψ(r) the unconditional expected user privacy can be written as:∑

r

ψ(r) yr , (34)

where
yr

.= max
r′

∑
r̂

h(r̂|r′)dp(r̂, r) . (35)

Shokri et al. note that yr can be transformed as a series of linear constraints yr ≥∑
r̂ h(r̂|r′)dp(r̂, r),∀r′ and hence yr can be use as decision variable representing

the privacy obtained against an attack h(r̂, r).
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Abstract. The most comprehensive framework for quantifying
location privacy up to date relies on a Markovian approach
whose computational complexity grows heavily with the number
of considered regions/time slots. This hampers its use in practice:
it can only evaluate movements in a small surface divided in fine
regions, or in a large surface divided in coarse regions which are
not informative. We introduce a novel notion for quantifying
privacy, possibilistic location privacy, that trades off expensive
probabilistic reasoning for simple intersection operations. This gain
in performance allows to quantify location privacy on large surfaces
with significant more precision than the Markovian approach. We
describe two algorithms to compute possibilistic location privacy
and use them to quantify the protection offered by two geo-
indistinguishability mechanisms when users frequently expose their
location. Our experiments, performed on real data, confirm that
the computational requirements of our approach are extremely
low while it obtains accurate results that would be infeasible to
compute from a Markovian perspective.

1 Introduction

Quantifying location privacy is key in order to evaluate and compare location
privacy-preserving mechanisms [1,5,9,14]. A comprehensive solution to this
problem was proposed by Shokri et al. in [19] where they propose a framework
for tackling the quantification problem, and a realization of the framework as
a tool to measure location privacy [18]. This tool implements a Markovian
approach to compute location privacy, i.e., it models users’ movements as a
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Markov chain, it models location privacy and inference attacks as a probability
density functions that operate on real and obfuscated locations, and it measures
privacy as the adversary’s expected estimation error.

While Shokri et al.’s approach is very promising in terms of flexibility, its
underlying probabilistic reasoning is very expensive and thus it does not scale to
realistic scenarios (its computational complexity grows quadratically with the
number of considered regions, and linearly with the number of time slots [19]).
In fact, in order to be feasible in practice it requires to considerably simplify the
scenario being evaluated by either limiting the targeted surface [1], decreasing
the number of considered discrete regions (e.g., quantizing the map into coarse
regions [19], or considering only the top likely locations [3]), considering large
time slots [19], or pruning the possible states to keep the complexity of the
hidden Markov model manageable [20, 21]. The need for such simplifications
effectively means that the Markovian approach is only suitable to study small
surfaces, or to produce non-informative coarse-grained results on large region.

In this paper we introduce a novel notion for quantifying privacy in LBS,
possibilistic location privacy, that provides a first-order estimation of the
privacy protection provided by obfuscation-based mechanisms. The key feature
of our approach is simplicity: instead of performing expensive probabilistic
computations, it only performs intersections between sets of possible user
locations at different instants in time. Thus, as opposed to the Markovian
approach, it can efficiently handle any surface size and any frequency of location
exposure. We propose algorithms to compute possibilistic location privacy
and show with real-world location data that its computational complexity is
extremely low, i.e., suitable to perform real-time location privacy evaluation on
commodity hardware.

We are not the first ones to observe that possibilistic reasoning may be adequate
to study location privacy. This approach has been shown to be capable of
undermining the protection provided by precision reduction mechanisms [9] by
Ghinita et al.. [8]. Yet, their work is limited to proposing mechanisms that do
not leak any information from a possibilistic perspective, and does not provide
means to quantify location privacy when perfect protection is not possible. On
the contrary, we focus on the potential of this approach as a quantification
tool useful to evaluate and compare the effectiveness of obfuscation-based
privacy-preserving location.

We use possibilistic location privacy to quantify, for the first time, the
location privacy offered by two protection mechanisms based on geo-
indistinguishability [1,5] in scenarios where users frequently expose their location.
Prior work only evaluated these mechanisms for sporadic exposures [1, 3],
provided a theoretical analysis of the privacy loss trend when correlated points
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are exposed to the adversary [1,5], or observed that trajectories can be inferred
from exposed locations [22]; but none of these papers provides means to compute
the concrete privacy level achieved by the mechanism. Thanks to our possibilistic
approach we provide a first order quantification of location privacy for these
mechanisms and uncover tradeoffs in their configuration not studied in previous
works. We note that these mechanisms cannot be easily analyzed from the
Markovian perspective since geo-indistinguishability operates on continuous
locations and time and thus a meaningful quantized representation of users’
movements would incur in a prohibitive cost.

Our contributions can be summarized as follows:

• We introduce possibilistic location privacy, a new notion to quantify the
privacy protection provided by obfuscation-based mechanisms, and we
show its relation to the probabilistic model underlying previously proposed
Markovian approaches.

• We provide algorithms to compute possibilistic privacy that are extremely
efficient, i.e. require less than 1 second (the highest GPS update frequency)
per location, and suitable for accurately quantifying location privacy for
obfuscation-based mechanisms at large scale, e.g., we consider a target
surface of 6.5Mkm2 in our experiments.

• We show that the computational needs of Markovian approaches become
prohibitive when computing meaningful accurate results in large surfaces.

• We quantify, for the first time, the privacy offered by two geo-
indistinguishability mechanisms when more than one location is exposed
to the adversary. Our experiments uncover new trade-offs in one of these
mechanisms not considered by previous work.

The rest of this paper is organized as follows: the next section presents our
possibilistic model for quantification and shows its connection to probabilistic
approaches. Section 3 proposes two algorithms to efficiently compute possibilistic
regions. We compare our approach to the Markovian evaluation from Shokri et
al. [19] in Section 4 and illustrate its capabilities quantifying the privacy offered
by two geo-indistinguishability-based schemes in Section 5. We conclude the
paper in Section 6.
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2 Quantifying Location Privacy: From Probabilistic
to Possibilistic

Quantifying location privacy consists on evaluating the performance of inference
attacks against users’ private location information. In this section we introduce
our possibilistic quantification approach, showing that i) it is a special case
of a probabilistic model equivalent to the underlying Markovian approach in
the framework of Shokri et al., and ii) it can be integrated in this framework
to enable the quantification of location privacy with high accuracy in larger
regions than the Markovian approach, as we show in Sect. 5.

Before diving into the description we introduce the following notation to model
user movements and obfuscation mechanisms, which is summarized in Table 1:

• Probability density function: denoted by f(·).

• User real location: xi is the column vector containing the real (x, y)
coordinates of a user at instant i. Xi is a matrix containing all user
locations up to instant i, where each column contains a tuple of (x, y)
coordinates. The set of all possible locations is denoted by X ⊂ R2.

• User movements: Ψi is the vector that contains the parameters that
probabilistically determine xi+1 from xi. This vector may contain
information related to movement patterns such as the time elapsed between
instants i and i + 1, the average velocity in this period, etc; or related
to terrain information such as possible turns, existence of walls, lakes,
etc. For simplicity we assume that Ψi is independent of the actual
location xi, but we note that the extension to a more general case that
considers dependencies is straightforward. We denote by f(xi+1|Ψi,xi)
the probability density function describing users’ mobility patterns.

• Observed obfuscated locations: zi is the column vector containing the
obfuscated coordinates exposed by a user at instant i, i.e., the adversary’s
observation at instant i. Zi is a matrix containing all the obfuscated
observations up to instant i, and we denote by f(Zi) the probability
density function describing the probability of observing Zi. Z denotes
the set of all possible obfuscated locations which are coordinates in our
analysis, though we note that our formulation can be extended to account
for other type of obfuscated locations, such as a center and radius of a
circle, n coordinates defining a polygon, etc.

