KU LEUVEN ARENBERG DOCTORAL SCHOOL

Faculty of Engineering Science

Hybrid Probabilistic Logic

Davide Nitti
Supervisors: Dissertation presented in partial
Prof. dr. Luc De Raedt fulfillment of the requirements for the
Prof. dr. ir. Tinne De Laet degree of Doctor in Engineering

Science: Computer Science

August 2016

Hybrid Probabilistic Logic Programming

Davide NITTI

Examination committee:

Prof. dr.
Prof. dr.
Prof. dr.
Prof. dr.
Prof. dr.

ir. Jean Berlamont, chair
Luc De Raedt, supervisor

ir. Tinne De Laet, supervisor
ir. Hendrik Blockeel

ir. Herman Bruyninckx

dr. Vaishak Belle

Prof. dr.

Gerhard Lakemeyer

(Aachen University of Technology)

Prof. dr.

Scott Sanner

(University of Toronto)

August 2016

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor in Engineering
Science: Computer Science

© 2016 KU Leuven — Faculty of Engineering Science
Uitgegeven in eigen beheer, Davide Nitti, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Abstract

An important issue in artificial intelligence and many other fields is modeling the
domain of interest. Given a model it is possible to perform inference to answer
questions of interest, or make decisions to maximize a given utility. An active
research topic concerns declarative languages for modeling and learning a wide
range of applications. In particular, probabilistic logic programming combines
first-order-logic with probability theory to model uncertainty. However, the
majority of such languages do not support continuous random variables, or
their support for continuous variables is limited. In this thesis we address this
issue extending probabilistic logic programming techniques to deal with hybrid
relational domains, involving both discrete and continuous random variables.
We first propose a new inference algorithm for the language of Distributional
Clauses, that supports zero-probability evidence, including algebraic constraints
for which most frameworks fail. Secondly, we extend the algorithm for filtering
in temporal domains. Finally, we propose a planner to solve Markov Decision
Processes described with Distributional Clauses. The proposed algorithms
are tested in several synthetic and real-world problems showing that they are
competitive with respect to the state of the art. In particular, we showed how
the framework can be used to exploit relational and continuous information
jointly to improve state estimation in robotics and vision applications.

Beknopte samenvatting

Een centraal probleem binnen artficiéle intelligentie en vele andere onderzoeks-
velden is de modelering van het beschouwde domein. Als het model gegeven
is kan men met inferentie vragen beantwoorden of beslissingen maken die
de opbrengst maximaliseren. Er is heel wat recent en actief onderzoek naar
declaratieve talen voor het modeleren en leren binnen een breed scala van
toepassingen. Probabilistisch logisch programmeren combineert eerste-orde
logica met waarschijnlijkheidstheorie voor het modeleren van onzekerheid. De
meerderheid van de bestaande talen ondersteunt geen continue variabelen of
hun ondersteuning voor continue variabelen is erg beperkt. Dit doctoraat breidt
probabilistisch logisch programmeren uit zodat het geschikt is voor hybride
relationele domeinen die zowel discrete als continue variabelen beschouwen.
Eerst en vooral introduceert dit doctoraat een inferentiealgoritme voor de taal
van Distributional Clauses dat zero-probability waarnemingen (zero-probability
evidence) ondersteunt. Ten tweede breidt dit doctoraat het algoritme uit
voor filtering in dynamische domeinen die evolueren over de tijd. Ten slotte
stelt dit doctoraat een planner voor om Markov Decision Processes op te
lossen met Distributional Clauses. De ontwikkelde algoritmes zijn getest
in verschillende artifici€le en echte problemen. De testen tonen aan dat de
algoritmes competitief zijn met de meest recente alternatieven. In het bijzonder
toont het doctoraat aan dat het algoritme correct inferentie uitvoert met zero-
probability waarnemingen met inbegrip van algebraische beperkingen waarvoor
de meeste bestaande alternatieven falen. Bovendien toont het doctoraat hoe
het ontwikkelde raamwerk bruikbaar is om relationele en continue informatie
gezamenlijk te gebruiken voor toestandsschatting in toepassingen uit de robotica
en visie.

Acknowledgments

Pursuing this Ph.D. has been a challenging but rewarding journey. This goal
would have not be possible without the help and support of many people. 1
would like to thank all of them here for their contribution.

First of all, I would like to thank my supervisors Luc De Raedt and Tinne De
Laet. They encouraged and supported me through these years. They helped
me to think in a scientific way and to look in the right direction. At the same
time they gave me the freedom to explore and find my own answers.

Secondly, I want to kindly thank all the members of my jury, Herman Bruyninckx,
Hendrik Blockeel, Vaishak Belle, Scott Sanner, and Gerhard Lakemeyer for
reading this text, and for the useful comments and remarks which helped me to
improve it. I would also like to thank Prof. Jean Berlamont for kindly chairing
my defence.

In these years, I collaborated and discussed with many people that together
with my supervisors where important to write papers on which this thesis is
based, and so I would want to thank here all of my co-authors and people
that provided me valuable feedback throughout my Ph.D. studies: Luc, Tinne,
Vaishak, Maurice, Bogdan, Mathias, Bernd, Ingo, Irma, Guy, Angelika, Jesse,
Laura, McElory, and Plinio. Next, I would want to thank all the people
with whom I had the pleasure of sharing an office during my time at KU
Leuven: Bogdan, Ingo, Guy, Laura, Mathias, Francesco, and Behrouz, for many
interesting discussions and the exchange of research ideas. In particular, I would
like to thank Bogdan with whom I shared the passion for tea, and Francesco
and Behrouz for the exciting discussions and the countless coffee breaks.

During these years in Leuven, I was happy to meet friends from all over the
world and spend enjoyable days. I am particularly grateful to Buddha for the
great time spent in PhD parties and other activities, Giuseppe for the nice
coffee breaks, Saida for her support and many others.

vi ACKNOWLEDGMENTS

I gratefully acknowledge the financial support received for the work performed
during this Ph.D. thesis from the IWT (agentschap voor Innovatie door
Wetenschap en Technologie), and by the First-MM project (Flexible Skill
Acquisition and Intuitive Robot Tasking for Mobile Manipulation in the Real
World) funded by the European Community’s 7th Framework Programme, grant
agreement First-MM-248258.

Finally, I would like to thank my parents for the unconditioned support in all

these years, and for encouraging me to follow my passions and my dreams.

Davide Nitti
Leuven, August 2016

Abbreviations

Al
DBN
DC
DCPF
DDC
FOL
HMM
iid.

iff
IOHMM
Lw
MC
MCMC
MDP
PF

STD

artificial intelligence

Dynamic Bayesian Network
distributional clauses
distributional clauses particle filter
dynamic distributional clauses
First-Order Logic

Hidden Markov Model

independent and identically distributed
if and only if
Input Output Hidden Markov Model

likelihood weighting

Monte Carlo

Markov Chain Monte Carlo
Markov Decision Process

Particle Filter

standard deviation

Contents

Abstract i
Acknowledgments v
Contents ix
List of Figures xiii
List of Tables xvii
1 Introduction 1
1.1 Contributions Lo 3
1.2 Thesis Roadmap 4

2 Background 7
2.1 Probability Theory 7
2.2 Probabilistic Graphical Models 11
2.2.1 Bayesian networks 11

2.2.2 Temporal models 13

2.2.3 Dynamic Bayesian networks 14

2.3 Imference. 14

CONTENTS

2.3.1 Naive Monte-Carlo 15
2.3.2 Importance sampling 16
2.3.3 Sampling from a Bayesian Network 17
2.3.4 Markov Chain Monte Carlo methods 17
2.3.5 Inference in temporal models 19
2.4 First-Order Logic 20
2.4.1 Logic Programming 23
2.5 Probabilistic Languages oL 25
2.6 Planning Lo 27
2.6.1 Markov Decision Processes 27
2.6.2 Relational MDPs 29
2.6.3 Languages for planning 30
Distributional Clauses 32
3.1 Distributional Clauses 32
3.2 Static Inference for Distributional Clauses 36
3.2.1 Importance Sampling 36
3.2.2 Sampling partial possible worlds 38
3.23 Exampleso 44
3.3 Experiments. oo 52
3.4 Related worko o 56
3.5 Conclusions 57
Dynamic Distributional Clauses 59
4.1 Dynamic Distributional Clauses 59

4.2 DCPF: A Particle Filter For Dynamic Distributional Clauses . 60
4.2.1 Filtering Algorithm 61
4.2.2 Avoiding backinstantiation 64

CONTENTS xi

4.2.3 Comparison with Murphy’s interface algorithm 69
4.24 Limitations oL 70

4.3 Online Parameter Learning 70
4.3.1 Learning in Particle Filters 71
4.3.2 Online Parameter Learning for DCPF 72

4.4 Experiments. e 74
4.4.1 Synthetic dynamic domains 75
4.4.2 Real-world dynamic domains 79
4.4.3 Learnsize scenario 82

4.5 Related Work 85
4.5.1 Frameworks oo 86

4.5.2 Applications oL o 87

4.6 Conclusions 88
5 Planning 90
5.1 Imtroduction. 90
5.2 HYPE: Planning by Importance Sampling 92
5.2.1 Basic algorithmo 92
5.2.2 Computing the (Approximate) @Q-Function 95
5.2.3 Extensions oo oL 97
5.2.4 Practical improvements L. 98

5.3 Abstraction 99
5.3.1 Basic principles of abstraction. 100
5.3.2 Mathematical Derivation 101
5.3.3 Sample-based abstraction by logical regression 106

54 Related work 107

5.4.1 Non-relational planners 107

xii

CONTENTS

5.4.2 Relational planners and abstraction 109

5.5 Experiments. oo 110
5.5.1 HYPE without abstraction 111

5.5.2 HYPE with abstraction 113

5.6 Conclusions e 115

6 Conclusions and Future Work 116
6.1 Conclusionso 116
6.2 Future Work 118
6.2.1 Applications 118

6.2.2 Inference and planning L0 119
Bibliography 121
Curriculum Vitae 135
List of publications 137

List of Figures

2.1
2.2

3.1

3.2

3.3

4.1

4.2

4.3

Alarm Bayesian Network from J. Pearl. 12

IOHMM assuming p(zit1|Tis1, ue) = p(zew1|Tee1). o o o o o 14

Results of EVALSAMPLEQUERY for static inference with LW and
without LW (naive). 53

Identity uncertainty domain used in [Milch et al., 2005b]. The
axes in (a) and (b) are in logarithmic scale. LW and LWexp
overlap in (b); BLOG and naive overlap in (b); LW and LW2
overlapin (¢). L L 54

Experiments with continuous evidence. The query is the
probability that the first drawn ball is made of wood, given
that its size is 0.4. BLOG requires evidence discretization. LW
and LWexp overlap in (b); LW2 and LW2exp overlap in (b);
LWexp and LW2exp overlap in (¢). 55

Sample partition, before (left) and after (right) the filtering
algorithm. Initially z;11 is not sampled, therefore x¢,; = z411
and a:fj_l = (). The inference algorithm samples variables z* C
z¢, %, C x¢,., and adds them respectively to z; and zf;.
Indeed, 2 = af Uz}, 27 = 2P \ o}, 81, = ol Ul = 2%,
Blo=awf o\ Tl 62

A partial sample for example 4.2, before (left) and after (right)
the filtering algorithm. 63

Left: HMM-like dynamic model parameterized by 6. Right:
modified version used to apply a Storvik’s filter variant in DCPF. 73

xiii

Xiv

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

5.1

5.2

Experiments. Total variation distance as a function of run-time
(a) or the number of samples (b) for the probabilistic wumpus

example. (c) Run-time for various grid sizes with 1000 samples.

(a) and (b) are in logarithmic scale.

Experiments (Wumpus3). Time refers to 10 steps. The axes in
(a) and (b) are in logarithmic scale. For STD there is a 99%
confidence interval.,

Wumpus experiments with complex evidence (Wumpus4). The
axes in (a) and (b) are in logarithmic scale. Time refers to 10
steps. For STD there is an 99% confidence interval.

Wumpus experiments with changing cells (Wumpusb). Time
refers to 4 steps. For DBLOG the rows and columns cells from
[—3, 3] has been queried at each step. The axes in (a) and (b)
are in logarithmic scale. L.

(a) Yaw of an object. Yaw is positive in quadrants I and II. (b)
Physical principles considered.

Packaging scenario experiments. The bottom images represent
moments of the experiment, while the top images show the
corresponding estimated objects’ positions, where each colored
point represents an object in a sample. The cube is represented
in blue, the small box in fuchsia and the big box in beige.

Inference time per step in the packaging scenario, with 3 objects
and 500 samples.

Learnsize scenario. Sketch on the left: the objects are pushed

away from each other when they overlap, applying a displacement.

Picture on the center with 3 objects. The right figure represents
the estimated objects’ positions (yellow, orange and grey), and

the estimated size (one point per sample) using artificial dynamics.

The blue lines are the real size and the black lines the average
estimated size. The distance is measured in meters.

Left: weight computation for the objpush domain. Right: a
sampled episode that reaches the goal (blue), and avoids the
undesired region (red). oL

Blocksworld with abstraction. Current full state on the right,
and a sampled episode on the left. The abstracted states are

LIST OF FIGURES

7

78

78

79

80

82

83

83

94

LIST OF FIGURES XV

5.3 V-function for different rover positions (with fixed X =0.16) in
simplerover! domain (left). A possible episode in marsrover
(right): each picture can be taken inside the respective circle (red
if already taken, green otherwise). 111

List of Tables

4.1

5.1

5.2

Learnsize scenario results. Avg error is the absolute distance
between the ground truth and the averaged estimation of the
objects size (averaged over over objects and trials). ‘Correct’ is
the total number of objects size estimated correctly, that is with
an error below 1.5cm. Lo

Experiments without abstraction: d is the horizon used by the
planner, T the total number of steps, M is the maximum number
of episodes sampled for HYPE, while C is the SST parameter
(number of samples for each state and action). Time refers to the
plan execution of one instance, from the starting state till the
goal or the maximum number of steps is reached, with a timeout
of 1800s. PROST results refer to IPPC2011.

Experiments with and without abstraction. N is the number of
sampled episodes, d is the horizon used by the planner, T is the
maximum number of steps, ‘success’ is the number of times the
goal isreached. L o

xvii

85

112

Chapter 1

Introduction

The field of artificial intelligence (AI) concerns building machines that can solve
problems that require some form of ‘intelligence’. The first step in developing
such machines is to formally represent the domain of interest and the problem
to solve.

Instead of writing an algorithm that solves a specific task in a specific domain,
it is more valuable to design a language that can represent a wide variety of
domains and to build general inference mechanisms that are valid for any well-
defined domain written in such language. This paradigm is called declarative,
because it separates the definition of the problem from the way it will be
solved. For this reason an important area of research in Al regards knowledge
representation, that concerns how to formally represent information of the
domain of interest and how to process it. One of the languages that can be
used for knowledge representation is first-order logic (FOL). FOL allows to
represent objects, their properties and the relations between them. The key
feature of FOL is the ability to represent abstract knowledge with compact
formulas. In addition, there are several inference mechanisms that allow to infer
new knowledge from the current known information.

A variant of FOL is logic programming [Nilsson and Maliszyniski, 1995;
Apt, 1997; Lloyd, 1987], that expresses knowledge in terms of facts and rules
(implication formulas). Logic programming is less expressive than FOL, but it
allows to provide optimized inference algorithms and programming languages.

Given the noisy nature of real-world data, it is important to represent the
uncertainty of the domain of interest. An active area of research is probabilistic
logic programming, that combines probability theory with logic programming. A

2 INTRODUCTION

related area is statistical relational learning (SRL) [Getoor and Taskar, 2007;
De Raedt, 2008; De Raedt et al., 2008], which combines logical representations,
probabilistic reasoning, and machine learning.

The expressivity of the language and the effectiveness of the inference algorithm
are the key features of such probabilistic logic language. State-of-the-art
probabilistic languages based on logic programming provide high expressivity
and general purpose inference algorithms. Those approaches have been
successful in many application areas ranging from natural language processing
to bioinformatics. However, many probabilistic logic languages do not support
continuous random variables, or their support for such variables is limited.