• Obfuscation mechanism: We denote as f(zi|xi) a probability density
function describing the probability of exposing obfuscated location zi when
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the real location is xi, i.e., f(zi|xi) models the operation of a obfuscation
mechanism.

We make the following assumptions regarding the statistical description of the
involved variables: i) f(xi+1|Ψi,Xi) = f(xi+1|Ψi,xi). This means that the
next location only depends on both the current location and the parameter vector
Ψi. Notice that depending on the trajectory this will not be true in general,
but we make this assumption here to simplify the presentation of the analysis;
and ii) f(zi|Xi) = f(zi|xi). This means that the obfuscation mechanism is
memoryless, that is, obfuscation is a (probabilistic or deterministic) function
of the current location. We assume a probabilistic function for its generality.
While carrying out the analysis for memoryless mechanisms may seem very
restrictive, we show in Sect. 5 that it does not prevent our model from being
useful in presence of obfuscation mechanisms that have memory.

Finally, we assume that the adversary is causal, i.e., she constructs an estimate
x̂i of the user’s true location at instant i from the vector of observations Zi
(notice that the adversary could construct non-causal estimates by using later
observations, e.g., zi+1). We leave the general case for future work.

2.1 Probabilistic Location Privacy

This section illustrates the adversary’s approach from a probabilistic perspective,
that is equivalent to the Markovian approach used by Shokri et al.. For the
sake of example we focus on localization attacks in which the adversary tries to
find the location of a user xi at a given time i. In this case, a reasonable choice
for the adversary is to use the Maximum Likelihood principle to estimate the
real location of the user as:

x̂i = arg max f(xi|Zi,Ψi), (1)

where the conditioning to Ψi represents the prior information that the adversary
may have about user movements or terrain information. Since it does not
influence the analysis, we drop this parameter from the notation to improve
readability but note that it is important in the computation of probabilities.

To carry out the above optimization the adversary needs to calculate the
probability density function f(xi|Zi) which, applying the probability chain rule,
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can be done recursively as follows:

f(xi|Zi) = f(xi,Zi)
f(Zi)

= f(zi|xi,Zi−1) · f(xi,Zi−1)
f(Zi)

= f(zi|xi,Zi−1) · f(xi|Zi−1) · f(Zi−1)
f(Zi)

= f(Zi)−1 · f(zi|xi,Zi−1) · f(Zi−1) ·∑
xi−1∈X

f(xi|Zi−1,xi−1)f(xi−1|Zi−1) . (2)

Now we make use of our assumptions: since the obfuscation algorithm is
memoryless we can write f(zi|xi,Zi−1) = f(zi|xi), and since user movements
do not depend on the obfuscation mechanism we can write f(xi|Zi−1,xi−1) =
f(xi|xi−1). Then, (2) becomes

f(xi|Zi) = f(Zi)−1 · f(zi|xi) · f(Zi−1) ·∑
xi−1∈X

f(xi|xi−1) · f(xi−1|Zi−1)

= g(Zi) · f(zi|xi) ·∑
xi−1∈X

f(xi|xi−1) · f(xi−1|Zi−1) , (3)

where g(Zi) = f(Zi)−1 · f(Zi−1) only depends on the observations, so it can be
regarded to as a normalization factor with no effect on the optimization to be
carried out by the adversary. This equation defines a forward recursion that at
instant i contains three ingredients: 1) the obfuscation mechanism: f(zi|xi);
2) the location evolution: f(xi|xi−1), and 3) the conditional probability of
the user’s real location given the adversary’s observation at instant i − 1:
f(xi−1|Zi−1).

Let us define α(xi)
.= f(xi|Zi), where the dependence with the vector of

observations is implicit. Then, (3) is equivalent to4

4We note that if the possible locations would be defined over a continuous space, then the
expression in (4) would be valid after replacing the sum by an integral.
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α(xi) = g(Zi) · f(zi|xi) ·
∑

xi−1∈X
f(xi|xi−1) · α(xi−1) . (4)

A considerable simplification to (4) is afforded when the distribution f(xi|xi−1)
can be written as

f(xi|xi−1) = ϕ(xi − xi−1) , (5)

where ϕ is a probability density function. Equation (5) implies that the random
variable xi can be written as xi = xi−1 + vi, where vi is independent of xi−1.
In other words, vi models the movement of the user from xi−1 to xi according
to the parameters in Ψ. The assumption in (5) allows us to write the sum in
(4) as a convolution:

α(xi) = g(Zi) · f(zi|xi) · (ϕ(x) ∗ α(x)) |x=xi (6)

where ∗ denotes convolution. The interpretation of (6) is the following: given
α(xi−1) we first convolve it with the probability density function of vi to
determine the prior distribution of xi; then we update it with the conditional
probability f(zi|xi) to produce the posterior distribution after observing zi. This
produces α(xi) and the process can be repeated every time a new observation
is available.

Recall that α(xi)
.= f(xi|Zi). Thus, (6) computes the sought probability

distribution over real locations given the observation, which allows to carry out
the localization attack.

2.2 Possibilistic Location Privacy

In the following we present the possibilistic approach for estimating locations.
In contrast to the Markovian approach from the previous section that considers
probability distributions, our possibilistic approach is designed along a set-
membership formalization. In this sense, we only consider a set of possible
locations, i.e. areas in that the user can possibly be. Note that in the following
whenever we write O + P this sum is meant for a set of locations and a set of
movement vectors in the set-theoretic sense.

Let us assume that the user’s location xi−1 is known to be contained in a
compact set of locations Si−1 ⊂ R2. Then, suppose that, given a location xi−1,
we know that the next location xi is such that xi−xi−1 ∈ Vi, for some compact
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set Vi. Making the same assumption as in (5), Vi can be seen as the region
which the user can reach given vi that models user movements according to the
parameters in Ψ. Therefore, prior to observing zi, it is easy to see that the set
of possible locations at instant i is Si−1 + Vi. Intuitively, this means that the
user, who was known to be in Si−1 may stay at any of the locations in this set,
or travel along a vector in Vi to a new location.

While this allows us to capture possible movements of the user, we can further
take into account that the the adversary observes the user’s obfuscated location
zi, and knows that the distance between xi and zi is usually bounded in order
to provide some utility for the user. Thus, we can obtain zi−xi ⊂ Zi, for some
compact set Zi according to the obfuscation mechanism parameters. Therefore,
the set of possible locations based on observing zi is given by zi + Zi, so the
posterior feasible set can be written as

Si = (zi + Zi) ∩ (Vi + Si−1) . (7)

Equation (7) can be seen as the analog of (6) with possibilities instead of
probabilities. We can regard Si as the feasible set associated to xi, Vi is the
feasible set corresponding to vi, and Zi is the feasible set associated to zi|xi.

To see the connection between (7) and (6) more clearly, let us binarize the range
of the probability density functions involved in (6). To this end, it is convenient
to use the indicator function 1, such that, given a set S ⊂ R2, 1S(x) = 1 if
x ∈ S, and is zero otherwise. We further denote by |R| the area of R. If we
write

α(xi) = |Si|−1
1Si ,

ϕ(x) = |Vi|−1
1Vi ,

f(zi|xi) = |Zi|−1
1zi+Zi , (8)

then (7) and (6) are identical (save for a normalization factor) as long as
the convolution output α(x) ∗ ϕ(x) is binarized by a function B such that
B(α(x)∗ϕ(x)) = 1 if α(x)∗ϕ(x) > 0 and B(α(x)∗ϕ(x)) = 0 if α(x)∗ϕ(x) = 0.
This binarization is reminiscent of the dilation operator that is commonly used
in morphological image processing [16]. Starting with a set Si−1 we dilate it
using Vi as kernel (i.e., gradually enlarge the boundaries of Si−1 according to
the structure defined by Vi). This gives the a priori feasible set. Then, an
intersection with zi + Zi is carried out to yield the a posteriori feasible set Si.
See (7).
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Table 1: Notation

f() Denotes a probability density function
xi The user’s actual location at time i
Xi Vector of all real locations up to instant i
zi The user’s observed obfuscated location at time i
Zi Vector of all observed obfuscated locations up to instant i
Ψi Vector of parameters that probabilistically

determine xi+1 from xi
vi Vector modelling user movement from xi−1 to xi

according to the parameters in btΨ
Zi Movement vectors associated to zi|xi.
Vi Movement vectors associated to vi.
Ei Expanded region: Feasible set associated to Si−1 + Vi.
Bi Obfuscated region: Feasible set associated to zi + Zi.
Si Possibilistic region: Feasible set associated to xi.
|R| Area of a region R

As a conclusion, we see that the set-membership approach is a simple (binary,
so to speak) way to carry out the update in (6). Notice that since the set-
membership approach implicitly quantizes the probability values, a maximum
likelihood estimate as in (1) would not generally give a unique solution: all
values in Si are equally feasible (in probabilistic terms, they all have the same
likelihood).

In the following we call Si Possibilistic Region, Ei = Si−1 +Vi Expanded Region,
and Bi = zi + Zi Obfuscated Region.

2.3 Possibilistic Location Privacy in Prior Work

The framework proposed by Shokri et al. [19] consists on the following elements:
〈U ,A,LPPM,O,ADV,METRIC〉.

The set U represents the users in the system that may expose locations. For
the sake of simplicity our analysis is centered on one user but, as we show in
Sect. 4, the efficiency of the possibilistic approach allows it to handle large
populations. The set A models the actual user traces, represented in our
notation by Xi = [x0,x1, · · · ,xi]; LPPM is the obfuscation algorithm that
transforms actual locations xi in obfuscated observations zi, represented in
our notation by f(zi|xi); and the set of observable obfuscated user traces O
is represented in our notation by Zi = [z0, z1, · · · , zi]. The adversary ADV is
defined as an entity that implements some inference attack to learn information



230 POSSIBILISTIC LOCATION PRIVACY

about the user locations given the observed obfuscated trace, her knowledge
of the LPPM, and her knowledge on the users mobility model (represented by
Ψ in our notation). The metric METRIC captures the location privacy of the
user quantified as the adversary’s expected error after the attack.

The integration of our approach in Shokri et al.’s framework means that
operation of the adversary ADV changes from probabilistic to possibilistic.
In our setting, the adversary ADV deploys the possibilistic approach to find
the Possibilistic Region Si in order to localize the user, though we note that
possibilistic reasoning could be used to launch other attacks formalized in [19],
e.g., it could be used to launch a tracking attack by finding possible trajectories
(i.e., subsequent feasible possibilistic regions); or to find meeting points by
intersecting possibilistic regions of different users.

While the change in the adversary’s approach may seem irrelevant, it has great
impact on the scalability of the framework to quantify location privacy. In
Shokri et al.’s work quantification relies on expensive probabilistic algorithms
for which performance depends on the number of regions and time instant to
be evaluated. To reduce the computational load the framework assumes that
users move within an area that is partitioned into M distinct discrete regions,
and that time is discrete being the set of time instants when the users may
be observed T = {1, . . . , T}. This assumption reduces the precision of the
framework, since the maximum accuracy achievable is limited to the size of the
discrete regions, and still it is prohibitely expensive if precision is kept as a
reasonable level, see in Sect. 4. The possibilistic approach, on the other hand,
relies on a cheap intersection operation and hence can take the quantification
to large scale (6.5Mkm2 in our experiments) without trading off precision,
analyzing scenarios in which the Markovian approach would be infeasible.

Possibilistic Location Privacy Metrics

Because our approach is not probabilistic, we cannot use any of the options for
METRIC proposed in [19]. We now define adequate metrics to capture the user’s
location privacy (i.e., the performance of the adversary) for the possibilistic
case. Following Shokri et al.’s insights on the dimensions of privacy we provide
metrics to quantify accuracy, certainty and correctness.

To quantify the accuracy of the possibilistic approach we use the possibilistic
area size, denoted as φ:

φi = |Si| . (9)

This metric captures the precision with which the adversary can pinpoint an
estimated user location, measured as the size of the area of possible locations
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for the user. Since in the possibilistic approach all locations in the area are
equally likely to be the real location of the user, the area size also captures
the uncertainty of the adversary about the user’s location – considering the
definition of uncertainty in [19]: “the ambiguity of the posterior distribution of
the possible user locations given the observed exposed region with respect to
finding a unique answer – that unique answer need not be the correct one”.

One of the most important features of a quantification framework is to allow
for meaningful comparisons between protection mechanisms. The possibilistic
area size provides a good way to compare in terms of absolute location privacy.
However, there are other interesting features that one may want to evaluate
such as the gain in certainty obtained when correlated obfuscated locations are
exposed to the adversary. To this end, we define the certainty gain, denoted
as ρi, as:

ρi = 1− |Si|
|Bi|

. (10)

This metric captures the gain in certainty the adversary experiences from the
case where she observes an isolated obfuscated location, to the case where
subsequent locations are observed. In the former case uncertainty is given by
|Bi| = |zi + Zi| since there is no prior/posterior observation to intersect with;
while in the latter case uncertainty is given by the size of the possibilistic area
Si, see Equation (7).

Neither the area size φ, nor the certainty gain ρ capture whether the user’s true
location is actually inside Si, i.e., the correctness of the attack. Even if Si tends
to be very small, it may be of limited use to the adversary if the user’s true
location is unlikely to be included. We define the adversary success, denoted
as σ, that captures whether the adversary finds the correct answer in her attack
as:

σi =
{

1, if xi ∈ Si
0, otherwise . (11)

3 Practical Algorithms for Computing Possibilistic
Regions

We now provide two algorithms to compute possibilistic regions Si that either
use past observed obfuscated locations to compute the region Si at time i, or
use the current observed location at time i to further reduce regions Sj at past
time instants j, j < i.
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Computing the current Possibilistic Region from past observations.
Given an obfuscated observed location zi at time i, and the previous nbwd
possibilistic regions, the current possibilistic region Si corresponding to the
real location xi can be computed according to Algorithm 1. The parameter
nbwd ∈ [1, . . . , i− 1] models the amount of past information to be taken into
account. Figure 1 illustrates the operation of Algorithm 1 for nbwd = 2.

Algorithm 1 Compute current Si given nbwd past possibilistic regions.
1: Bi = collect(zi, pmass)
2: for j = [1, 2, . . . , nbwd] do
3: Ej = expand(Si−j ,Vi−j+1)
4: end for
5: Si = intersect(Bi, E1, . . . , Enbwd)
6: if Si = ∅ then Si = Bi end if
7: Return: Si

Previous Possibilistic Region

Expanded Region

Obfuscated Region

Si-1

Bi

Si-2
Si

Current Possibilistic RegionSi

Figure 1: Graphical representation of Algorithm 1 for nbwd = 2. Bi (black
thick line) is the obfuscated region where xi can be, given (zi + Zi). Si−1 and
Si−2 (black dashed lines) are the last possibilistic regions, Ei and Ei−1 (grey
dashed lines) are the expanded regions corresponding to Si−1 and Si−2. The
intersection of Bi, Ei, and Ei−1 is the current possibilistic region Si.