A more broad area is probabilistic programming that combines probability
theory with programming paradigms (e.g., procedural or functional). Such
languages support continuous random variables, even though they do not follow
a declarative and logical perspective. Nonetheless, virtually all state-of-the-
art probabilistic languages that do support continuous random variables do
not, properly handle zero-probability evidence in complex domains such as the
Indian GPA problem, initially proposed by Stuart Russell and discussed in
[Perov et al.].

A probabilistic logic language that supports both discrete and continuous
random variables can be useful in many domains such as robotics and vision.
Indeed, despite the progress in those fields, the majority of probabilistic models
used, such as Bayesian networks, cannot easily represent relational information,
that is, objects, properties, as well as the relations that hold between them.
In contrast, logical (relational) representations allow to encode more general
models and to integrate abstract background knowledge about the world. In
addition, a hybrid relational language can help to bridge the gap between logical
high-level reasoning with low-level sensory data processing.

Consider for example a robot that assists humans in an object manipulation task.
In particular, assume that a human puts a hammer and a screwdriver inside a
small box that is placed inside a bigger box; at some point the human asks to
the robot to get the hammer. To solve this task, the robot needs to keep track of
the objects and reason about them. For example, to estimate the position of an
object when it is occluded, the robot has to assume that an object inside a box
remains inside under certain conditions and that its position follows the position
of the box. These qualitative rules are also valid recursively for boxes inside other
boxes. Such knowledge can help the robot to keep track of the position of the
hammer when it is occluded because it is inside the box, and thus get the hammer
as required. Another human might enter in the room and ask the robot where is
the screwdriver. The robot can provide this information converting its internal
relational knowledge screwdriver(idl),inside(id1,id2),inside(id2,id3),

CONTRIBUTIONS 3

box(i1d2),box(id3),big(id3), small(id2) in a natural language sentence, e.g.,
“the screwdriver is inside the small box that is inside the big box”. If we assume
that inside is a transitive relation, the robot can infer inside(id1,id3), and
thus reply “the screwdriver is inside the big box™.

This task is relatively easy if the knowledge is already available in logical format.
In practice the task is much harder, because the objects need to be detected by
a camera, and their continuous positions are noisy and not always available. To
solve the task these continuous information need to be filtered and converted
in a relational (logical) knowledge. However, standard approaches use simple
probabilistic models during the filtering process. It is much more powerful to
integrate continuous and relational information in the same framework. This
integration can help estimating the objects position not just using a simple
probabilistic model, but exploiting relational high-level knowledge. For example,
an object inside a box follows its position, as described before.

With this goal in mind, in this thesis we extend probabilistic logic programming
techniques to deal with hybrid relational domains, involving both discrete and
continuous random variables in static and dynamic domains. The resulting
language and solvers have been used in several domains, including a tracking
scenario similar to the one explained above, and simple planning tasks.

1.1 Contributions

This thesis extends probabilistic logic programming techniques to deal with
hybrid relational domains for inference, learning and planning tasks.

The first contribution is a new inference algorithm for Distributional Clauses
(DC) [Gutmann et al., 2011], a recent extension of Sato’s distribution semantics
[Sato, 1995] for dealing with continuous variables. The new inference algorithm
is more efficient and, more importantly, it provides the correct results for some
inference problems in which most probabilistic programming languages fail.
For example, it is possible to answer queries with zero-probability evidence in
non-trivial domains.

The second contribution is the extension of the DC framework to cope with
time. For the resulting Dynamic Distributional Clauses (DDC), we develop a
particle filter (DCPF) that exploits the static inference algorithm for filtering,
and integrates online learning algorithms. Particle filters [Doucet et al., 2000b]
are widely applied in domains such as probabilistic robotics [Thrun et al., 2005],
and we adapt them here for use in hybrid relational domains, in which each state
of the environment is represented as an interpretation, that is, a set of ground

4 INTRODUCTION

facts that defines a possible world. The thesis analyses the conditions required
to perform filtering avoiding inference backward in time (backinstantiation).
Moreover, we prove theoretical correctness for DCPF and study its relation with
Rao-Blackwellized particle filters. DCPF has been applied in several tracking
scenarios, which shows its applicability in online real-world settings.

The third contribution is applying the DDC language to describe Markov
Decision Processes (MDPs) and proposing a new algorithm for planning in a
wide range of domains. The basic planner, called HYPE, exploits the model
and importance sampling to find a good policy. The extension with abstraction
exploits independence assumptions encoded in the model to perform a sample-
based abstraction that improves the performance.

1.2 Thesis Roadmap

Chapter 2 presents background information on probability theory, graphical
models, Monte Carlo methods, logic programming and planning.

Chapter 3 introduces Distributional Clauses and describes a new inference
method based on backward reasoning and importance sampling. The chapter
consists of research previously published in the following paper:

o D. Nitti, T. De Laet, L. De Raedt. Probabilistic logic programming
for hybrid relational domains, in Machine Learning, volume 103, pages
307-449, Springer (2016).

Chapter 4 extends DC for dynamic domains, and provides a particle filter
(DCPF) for the resulting language (DDC). DCPF has been applied in several
tracking scenarios and syntactic domains. Moreover, standard online learning
algorithms have been adapted and integrated in the framework.

The chapter consists of research previously published in the following papers:

o D. Nitti, T. De Laet, L. De Raedt. Probabilistic logic programming
for hybrid relational domains, in Machine Learning, volume 103, pages
307-449, Springer (2016).

e D. Nitti, T. De Laet, L. De Raedt: A particle filter for hybrid relational
domains. In: Proceedings of the International Conference on Intelligent
Robots and Systems (IROS 2013), pages 2764-2771 (2013)

THESIS ROADMAP 5

o D. Nitti, T. De Laet, L. De Raedt: Relational object tracking and learning.
In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA 2014), pages 935-942 (2014)

e D. Nitti, T. De Laet, L. De Raedt: Distributional clauses particle filter.
In: Machine Learning and Knowledge Discovery in Databases, volume
8726 of Lecture Notes in Computer Science, pages 504-507. Springer
Berlin Heidelberg (2014)

e D. Nitti, G. Chliveros, L. De Raedt, M. Pateraki, M. Hourdakis, P.
Trahanias: Application of dynamic distributional clauses for multi-
hypothesis initialization in model-based object tracking. In 9th Interna-
tional Conference on Computer Vision Theory and Applications (VISAPP
2014) volume 2, pages 256-261 (2014)

Chapter 5 extends the DC framework for MDPs and proposes a new planning
algorithm based on importance sampling.

The chapter consists of research previously published in the following papers:

e D. Nitti, V. Belle, L. De Raedt: Planning in discrete and continuous
Markov decision processes by probabilistic programming. In: Proceedings of
the European Conference on Machine Learning and Knowledge Discovery
in Databases (ECML/PKDD 2015), volume 9285 of Lecture Notes in
Computer Science, pages 327-342. Springer International Publishing
(2015). Best Student Paper - Machine Learning Journal Award.

« D. Nitti, V. Belle, T. De Laet, L. De Raedt: Sample-based abstraction
for hybrid relational MDPs. In: European Workshop on Reinforcement
Learning (EWRL 2015)

o D. Nitti, V. Belle, T. De Laet, L. De Raedt: Planning in Hybrid Relational
MDPs. Under review at Machine Learning, Springer

Chapter 6 concludes and discusses directions for future work.

The following papers performed during my PhD research has not been included
in this thesis:

o D. Nitti, I. Ravkic, J. Davis, L. de Raedt: Learning the Structure of
Dynamic Hybrid Relational Models. Accepted at the 22nd European
Conference on Artificial Intelligence (ECAT 2016).

e B. Moldovan, P. Moreno, D. Nitti, J. Santos-Victor, L. De Raedt. Using
Relational Affordances for Multiple-Action Two-Arm Manipulation Tasks.
Under review at Robotics and Autonomous Systems Journal

6 INTRODUCTION

The first paper regards learning the structure of DDC clauses from object
manipulation data collected by a robot arm. The goal was to learn the effects
(i.e. the state transition model) of several actions performed by a robot arm on
cubic objects. The second paper has a goal similar to the first, but it uses a
different learner and it is applied to two-arm manipulation tasks.

Chapter 2

Background

This chapter introduces basic concepts used in the thesis. We will first start with
probability theory (Section 2.1), probabilistic graphical models such as Bayesian
Networks (Section 2.2), and inference methods like Monte Carlo (Section 2.3).
We then continue with first-order logic concepts (Section 2.4) and probabilistic
languages (Section 2.5). We will end with probabilistic planning concepts
(Section 2.6).

2.1 Probability Theory

Probability theory is a well-founded mathematical framework to model
uncertainty. We will briefly overview some of the concepts that are used
in this thesis. For a more extensive introduction we refer to [Jaynes, 2003;
Kadane, 2011].

In probability theory we consider a set of atomic outcomes €2, called the sample
space. For example, Q = {1,2,3,4,5,6} is the sample space of rolling a die. An
event is a subset of Q, e.g., e = {1, 3,5} is the event of obtaining an odd number
after rolling a die. We indicate with 7 C 2 a set of subset of outcomes. A
probability function associates a number in [0, 1] to each event, informally this

number indicates how likely the event is to happen. For example, if we assume
equally probable events, P({1}) = 1/6, and P({1,2,3}) = 1/2.

Definition 2.1. A measurable space is a pair (Q, F), where Q is a non-
empty set and F C 2% is a o-algebra, i.e. a (nomempty) set of subsets
of Q such that Q € F, and every set A in F has its complement in F:

8 BACKGROUND

AeF=(Q\A) eF, and the union of any countable sequence of events

Definition 2.2. A probability space is a triple (Q,F, P), where (Q,F) is a
measurable space, and P : F — [0,1] is a function that assigns to each event a
real number in [0, 1], called probability. A probability space requires that:

e P: F — R is a measure on F, i.e. YA € F : P(A) > P(0) = 0,
and P(U, E;) = Y, P(E;) for any countable sequence of disjoint events
E; e F.

. P(©Q) -

Definition 2.3. Let (Q, F) and (S,X) be measurable spaces, a random variable
X is a measurable function X : Q@ — S, that is a function such that VA € 3 :
X~Y(A) € F, where X~1(A) is the preimage of A under X.

Informally, a random variable X is a mapping that associates a value s € S to
each outcome o € 2, where S is often the set of real numbers R. We denote
with P(X = x) the probability that random variable X has value z. Abusing
notation we use P(z) to define the distribution of X i.e. a function that returns
P(X = z) for a given x.

Example 2.1. Consider drawing two balls (with replacement) from an wrn that
contains blue and red balls. The sample space is Q = {blueblue, bluered, redblue,
redred}. We can define the random variables bally and bally that represent the
color respectively of the first and second drawn ball. Assuming the same number
of red and blue balls we have P(bally = blue) = P(bally = red) = P(bally = blue)
= P(bally = red) = 0.5.

Definition 2.4. The joint distribution P(X; = x1, ..., X, = z,,) of n random
variables X; is the probability of the conjunction N\, X; = x;.

For example, P(X = z,Y = z) or simply P(z,y) is the probability that X =«
and Y = y. From now on, all the concepts will be defined in terms of random
variables.

Definition 2.5. The cumulative distribution function of a random variable X
with values in a measurable space (R, B) is Fx(x) = P(X < x).

Definition 2.6. The probability density function of a random variable X with
values in a measurable space (R, B) is a function px(x) such that P(X € A) =
fA px (x)dz for any measurable set A € B.

PROBABILITY THEORY 9

Informally, we can define probability density function as px(xz) = d%FX (z).
It is easy to show that P(X € [a,b]) = Fx(b) — Fx(a) = f;px(m)d:ﬂ and
Fx(z) = [T px(t)dt.

The cumulative and density functions can be generalized for n random variables.
For example, the joint cumulative distribution for random variables X,Y is
Fxy(z,y) = P(X < z,Y < z) and the joint density fxy (z,y) is such that
P(X € AY € B) = [, [[xy(z,y)dxdy.

The density function does not always exist. Consider a random variable X,
where P(X = 1) = 0.6 and P(X = 2) = 0.4. The cumulative Fx(z) is
discontinuous in 1 and 2, thus the derivative is not defined in those points. We
can solve this issue using the Dirac delta function §(z): a generalized function
that is zero everywhere except at zero (in which it tends to infinity), moreover
[Z5_6(z) = 1. Since the unit step function H(z) (i.e. H(z) = 1 for z > 0,
and H(z) = 0 otherwise) is the cumulative of a random variable X such that
P(X =0)=1and H(z) = [*__6(t)dt, 5(x) can be considered the density of
such random variable. We can generalize the concept and define §,(z) = §(z—v)
as the density of a random variable X’ such that P(X' =v) = 1.

Note that any random variable X that has a discrete domain has a density that
is a sum of Dirac delta functions.

Example 2.2. Consider a random variable X, where P(X = 1) = 0.6 and
P(X =2) =04, the density is px(z) = 0.601(z) + 0.402(x) = 0.66(x — 1) +
0.46(z — 2).

In this thesis we will use this notation to describe discrete distributions such as
empirical distributions that are obtained from samples.

Imagine that we have a probability distribution P and we already know that
an event B is true. We can define a new distribution P’, called conditional
probability, that reflects this information.

Definition 2.7. The conditional probability of event A, conditional on event
B, is defined if P(B) >0 by: P(A|B) = P(ANB)/P(B)

From definitions 2.2 and 2.7 we can derive several properties, such as:

P(AN B) = P(A|B)P(B), (2.1)
o - ABPE), o)

P(AUB)=P(A)+ P(B)—- P(ANB). (2.3)

10 BACKGROUND

Definition 2.7 and the above properties are trivially extended to random
variables. For example, P(X = z|Y =y) = P(X =znY =y)/PY =vy),
where we often call Y = y evidence. Conditional probabilities are properly
defined when the event we are conditioning on has a positive probability,
ie. P(Y =y) > 0. Unfortunately, when Y is a continuous random variable,
Vy : P(Y = y) = 0 in many practical cases, such as Gaussian distributions.
Indeed, in robotics and vision it is common to have as evidence a zero-
probability event (i.e. P(Y =y) =0). For this reason it is necessarily to
define P(X = z|Y = y) when P(Y = y) = 0. The conditional distribution has
to satisfy the equation P(X = zNY =y) = P(X = z|Y = y)P(Y = y),
but this is satisfied for any P(X = z|Y = y) when P(Y = y) = 0.
Indeed, P(Y =y) =0= P(X =zNY =y) =0. This (informally) shows that
P(X = z|Y =y) does not have a unique definition when P(Y =y) = 0.

In this thesis we define the conditional probability for zero-probability evidence
as follows [Kadane, 2011]:

P(q|E =v) = lim P(g, E € [v—dv/2,v + dv/2])

dv—0 P(E € [v—dv/2,v+dv/2]) (24)

In other words we consider a small interval around v and limit such interval
to zero. The cumulative conditional probability is the following (assuming two
random variables X and E):

. PX<z,E€clv—dv/2,v+dv/2])
P(X<z|E=v)=1
(X< alB =)= i e o= v, 0 + dof2])

- Jep(X =& E = v)didv
= lim ===
dv—0 p(E =wv)dv
U p(X =%, E=v)di
_JupX =3, E=0) L (2.5)
p(E =)
The conditional density is thus p(X = z|E =v) = % This definition

does not solve all the zero-probability evidence issues. For example, the limit
does not always exists.

The ambiguity of conditional distributions for zero-probability evidence cases is
known as the Borel-Kolmogorov paradox [Kolmogorov, 1956; Gyenis et al., 2016;
Kadane, 2011], where it has been shown that a reformulation of the problem,
e.g., a change of variables, can produce a different result. Today this issue is
not considered as a paradox in the mathematical sense [Gyenis et al., 2016],
but only a counterintuitive ambiguity. Nonetheless, how the ambiguity should
be removed in practical problems and how the assumptions made influence the
results is an open question. This issue will be important in Chapter 3.