First, (line 1), the function collect constructs the obfuscated region Bi from
the observed obfuscated location zi, i.e., a region containing the set of all
possible locations that could have generated zi according to the obfuscation
mechanism f(zi|xi) (see Sect. 2). We parametrize collect with the parameter
pmass ∈ [0, 1] that limits the returned obfuscated region Bi to contain only pmass
of the probability density of f(xi|zi), i.e., Bi is chosen so that f(xi|zi) summed
over Bi is pmass. This is to avoid considering large non-informative Bis, since
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for some obfuscation mechanisms this region can be arbitrarily large but with a
large fraction containing the real location with negligible probability.

In the for loop (line 2-4) the function expand expands each of previous
possibilistic region according to the user movements indicated by vi−j+1, i.e.,
finds the expanded region Ej = Si−j + Vi where the user location may possibly
be after she moves from xi−j to xi−j+1 (e.g., determining the Minkowski sum [2]
around Si−j , as explained in [8]). Once all expanded regions are constructed, the
function intersect (line 5) finds the intersection of the expanded regions with
the obfuscated region Bi computed in line 1 to obtain the current possibilistic
region Si. If intersect returns ∅ (i.e., no intersection between Bi and any
Ej), then Si = Bi (line 6). This means that past observations are of no use to
reduce the obfuscated region Bi. We provide details on our implementation of
the functions expand and intersect in Appendix A.

Using the current observation to update past Possibilistic Regions.
We now present a second algorithm, Algorithm 2, where the adversary uses the
current obfuscated region to update previous possibilistic locations, i.e., the
previous possibilistic regions Si−1 to Si−nfwd , narrowing down the region in which
the users’ real location could possibly be. The parameter nfwd ∈ [1, . . . , i− 1]
represents the number of previous possibilistic regions to be updated. Figure 2
illustrates the operation of Algorithm 2 for nfwd = 2.

Algorithm 2 Update previous possibilistic areas [Si−nfwd , . . . ,Si−1] given
current observation.
1: Bi = collect(zi, pmass)
2: for j = [1, 2, . . . , nfwd] do
3: E ′j = expand(Si,Vi−j+1)
4: tmp = intersection(E ′j ,Si−j)
5: if tmp 6= ∅ then Si−j = tmp end if
6: end for
7: Return: [Si−nbwd , . . . ,Si−1]

Similarly to Algorithm 1 the function collect collects pmass of the obfuscated
region Bi from the observed obfuscated location zi (line 1). The for loop (line
2-4) traverses the nfwd past possibilistic regions to update. For each past instant
j ∈ 1, 2, . . . , nfwd the expand function (line 3) expands the obfuscated region
Bi to cover all possible past locations since time i− j + 1 that could have lead
to the exposure of zi at time i, obtaining the expanded region E ′j . The function
intersect obtains the intersection between this expanded region and Si−j (line
4), and updates Si−j if the intersection is not empty (line 5).
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Bi

Si-1

Si-2

Obfuscated Region Expanded Region

Updated Possibilistic RegionsSi-1 Si-2

Previous Possibilistic Region

Figure 2: Graphical representation of Algorithm 2 for nfwd = 2. Bi (black thick
line) is the obfuscated region where xi can be, given obfuscated location zi.
Si−1 and Si−2 (black dashed lines) are the last possibilistic regions. E ′i and E ′i−1
(grey lines) are the expanded regions where the user could possibly have been
in the past, given Bi. Updated possibilistic regions are obtained intersecting
Si−1, resp. Si−2, with E ′i , resp. E ′i−1.

4 Comparison with Markovian-based Quantifica-
tion

The main difference between the possibilistic and Markovian [19] approaches
lies on the core operation used to infer the users’ real location from the
obfuscated observations. The possibilistic approach only requires cheap set
intersection operations performed on few or several past locations, whereas
the probabilistic reasoning behind the Markovian approach relies on expensive
statistical operations that require computations over the full surface and all
considered time instants. As a consequence of these expensive operations, to be
feasible the Markovian approach requires to considerably simplify the scenario
being evaluated. This is reflected in the assumptions taken by Shokri et al in
their framework that, as we discuss below, introduce a trade-off between the
quantification accuracy and its runtime.

Assumptions: While both possibilistic and Markovian approaches are similar
in that they assume that the adversary has knowledge of the obfuscation
algorithm (LPPM) operation, the prior knowledge required to quantify location
privacy differs in two key assumptions.
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First, in order to be feasible the Markovian approach requires the surface in
which location privacy is evaluated to be quantized, and thus this surface needs
to be pre-defined. As a result, Markovian-based quantification can only handle
locations within such pre-defined “world” and if users visit places that are
outside of this world these locations cannot be captured by the quantification
framework. The possibilistic approach, on the contrary, does not require the
targeted surface to be defined beforehand. Thus, its scope is not limited to any
set of pre-defined locations and it can quantify privacy for any location that
the user visits.

Second, the Markovian approach requires knowledge of probability distributions
that describe users’ behavior, which in most cases is hard (if not impossible)
to obtain, and the quantification output heavily depends on the quality on
this information. On the other hand, the possibilistic approach operates solely
on the exposed obfuscated locations provided by the user without the need
of any prior knowledge or computation, providing a first-order approximation
of the location privacy provided by an obfuscation algorithm without relying
on comprehensive behavior models. Since the analysis in Sect. 2 considers
knowledge about users’ speed v, it is important to note that this parameter does
not need to be known beforehand but it could be inferred from the observations.
We evaluate in Sect. 5.3 the potential impact of inaccurate speed estimation on
the output of possibilistic privacy quantification.

Tradeoff Accuracy vs. Runtime: The need for dividing a surface in discrete
regions to perform quantification introduces a tradeoff between the accuracy
and the runtime of the Markovian approach. For instance, according to Shokri
et al. [19] a localization attack operates in O(TM2), where M is the number
of regions in which a surface is divided and T the number of time instances
in a trace. Thus, to perform highly accurate quantification where the analyst
has to consider small regions (resp. time intervals) the surface needs to be
divided in a large number of regions incurring a high computational cost. If
cost is to be kept small, it is necessary to reduce the number of regions or time
intervals. Then, regions become large providing coarse results of reduced utility.
The possibilistic approach, on the contrary, works on a continuous domain and
its accuracy does not depend on the targeted surface but on the parameters
of the location privacy-preserving mechanism under study. Furthermore, the
computation time of the two practical algorithms we propose in Sect. 3 is
constant for every measurement (O(nbwd), respectively O(nfwd)). Even if both
algorithms are combined to compute the current possibilistic area, and to update
past possibilistic areas, the computation complexity would still be constant
(O(nbwd + nfwd)).

We now provide an empirical comparison of the computation time required by
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both algorithms. To study the Markovian approach runtime we employ Shokri
et al’s tool Location-Privacy and Mobility Meter [18]. For our experiment
we quantify the location privacy of against a localization attack [19] for every
location in 15 random trajectories from the dataset described in Sect. 5.2. We
limit the scope of the map to a 20× 25km = 500km2 surface that contains the
locations visited in these traces, we set T = 100 (comparable to T = 94 used
by Shokri et al.), and we vary M to study its effect on the trade-off. Given
that the size of the surface is fixed, the size of the discrete regions is defined by
500km2/M , which in turn determines the accuracy with which the Markovian
approach can quantify privacy.

0 100 200 300 400
0

20

40

60

80

100

120

140

A
re

a 
S

iz
e 

km
2

Number Locations M

 

 

0 100 200 300 400
0

10

20

30

40

50

60

70

S
ec

on
ds

Area

Time

Figure 3: Accuracy, area of a region in km2, (left y-axis, dashed lines) and
Runtime, in seconds, (right y-axis, thick line) vs. number of regions M .

Figure 3 shows the trade-off between runtime and accuracy as the number of
regions M increases. As expected, accuracy improves significantly when the
surface is divided in more, thus smaller, regions. However, this improvement
comes at a high impact in runtime that grows quadratically as predicted by
Shokri et al. [19]. These timings are in contrast with those of the possibilistic
approach, shown in Table 2, where quantification is performed combining
Algorithms 1 and 2 in Sect. 3 implemented using Matlab R2012b.5 In the
best case (nbwd = 1, nfwd = 0) quantification can be done in 0.21 seconds
on average, and even for the most requiring combination (20 intersections for
nbwd = nfwd = 10) one localization takes only 0.315 seconds on average. Overall,
we see that the possibilistic quantification runtime is very low and can be used
for real time computation. More importantly these runtimes are constant, i.e.,

5We note that implementing the possibilistic approach in C++, as the LPM2 tool, would
make the runtimes even more competitive.
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Table 2: Runtime for one location privacy quantification with the possibilistic
approach. (mean [min,max] in miliseconds)

nbwd = 1 nbwd = 5 nbwd = 10
n

fw
d

0 21 [2, 123] 93 [2, 461] 226 [2, 1419]
1 40 [3, 192] 113 [4, 517] 250 [4, 1511]
5 91 [4, 453] 162 [4, 669] 294 [4, 1632]
10 137 [4, 694] 210 [4, 952] 315 [4, 1542]

they do not depend on the size of the surface in which location privacy is
quantified.

The highest accuracy represented in Fig. 3 is 1.25km2, when M = 400. Even
for such poor precision, the Markovian quantification requires more than 60
seconds. On the other hand, the possibilistic approach can quantify location
with an accuracy of 0.191km2 and 0.254km2 for the two obfuscation algorithms
we evaluate in the next section at low cost as indicated in Table 2. In order
to obtain this accuracy employing the Markovian approach one would have to
quantize the area of interest in M = 2618, respectively M = 1969, regions. This
number of regions, two orders of magnitude higher than the largest M in Fig. 3,
clearly leads to prohibitive computation times.

Alternatively, one could reduce the targeted surface so as to limit the number
of regions to be considered and obtain high accuracy at a reasonable cost. For
instance, if M = 64 the Markovian approach can compute a localization in
0.8 seconds and can cover a total surface of aprox 12km2 for a precision of
0.191km2, or a surface 16km2 if precision is relaxed to 0.254km2. Note that if
we aim at computation times comparable to those of the posibilistic approach
the Markovian approach can only consider M = 16 regions, which cover scarcely
4km2 to obtain 0.254km2 accuracy. These surfaces are not only small, but limit
the range of obfuscation mechanisms that can be studied since it is likely (as in
the case of the schemes we study in the next sections) that obfuscated locations
fall outside of the considered area. Thus, it is not possible to find an scenario
in which a fair comparison between the possibilistic and Markovian approaches
in terms of accuracy is feasible in reasonable time.

5 Location Privacy for Geo-Indistinguishability

In this section we provide a case study where we use the possibilistic approach
to quantify location privacy. We choose two Geo-Indistinguishability-based
approaches as target obfuscation mechanisms, which are an interesting use case
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for two reasons. First, they do not rely on discrete regions to operate and
hence their evaluation with Markovian-based quantification is cumbersome. In
fact, even in simple sporadic cases where only one exposed location has to be
evaluated [1,3] approximations are needed to quantify privacy using Shokri et
al.’s approach [19, 20]. Either the evaluation is done on a very small target
surface (a grid covering approximately 1km2), such as Andrés et al. in [1]; or is
done considering just the top visited regions, such as Bordenabe et al. in [3],
where the final analysis only covers approximately a 5% of the initial area of
interest (50 out of the initially considered 900 locations).

Second, to the best of our knowledge, there exists no quantification of the
privacy loss incurred by these mechanisms when users expose correlated geo-
indistinguishable locations. Andrés et al. [1] prove that the location privacy
provided by a set of correlated geo-indistinguishable points decreases linearly
with the number of points; and Chatzikokolakis et al. [5] provide an alternative
method that allows to disclose correlated points with sublinear loss of privacy.
Yet, the loss incurred with each exposure has not been quantified so far.

The goal of our analysis is twofold: to show the potential of the possibilistic
approach as method for quantifying location privacy, and to show its potential
as comparison tool for obfuscation-based mechanisms. This comparison
complements the results of Chatzikokolakis et al. [5], providing a quantitative
evaluation of the effectiveness of their method compared to the original
mechanism proposed by Andrés et al. [1].

5.1 Geo-Indistinguishable Location Obfuscation Mechanisms

Geo-indistinguishability [1] is a location privacy notion based on the
extension of the differential privacy concept [7] to arbitrary metrics proposed
by Chatzikokolakis et al. [4]. An obfuscation mechanism provides geo-
indistinguishability if the probability of reporting obfuscated location z is
similar for two close locations x and x′, i.e., observing z does not provide much
information to the adversary about which is the actual location. More formally, a
mechanism f(z|x) satisfies ε-geo-indistinguishability iff f(z|x) ≤ ed2(x,x′)f(z|x′)
for all x,x′ ∈ X , z ∈ Z, where d2 is the euclidean distance.

Independent Geo-Indistinguishability

The first mechanism we evaluate is the one proposed in [1], based on the
Laplace distribution. At time i, this mechanism draws the exposed obfuscated
location zi from the polar Laplacian centered at the user real location xi:
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Dε(r,Θ) = ε2

2π re
−εr, where r is the distance between zi and xi, and Θ is the

angle that the line zixi forms with respect to the horizontal axis of the Cartesian
system. We note that Dε has rotational symmetry and thus produces circular
equiprobable contours.

Predictive Geo-Indistinguishability

The second mechanism we evaluate is the one proposed by Chatzikokolakis et
al. [5] in which the user may reuse the previous obfuscated location zi if her
current location is sufficiently close to it instead of drawing a new independent
obfuscated location every time instant. The intuition is that re-using locations
diminishes the information leakage inherent to subsequent exposures, while
there is no quality of service penalty for the user because the user is still near
the obfuscated location.

A predictive geo-indistinguishable mechanism consists of three components: i)
a prediction function Ω : X → Z, that takes as input the previous locations Xi

and outputs a prediction z̃ for the next obfuscated location; ii) a test function
Θ(εθ, lθ, z̃) : X → {0, 1} that takes as input the current location xi and returns
1 if the prediction is accurate and can be re-used (i.e., d2(xi, z̃) ≤ l + Lap(εΘ),
being l and εΘ parameters that represent utility), 0 otherwise; and iii) a noise
function N(εN ) : X → Z that is used if a new pseudo-location needs to be
computed, parameterized by the budget εN . When the budget is exhausted the
predictive mechanism stops exposing obfuscated locations.

Other Differentially-Private Mechanisms

Xiao et al. [22] note that by observing a series of geo-indistinguishable correlated
locations, an adversary may be able to infer the user’s trajectory or the user’s
destination. As a solution, they propose the Planar Independent Mechanism
that provides differential privacy on a so-called δ-location set, that reflects a
set of probable locations that accumulate at least 1-δ of the probability that a
user might appear given his last location and a Markovian mobility model (i.e.,
leaves out locations with low probability of being the real one). This mechanism
obtains geo-indistinguishability offering better utility for the user, but like [19]
relies on a Markovian approach to obtain the probabilities that are used in the
construction of the δ-location, i.e., the protection mechanism is constrained in
the surface it can cover and its computational complexity grows as shown in
Sect. 4. Thus, obtaining obfuscated regions becomes too expensive to include
this approach in our quantification experiments.
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Liu et al. [13] note that the protection of differential privacy may be reduced if
the obfuscated data points contain correlations. They propose the notion of
dependent differential privacy in order to formalize probabilistic dependence
constraints and provide a mechanism, the Dependent Perturbation Mechanism
that achieves it. While their use case is related to location data, and they use
the same data set as we do, their goal is to protect the social graph and hence
their mechanism does not provide location privacy.