PROBABILISTIC GRAPHICAL MODELS 11

Definition 2.8 (independence). Two random variables A and B are indepen-
dent, indicated by A L B, if and only if

Va,b: P(A=a,B =b) = P(A=a)P(B =1b)

Two random variables A and B are conditionally independent given C, indicated
by A L B|C, if and only if

Va,b,c: P(A=a,B=0bC=c)=P(A=a|C=c)P(B=b|C =c)

From this definition it follows that two independent random variables A and B
satisfy P(A|B) = P(A). Similarly, conditional independent variables A and B
given C (A L B|C) satisty P(A|B,C) = P(A|C).

2.2 Probabilistic Graphical Models

It is often convenient to represent a probability distribution using a graph.
This allows to visualize the distribution, its independence properties, and build
algorithms based on such structure. We will introduce Bayesian networks [Pearl,
1988], one of the most popular graphical models, and their dynamic extensions.
There exist other graphical models, such as Markov random field based on
undirected graphs and factor graphs. We will not discuss those further, but we
refer to [Koller and Friedman, 2009] for more details.

2.2.1 Bayesian networks

Definition 2.9. A Bayesian network consists in a directed acyclic graph BN =
(V,E), where the vertices x; € V represent random variables and the edges
(25,2;) € E encode dependences. The distribution associated with a Bayesian
network BN factorizes as follows:

p(xla T2, 7xn) = Hp(xl|PA(‘T1))7
where PA(x;) is the set of parents of x;, that is the set of all variables that have

an edge towards x;.

The function p(.) indicates a probability or a density distribution. Throughout
the thesis we will often use p(.) in both cases when the context is clear.

12 BACKGROUND

Definition 2.10. A variable A is an ancestor of B and B is a descentant of
A in a Bayesian network, if and only if there is a directed path from A to B.
We indicate with ANC(X) the set of ancestors of X, and DESC(X) the set of
descentants of X.

A Bayesian network BN encodes conditional independence assumptions, for
example it is easy to show that p(z;|PA(z;), ANC(x;)) = p(z;|PA(z;)). A
Bayesian network graph BN does not define a unique distribution, but only
conditional independence assumptions. To define a distribution it is necessarily
to specify the distributions p(x;|PA(z;)). In standard Bayesian networks, the
random variables are discrete, thus the distributions can be defined with a
table that specifies the probability for each value of z;, PA(x;) (conditional

probability table).

Figure 2.1: Alarm Bayesian Network from J. Pearl.

Example 2.3. Consider the well-known alarm network proposed by J. Pearl
[Pearl, 1988; Russell and Norvig, 2009] of figure 2.1. The joint distribution
factorize as follows:

p(Bulglary, Earthquake, Alarm, Johncalls, Marycalls) =
p(Bulglary)p(Earthquake)p(Alarm|Bulglary, Earthquake)-

p(Johncalls|Alarm)p(Marycalls| Alarm)

An important concept in Bayesian Networks is d-separation, that allows to
determine conditional independence between random variables.

Definition 2.11. An undirected path P is d-separated [Murphy, 2012] by a set
of nodes (random variables) C iff at least one of the following conditions hold:

PROBABILISTIC GRAPHICAL MODELS 13

- P contains a chain, s > m —t or s < m < t, where m € C'
- P contains a fork, s < m — t, where m € C

- P contains a collider s — m < t, where m ¢ C and Yx € DESC(m) :
x ¢ C.

Definition 2.12. Two sets of random variables A and B are d-separated
[Murphy, 2012] given a set C (evidence) if and only if each undirected path
from every node a € A to every node b € B is d-separated by C.

D-separation is equivalent to conditional independence, i.e.:

A 1 B|C & A is d-separated from B given C.

2.2.2 Temporal models

Bayesian networks can be extended to model temporal data (e.g., time series).
Temporal data can be modeled using stochastic processes, that define a
distribution over functions. In particular, discrete-time stochastic processes
define the distribution of sequences of random variables, i.e. p(z¢, i1, .oy Trn)
for any ¢ and n. The most simple discrete-time probabilistic model for temporal
data is the Markov chain, where the probability of the next variable depends
only on the current variable (Markov assumption):

p($t+1|$0,$17 -~~,$t) = P($t+1|$t)-

It is often assumed that p(x¢41|2z¢) is the same for each time step ¢ (stationary
Markov chain).

In partially observable environments, the state z; might not be (directly)
observable. A Hidden Markov Model (HMM) captures this situation, where
the states x; in the Markov chain are not observed, but z; variables are
observed. A HMM defines the joint distribution p(xg,x1,21,...,27,27) =
(o) HtT:_Olp(zt+1\1:t)p(zt+1|xt+1). As a convention, the state zp does not
have any observation zg.

A HMM is described by p(z¢41|z:) called state transition model, and p(z¢41|T¢41)
called observation model. Note that a Markov chain and a HMM define a
distribution for a sequence of arbitrary length, replicating the state transition
and observation models.

In several applications it is convenient to add an input u; (action) that influences
the next states z;41 and the observations z;y;. The resulting model is called

14 BACKGROUND

Ut—1 Ut
—
Figure 2.2: IOHMM assuming p(z¢+1|Ze+1, ut) = p(zer1|Tes1)-
input-output HMM (IOHMM):
T-1
p(xo, 21, 21, .27, TT|U0, ..., ur) = P(0) H P(@e1 |2, we)p(Zeg1|Tog1, we)-
t=0

Throughout this thesis we assume that: p(ze1|Ter1,ur) = p(2e1|Te41).

2.2.3 Dynamic Bayesian networks

Dynamic Bayesian Networks (DBN) are an extension of HMMSs to model dynamic
systems. The difference with HMMs is that the states and observations are not
single random variables but a set of correlated random variables.

A DBN consists of a Bayesian network that defines the state distribution at
time zero: p(zp), and a two-slice temporal Bayes network (2TBN) that defines
the conditional distribution p(zyy1, Te1|Te, ue) = p(@er1|Te, we)p(zepr|Tepr, ue)-

For clarity we made an explicit distinction between the hidden state z;, the
evidence or observations z;, and the action u; (input) as in an IOHMMs.
However, in a general DBN, the variables observed are not necessarily the same
in each step, thus the distinction between z; and x; is not strictly required.

2.3 Inference

Given a distribution p(a, b, ¢, d), performing inference consists in computing
functions of the distribution. For example, we might be interested in the

INFERENCE 15

marginal probability p(a = 1), or conditional probabilities such as p(a = 1|b = 0).
Inference algorithms for graphical models exploit the structure of the model (e.g.,
independence assumptions) to speed-up the computation. The most common
algorithms are belief propagation and the junction tree algorithm [Koller and
Friedman, 2009]. However, in complex distributions involving continuous and
discrete random variables, exact inference is often intractable. To address this
issue several approximate inference algorithms have been proposed, such as
Monte-Carlo methods and variational inference. In this thesis we focus on
Monte-Carlo methods [Robert and Casella, 2004; Lemieux, 2009].

2.3.1 Naive Monte-Carlo

Monte-Carlo Methods approximate an integral with a weighted sum by means of

sampling. In detail, an integral fab h(z)dz can be reformulated as the expectation
of a function f(x) with respect to a distribution p(z) such that h(z) = f(x)p(z):

b b
/ h(e)de = / f@)p(@)dz = By £ ()]

Given N independent and identically distributed (i.i.d.) random variables x;
drawn from distribution p(z), we approximate the integral as follows:

[wada = [f@p@rts = By 5@~ 5 Y @),

Probabilistic inference can be formulated as computing such integral for a
function f(x) of interest and a given distribution p(z). For example, the
probability that a query (i.e. an arbitrary formula) ¢(x) is true is:

N

p(0) = By L(a()))= [La(@)p(o)ds ~ S Ualz). (20)

x =0

where 1 is the indicator function that returns 1 when the argument is true,
and 0 otherwise. Intuitively, the probability of a query is approximated as the
ratio of times in which the query is true in the samples. In this thesis we focus
on computing the probability of a query, however the discussion is valid for a
generic function f(x).

Since the Monte-Carlo estimator of p(¢q) denoted by p(g) is a sum of random
variables, it is itself a random variable. The law of large numbers and the
central limit theorem state that, given certain conditions, p(q) converges to
p(q) for N — oo, and its distribution converges to a Gaussian. For a finite

16 BACKGROUND

N, the expectation of the estimator is E[p(q)] = p(q), i.e. the estimator
is unbiased, and the variance is Var[p(q)] = Vary)[1(g(z))]/N, and more
generally Varp[f(z)]/N for the estimator of E,)[f(x)]. Since p(q) is
approximately a Gaussian, it is easy to compute confidence intervals.

2.3.2 Importance sampling

It is often not possible (or not convenient) to sample from the distribution
p(x) (called target). Importance sampling addresses this issue of estimating
Ep)[f(z)] using samples generated from another distribution g(z) (called
proposal):

The importance sampling estimator /i is unbiased and converges to Ej,) [f(z)]
provided that Vz : |f(x)[p(x) > 0 = g(z) > 0 or equivalently: Vz : g(z) =
0= f(z)p(z) = 0 [Robert and Casella, 2004]. The variance of the importance
sampling estimator is Var[i] = Varge)[f(z)w(x)]/N. The optimal proposal

distribution is g(x) « |f(z)|p(x), i.e. g(x) = %

optimal in the sense that minimizes the variance of the estimator. If f(z)p(z)
has always the same sign, one sample is sufficient to estimate E,,)[f(z)] exactly,
in other words the variance of the estimator is zero. The optimal proposal
distribution is generally not known because it requires [|f(x)|p(x)dz. However,
adaptive importance sampling can be used to learn such distribution using
previous samples.

. Such proposal is

So far we have considered the expectation of a generic function E,,)[f(x)] and
a specific case where f(x) = 1(g(z)) with ¢(z) a query of interest. In many
applications we are interested in computing the probability of a query given
evidence p(gle). This can be estimated using formula (2.6) or (2.7) twice, once to
estimate p(q, e) and another time to estimate p(e), then p(gle) is approximated
as the ratio of the two quantities. As an alternative, formula (2.6) or (2.7)
can be adapted to use the same samples to estimate the two quantities. For
importance sampling we have:

INFERENCE 17

p(q,e) _ fxl(q(w))l(e(x))%g(x)dx ~ Zivzl 1(q(z:))(e(z;))w®
p(e) S, We(@) 55 g (w)da S e w®

p(gle) =
(2.8)

In this case g(x) has to satisfy the condition: 1(e(z))p(z) > 0 = g(x) > 0.

2.3.3 Sampling from a Bayesian Network

The easiest way to sample from a Bayesian Network, is ancestral sampling
that starts sampling from root nodes (random variables without parents) and
then samples children nodes until all the variables are samples. Each random
variable is sampled from p(x;|PA(z;)). In the presence of evidence, it is
convenient to reject the sample as soon as it is inconsistent with the evidence.
This is called logic sampling [Henrion, 1986]. However, this algorithm is still
inefficient and it can be improved using likelihood weighting (LW) [Fung
and Chang, 1989]. LW is a type of importance sampling that forces variables
to be consistent with the evidence E = {ey, ea,...,e,} by using the proposal
distribution g(zo, ..., on) = [1,,¢p P(@i| PA(2i)) [, e g 0e, (2i). In other words,
non-evidence variables x; € F are sampled from a proposal equal to the target
distribution p(z;|PA(x;)), while evidence variables are forced to be consistent
with the observed values e;, i.e. the proposal distribution is a Dirac delta

651 (l‘l)

It has been shown that LW reduces the variance of the estimator with respect
to the naive Monte-Carlo estimator [Fung and Chang, 1989).

2.3.4 Markov Chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) [Andrieu et al., 2003] is one of the
most popular Monte-Carlo methods in the last decades . It allows to perform
approximate inference in high-dimensional and unnormalized distributions.

MCMC exploits Markov chain theory to generate samples from the target
distribution g(z). This method is also applicable when g(x) is known only up to
a normalization constant: g(z) o« f(z). The basic idea is to define a transition
(jumping or kernel) distribution p(z:41|z¢) such that the resulting Markov chain
has the target g(z) as stationary distribution. Thus, if we sample sequentially
from p(zyy1|x¢), under certain conditions, the distribution p(x;) converges to
the target g(z) for t — oo.

18 BACKGROUND

MCMC generates correlated samples and requires a burn-in period to make
p(x;) converge to g(x). The first issue is mitigated using only one sample every
k, for the Monte-Carlo estimation. The second issue is handled ignoring the
first n samples, with n sufficiently big.

The most popular MCMC methods are Gibbs sampling [Geman and Geman,
1984] and the Metropolis-Hastings (MH) algorithm [Hastings, 1970; Metropolis
et al., 1953].

Gibbs sampling In Gibbs sampling, each n-dimensional sample z =
{z(1),2(2),...,2(n)} is generated sampling in turn each component z(i) given
the latest values of the others x\ {z(i)} according to the target distribution g(x).
For example, for a two-dimensional state x = {a,b} and a target distribution
g(a,b), a; is sampled from g(alb;—1) and b; is sampled from g(bla;). Several
variations of Gibbs sampling have been proposed. For example, Collapsed
Gibbs Sampling that performs Gibbs sampling on a subset of components,
marginalizing the rest. This can reduce the variance of the estimator. Another
example is Blocked Gibbs Sampling that samples group of variables together.

Metropolis-Hastings In the Metropolis-Hastings (MH) algorithm, the ¢ + 1-th
sample is generated from a proposal distribution g(x¢41|z:), and it is accepted
with probability min(%, 1
low if the proposal distributions are not properly designed. In addition, MH
might remain in a high-probability isolated region without (or rarely) traversing
the rest of the space. This happens when the proposal distribution makes local
moves. There are several solutions to these issues, such as Hamiltonian Monte

Carlo (HMC).

). The acceptance rate of MH might be

Hamiltonian Monte Carlo The Hamiltonian Monte Carlo (or Hybrid Monte
Carlo) [Neal, 2010] scheme can be used when the state is continuous and the
gradient of the (unnormalized) log-target distribution is computable. HMC adds
to the state x an auxiliary variable r, that can be interpreted as the momentum
of a particle with position z. Starting from a point (x,r), an approximate
Hamiltonian dynamics is applied and the resulting point (2’,7’) is accepted or
rejected as in the MH algorithm.

The Hamiltonian dynamics is based on differential equations and it keeps the
joint distribution p(z,r) constant over time. Thus, the probability of a point
(’,7") to a be accepted is ideally one (lower than one in practice). At the same
time the state space can be better traversed.

INFERENCE 19

Reversible jump (trans-dimensional) MCMC The sample space of the
distribution p(x) can have outcomes x with a different number of variables. For
example, an urn where the number of balls is itself a random variable. Once
the number of balls is sampled, a ball is sampled uniformly. For each ball we
can associate one or more random variables (e.g., ID, color and size). Thus, the
number of variables is not fixed. Sampling in spaces of differing dimensionality
is easy if we sample variables sequentially as in ancestral sampling. However,
applying MCMC schemes in such spaces is not trivial. Indeed, the proposal has
to jump between spaces of different dimensions. This generates theoretical and
practical difficulties, for example, in the computation of the MH acceptance
ratio, we compare densities defined in different dimensionality spaces, which is
meaningless in general [Murphy, 2012].

A possible solution is the reversible jump MCMC [Green, 1995], that augments
the low dimensional space with extra random variables so that the two spaces
have a common measure. However, this sampling scheme remains complex in
practice.

Another solution that avoids reversible jumps is MCMC applied to computa-
tional traces [Goodman et al., 2008; Wingate et al., 2011]. A computational
trace is a graph that represents the execution of probabilistic program. This
method can be considered the state-of-the art for approximate inference for
probabilistic programming. The main issue of such approach is the definition of
the proposal that has to perform jumps to consistent states.