5.2 Experimental Setup

We use the GeoLife GPS6 data set [23–25] for our evaluation. This data
set includes 18 655 trajectories from 182 users in the urban area of Beijing,
China collected during a period of over three years (from April 2007 to August
2012). The GeoLife data set illustrates many types of mobility, from daily
routines to leisure activities, and contains traces collected in different means of
transportation. Throughout our experiments we use the actual users’ speed to
expand possible regions, and study the effect of an incorrect speed estimation
in Sect. 5.3.

Trajectories in the GeoLife data set are recorded at a variety of sampling rates.
In order to obtain a regular data set that allows us to fairly test the influence of
different parameters on the possibilistic quantification algorithms, we apply the
following pre-processing. First, we remove trajectories containing large gaps
between locations exposures caused, for example, by the user entering a subway,
or by deliberate/accidental halts in the operation the GPS receiver. Thend,
we only conserve trajectories that contain at least 100 consecutive locations,
and where the average time between exposure of two consecutive locations is
less than 2 minutes. Larger intervals would cause the intersection between
subsequent exposures to be the empty set, and the possibilistic approach would
trivially outputs the size of the observed obfuscated area, i.e., φ = |S| = |B|.
We are left with trajectories from 37 different users.

Second, for each of these users we select 10 trajectories at random and we
quantize time to the minute (much higher exposure frequency than Shokri et
al. [19]). While the possibilistic approach could handle more frequent locations,
this quantization ensures that in most cases the user moves between subsequent
exposures providing information that can be quantified in our evaluation. For
each trajectory we select location samples that are separated at least 60 + δ
seconds, where δ is a small gaussian noise. We repeat the process 10 times
per considered trajectory, ending up with a total of 33,681 locations with on

6http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-
daa38f2b2e13/

http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
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average 91 locations per trajectory. The surface covered by these trajectories is
6.5Mkm2

To ensure that we do not present a favorable case for our approach regarding
frequency of exposures we introduce the parameter pjump to create controlled
gaps in the traces. This parameter allows us to evaluate the influence of
sporadic vs. continuous location exposures on the possibilistic location privacy
quantification. Similarly to [5] the parameter pjump denotes the probability that
the user performs a “jump”, i.e., that the user does not expose her location
within an hour. Naturally, the higher this probability, the more sporadic the
user’s location exposures are. We evaluate the impact of sporadicity in exposures
in Sect. 5.3.

Geo-Indistinguishability setup for the experiments. The main
parameter to be chosen for both mechanisms is ε. We select ε = {0.1, 0.01, 0.001}
which results in the real location of the user being in a circular area of radius
r = ln(2)

ε = {7m, 70m, 700m} centered at in the obfuscated location [6]. We
believe that these choices adequately represent user preferences for low, medium
and high privacy protection.

For the predictive mechanism we adopt the functions proposed in [5]: the
test and noise functions described above; and the parrot function as prediction
function Ω, that always predicts the last reported location as the next obfuscated
location. For the sake of simplicity we choose to disregard the details of the
budget managers in [5], i.e., we consider that the user always has enough budget
to produce a new estimated location. This allows us to consider the effect of
long trajectories in our experiments without the user stopping using the service
because of lack of budget. Finally, we choose lθ = 250m, to decide when a
prediction is too far away from the real location.

5.3 Results

The Influence of pmass on Possibilistic Location Privacy Quantification

We first study the effect of pmass, defined in Sect. 3, on the quantification
of location privacy. This parameter determines how much of the obfuscated
region described by zi + Zi will be taken into account by our implementation
of the possibilistic approach, i.e., how large Bi is. Since the two considered
obfuscation schemes draw their noise from a Laplace distribution (CDF: Cε(r′) =
1− (1 + ε)e−εr), for a target collected pmass the obfuscated area Bi shall be a
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Figure 4: Radius (in meters) of the circular obfuscated area Bi depending on
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Figure 5: Certainty gain and adversary success with respect to pmass and privacy
level ε. (pjump=0.1, nbwd = 1, nfwd = 0, lθ = 250m)

circle of radius r′ = (ln(1 + ε)− ln(1− pmass))/ε. We plot in Figure 4 the effect
of pmass on r′ for the three privacy levels ε considered in our experiments.

Figure 5 shows the impact of pmass on both the certainty gain ρ, and the
adversary success σ for different privacy levels ε. Each point represents a
different pmass, and ρ and σ are averaged over all trajectories in the dataset
truncated at location number 100. We choose to represent ρ in all figures in
the results section since combined with Fig. 4 it allows to easily estimate the
possibilistic area size φ to quantify absolute privacy, and is more convenient for
the comparison between the two geo-indistinguishability approaches.

Since it determines the area covered by Bi, the parameter pmass has an
impact on the three aspects of privacy captured by our metrics (see Sect. 2.3).
Unsurprisingly, increasing pmass monotonically increases the success σ (the
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larger the region Bi, the more chances Si contains the true location). The
remarkable low success for the Predictive mechanism when ε = 0.1 stems from
our choice of lθ, as we clarify in the next section.

With respect the certainty gain ρ and the possibilistic area size φ, very small
pmass values lead to (most of the times) no intersection between Bi and previous
expanded regions E resulting in φ = |Bi| and little certainty gain on average.
As pmass increases so does Bi, and it creates a non-empy intersection with E
increasing the certainty gain. At some point, Bi becomes so large that its
intersection with Ei−1 grows so much that the certainty gains decreases again.
This effect is more visible for small values of ε that produce larget obfuscated
regions Bi, see Fig. 5c.

The best result is obtained when pmass is between 0.7 and 0.8. For the
Independent geo-indistinguishability mechanism the certainty gain is around
18%, 37%, 58% obtaining average accuracy of φ = 0.0021, 0.15, 10.72 km2 for
ε = 0.1, 0.01, 0.001, respectively; and for the Predictive geo-indistinguishability
mechanism the gain is reduced to 8%, 12%, 56% and φ = 0.0023, 0.21, 11.11 km2

on average. As expected, larger ε’s (i.e., lower privacy) result in smaller certainty
gain than smaller ε’s (i.e., higher privacy), because when ε is large obfuscated
regions are very small, and thus there is not much room for improvement.

We observe that the Predictive scheme generally provides better protection
than the Independent method in terms of certainty gain, since by repeating
obfuscated locations it avoids leaking information that can be used by the
adversary to improve her inferences about the user whereabouts. However,
this advantage is reduced as the privacy level is higher. When ε decreases, the
distance r′ between the real and obfuscated locations increases (see Fig. 4) and,
since we configure the Predictive mechanism to consider locations far away
when they are further apart more than lθ = 250m, increasingly often the test
function returns false and the mechanism produces a new obfuscated location.
In other words, the smaller ε the less obfuscated locations are reused, and the
more similar are the Predictive and Independent mechanisms. We note that
this effect only happens because we allow a large budget for the predictive
mechanism, otherwise after few exposures the Predictive mechanism would stop
producing new obfuscations offering high privacy but poor quality of service for
the users.

Privacy Evolution as the User Moves

The results in the previous section represent an average privacy quantification
for the first 100 exposed obfuscated locations. We now show the evolution of
privacy while the user is traveling (averaged over all users for each location).
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Figure 6: Evolution of certainty gain ρ and success σ as the user moves for
different privacy levels (ε). (pjump = 0.1, pmass=0.8, nbwd = 1, nfwd = 0,
lθ = 250m)

Figure 6, top, shows the evolution of the certainty gain. We see that in the
beginning of the trace there is a significant growth in certainty gain, e.g., for
ε = 0.01 φ is reduced from 0.2817km2 to 0.1860km2 after 30 exposures, and
after this point the reduction follows a diminishing returns trend. Also, as
in the previous experiment, we observe that in terms of gain the Predictive
defense performs better than the Independent scheme, with the advantage being
reduced as ε decreases.

Regarding success, we observe that for the predictive mechanism ε seems to
have great influence: an adversary would experience particularly good results in
terms of correctness for ε = 0.01, and much worse results for the other choices
of privacy parameter. The reason is the choice of lθ = 250m, which means that
obfuscated locations will be reused until the user moves more than 250m away
from her location. This has the following effects:

When ε = 0.1 the obfuscated region radius is 29.94m (see Fig. 4). Since an
obfuscated location will be reused until the user traverses 250m it is easy to
see that in this case the real location will soon fall outside the reused exposed
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location Bi and hence also outside the possibilistic region Si, resulting in low
success.

When ε = 0.01, the radius of the obfuscated region is 299.43m, very similar
to lθ. This means that either the user reuses her location because she did not
move 250m, and naturally her real location is inside Bi; or the user moves
producing a new obfuscated location. In the latter case, due to the operation
of the predictive mechanism, it is very likely that the intersection of the new
obfuscated region and the last possibilistic region (Bi

⋂
Si−1) contains the real

location causing the average high success rate.

Finally, when ε = 0.001 the Predictive becomes like the Independent scheme
(i.e., it produces new obfuscated locations even if the previous obfuscated
location would be useful) reducing the likelihood that the real location is in the
intersection, and thus decreasing the adversary’s success.

In this case the possibilistic approach reveals a property of the Predictive
mechanism not considered in [5]. While in principle ε = 0.1 provides little
privacy in terms of accuracy and certainty, if exposures are very frequent and
lθ is chosen wisely the adversary’s inference is rarely correct and thus privacy
increases. Hence, this mechanism may be very useful to hide movements along
nearby locations, e.g., inside a shopping mall, and at the same time have
good utility. Similarly, we see that large ε not only provides high privacy in
terms of adversary’s accuracy and uncertainty, but also in that it provides
low adversary’s success. We also uncover the fact that choosing lθ close to
r′ = (ln(1 + ε) − ln(1 − pmass))/ε has a bad effect on privacy because the
adversary almost always chooses a region containing the user´s real position.
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Figure 7: Certainty gain and adversary success with respect to pjump and privacy
level, ε. (pmass=0.8, nbwd = 1, nfwd = 0, lθ = 250m)
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Influence of Sporadicity on Privacy

In the previous sections we assumed users to have a rather continuous LBS
querying behavior. We now study the effect of query frequency on the the
possibilistic quantification of privacy by varying the parameter pjump from 0
(very frequent usage of LBS) to 1 (sporadic usage of LBS). Figure 7 shows the
results of the experiment. Unsurprisingly, the more sporadic the usage pattern,
the more privacy the users enjoy both in terms of accuracy/certainty gain and
adversary success. We observe that the larger pjump the smaller the certainty
gain: every time there is a silence it is highly likely that the intersection Si = ∅,
and hence no reduction on the obfuscated area is achieved. Also, since the
obfuscated region Bi is rarely reduced, the real location often falls inside the
possibilistic region Si and the adversary’s success increases stabilizing around
0.8 since this is the collected probability mass of Bi.

Influence of Speed Estimation on Privacy
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Figure 8: Certainty gain and adversary success with respect to speed and
privacy level, ε. (pmass=0.8, pjump=0.1, nbwd = 1, nfwd = 0, lθ = 250m)

A key parameter for the possibilistic approach is the user’s speed estimation,
which is used by the expand function in Algorithms 1 and 2. Intuitively,
underestimating speed results in smaller Ei, which in turns reduces the size
of the intersection with Bi, thus increasing accuracy but decreasing success
since it becomes less likely that the user’s actual location is included in Si.
Conversely, overestimating speed results in larger Si, increasing the likelihood
that the real location falls within this region but decreasing accuracy. Figure 8
confirms that this is the case for both obfuscation mechanisms. This figure
also reinforces the findings in previous sections: When ε = 0.1 the Predictive
mechanism offers great accuracy but very low correctness because of the common
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reuse of small obfuscated locations, for ε = 0.01 the Predictive location offers
worse performance in terms of correctness than the Independent because the
obfuscated region has similar radius as lθ, and when ε is very small both
algorithms perform similarly.

Influence of Considered Locations on Privacy

As discussed in Section 3 one can use multiple possibilistic areas using the
parameters nbwd and nfwd at the cost of increasing the computational overhead
of the algorithm, Sect. 4. As it turns out, varying these parameters leads
to a trade off between certainty gain (and hence accuracy) and correctness:
increasing either nbwd or nfwd on average reduces the size of the possibilistic
region Si, which in turn increases the certainty gain. However, we find that
considering more information also leads to a decrease in the adversary’s success
σ due to two reasons: i) reducing Si decreases the likelihood that the real
location is in the possibilistic region; and ii) considering more regions entails
the use of more region expansions computed assuming a speed estimation (see
function expand in Section 3), and the more assumptions, the easier it is that
the possibilistic region deviates with respect to the actual location of the user.

In the extreme case, for for ε = 0.001 and nbwd = nfwd = 10, the certainty gain
ρ can be increased up to 81%, resp. 79%, at the cost of reducing success to
36%, resp. 40% for the Independent and Predictive schemes. While this is a
high penalty, there are more convenient combinations, e.g., nbwd = nfwd = 1
provide a certainty gain of 41%, while only reducing success to 71%, for the
Independent mechanism when ε = 0.01. More combinations can be found in in
Table 3 in Appendix B.

6 Conclusion and Future work

Shokri et al. state-of-the art framework [19] for quantifying location privacy
employs a Markovian approach. This approach can capture a great variety
of user behaviors, inference attacks, and allows to easily integrate adversarial
knowledge in the quantification of privacy. On the downside, it relies on
expensive probabilistic reasoning which requires huge computational power that
grows quadratically with the number of locations to be considered. As a result,
it can either be used to quantify privacy on limited surfaces, or to produce
coarse quantification results reducing the utility of the evaluation.

In this paper we have proposed a possibilistic approach for location privacy
quantification. This approach is based on finding the possible region where
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the user can be located given subsequent obfuscated exposures by using set
intersection operations. The simplicity of the approach results in constant
computational complexity, and allows to obtain much more accurate results
than the Markovian approach at a very low cost.

We have illustrated the capability of the possibilistic approach as quantification
mechanism by evaluating the privacy offered by two geo-indistinguishability
based schemes [1,5] using real data. Our evaluation provides the first quantitative
estimation of the privacy offered by these mechanisms when they are continuously
used, and uncovers unknown tradeoffs regarding the configuration of the
mechanism proposed in [5]. Furthermore, the efficiency of the possibilistic
approach allows us to carry our evaluation in a much larger surface than any
prior location privacy evaluation, 6.5M km2, demonstrating that the possibilistic
analysis is suitable for large-scale location privacy evaluation.

Our work has demonstrated that the possibilistic approach can quantify location
privacy at a low cost. This opens new research directions regarding the
evaluation and design of location privacy-preserving mechanisms. First, while
the possibilistic approach can provide reasonable accuracy, it is clear that its
binary nature (possible or not possible) disregards any probabilistic information
that may be available to the adversary and that could refine the quantification
result. Thus, one future line of research is the development of methods that use
the possibilistic approach as means to reduce the surface in which probabilistic
operations need to be performed such that the latter becomes feasible in realistic
scenarios.