2.3.5 Inference in temporal models
In temporal models such as HMMs or DBNs there are specific types of inferences:

o filtering: estimating p(z¢|z1.¢, U1.t);

o smoothing: estimating p(z¢|z1.7, u1.7) with T > ¢;

o likelihood of a sequence: estimating p(z1.7|u1.7);

o most probable hidden path: estimating argmazs,,,p(xo.r|21.1, u1.T)-
In particular, filtering is concerned with estimating the belief, that is, the
probability density function bel(x;) = p(x¢|z1.4, u1.¢). The Bayes filter computes

recursively the belief at time ¢ + 1, starting from the belief at ¢, the last
observation z;11, and the last action performed w1 through

bel(xiy1) = Tlp(Zt+1|$t+1)/ P(@p1|xe, wppr)bel(xy)day,

Tt

20 BACKGROUND

where 7 is a normalization constant. The above integral is only tractable for
specific combinations of distributions bel(x¢), p(@it1|Ts, urr1), and p(zer1|Tes1)
(e.g., the Kalman filter [Kalman, 1960] for linear Gaussian models). Therefore
one has to resort to approximations, such as Monte-Carlo techniques.

Particle filter

Filtering inference can be approximated using sequential applications of
importance sampling. The resulting algorithm is called sequential Monte-Carlo
or Particle Filter [Doucet et al., 2000b]. The key idea of particle filtering is to
represent the belief by a set of Weighted samples (often called particles). Given
N weighted samples {(mg ,w75)} distributed as bel(x;), a new observation z;1,
and a new action u.y1, the particle filter generates a new weighted sample set

that approximates bel(x¢41).

The Particle Filtering (PF) algorithm proceeds in three steps:

(a) Prediction step: sample a new set of samples chle, 1=1,...,N, from
.)
a proposal distribution g(xy1|a;”, ze41, Utt1)-
(b) Weighting step: assign to each sample x&zl the weight:
(z) _ (i)P(2t+1|$§21)P(wt+1|$t 7Ut+1)

Wiy = Wy
g($t+1|1’t s 241, Ut1)

(c) Resampling: if the variance of the sample weights exceeds a certain
threshold, resample with replacement from the sample set, with

probability proportional to wt +1 and set the weights to 1.

A common simplification is the bootstmp filter, where the proposal distribution
is the state transition model g(z;41 |xt s Zt41, Ut+1) = P(Tpq1 |xt ,ug+1) and the

weight simplifies to wéﬁl = wg)p(zt+1|xt£1).

2.4 First-Order Logic

Probabilistic graphical models are useful to represents random variables and
their dependencies, however they define each random variable independently.
These models are called propositional, because they cannot encode abstract
knowledge that can be valid for a countably infinite number of facts (or random

FIRST-ORDER LOGIC 21

variables). First-order logic (FOL) addresses this issue and provides a higher
expressivity with respect to ‘propositional’ representations.

We will now define FOL concepts and then focus on Logic Programming.
See [Nilsson and Maliszyriski, 1995; Apt, 1997; Lloyd, 1987] for an extensive
introduction.

Definition 2.13. A first-order theory consists of an alphabet, a first-order
language, a set of axioms, and a set of inference rules [Lloyd, 1987]

Definition 2.14. An alphabet consists of constants (i.e. objects), variables (i.e.
generic objects), function symbols, predicate symbols (i.e. relations), connectives,
and quantifiers.

Constants represent objects of the domain, for example the strings ‘one’ and ‘1¢
are two constants that refer to same ‘object’ (the number 1). Variables represent
a generic object, as will be clear later. In this thesis, variable names start with an
uppercase letter and constants start with a lowercase letter. Function symbols
refer to a function as in mathematics. For example, the string ‘+’ refers to the
well-known function sum. Predicate symbols refer to relations. For example,
the string ‘<’ refers to the lower-than relation of arity 2.

Definition 2.15. A term is a constant, a variable or an n-ary function f
applied to a tuple of terms ty,ta, ..., tn, t.e. f(t1,ta,...;tn).

Definition 2.16. An atomic formula (atom) is a n-ary predicate p applied to
a list of terms.

Example 2.4. Consider the statement ‘object 1 is inside object 2°. This fact
can be represented with the atomic formula inside(1,2), where inside is a
predicate, sometimes called relation, and 1,2 are constant symbols that refer to
objects.

Definition 2.17. A literal is an atomic formula or a negated atomic formula.

More complex formulas can be obtained by combining atomic formu-
las with connectives such as conjunction and disjunction. For example,
inside(1,2),inside(2, 3) is a conjunction of two atomic formulas. A formula
can contain quantifiers such as forall and exists (V,3). For example,
JX : inside(1,X) means that there exists an object x such that inside(1,x).
The term X is a (logical) variable.

Definition 2.18. The first-order language given by an alphabet consists of the
set of all formulas constructed from the symbols of the alphabet. [Lloyd, 1987]

We will now introduce concepts that are often used in logic programming, a
subset of FOL.

22 BACKGROUND

Definition 2.19. A (definite) clause, in logic programming, is a first-order
formula of the form h < b4, ...,by., equivalent to VA, Ag, ..., Ay, : bV not(by) V
...Vnot(by). Whereh is an atom called head (atom), by, ..., by. s a list of atoms
called body, and A1, As, ... A, is the list of variables that appear in the head or
body.

Example 2.5. The clause
inside(A,B) < inside(A,C),inside(C,B)

states that for all A,B and C, A is inside B if A is inside C and C is inside B
(transitivity property). A,B and C are logical variables.

A clause generally contains non-ground atoms, that is, atoms with logical
variables (e.g., inside(A,B)). A clause with logical variables is assumed to be
preceded by universal quantifiers for each logical variable, e.g., in the above
clause: VA, VB, VC.

Definition 2.20. A substitution 0 is a set of V; = t; pairs where V; are variables
and t; terms.

A substitution 6 applied to a formula replaces the variables V; with terms ¢;.
For example, for § = {A = 1,B = 2,C = 3} the above clause becomes:

inside(1,2) + inside(1, 3),inside(3,1)

and states that if inside(1,3) and inside(3,1) are true, then inside(1,2) is
true.

Definition 2.21. A unifier 8 for A,B is a substitution that makes A0 = BO. We
indicate with 8 = mgu(A,B) the most general unifier, i.e. a unifier 6 such that
for each unifier a of A, B, there exists a substitution v such that o = 0.

The formulas A, B are unifiable if there exists a unifier for A B.

Example 2.6. The two atoms inside(A,1),inside(B,C) are unifiable. A
unifier is a = {A = 2B = 2,C = 1}. The most general unifier is
0 ={A=B,C=1}. Note that a = 0y with v = {B = 2}.

So far we defined objects and formulas symbolically, however it is necessary
to associate those with actual elements and relation of the domain of interest.
This association is called interpretation.

Definition 2.22. An interpretation of a first-order language L consists of a
set D called domain, for each constant in L an assignment of an element in
D, for each n-ary function symbol in L a mapping D™ — D, for each n-ary
predicate symbol in L a mapping D™ — {true, false} (or equivalently a relation
on D, i.e. a subset of D™).

FIRST-ORDER LOGIC 23

2.4.1 Logic Programming
In this section we will describe concepts related to the FOL variant called Logic
programming.

In logic programming a program P is a set of clauses and facts (grounded atoms)
that represent what is assumed to be true (axioms). Given a program, it is
possible to derive which formulas are true using inference rules.

Example 2.7. Consider the following program:

box(1). (2.9)
container(2). (2.10)
cup(3). (2.11)
spoon(4). (2.12)
container(X) + box(X). (2.13)
container(X) « cup(X). (2.14)

This contains facts about the type of objects and two clauses that define the
concept container.

In logic programming Herbrand interpretations are generally used.

Definition 2.23. A Herbrand interpretation of a first-order language L is
an interpretation where the domain D is the set of all possible ground terms
that can be formed from L (called Herbrand universe), and each constant and
function is assigned with himself.

Definition 2.24. The Herbrand base By, of a first-order language L is the set
of all possible ground atoms which can be formed from predicates in L.

A Herbrand interpretation can be defined specifying which atoms in By, are true.
Thus, a Herbrand interpretation is often defined as a subset of the Herbrand
base By, i.e. the set of all formulas assumed to be true.

Example 2.8. Consider a domain with two objects D = {1,2} and a first-order
language L with a predicate inside of arity 2 and no function symbols. The
Herbrand base is B, = {inside(1,1), inside(1,2), inside(2,1),inside(2,2)}.
A Herbrand interpretation I = {inside(1,2)} represents a world where the
atomic formula inside(1,2) is true and any other atomic formula is false.

24 BACKGROUND

There are two main types of inference used in logic programming: forward
chaining and backward chaining. Forward chaining starts from known facts
and derives new facts. This is repeated iteratively. Backward chaining starts
from a query of interest and tries to find a proof. When we are interested in
determining whether a query is true or false, backward chaining is more efficient
because it focuses on the relevant part of the program. In logic programming
forward chaining can be performed applying the Tp(I) operator.

Definition 2.25. Let P be a definite program and I a Herbrand interpretation.
The Tp(I) operator is defined as follows:

Tp(I) = {hOlh by, ... by € P, {010, ...,b,0} C I, ground(hd)}.

That is if the body of a rule is true in I for a substitution 6, the (ground) head
h is in Tp(I). Given a program it is possible to derive all possible true ground
atoms using the Tp operator a number of times recursively starting from I = (),
until a fixpoint is reached (i.e., Tp(I) = I). The interpretation obtained is
called Least Herbrand Model and contains all the atoms that can be derived
from P.

For the program in Example 2.7 we have
Tp(0) = Iy = {box(1), container(2), cup(3), spoon(4)}
Tp(Iy) = I; = {box(1), container(2), cup(3), spoon(4), container(3),

container(1)}.

Backward chaining can be performed using resolution. In particular SLD-
resolution [Nilsson and Maliszytiski, 1995; Apt, 1997; Lloyd, 1987] is used in
Prolog [Nilsson and Maliszyriski, 1995], the most common logic programming
system. SLD-resolution is an inference procedure to prove a query ¢, that
focuses the proof on the relevant part of the program P. SLD-resolution is a
refutation process, the negated query is added to the program, and resolution
is applied until a contradiction is reached (empty goal) or no further resolution
steps are possible. If the empty goal is reached then the query is proved. If
it is impossible to reach the empty goal, the query is assumed false under the
closed-world assumption.

SLD-resolution starts from a goal equal to the negated query: < q1,q2, ..., Gn-
Then a generic step goes as follow. Given the current goal < ¢1,q2,...,qn
and a rule head < body € P such that 8§ = mgu(q1, head), then the new goal
becomes < (body, g2, . .., g,)0. There may be more than one rule that satisfies
the mentioned conditions, resulting in the SLD-tree. In Prolog the tree is

PROBABILISTIC LANGUAGES 25

traversed using depth-first search with backtracking. Moreover, Prolog applies
SLD-resolution of the leftmost atom in the current goal.

Example 2.9. Consider the logic program in FExample 2.7. The query
container(3) can be proved as follows using SLD-resolution:

<+ container(3)
+ cup(3)

+~— O

Such sequence is called refutation or proof. The SLD-tree for the same query is
the following:

<+ container(3)

N

<+ box(3) <+ cup(3)

fail O

A (program) clause can contain negated atoms in the body.

Definition 2.26. A program clause, in logic programming, is a first-order
formula of the form h < by, ...,b,. Where h is an atom called head (atom), and
by, ..., by is a list of literals (atoms or negated atoms) called body.

Normal programs are programs that contains program clauses. In logic
programming a negated atom follows the negation as failure semantics. In
this semantics, a literal not(q) is true whenever the query q fails and false
otherwise. Inference in normal programs can be performed using SLDNF.
This is a variant of SLD resolution, where whenever a negated atom not(q) is
encountered, a SLD resolution is applied to query q. If the query q is proved
then not(q) fails, otherwise if the query q fails, then not(q) succeeds.

2.5 Probabilistic Languages

First-order languages such as logic programming can represent abstract
knowledge compactly, but do not handle uncertainty. To address this limitation,

26 BACKGROUND

several extensions has been proposed to combine probability theory with FOL,
such as ProbLog [Kimmig et al., 2008], BLOG [Milch et al., 2005a], PRISM [Sato
and Kameya, 1997], and Distributional Clauses (DC) [Gutmann et al., 2011].
Those frameworks go under the fields of probabilistic logic programming and
statistical relational learning (SRL) [Getoor and Taskar, 2007; De Raedt, 2008;
De Raedt et al., 2008], which combine logical representations, probabilistic
reasoning, and machine learning. However, there are other probabilistic
languages such as Anglican [Wood et al., 2014] and Church [Goodman et al.,
2008] that belong to the wide area of probabilistic programming that combines
probability theory with programming paradigms (e.g., procedural or functional).

In this thesis we extend Distributional Clauses based on distribution semantics
defined by [Sato, 1995]. The distribution semantics provides a well-founded
semantics that combines logic programming concepts with probability theory.
In this semantics a program DB consists of a set of facts F' and a set of clauses
BK. Instead of considering facts deterministically true or false, the distribution
semantics assigns a probability distribution Pr over subset of facts F/ C F.
Then a unique distribution Ppg(I) over interpretations I is derived from Pp.
In detail, Ppp(I) = Pr(F’) if I is the least Herbrand model of DB extending
F', Ppp(I) = 0 otherwise. In other words the distribution semantics defines a
distribution over possible worlds (interpretations).

Example 2.10. Consider the logic program in Example 2.7, where the facts
F = {box(1), container(2), cup(3), spoon(4)} are probabilistic. Let us assume
that the joint distribution of such facts is the following:

Pp(Fy = {container(2)}) = 0.1, (2.15)
Pr(Fy = {box(1)}) = 0.2, (2.16)
Pp(F3 = {box(1), container(2)}) = 0.7 (2.17)

and zero in all the remaining cases. Note that the facts not in F; are assumed
to be false, e.g., F1 = {container(2)} means that container(2) is true and
the remaining facts box(1), cup(3), spoon(4) are false. Thus, in this example
cup(3), spoon(4) are always false. We can derive the least Herbrand models
for each case and obtain three possible interpretations with non-zero probability,
with PDB(Ij) = PF(Fj).'

Ppp(I; = {container(2)}) = 0.1, (2.18)
Ppp(Iy = {box(1), container(1l)}) = 0.2, (2.19)
Ppp(Is = {box(1), container(1l), container(2)}) = 0.7 (2.20)

Any other interpretation has probability zero.

PLANNING 27

2.6 Planning

Classical planning consists in finding a sequence of actions that reach a goal
state with minimal cost. This definition refers to deterministic and goal-oriented
tasks, and it can be generalized to probabilistic environments and for tasks that
do not necessarily have goal states. In general, the goal of probabilistic planning
is acting in an environment such that a given cost function is minimized (or
a reward function is maximized) in average. The most common frameworks
for probabilistic planning are Markov Decision Processes (MDPs) for fully
observable problems, and Partially Observable Markov Decision Processes
(POMDPs) for partially observable problems. We will introduce first standard
MDPs, then describe relational MDPs and finally describe some languages used
to express planning problems.

2.6.1 Markov Decision Processes

In an MDP [Sutton and Barto, 1998; Wiering and van Otterlo, 2012], a putative
agent is assumed to interact with its environment, described using a set S of
states, a set A of actions that the agent can perform, a transition function
p:SxAxS — [0,1], and a reward function R : S x A — R. That is,
when in state s; and on doing a, the probability of reaching s;;1 is given by
D(St+1]5¢, @), for which the agent receives the reward R(s:,a). The agent is taken
to operate over a finite or infinite number of time steps ¢t = 0,1,...,T, with
the goal of maximizing the expected reward: E[EtT:o Y R(st,a:)] = E[G(E)],
where v € [0, 1] is a discount factor, E =<sq, ag, $1, a1, ..., ST, ar> is the state
and action sequence called episode and G(F) = ZtT:o Y R(st,ar) is the total
discounted reward of E. This is achieved by computing a (deterministic) policy
m: S x D — A that determines the agent’s action at state s and remaining
steps d (horizon). For compactness we write m(s;) instead of 74(s:), indeed the
horizon is unambiguously defined by d = T — t. The expected reward starting
from state s; and following a policy 7 is called the value function (V-function):

t+d
VI(st) = E[G(Ey)|se, 7] =E lz Y R(sy, ar) | s, - (2.21)
k=t

Where E; =<sy, at, St+1,at+1, --., ST, a7> is the subset of F from time t. The
V-function can be defined recursively (Bellman equation):

Vi (st) = R(st, m(st)) + ’Y/ P(sey1lse, m(5e)) Vi1 (se41)dseya (2.22)

St41

28 BACKGROUND

Furthermore, the expected reward starting from state s; while executing action
a; and following a policy 7 is called the action-value function (Q-function):

t+d
Q7 (s,at) = E[G(Ey)|s¢, ap,m] =E Z’ykftR(sk,ak) | st,at,w] . (2.23)

k=t

Since T'=t 4 d, in the following formulas we will use T" for compactness. An
optimal policy m* is a policy that maximizes the V-function for all states. The
optimal policy satisfies the Bellman optimality equation:

Vi (st) = maz, (R(st, ar) + 'y/ D(St+1]5¢, at)Vd*71(5t+1)dst+1). (2.24)

St4+1

This formula is used to solve the MDP in value-iteration methods. In detail,
starting from V{(s;) = 0 formula (2.24) is applied d times for finite horizon
MDPs or until convergence for infinite horizon MDPs. The optimal policy is
obtained by

7 (st) = argmaz, (R(st, a) + ’y/ p(st+1|5t,at)Vd*_l(stH)dstH). (2.25)

St4+1

Another method to solve the MDP is policy iteration. It consists of policy
evaluation and policy improvement. The algorithm starts with an arbitrary
policy, it computes V] (s;) applying (2.22) (policy evaluation) and updates the
policy (policy improvement) applying (2.25). This process is repeated until
convergence. Policy iteration is generally used in infinite horizon MDPs.

All the above formulas can be used for infinite horizon MDPs, where d — oo,
as long as v < 1. Indeed, the discount factor ~ is needed to keep the sum of
infinite terms finite. Note that for d — oo, V] (s;) = V] ,(s;) and the policy
does not depend on the horizon, since for any t, d is always infinite.

In large or complex domains the integrals in (2.22) (2.24) cannot be computed
exactly. A common solution is approximating such integrals with Monte-Carlo
methods. Generally, sample-based planners combine Monte-Carlo methods
with policy iteration to solve an MDP and find a (near) optimal policy. Such
planners simulate (by sampling) interaction with the environment in episodes
E™ =<sit, agt, st al, ..., s, alp >, following some policy w. Each episode is
a trajectory of 1" time steps, and we let sj* denote the state visited at time ¢
during episode m. (So, after M episodes, M x T states would be explored). After
or during episode generation, the sample-based planner updates Qq(s}*, a}*)
estimations for each ¢t according to a backup rule, for example, averaging the total
rewards obtained starting from (s}*, a}*) till the end. The policy is improved
using a strategy that trades-off exploitation and exploration. For example, the

PLANNING 29

e-greedy strategy selects the action argmax,Qq(s,a) with probability 1 — e,
otherwise selects m(als) ~ uniform(actions) with 0 < e < 1. In this case the
policy used to sample the episodes is not deterministic; we indicate with 7(a¢|s:)
the probability to select action a; in state s; under the policy w. Under certain
conditions, after a sufficiently large number of episodes, the policy converges
to a (near) optimal policy, and the planner can execute the greedy policy
argmaz,Qq(se, a).

2.6.2 Relational MDPs

In first-order (relational) MDPs [Mausam and Kolobov, 2012; Wiering and van
Otterlo, 2012], the state is described as a set of objects, object attributes, and
relationships between them. In particular, in relational MDPs based on logic
programming, a state is a Herbrand interpretation and the actions are described
as facts. The state transition model and the reward function are compactly
defined in terms of probabilistic rules exploiting first-order logic.

For example, let us consider the blocksworld domain, where there are objects
on a table or on top of other objects. In this domain we can move objects
with no objects on top (clean), and the action succeeds with a certain
probability or leaves the state unchanged. A possible state in the blocksworld
is on(1,2),clean(1),on(1,table), i.e. 1 is on 2, 1 is clean (i.e. it does not
have objects on top) and 1 is on the table. All other facts (e.g., on(2,1)) are
assumed to be false. In this domain we can say that if on(A, C), clean(B) holds
then action move(A,B) will add on(A,B) with probability 0.9 to the state and
remove on(4,C), clean(B), otherwise with probability 0.1 the state will remain
unchanged.

In addition, it is often convenient to define when an action is applicable in
a given state. This can be specified again in terms of rules (clauses). The
conditions that make an action applicable are often called preconditions.

A relational MDP can be solved using the Bellman equation applied to abstract
states with logical regression, instead of single states individually. This method
is called Symbolic Dynamic Programming (SDP) [Boutilier et al., 2001, 2000],
and it has been successfully used to solve big MDPs efficiently [Kersting et al.,
2004; Wang et al., 2008; Joshi et al., 2010; Holldobler et al., 2006]. In SDP
approaches, the V-function is represented in compact structures. For relational
MDPs the V-function is represented using first-order decision diagrams (FODD
[Wang et al., 2008]) or rules as in REBEL [Kersting et al., 2004]. For example,
for the blocksworld the V-function we can be described as follows [Kersting

30 BACKGROUND

et al., 2004]:
10 < on(a,b),a # b. (2.26)
8.1 < clear(a), clear(b),on(a,X),a # b,a # X,b # X. (2.27)

[..]

Any of the countably infinite interpretations has a V-function derivable from
those rules. This shows the advantage of exploiting the domain and a compact
representation to solve the MDP. Similar principles have been applied in
(propositional) continuous and hybrid domains [Sanner et al., 2011; Zamani
et al., 2012].

Despite the effectiveness of such approaches, they make restrictive assumptions
(e.g., deterministic transition model for continuous variables) to keep exact
inference tractable. For more general domains approximations are needed, for
example sample-based methods or confidence intervals [Zamani et al., 2013].
Another issue of SDP is keeping the structures that represent the V-function
compact. Nonetheless, some solutions are available in the literature, such as
pruning or real-time SDP [Vianna et al., 2015].

2.6.3 Languages for planning

There are several languages that have been proposed to describe planning
problems. We will briefly describe the main features of those languages. STRIPS
(Stanford Research Institute Problem Solver) [Fikes and Nilsson, 1971] is a well-
known language that inspired more recent languages. A more recent language is
PDDL [Mcdermott et al., 1998] (Planning Domain Definition Language) inspired
by STRIPS, created with the purpose of standardizing planning languages.

In STRIPS a planning task consists of an initial state, the set of goal states, and
a set of actions. For each action we need to define preconditions (what must be
true before the action is performed) and postconditions (the effects of an action).
STRIPS adopts logic-programming concepts. The initial state is described as
a set of facts (atomic formulas). For example: on(1,2), on(2, table), clear(1)
describe the initial state in the blocksworld example, where object 1 is on
2, 2 is on the table, and 1 is clear (no objects on top it). Any other fact is
assumed to be false (closed-world assumption). The goal state is represented
as a conjunction of literals (not necessarily ground). For example, the goal
on(X, 1), clear(2) represents all the states where an arbitrary object is on top
of 1 and 2 is clear.

PLANNING 31

An action is defined as a predicate, the preconditions are defined as a conjunction
of literals, and the postconditions are described in addlist (what needs to be
added) and deletelist (what needs to be removed), both conjunction of literals.
For example, the action move object X from Y to Z in the blocksworld is defined
as: move(X,Y,Z), prec: on(X,Y), clear(X), clear(Z), addlist: on(X,Z), deletelist:
on(X,Y), clear(Z).

PDDL is similar to STRIPS with additional features, that will not be
discussed here. Both PDDL and STRIPS can describe only deterministic
planning problems. For probabilistic planning problems, there exists several
extensions, such as PPDDL (Probabilistic PDDL), and the recent RDDL
[Sanner| (Relational Dynamic influence Diagram Language). RDDL describes
the domain as a relational Dynamic Bayesian Network, it supports arbitrary
reward functions and other advanced features (e.g., concurrent actions). Thus,
it can be used to model a wide class of MDPs.

The described languages can only formally describe a planning problem, but
they do not provide a method to solve the task. A solver (planner) is required
to interpret the task description and provide a meaningful plan (policy).

Chapter 3

Distributional Clauses

In this chapter we introduce distributional clauses (DC) [Gutmann et al.,
2011], an extension of distribution semantics [Sato, 1995], and we propose a
new inference algorithm based on importance sampling (Section 3.2). The
algorithm is able to perform inference in complex hybrid domains that most
related frameworks cannot handle. This chapter consists of research previously
published in the journal paper [Nitti et al., 2016].

3.1 Distributional Clauses

Formally, a distributional clause is a formula of the form h ~ D+ Dby,..., by,
where the b; are literals and ~ is a binary predicate written in infix notation. The
intended meaning of a distributional clause is that each ground instance of the
clause (b ~ D < by,...,b,)d defines the random variable h with distribution
DO whenever all the b;0 hold, where 0 is a substitution. In other words, a
distributional clause can be seen as a powerful template to define conditional
probabilities: p(hé|(by,...,b,)0) = DO. The term D can be nonground, i.e.,
values, probabilities, or distribution parameters can be related to conditions in
the body. Furthermore, given a random variable r, the term ~(r) constructed
from the reserved functor ~/1 represents the value of r. Abusing notation, for
brevity, we shall sometimes write r ~= v instead of ~(r) = v, which is true iff
the value of the random variable r unifies with v.

32

DISTRIBUTIONAL CLAUSES 33

Example 3.1. Consider the following clauses:

n ~ poisson(6). (3.1)
pos(P) ~ uniform(0,M) < n ~= N, between(1,N,P),M is 10 % N. (3.2)
left(A,B) < ~(pos(h)) <~(pos(B)). (3.3)

Where ‘is’ is the equality operator. Capitalized terms such as P, A, and B are
logical variables, which can be substituted with any constant. Clause (3.1) states
that the number of people n is governed by a Poisson distribution with mean
6. Clause (3.2) models the position pos(P) as a continuous random variable
uniformly distributed from 0 to M = 10N (that is, 10 times the number of
people), for each person identifier P such that 1 <P <N, where P is integer
and N is unified with the number of people n. For example, if the value of
n is 2, there will be 2 independent random variables pos(1) and pos(2) with
distribution uniform(0,20). Finally, clause (3.3) defines the binary relation
left, comparing people positions. Note that the atom left(a,b) is defined
using a deterministic clause, but it is a random variable as it depends on other
random variables.

DC supports continuous distributions (under reasonable conditions) and
naturally copes with an unknown number of objects [Gutmann et al., 2011]. In
addition to distributional clauses, we shall also employ deterministic clauses as
in Prolog. We shall often talk about clauses when the context is clear.

A distributional program P is a set of distributional and/or deterministic clauses
that defines a distribution p(z) over possible worlds x. The probability p(q)
of a query ¢ can be estimated using Monte-Carlo methods, that is, possible
worlds are sampled from p(z), and p(q) is approximated as the ratio of samples
in which the query ¢ is true.

The procedure used to generate possible worlds defines the semantics and a
basic inference algorithm. A possible world is generated starting from the empty
partial world x = (); then for each distributional clause h ~ D < by, ..., by,
whenever the body {bi6,...,b,0} is true in the set = for the substitution 0,
a value v for the random variable hf is sampled from the distribution D8
and hf = v is added to the new partial world &. This is also performed for
deterministic clauses, adding ground atoms to & whenever the body is true.
This process is then recursively repeated until a fixpoint is reached, that is,
until no more variables can be sampled and added to the world. The final
world is called complete or full, while the intermediate worlds are called partial.
The process is based on sampling, thus ‘world’ is often replaced with sample or
particle. Notice that a possible world may contain a countably infinite number
of random variables (and atoms).

34 DISTRIBUTIONAL CLAUSES

Example 3.2. Given the DC program P defined by (3.1), (3.2), and (3.3),
{n = 2,pos(1) = 3.1,pos(2) = 4.5,1eft(1,2)} is a possible (complete) world.
This world is sampled in the following order:) — {n =2} — {n = 2,pos(1) =
3.1,pos(2) = 4.5} — {n =2,pos(1) = 3.1,pos(2) = 4.5,1eft(1,2)}.

STp operator Gutmann et al. [2011] formally describe this generative process
using the STp operator, a stochastic version of the Tp operator. This operator
is applied on partial worlds (or interpretations); these contain ground atoms
(as in standard logic programming), and for each random variable r defined in
the partial worlds, there will be an atom of the form r ~ D, and an equality
r = v in a separated table, where v is the value sampled from the distribution
D. Throughout the thesis we do not always write the r ~ D explicitly. To
generate a possible world, one starts from the empty partial world I = (3, and
applies I <— STp(I) until a fixpoint is reached (STp(I) = I).

Validity conditions To define a proper probability distribution p(z), a DC
program P needs to satisfy the validity conditions described in [Gutmann et al.,
2011]. For each predicate h or random variable we assign a rank (natural
number) that defines an order. A DC program is valid if:

1. For each ground hf, hf ~ D@ has to be unique in the least fixpoint, i.e.,
there is one distribution defined for each random variable.

2. The program has to be stratified, that is, there exists a rank assignment

such that for each distributional clause h ~ D « by,...,by. : rank(h ~
D) > rank(b;), while each definite clause h < by,...,b,. : rank(h) >
rank(b;).

3. All ground probabilistic facts are Lebesgue-measurable.

4. Fach atom in the least fixpoint can be derived from a finite number of
probabilistic facts (finite support condition [Sato, 1995]).

Throughout the thesis the partial worlds will be written as 2, while 2 D z¥
indicates a complete world consistent with ¥, and 2 = z \ #¥ represents the
remaining part of the world.

Negation We extended DC to allow for negated literals in the body of
distributional clauses. To accommodate negation, we need to consider the
case that a random variable is not defined in a full world z. Any comparison
involving a non-defined random variable will fail; therefore, its negation will

DISTRIBUTIONAL CLAUSES 35

succeed. In addition, a (deterministic) ground atom a is considered false in x,
if a ¢ x (standard closed-world assumption).

A distributional program P to be valid needs to be stratified, thus no specific
requirements are needed to support negation. The semantics is defined along
the same lines as the perfect model Mp [Przymusinski, 1988], that is, the STp
operator is applied at each rank from lowest to highest rank. The result is a
world = sampled from the distribution p(x) defined by the program P.

Consider a DC program P, a literal [and a (partial) world z”(*) obtained by
applying the STp operator till the least fixpoint for rank(var(l)) is reached (or
exceeded). If [is a classic atomic formula, [is true in 7@ iff [€ 2P® and
not(l) holds in 2" iff [¢ z¥(*). This follows the closed world assumption: a
literal is false if it is not in the least fixpoint. If [is a comparison operator
involving a random variable r: | = (r ~= wval), then not(r ~= val) holds in
2P whenever 7 ~= val is false in 27 or the random variable r is not defined
in P that is, when r ¢ var(zP®). Note that 7 is the least fixpoint for
rank(r) (or higher), thus r ¢ var(z”) implies that r is not defined for each
world m 2 zP® consistent with 27,

To determine not(l), not(r ~= val) or just the existence of a variable r it is not
required to explicitly apply the STp operator. In logic programming, negation
as failure is used to prove negated formulas: if the query ¢ fails then not(q) is
true and vice versa. A common inference procedure is SLDNF, that is SLD
resolution with negation as failure.

Consider the following examples:

n ~ poisson(6). (3.4)
color(X) ~ uniform([red, blue,black|) < n ~= N,between(1,N,X). (3.5)
notred < not(color(2) ~= red). (3.6)
nothing red < not(color(X) ~= red). (3.7

notred is true in those worlds where the value of the random variable color(2) is
not red. In some worlds, the variable color(2) is not defined, for example when
n = 1, in such cases notred still succeeds. Similarly, the atom nothing red
is true in a world z iff the query color(X) ~= red fails, that is, iff every
variable color(X) defined in « is not red (for X between 1 and n). Therefore,
nothing red is also true in worlds with no objects (n = 0).