Second, it has been shown that the Markovian approach can be used in the
design optimal protection mechanisms against strategic adversaries [11,17,20,21].
However, the computational cost of these methods is very high mainly due to
the probability computations, and thus they have only been evaluated in small
scenarios. Hence, another interesting research direction is to explore ways to
integrate possibilistic reasoning in the optimization processes underlying these
design strategies to reduce their computational needs so that they can scale to
large surfaces.
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A Implementation Considerations

Next we describe the implementation of the functions intersect and expand of
the Algorithms 1 and 2 that we use for our evaluation in the following sections.
Describing analytically and accurately the intersection between two or more
regions is not feasible, since in most cases the resulting structure is expected
to be an arbitrary figure. To ensure reasonable computation time and easy
maintenance we represent the intersection as the minimal overbounding ellipse.
Finding the minimal bounding ellipsoid is an NP-hard problem [10], hence we
use Khachiyan’s algorithm [12] to efficiently find the minimum bounding ellipse
enclosing a set of points.

Taking this into account we represent the ellipse as tuple [A,C] [15], where A is
a two by two matrix that encodes the ellipse’s radii lengths a, b and rotation
angle φ of the ellipse (with respect to the considered reference axes), and C are
the coordinates of the ellipse. See Appendix A.1 for more information about
the ellipse encoding and how to compute it from particular ellipse’s radii and
rotation angle.

The function expand can be implemented as follows: we obtain the radii a, b of a
region Bi (or Si) from the matrix A and extend them according to v ·(ti−ti−j+1),
where v is the user’s estimated speed. Then, we invert the transformation to go
back to the matrix representation.
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To illustrate our implementation of the algorithm intersect we provide an
example for the intersection of two regions but note that the general case is
straightforward. We represent the corresponding obfuscated region Bi and
the expanded regions Ei with two ellipses given by [AB, CB] and [AE , CE ]. AB
and AE are given by the user’s choice of the privacy parameter for the chosen
obfuscation algorithm and the parameter pmass, and CB and CE are given by
z1, z2. To compute the intersection, we approximate both ellipses selecting a
varying number of points in its countour (i.e., points that fulfil the equality
x2

a2 + y2

b2 = 1). We choose the number of points depending on the size of the
region (at most 1, 500). After the approximation, we rotate all the points
according to φB, φE and move the points according to CB and CE and keep only
those points that are inside both ellipses. Finally we use Khachiyan’s algorithm
to find the minimum bounding ellipse containing these points.

The memory consumption of the expand and intersect functions is very low.
Our implementation of the expand algorithm consumes 32 floats and thus a
memory of 256 byte. The memory consumption of the intersect algorithm
depends on the number of ellipses to intersect, i.e. nbwd for Algorithm 1 and
two for Algorithm 2. Our implementation of the intersect algorithm consumes
for two ellipses 71 kB (6 times the maximum number of approximation points,
i.e. 1, 500 floats) and 24 kB (2 times 1, 500 floats) for every additional ellipse.

A.1 Matrix Representation

In the following we will provide the formulas for computing the matrix
representation A of an ellipse in 2D coordinates given the ellipse’s radii a, b
and its rotation angle φ. The computation of A is the multiplication of three
matrices U,D, V , every of dimension 2x2:

U = V =
(
− cosφ sinφ
sinφ cosφ

)

D =
( 1
a2 0
0 1

b2

)
A = U ×D × V

For obtaining the ellipse’s radii a, b and rotation angle φ from A we need to
apply the singular value decomposition (svd) of A. This gives us the three
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matrices U,D, V and the values for a, b, φ can then be computed as follows:

[U,D, V ] = svd(A)

a = 1√
D11

, b = 1√
D22

φ =
{
π − arcsin(U12) for U22 < 0
arcsin(U12) otherwise

B Influence of Number of Considered Locations on
Privacy

Table 3 shows the evolution of the accuracy and success of the possibilistic
approach as more past and/or future observations are considered. Note that
nbwd = nfwd = 0 represents the case where no prior/posterior observation
is intersected with region Bi = collect(zi, pmass = 0.8), i.e., it represents the
maximum protection provided by the obfuscation mechanism that serves as
basis for the computation of the certainty gain ρ. For this case, obviously
the certainty gain is 0, and the success is around 80% since it is given by the
proportion of total feasible locations collected given pmass.

As explained in Sect. 5.3, increasing the number of considered possibilistic
regions trades-off accuracy for correctness. An exception is the case of the
Predictive algorithm when ε = 0.01 where, due to to the choice of lθ, success
increases with respect to the baseline case (see Sect. 5.3 for more details).
However we observe that, even in this case success decreases as either nbwd or
nfwd = 0 increases.
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Table 3: Improvement with nbwd and nfwd. Each element of the table represents
a tuple (ρ/σ). (pmass = 0.8, pjump=0.1).

Independent nfwd
0 1 5 10

n
bw

d

0 0.00 / 80.00 9.59 / 82.89 12.83 / 81.53 13.06 / 81.32
1 12.01 / 81.72 17.72 / 80.34 20.12 / 79.14 20.29 / 78.97

ε = 0.1 5 13.84 / 80.94 19.46 / 79.53 21.70 / 78.39 21.87 / 78.21
10 14.38 / 80.73 19.94 / 79.32 22.15 / 78.15 22.31 / 77.98

n
bw

d

0 0.00 / 80.00 22.72 / 79.87 35.05 / 73.57 36.94 / 71.82
1 33.04 / 73.92 41.24 / 71.19 48.15 / 66.54 49.28 / 65.26

ε = 0.01 5 38.99 / 69.96 46.26 / 67.28 46.26 / 67.28 52.85 / 61.95
10 40.31 / 69.09 47.28 / 66.43 52.69 / 62.32 54.82 / 60.83

n
bw

d

0 0.00 / 80.00 34.46 / 76.54 58.01 / 62.36 63.18 / 55.91
1 55.53 / 59.07 65.04 / 55.70 74.50 / 48.08 76.99 / 44.29

ε = 0.001 5 64.67 / 49.83 72.03 / 47.03 78.94 / 41.26 80.84 / 38.43
10 67.82 / 46.46 74.15 / 43.76 80.30 / 38.57 81.97 / 36.04

Predictive nfwd
0 1 5 10

n
bw

d

0 0.00 / 80.00 0.98 / 46.96 4.16 / 46.87 4.93 / 46.83
1 1.16 / 46.34 2.15 / 46.29 5.32 / 46.19 6.10 / 46.17

ε = 0.1 5 4.75 / 44.57 5.71 / 44.53 8.72 / 44.42 9.47 / 44.40
10 5.82 / 44.08 6.75 / 44.04 9.70 / 43.96 10.44 / 43.94

n
bw

d

0 0.00 / 80.00 5.20 / 92.22 8.39 / 91.14 8.95 / 90.85
1 9.03 / 90.18 12.64 / 89.70 15.73 / 88.68 16.24 / 88.41

ε = 0.01 5 11.04 / 89.12 14.63 / 88.64 17.61 / 87.68 18.10 / 87.43
10 11.50 / 88.90 15.11 / 88.45 18.09 / 87.49 18.57 / 87.24

n
bw

d

0 0.00 / 80.00 29.12 / 79.87 49.07 / 68.12 54.02 / 62.81
1 53.67 / 62.12 62.14 / 59.01 70.73 / 52.19 73.09 / 48.99

ε = 0.001 5 62.68 / 53.67 69.36 / 51.19 75.82 / 45.52 77.70 / 43.01
10 65.47 / 50.90 71.45 / 48.28 77.38 / 43.08 79.04 / 40.64
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