36 DISTRIBUTIONAL CLAUSES

3.2 Static Inference for Distributional Clauses

Sampling full worlds is generally inefficient or may not even terminate as
possible worlds can be infinitely large. Therefore, Gutmann et al. [2011] use
magic sets [Bancilhon et al., 1986] to generate only those facts that are relevant
for answering the query. Magic sets are a well-known logic programming
technique for forward reasoning. In this thesis, we propose a more efficient
sampling algorithm based on backward reasoning and likelihood weighting.

3.2.1 Importance Sampling

Given a program P, the probability of the query ¢ is estimated by applying
importance sampling to partial samples 2, with i = 1,..., N where N is the
number of samples. In importance sampling the proposal probability g(z) used
to generate samples is not necessarily the target probability p(z).

The Monte-Carlo approximation is the following (where 1 is the indicator
function!):

p0) =By 1o) = [o baip(oido = [Uakaplatle” pa")da do”

- /P /aﬂ(ﬂf EQp(z*|")da® p(xF)da” = /p plqlz®)p(x")dx"

p(alz")
P N
p(z 1 i
= [plaleN B e 5), (39
AN , i=1

7 . T (i) .
where the weight is w((l) = p(q|mP(Z))§E;(i)§. Formula (3.8) uses a fixed split
x = 2P U z®. Following [Milch, 2006] we extend this idea to exploit context-

specific independencies: we can have a different split in different samples.

There are two reasons to sample partial worlds instead of complete ones. First,
the sampling process is faster and terminates (under some conditions) even
when the complete world is a countably infinite set. Second, the estimator
variance is generally lower with respect to a naive Monte-Carlo estimator that
samples complete worlds. Indeed, sampling some variables () and computing
p(q|z”®) analytically is an instance of the conditional Monte-Carlo method

IThe indicator function is 1 when the argument is true, zero otherwise.

STATIC INFERENCE FOR DISTRIBUTIONAL CLAUSES 37

[Lemieux, 2009] (sometimes called Rao-Blackwellization), which has better
performance with respect to naive Monte-Carlo.

The split of x has to guarantee that the probability p(q|z” (i)) is analytically
computable. Let var(q) denote the set of all random variables in ¢. If
var(q) C var(z®), all the variables in ¢ are instantiated in 2, thus ¢
can be determined deterministically: p(g|z"®) = 1(z"® |= ¢). In some cases
it is possible to compute p(g|z”*)) without sampling variables in g.

Example 3.3. Given the clauses (3.1), (3.2), (3.3),
p(q)lz?" @) = p(pos(1) > 5 | {n = 3,pos(1) = 3}) =0,

while the marginalized variables pos(2),pos(3),left(X,Y) are irrelevant. We
could even do better, for example p(qlz¥®) = p(pos(1) > 5[{n = 3}) is
analytically computable without sampling var(q) = {pos(1)}.

In general, it is impossible to sample only var(g) as the DC program does not
directly define the distribution of these variables. For example, to sample pos(1)
defined by (3.2) we first need to sample n defined by (3.1); thus we need to
follow the generative sampling process (STp operator) until the variables of
interest are sampled. Backward reasoning (or the magic set transformation)
can help to focus the sampling.

The probability of a query given evidence p(g|e) can be estimated using formula
(3.8) twice, once to estimate p(g,e) and another time to estimate p(e), then
p(gle) is approximated as the ratio of the two quantities. As an alternative,
formula (3.8) can be adapted to use the same partial samples to estimate the two
quantities. In detail, each sample is split in z = £ U :c(f U %, such that zf is
sufficient to compute p(e|zl’) and :175 Uz?L is sufficient to compute p(gle, qu, xP).
Formula (3.8) is applied to estimate p(e), then the same partial samples xf(i)

38 DISTRIBUTIONAL CLAUSES

are expanded to estimate p(q,e):
e) = / / P(q,€|$5,$f)p(sc5,xf)d;cqux5
zP qu
- [, [e e el ket yis st
:/P/PP(Q\e,xéD,x)p(x P|g;)da: plelzD)p(zF)dxf

PELlat) ooy o D) o
// (lesef 20 oy e e (el) T o !

N P(i), P(3) P(i)
1 pleg lae) plxe ") 1
~ L 3" plgle, 2P0, PO P P(i) = LSy
N 2 plales ey) (2P DO plefze™) P@) ~ N & e
i=1 q e e i=1

Where the proposal g has the same factorization of the target distribution:

9(zg) = glag|ad)g(@l).

3.2.2 Sampling partial possible worlds

We now present our approach to sampling possible worlds and computing p(q)
following Equation (3.8) and p(qle) following (3.9). Central is the algorithm
with signature

EVALSAMPLEQUERY(q : query, ¥ (®) : partial world) returns (wéi),a:f;(z))

that starts from a given query ¢ and a partial world zF(® (which will be

empty in case there is no evidence, cf. below), and generates an expanded

partial world xqp(i) together with its weight w((f) so that

L. wf(i) 2 2P® e, qu(i) is an expansion of 27(%)
2. var(q) € UGT(%I;()), which ensures that we can evaluate ¢ in qu(z‘) and

therefore p(q|zh ")),

STATIC INFERENCE FOR DISTRIBUTIONAL CLAUSES 39

(4)

aP@|zP®)
3. w} P(z)):D(|)

—p(q|x g(x P(1)|$P(1))

p(q) is estimated by calling (w{(;),xq G)) < EVALSAMPLEQUERY(q, () N times

and applying (3.8). The probability p(qle) is estimated by calling, for each

sample, (w((,),mf(z)) + EvALSAMPLEQUERY (e, () for the evidence, and

(w((z),xfj(z)) + EVALSAMPLEQUERY (g, Te PG)) for the query given xP()

then applying (3.9).

and

The key question is thus how to sample one such partial world xf; @ for a generic
call of EVALSAMPLEQUERY (g, z”()). To realize this, we combine likelihood
weighting (LW) [Fung and Chang, 1989; Koller and Friedman, 2009] with a
variant of SLD-resolution in the EVALSAMPLEQUERY algorithm that we describe
below.

Adapting SLD-resolution. EVALSAMPLEQUERY employs an extension of SLD-
resolution to determine which random variables to sample, until the query ¢
can be evaluated. However, unlike traditional SLD-resolution, it keeps track of
a number of global variables:

1. the weight w((f), initialized to 1,
2. the initial query 4q, initialized to ¢, and

3. the partial sample z¥(®),

Starting from a goal G = ¢, EVALSAMPLEQUERY applies inference rules until
the goal G is empty (i.e., ¢ has been proven) or no more rules can be applied
(¢ fails). If the query succeeds, the algorithm returns the final weight and the
expanded sample (wéi), xqp(i)). If the query fails it returns (w,(;) =0, mqp(i)).
Definition 3.1. Given two formulas f and g, a DC program P and a partzal
sample) we say that f and g are equivalent with respect to P and z¥®,
denoted by P, z¥®) E f< g, iff f and g have the same truth value in all posszble
interpretations I generated (sampled) by P, starting from =P Analogously,
P, 2P = f = g iff f = g is true in all possible interpretations I generated
(sampled) by P, starting from x*.

Given a goal G and the global variables w,(;), iq, 2" applying a rule produces
a new goal G’ and modifies the global variables:

1. G’ is the new goal obtained from G using a kind of SLD-resolution step;

40 DISTRIBUTIONAL CLAUSES

2. if a new variable r is sampled with value v,

o set w((;) — wéi)% (based on LW) and

o 2P0 POy {r =0}

In addition, if r ~= Val € iq and (r ~= v,iq) < iqf with r grounded
and 6 = {Val = v} then:

o iq < iqf

3. if a new atom h is proved, set 27 < @ U {n}.

The inference rules applied by EVALSAMPLEQUERY resemble SLD resolution
applied to a query ¢: they are applied with a backtracking strategy, negation
as failure to prove negated literals (as in SLDNF) and tabling to improve
performance. However, important differences are required to handle the
stochastic nature of sampling and to exploit LW whenever possible. Note
that the partial sample 27 can only grow during the application of the
inference rules, i.e., backtracking does not remove sampled values from the
partial sample. This is necessary to guarantee the generation of a sample from
the defined proposal distribution g.

The algorithm needs the initial query to apply LW. Since the inference rules
change the current goal to prove, we distinguish the current goal G from
the initial query ig = ¢; during sampling iq can be simplified (e.g., applying
substitutions) as long as P, z7®) = iq & ¢, i.e. iq is logically equivalent to ¢
P(i) G

)

given () and the DC program P. For those reasons x Wy), and iq are

global variables.

Let us assume that the query ¢ = (q1,¢2,...,¢n) contains only equality
comparisons for random variables, e.g., r ~= v. Any other comparison operator
r ® v can be converted in r ~= Val,Val ® v, where Val is a logical variable
and Val ® v is ground during evaluation. For example, ~(n) > 5 becomes
n ~= N, N > 5. The inference rules are the following:

la. If [3h € 2P0 1 0 = mgu(q1, h)] OR [builtin(q1), 36 : ¢16] then:
(q1a q2, - .- 7qn) F (q23 tety Qn)g
ie., if 10 is true in 2 for a substitution 6, remove ¢; from the current

goal and apply the substitution 6 to the current goal. ¢; can also be a
built-in predicate such as 1 < 4 that is trivially proved.

STATIC INFERENCE FOR DISTRIBUTIONAL CLAUSES 41

1b. If 30 s.t. h < body € P,0 = mgu(q1, h) then:

(q1,92,---,qn) F (body,add(h), gz, ..., q,)0

i.e., if ¢; unifies with the head of a deterministic clause, then add the
body of the clause and add(h) to the current goal, and apply substitution
6. The special predicate add(h) indicates that h must be added to z*(®
after the body has been proven.

2a. If 30 s.t. h =v € 2P 0 = mgu(q1, h ~=v):
(Q17q27"'7QH) F (q2a7QH)0

i.e., if ¢10 compares a sampled random variable h to a value and ¢16 is
true in (%), then remove ¢; from the current goal and apply substitution

0.
2b. If 30 s.t. h ~ D « body € P,0 = mgu(qi, h ~= Val), h ¢ var(z"®):
(QD gz, .-, QTL) = (bOdya Sample(h7 D)7 q1,42, ... 7Qn)9

i.e., if ¢1 compares a (not yet sampled) variable h that unifies with the
head of a DC clause, then add the body of the clause and sample(h, D)
to the current goal and apply the substitution 6; sample(h, D) is a special
predicate that indicates that we need to sample A from D and add h = val
to 2P after the body has been proven. If D refers to random variables,
they have to be added to the current goal.

3a. If (h~=v) € iq, ground(h~=v), h¢var(x¥®), [P, 2P = h£v = —iq]:
(sample(h,D),q2, ... qn) F (92, -, qn)
wl) « w{ - likelihoodp (h = v)
2P0 POy {h =0}
i.e., if sample(h,D) is in the current goal, h ~= v is ground in ig, and
h # v makes iq false (always true if iq is a conjunction of literals), and

h is not sampled in 2F® then add h = v to 2, weight accordingly
(LW), and remove sample(h, D) from the current goal.

3b. If h ¢ var(x"®), ground(h), and rule 3a is not applicable:
(sample(h,'D), qz, - .- »Qn) F (CI27 s 7Qn)
P POy (h =0}

if h ~=Val € iq,((h ~=v,iq) & iqy) then iq + igy

42 DISTRIBUTIONAL CLAUSES

with v sampled from D, and v = {Val = v}. That is, if sample(h, D) is
in the current goal, and rule 3a is not applicable, then sample h, add it to
2P and remove sample(h, D) from the current goal. Finally, apply the
substitution v to iq iff ig7y is equivalent to ig with h ~= v (always true if
iq is a conjunction of literals).

3c. If ground(h):
(add(h)7q2a ceey Qn) = (q2, sy qn)
2P @ POy}

i.e., if add(h) is in the current goal and A is ground, then add h to z"®
and remove add(h) from the current goal.

EVALSAMPLEQUERY performs lazy instantiation exploiting context-specific
independencies: only the random variables needed to answer the query are
sampled, the values of the remaining random variables are irrelevant to determine
the true value of ¢ for that specific partial instantiation.

Theorem 3.1. For N — oo samples generated using EVALSAMPLEQUERY, the
estimation p(q) of p(q) obtained using (3.8) converges with probability 1 to p(q)
as long as the program P is valid.

Proof. 1t is sufficient to prove that EVALSAMPLEQUERY satisfies the importance
sampling requirement for which convergence guarantees are available [Robert
and Casella, 2004], that is Vz : p(¢qlx)p(z) > 0 = g(z) > 0 or equivalently:
Va:g(z)=0 = p(q|z)p(x)=0. The algorithm samples random variables h using
the target distribution when LW is not applied (rule 3b): g(h|z"®) = p(h|zP®).
LW is applied with proposal g(h = val|zF®) = 1 for grounded equalities in
the initial query (h ~=wval) € iq (rule 3a). Therefore, g(h # val,z"®) = 0
but also p(g|h # val,z")p(h # val,z¥) = 0, because the query ¢ fails for
h # val. Indeed, P, z"®) = (h # val = —iq) as required in rule 3a, and it is
easy to show that P, z"() = iq < ¢, therefore P, 27 = h # val = —q. The
requirement is thus satisfied (Vx : g(z) = 0 = p(q|z)p(z) = 0). O

The described inference rules extend SLD-resolution to properly handle
the stochasticity of random variables and likelihood weighting. Thus, the
termination conditions of EVALSAMPLEQUERY are similar to those of SLD-
resolution. SLD-resolution is a complete procedure, and thus if a query is true
it has a SLD refutation (proof). However, standard implementations used in
Prolog always select the leftmost atom in a goal together with a depth-first
search rule. In such cases termination is not guaranteed. Similar considerations
are made for SLDNF resolution that handle negation as failure.

STATIC INFERENCE FOR DISTRIBUTIONAL CLAUSES 43

Theorem 3.1 is extendable for conditional probabilities p(qle) = p(g,€)/p(e), as
long as p(e) > 0. The remainder of this section will consider p(e) = 0.

Zero probability evidence. Special considerations need to be made for queries
with zero probability evidence. For example, when the evidence is h ~= val
with h a continuous random variable defined with a density distribution. Such
conditional distributions are not unambiguously defined, and a reformulation
of the problem, e.g., a change of variables, can produce a different result
(Borel-Kolmogorov paradox [Kolmogorov, 1956; Gyenis et al., 2016; Kadane,
2011]). To avoid these issues we need to make some assumptions. In this
section we make an explicit distinction between probabilities P, and densities
p: LP(X < z) = p(z). Following Kadane [Kadane, 2011], we define the
conditional probability for zero probability evidence as follows:

P(g,e € [v—dv/2,v + dv/2])
dv-30 Ple€v—dv/2,v+dv/2])

[, Wz =q)p(x, e = v)dedv

Plgle = v) =

B dlggo p(e — U)dv
[A=z Egpx,e = v)dz
B ple =) : (3.10)

The conditional density is thus p(zle = v) = pﬁéj}?. Definition (3.10) is
extendable to more complex distributions that involve multiple variables and
mixtures of discrete and continuous variables. However, if the evidence is a

disjunction, the limit might not exists, e.g.,:

B B P(q,(e€la—da/2,a+da/2] V e€[b—db/2,b+db/2]))
P(q|6_ave_b)_dlg—>8 P(e€la—da/2,a+da/2] Ve€[b—db/2, b+db/2])

_ P(g.e €la —da/2,a+ da/2])+P(g,e €[b—db/2,b+ db/2]))
T das0 Pl €la—da/2,a+ da/2)+ Ple €[b — db/2,b+ db/2])

o M@ op(ee = a)drda + [, 1 = q)p(e,e = b)dxdb

da—0 p(e = a)da + p(e = b)db

To avoid this issue, we assume da = db. In this case we obtain
S, 1= E g)p(z,e = a)dz + [Uz = q)p(z,e = b)dzx
p(e=a)+p(e =0b) '

For example, the probability of nationality given a height of 180cm or 160cm
is defined as P(nationality|height € [180 — da/2,180 + da/2] OR height €

P(gle=aVe=0)=

44 DISTRIBUTIONAL CLAUSES

[160 — db/2,160 + db/2]) for da — 0,db — 0. The limit depends on how da and
db relate to each other. Setting da = db seems a reasonable assumption when
the intervals are comparable quantities, but other assumptions are possible.

To apply importance sampling to definition (3.10), it is sufficient to estimate
P(e € [v—dv/2,v+dv/2]) and P(q,e € [v—dv/2,v+dv/2]) for dv — 0. Knowing
that dr — 0= P(h € [r — dr/2,r + dr/2]) — p(h = r)dr, every time we apply
LW to a continuous variable, h = r is intended as h € [r — dr/2,r + dr/2] with
dr — 0, thus the incremental weight in rule 3a is p(h = r)dr.

Formula (3.9) needs the sum of importance weights. This has to be carefully
computed when there is a mix of densities and probability masses [Owen, 2013,
Chapter 9.8]. Imagine that there is a sample weight w; = P(x) obtained
assigning a discrete variable to a value, and a second sample weight we =
p(y)dy obtained assigning a continuous variable to a value, or more precisely
to a range [y — dy/2,y + dy/2], with dy — 0. The weight w; trumps ws,
because the latter goes to zero. Indeed, the second sample has a weight
infinitely smaller than the first, and thus it is ignored in the weight sum:
w1 + we = P(z) + p(y)dy = P(x) (for dy — 0). Analogously, a weight
w, = p(x1,...,Zp)dx1,...,dx, that is the product of n (one-dimensional)
densities trumps a weight wy = p(x, ..., 2,2, 1,..., %, ,)dT1, ..., dTpim
that is the product of n densities of the same variables and m > 0 other
densities (i.e. w, +wp = wg). If all the weights are n-dimensional densities (of
the same variables), then the quantities are comparable and are trivially summed.
However, if the weights refer to different variables, we need an assumption to
ensure the existence of the limit, e.g., Vi : dx; = dz, thus dz"™™ /dx" — 0,
making again n-dimensional densities trump (n + m)-dimensional densities.
For m = 0 the densities are trivially summed, e.g., w; = p(a, b, ¢)dadbdc and
wy = p(f, g, e)df dgde, assuming dadbdc = df dgde = dx®, we obtain w; + wy =
(p(a, b,c)+p(f,g,e))dx>. Finally, the ratio of weights sums in (3.9) is computed
assuming again Vi : dx; = dx, obtaining P(qle) ~ dlwigo(kndm”)/(kddxl). If
v > [then P(gle) = 0, otherwise for v = | we have P(qle) = k,/kq. Those
distinctions are automatically performed in EVALSAMPLEQUERY. For zero
probability evidence we do not have convergence results for every DC program,
query, and evidence, nonetheless the inference algorithm produces the correct
results in many domains, as shown in the next section and in the experiments.

3.2.3 Examples

We now illustrate EVALSAMPLEQUERY and the cases when LW can be applied
with the following example.

STATIC INFERENCE FOR DISTRIBUTIONAL CLAUSES 45

Example 3.4.
n ~uniform([1,2,3,4,5,6,7,8,9,10]). (3.11)
color(X) ~ uniform([grey, blue, black|)+ material(X) ~= metal.
(3.12)
color(X) ~ uniform([black, brown|) <— material(X) ~= wood. (3.13)

material(X) ~ finite([0.3:woo0d, 0.7 :metal])«—n~=N, between(1,N,X).
(3.14)

drawn(Y) ~ uniform(L) + n ~= N, findall(X, between(1,N,X),L). (3.15)
size(X) ~ beta(2, 3) < material(X) ~= metal. (3.16)
size(X) ~ beta(4,2) < material(X) ~= wood. (3.17)

We have an urn, where the number of balls n is a random variable and each
ball X has a color, material, and size with a known distribution. The i-th ball
drawn with replacement from the urn is named drawn(i). The special predicate
findall(A,B,L) finds all A that makes B true and puts them in a list L. In
(3.15) L is the list of integers from 1 to N, where N is unified with the number of
balls.

Let us consider the query p(color(2) ~= black), the derivation is the following
(omitting ig = q):

46 DISTRIBUTIONAL CLAUSES

t1: (color(2) ~= black); wfp =1;2P0=¢
|2bon (3.12) :
2:(material(2)~=metal, sample(color(2),Deo1or(2)); cOlor(2) ~=black); w((;') =1;2P® =0
|2bon (3.14) :
3:(n ~=N,between(1,N, 2), sample(material(2), Dyateriai(2)), Material(2) ~= metal,
sample(color(2), Deoror(2)), color(2) ~= black); wf;) =1; zPO =0
2b on (3.11) :
4:(sample(n,D,),n ~= N,between(1,N,2), sample(material(2), Dyaterial(2)),
material(2)~=metal, sample(color(2), Deoror(2)), cOlor(2) ~=black); w((;): 1;2P0 =0
3b:
5: (n ~= N,between(1,N,2), sample(material(2), Dyaterial(2)), Material(2) ~= metal,
sample(color(2), Deoror(2)), color(2) ~= black); wf;) =1; 2P ={n =3}
2a followed by la
6: (sample(material(2), Dpaterial(2)), material(2) ~= metal, sample(color(2), Deotor(2))
color(2) ~= black); w((;) =1; 2P0 ={n =3}
3b:
7: (material(2) ~= metal, sample(color(2), Deoior(2)), cOlor(2) ~= black)
w,gi) =1; 2P® ={n = 3,material(2) = wood}
8 : fail, backtracking to 1

2b on (3.13) :

9: (material(2) ~= wood, sample(color(2), Deotor(2)), cOlor(2) ~= black)
wéi) =1; 2P ={n = 3,material(2) = wood}
10 :Q(ze:lmple(color(Z),Dcolor(z)), color(2) ~=black);w=1;2"" = {n=3,material(2) =wood}
3a:
lllz (color(2) ~= black);w((li) =1/2; 2P ={n = 3, material(2) = wood, color(2) = black}
la:
12: I:J;wl(li) =1/2; 2P ={n = 3,material(2) = wood, color(2) = black}

The algorithm starts checking whether a rule is applicable to the current goal
initialized with the query. For example, rule 2a fails because color(2) is not in
the sample 27, Rule 2b can be applied to clause (3.12), obtaining tuple 2. At
this point material(2) needs to be evaluated, it is not sampled and it unifies
with the head of clause (3.14), thus applying rule 2b we obtain tuple 3. Now ‘n
is required, thus it is sampled with value e.g, 3 (rules 2b on (3.11) and 3b), for
which ‘n ~= N, between(1,N, 2)’ succeeds for N = 3 (rule 2a and 1a). At tuple 6
the body of (3.14) has been proven; therefore, material(2) is sampled with a
value e.g., wood (rule 3b). Now in tuple 7, the formula material(2) ~= metal
fails because the sampled value is wood (and thus the body of clause (3.12)
fails); the algorithm backtracks to tuple 1 and applies rule 2b on clause (3.13)
obtaining tuple 9. This time material(2) ~= wood is true and can be removed
from the current goal (rule 2a). At this point color(2) needs to be sampled
(tuple 10). LW is applied because color(2) is in the initial query ig = ¢, thus

)

STATIC INFERENCE FOR DISTRIBUTIONAL CLAUSES 47

color(2) = black is added to the sample with weight 1/2 (rule 3a). The query
in this sample is true with final weight 1/2.

Query expansion

Instead of asking for color(2) ~= black, let us add a < color(2) ~= black
to the DC program and ask p(a); the query does not change. However, the
described rules do not apply LW because iq = a, and a is deterministic. It is
clear that LW should be applicable also in this case. To solve this issue it is
sufficient to expand iq, replacing each literal in ig by its definition; e.g., ig = a
becomes ig = (color(2) ~= black). At this point the algorithm is able to apply
LW as before. We can go even further, replacing ig=(color(2)~=black) with
iqg = (color(2) ~=black, (material(2) ~=metal OR material(2)~=wood)),
where the disjunction of the bodies that define color(2) has been added. Note
that for random variables we need to keep the literal in ig after the expansion
(e.g., color(2) ~=black). Indeed, the disjunction of the bodies guarantees
only that the random variable exists, not that it takes the value black. This
procedure is a type of partial evaluation [Lloyd and Shepherdson, 1991] adapted
for probabilistic DC programs. There are several ways to unfold (expand) a
query, one possible way is the following. Before applying the inference rules,
the initial query iq is set to the disjunction of all proofs of ¢ without sampling:
iq = (proofi OR proofs OR ... OR proof,). Each proof is determined using
SLD-resolution (a number of unfolding operations); since random variables are
not sampled, if the truth value of a literal cannot be determined because it is
non-ground (e.g., N > 0, or between(A,B,C)) it is left unchanged in the proof.
Starting from proof = q, a proof can be found as follows:

el replace each deterministic atom h € proof with bodyf if head < body € P
and 6 = mgu(h, head), the process is repeated recursively for body0;

e2 if the truth value of h € proof cannot be determined it is left unchanged;

e3 for each h ~= walue € proof add bodyf if head ~ D <« body € P and
6 = mgu(h, head), the process is repeated recursively for body6.

A depth limit is necessary for recursive clauses. The obtained formula can be
simplified, e.g., (a,b) OR (a,d) becomes a, (b OR d); this is useful to know
which variables can be forced to be true (in the example ‘a’).

After the ig expansion the sampling algorithm can start using the same inference
rules, that cover the case in which ig contains disjunctions. As described in
rule 3a, we can apply LW setting h = val, only when P, 27 E h # val = —ig.

48 DISTRIBUTIONAL CLAUSES

For example, if ig = ((h ~= val OR a),b), LW cannot be applied for h ~= val.
However, if a becomes false, ig simplifies to (h ~= val,b), and LW can be
applied setting h = val, because h # val makes iq false. To determine whether
P, zP(® E h # val = —iq holds, it is convenient to simplify ig whenever a
random variable is sampled. For example, after a random variable h has been
sampled with value v, h ~= val is replaced with its truth value (true or false).
Furthermore, (true OR a) is simplified with true, (false OR a) with a, and
so on. In the current implementation we support the propagation of simple
algebraic constraints, for example, if Y is 2xX+1 has to be true (i.e. Y = 2X+1)
and Y is substituted with a number, X is substituted with the number (Y —1)/2.
If a random variable has to be equal to X, the proposal is chosen to satisfy the
constraint as discussed above. More complex constraint propagation methods
can be integrated following the same principles.

The expansion of iq and the simplification guarantee that P, z(%) Eig < qas
required by Theorem 3.1. The iq expansion allows to exploit LW in a broader set
of cases. Indeed, it is basically a form of partial evaluation adapted for DCs and
being able to exploit similar optimizations, e.g., using constraint propagation
where the constraints that make the query true are propagated with the ig
expansion, and updated according to the sampled variables.

Constraint propagation for algebraic constraints

Consider a set of random variables X = X1, Xo,...X,, with an order defined by
the DC program P, and an algebraic constraint f(X) as evidence. Let us also
assume that the random variables are continuous and thus real numbers.

If f(X) is satisfied in a region A C R"™, with P(A) > 0, sampling from X|f(X)
is not a problem. Rejection sampling is still possible and LW with query
expansion might be used to reduce the rejection rate. For example, when
we need to sample X;, we can ideally sample it from the optimal proposal
P(Xl == .I'i|f(X),Xi71, ---»Xl) 0.8 P(XZ = .’I,‘i7f(X)|Xi,1, ...,Xl). If this is not
possible, suboptimal solutions are still feasible, e.g., if we know a region B;
such that P(X; € B;, f(X)|X;-1, ..., X1) = 0 we can sample X; from a proposal
9(X;) such that g(B;) = 0. This reduces the rejection rate. For example for
fX,Y): X >Y, g(X|Y, f(X,Y)) can be chosen to satisfy such constraint.
This kind of constraints are not propagated in the current implementation, but
they are relatively easy to integrate.

The more interesting case is when the constraint is a zero-probability event
(but still possible), i.e. P(f(X)) = 0, with a density p(X*) positive in at least a
root X* of f(X). We discussed how the query h = v, where h is a continuous

STATIC INFERENCE FOR DISTRIBUTIONAL CLAUSES 49

random variable and v a value, is intended as h = v £ dh/2 with dh — 0. For
compactness we write h = v £ dh/2 to indicate h € [v — dh/2,v + dh/2].

More complex constraints are interpreted as follows. If f(X) has only one
root xf, x5, ...,x%, then f(X) is intended as X7 = z} £ dx1/2,Xs = 25 +
dxa/2, ..., X, = x) £dx, /2. In this case EVALSAMPLEQUERY sets each variable
to X; =z with a weight p(X; = x| X;_1, ..., X1)dX;. Formally, the proposal

distribution for variable Xj; is

g(Xi|Xi—1a

1for X; = £dX;/2
,Xl)—{ or X = + 4%/

0 otherwise

This can be extended to any constraint with a finite number of roots. For
example, when f(X) has two roots z7, x5, ...,z and 2}, 2%, ...z, f(X) is
intended as (X = zf+£dx1/2, Xo = 25+dxs/2,..., X, = z} +dx, /2) OR (X1 =
) £ dr/2, X = zb £ dxs/2,...X,, = z/, + dx,/2). In the current
implementation query expansion with multiple roots is not supported, but
this can be easily implemented.

The constraint f(X) can be satisfied in a region A C R", with P(4) = 0.
For example, ¥ — 2X — 1 = 0 is satisfied in an infinite number of points
that make a line. One variable, let us say X, can be sampled ignoring the
constraint, and the other variable Y can be imposed to the value that satisfies
the constraint. In general, let us assume that X;|X;_1, ..., X1, f(X) has only one
solution X; = «7, then the described algorithm and query expansion implicitly
assumes that f(X)|X;_1,..., X7 is satisfiable only for X; = = £ dz;/2 with
dz; — 0 (and eventually imposing other constraints for the remaining variables
Xit1, . Xp). Since the target distribution is positive only when the constraint
(evidence) is satisfied, EVALSAMPLEQUERY assigns X; = z; (or more formally
X; = af £ dx;/2 with dz; — 0) with weight p(X; = | X;_1, ..., X1)dx;.

Let X_; = X1, ..., X;—-1, Xit1, ..., Xpn, the probability of the constraint f(X) is

P(FX) = [PUOX)p(X)dX s =

X_j

The formula assumes that X; = z} is the only solution to f(X)|X_;, and

The constraint probability (3.18) should be the same for every i. Unfortunately,
this is not the case when Vi : 0X; = 0X; = dx as assumed in the previous

50 DISTRIBUTIONAL CLAUSES

section to make the limit properly defined. This means that the order in which
the variables are sampled influences the interpretation of the constraint, and
thus the limit (assuming Vi,j : 6X; = §X; = dx). This issue is connected with
the Borel-Kolmogorov paradox. If an apparently harmless change of variable
modifies the conditional probability limit, it is not surprising that assuming
a common dz — 0 the interpretation (3.18) of the constraint changes with i.
There is no right or wrong assumption, unless there is a clear definition of
constraint and thus a clear limit to perform. There are ways to relate 6 X; and
0X; to make the constraint probability (3.18) consistent for every i. However,
this might be hard in complex hybrid domains. Fortunately, this can be avoided.
If we fix the order in which the random variables are sampled, and thus the index
¢ in (3.18) we maintain a single interpretation across the samples. Moreover,
if all the samples have weights with the same infinitesimal intervals (e.g., the
weights are of the form wy = vydX,,dX}), such intervals simplify in the weights
ratio limit, and thus it is not necessarily to consider how an interval d X, relates
with de.

One might also sample with different orders across samples with the simple
assumption Vi : 6X; = 6X; = dx. In this case, the estimation of P(¢|f(X)) will
be some sort of average across different interpretations of the constraint f(X).
This can be a practical solution when a clear interpretation of a constraint is
not available. In the current implementation the sampling algorithm follows the
variable order defined by the DC program, however when the random variables
are independent the order is chosen arbitrarily (since the DC program does
not provide an order in this case). Other solutions to define and sample from
conditional probabilities given algebraic constraints include the use of geometric
measure theory as in [Diaconis et al., 2013], or Dirac delta [Afshar et al., 2016].
Such methods could be integrated in the DC framework in the future.

Complex queries

Example 3.5. A more complex query is ~(color(2)) = ~(color(1)), which is
converted to color(2) ~= Y, color(1) ~=7Y as in this way each subgoal refers
to a single random variable. In this case, color(2) is sampled (rule 3b: LW
is not used) for example to red (after sampling n and material). Assuming
n > 2 the first subgoal color(2) ~=Y succeeds with substitution v = {Y = red},
thus the initial query becomes iq = (color(2) ~= red, color(1l) ~=red). The
remaining subgoal will be color(1l) ~= red for which LW is used (rule 3a).
Indeed, the initial query iq becomes grounded and LW can be applied.

The examples show that EVALSAMPLEQUERY exploits LW in complex queries
(or evidence). This is also valid for zero-probability evidence, for which standard

STATIC INFERENCE FOR DISTRIBUTIONAL CLAUSES 51

MCMC and naive MC fail to provide an answer (all samples are rejected). For
simple evidence or queries (e.g., size(1) ~= v) classical LW is sufficient to
solve the problem. For more complex evidence (e.g., ~(size(1)) = ~(size(2)))
MCMC, naive MC or classical LW will fail to provide an answer. Many
probabilistic languages cannot handle those queries (if we exclude explicit
approximations such as discretization). In contrast, the proposed algorithm is
able to provide a meaningful answer.

Example 3.6. Let us consider the Indian GPA problem [Perov et al.] proposed
by Stuart Russell. According to Perov, Paige and Wood [Perov et al.] “Stuart
Russell [...] pointed out that most probabilistic programming systems [...] produce
the wrong answer to this problem”. The reason for this is that contemporary
probabilistic programming languages do not adequately deal with mixtures of
density and probability mass distributions. Indeed, such complex distributions
raise issues as the discussed Borel-Kolmogorov paradox. In addition, many
languages do not propagate deterministic constraints regarding continuous
random variables. This might cause the rejection of all samples, unless noise is
added to relaz the constraint (evidence).

The proposed inference algorithm for DC does provide the correct results for the
Indian GPA problem. The DC program that defines the domain is the following:

isdensityA ~ finite(][0.95:true, 0.05:false]).
agpa ~ beta(8,2) < isdensityA ~= true.
americanGPA ~ finite([0.85:4.0,0.15:0.0]) < isdensityA ~= false.
americanGPA ~ val(V) <+ agpa ~= A,V is A % 4.0.
isdensityI ~ finite(][0.99:true, 0.01:false]).
igpa ~ beta(5,5) < isdensityl ~= true.
indianGPA ~ finite([0.1:0.0,0.9:10.0]) - isdensityl ~= false.
indianGPA ~ val(V) < igpa ~= A,V is A % 10.0.
nation ~ finite([0.25:america, 0.75:india]).
studentGPA ~ val(A) < nation ~= america, americanGPA ~= A.

studentGPA ~ val(I) < nation ~= india, indianGPA ~= I.

Where h ~ val(v) means that h has value v with probability 1. Briefly, the
student GPA has a mixed distribution that depends on the student nationality.

52 DISTRIBUTIONAL CLAUSES

An interesting query is P(nation ~= america|studentGPA). For example, for
studentGPA = 4 such probability is 1. The proposed inference algorithm provides
the correct result for this query. This is due to the proper estimation of limit
(3.10) and the relative importance weights. Moreover, the iq expansion and the
generalized LW avoid rejection-sampling issues with continuous evidence.

Example 3.7. The last case to discuss is a query that contains random variables
that are nonground terms, e.g., color(X) ~= black, which is interpreted as
X color(X) ~= black. In this case LW is not applied because the goal is
nonground. Applying LW would produce wrong results because we would force
the value black only for the first proof (e.g., color(1l) ~= black), ignoring
the other possible proofs (e.g., color(2) ~= black), and thus violating the
importance sampling requirement. In some cases, query expansion can enumerate
all possible grounded proofs, making LW applicable.

LW can also be applied for the query ~(material(~(drawn(1)))) = wood (the
first drawn ball is made of wood) which is converted to (drawn(1l) ~= X,
material(X) ~= wood). Once drawn(1l) is sampled to a value v (without
LW), the substitution 0={X=v} is applied to the current goal and to iq. At
this point LW can be applied to material(v) ~= wood because it is grounded in
iq (rule 8a). In other words, for the partial world (") ={drawn(1) = v} the
only value of material(v) that makes the query true is wood for which LW is
applicable. For this query one sample is sufficient to obtain the exact result.

3.3 Experiments

This section answers the following questions:

(Q1) How fast does the EVALSAMPLEQUERY algorithm converge to the
correct results?

(Q2) How does the DC perform with respect to a representative state-of-
the-art probabilistic programming language?

Among the several state-of-the-art probabilistic languages, BLOG [Milch et al.,
2005a] is a system that shares some similarities with DC, e.g. both use lazy
instantiation and likelihood weighting. For this reason, we compared the
performance with BLOG.

All algorithms were implemented in YAP Prolog and run on an Intel Core i7
3.3GHz for simulations and on a laptop Core i7 for real-world experiments. To
measure the error between the predicted and the exact probability for a given

EXPERIMENTS 53

..... 5,
1 atw TRy = qILW
: [l qtnaive . 4.0 + qinaive ,
0.1 :) F-{ qllWexp 0.1 35 =0 qilWexp e

i 1. - 2LW . : s

0 - F-1 q o a-a Q2LW 7/

T - - F-4 g2naive I 3.0f o q2naive ///
o L ;]—-[q2LWexp . . \\‘* L B8~ qWerp L
%001 t\" ool e Rp, P /

RN H ?M ",

1) q N, i
* I q1naive\k .
3 ~E N
RN TN S - F-I qiLwexp N h‘}.‘
0.001 A N 0001 F-1 a2tw ~ g
TR 5 F-4 q2naive “‘\\‘ . ’
R F1 qatwexp Ny 0.08%%
1 1000 10000 100000 : 25000 50000 75000 100000
Time (s) Samples Samples
(a) (b) (c)

Figure 3.1: Results of EVALSAMPLEQUERY for static inference with LW and
without LW (naive). For LW we show results with (LWexp) and without
query expansion. The queries are q1 = (drawn(3) ~= 10) with evidence
((drawn(1) ~= 9,drawn(2) ~=9) OR (drawn(l) ~= 10,drawn(2) ~= 10))
and q2 = (drawn(1) ~= X, drawn(2) ~= X, color(X) ~= black). The axes in
(a) and (b) are in logarithmic scale. q1LWexp and ¢2naive partially overlap in
(a) and (b); q2LWexp and q2LW overlap in (b).

query, we compute the empirical standard deviation (STD). The average used to
compute STD is the exact probability when available or the empirical average
otherwise. We report STD 99% confidence intervals. Notice that those intervals
refer to the uncertainty of the STD estimation, not to the uncertainty of the
probability. If the number of samples is not sufficient to give an answer (e.g., all
samples are rejected), a value is randomly chosen from 0 to 1. The results are
averaged over 500 runs. In all the experiments we measure the CPU time (“user
time” in the Unix “time” command). This makes a fair comparison between
DC (not parallelized in the current implementation) and BLOG that often uses
more than one CPU at the time. Time includes initialization: around 0.3s for
BLOG, 0.03s for DC.

We first describe experiments in static domains, then in dynamic domains
(synthetic and real-world scenarios). In the first experiment we tested the
performance of EVALSAMPLEQUERY for static inference with and without
LW and query expansion (Q1) using example 3.4 in Section 3.2.3. Fig. 3.1
shows some results. The error (STD) converges to zero for all algorithms.
EVALSAMPLEQUERY with LW (without query expansion) has a lower STD
(Fig. 3.1b), but it is slower for the same number of samples (Fig. 3.1c).
Nonetheless, the overhead is beneficial because for the same execution time
the STD of LW is lower (Fig. 3.1a). Adding query expansion (Section 3.2.3)
to LW has a computational cost. This is beneficial for query ql (as defined in
the caption of Fig. 3.1), allowing to exploit LW in disjunctions. Nonetheless,

54 DISTRIBUTIONAL CLAUSES

- BLOG

7} +--+ naive

— LW P

6 -
--x LW2 R

5l = LWexp Pad 4

v LW2exp - o

0.1 0.1

STD

0.01

0.001E 0.001 0

1 1 100 1000 10000 100000 25000 50000 75000 100000
Time (s) Samples Samples
(a) (b) (c)

Figure 3.2: Identity uncertainty domain used in [Milch et al., 2005b]. The axes
in (a) and (b) are in logarithmic scale. LW and LWexp overlap in (b); BLOG
and naive overlap in (b); LW and LW2 overlap in (c).

for query g2 the query expansion overhead is not compensated by an error
reduction.

In the second experiment (Fig. 3.2) we considered an identity uncertainty
domain? used in BLOG [Milch et al., 2005b]. The query considered is
the probability that the second and third drawn balls are the same, given
that the color of the drawn balls are respectively black, white, and white.
We compared DC with BLOG. We consider several settings for DC: naive
(EVALSAMPLEQUERY without LW), LW (EVALSAMPLEQUERY with LW, using
formula (3.9) to compute P(gle)), and LW2 where EVALSAMPLEQUERY
estimates P(q,e) and P(e) independently using half of the available samples
each. LW and LW?2 are tested with and without query expansion (respectively
LWexp and LW2exp). The results show that the error (STD), for the same
number of samples or time, is lower for DC with LW (Fig. 3.2a-3.2b). In
particular, the lowest error is obtained with LW2exp. Any DC setting is faster
than BLOG (Fig. 3.2c). The latter has an unexpected logarithmic-like behavior
for a small number of samples. In addition, it seems that BLOG does not use
LW in this domain, indeed the error is comparable with naive Monte Carlo for
the same number of samples (Fig. 3.2b). In contrast, as described in Section
3.2.3 EVALSAMPLEQUERY exploits LW in complex queries as equalities between
random variables.

In the third experiment we considered continuous variables using Example 3.4
(Fig. 3.3). We queried the probability that the first drawn ball is made of wood,
given that its size is 0.4. BLOG and naive MC failed to give an answer, while

2available at https://github.com/BayesianLogic/blog/blob/master/example/balls/
id-uncert-det.blog

https://github.com/BayesianLogic/blog/blob/master/example/balls/id-uncert-det.blog
https://github.com/BayesianLogic/blog/blob/master/example/balls/id-uncert-det.blog

EXPERIMENTS

55

4 BLoG BLOG

H w A AN H w o= BloG i

E-1 w2 x ANY E-] w2 30— W &
O L LWexp \‘ 0.1 N Fl tWexp wox LW2 Eay

Ed twaexp Y Soo B weexp 2.5 =-a LWexp i’/,”

v LW2exp A}‘: -

D -
Bo.01 20.01 e Pl
75 70 £ P ;“
F15 _# g
o /-‘
1.0; / o
P e
0.001 ~1 0.001 4 k3
£k . 0.5] 5
SEOEL . Vs
f:._‘_;?\[’*“-,
100 1000 10000 100000 25000 50000 75000 100000
Time (s) Samples Samples
(a) (b) (c)

Figure 3.3: Experiments with continuous evidence. The query is the probability
that the first drawn ball is made of wood, given that its size is 0.4. BLOG
requires evidence discretization. LW and LWexp overlap in (b); LW2 and
LW2exp overlap in (b); LWexp and LW2exp overlap in (c).

DC (LW) provides a probability. To compare with BLOG we had to consider
an interval instead of a value ([0.39,0.41]). Both DC and BLOG converge to
0.16, this confirms that DC works properly with continuous variables. Fig. 3.3
shows the STD and time performance. EVALSAMPLEQUERY exploits LW also
in this case, while BLOG needs evidence discretization to give an answer and
does not exploit LW in this case. For this reason BLOG performs poorly. In
this case query expansion does not provide an improvement. Another tested
query is the probability that two drawn balls are the same, given that they
have the same size. This probability is one, because the size has a continuous
distribution, thus the probability of having two different balls with the same
size is infinitely smaller than the probability of sampling the same ball; for this
reason the balls must be the same. Again, DC provides the correct result, while
BLOG does not provide an answer.

In the fourth experiment we considered the Indian GPA problem (Example
3.6). Most probabilistic programming languages are not able to handle
this domain. In contrast, DC is able to give the correct results. For
instance, it provides P(nation ~= america | studentGPA ~=4) =140 and
P(nation ~= america | studentGPA ~= 3.9) = 0.193 £ 0.0035 as expected,
respectively in 0.33s and 0.37s with 10000 samples. In this domain the query
expansion is necessary.

From the above experiments we make the following comparison with BLOG.
Given a query BLOG stacks variables that need to be sampled to answer
the query, and uses LW to generate samples consistent with the evidence.
This follows the lazy instantiation principle applied in EVALSAMPLEQUERY,

56 DISTRIBUTIONAL CLAUSES

nonetheless there are the following differences. BLOG exploits LW only for
simple evidence statements of the form r = value, thus it performs worse than
DC with complex queries described in Section 3.2.3, which the experiments
confirm. Furthermore, BLOG is not always able to give an answer for complex
queries or evidence containing continuous variables as shown above. In contrast,
DC gives meaningful answers and exploits LW in a much wide range of queries.
Finally, BLOG seems to be less suited than DC for real-time inference, because
it is generally slower with higher variance.

3.4 Related work

The proposed framework is related to other probabilistic logic languages such as
IBAL [Pfeffer, 2001], PRISM [Sato and Kameya, 1997], and ProbLog [Kimmig
et al., 2008], however, such languages can only describe discrete domains. The
proposed inference algorithm is related to BLOG [Milch et al., 2005a] inference
and to Monte-Carlo inference used in ProbLog [Kimmig et al., 2008], and to
the original DC inference [Gutmann et al., 2011]. BLOG is based on LW and
lazy instantiation as EVALSAMPLEQUERY. However, BLOG exploits LW only
for simple evidence statements, thus it performs worse than DC with complex
queries described in Section 3.2.3. Furthermore, many probabilistic languages
that do handle continuous variables (e.g., Anglican [Wood et al., 2014], Church
[Goodman et al., 2008] and BLOG) are not always able to give an answer for
complex queries with evidence containing continuous variables as shown in the
experiments (for BLOG). In those frameworks, a solution to such issue is an
ad-hoc discretization (or adding noise) that is generally inefficient. In contrast,
DC gives meaningful answer in those cases exploiting LW in a larger set of cases.
Moreover, EVALSAMPLEQUERY exploits a type of constraint propagation to
avoid rejections. Even though this idea is not new [Gogate and Dechter, 2011;
Gutmann et al., 2011], it has been used in discrete domains, and not in complex
hybrid domains with zero-probability evidence.

One of the few works that can handle complex constraints as evidence is [Afshar
et al., 2016] that introduces a new random variable to represent the constraint
with a Dirac delta distribution. Afshar et al. compute the distribution given
the constraint with a collapsing mechanism (based on variable marginalization)
that involves a change of variable. Such definition of (marginalized) conditional
probability can be integrated in DC in the future. In addition, Afshar et
al. showed how the marginalization can be performed analytically for Gibbs
sampling in a broad class of domains. Our approach exploits constraint
propagation and importance sampling to handle algebraic constraints. This
makes our approach arguably easier to implement and to apply in a wide

CONCLUSIONS 57

range of domains, including those with an unknown number of objects, without
computing integrals. Nonetheless, closed-form Gibbs sampling might have a
better convergence rate on some class of domains; comparison of the approaches
is a topic for future work.

Another way to define conditional probabilities with zero-probability evidence
exploits geometric measure theory [Diaconis et al., 2013] and allows to sample
from manifolds, i.e. from subspaces that can represent constraints. Such method
can be integrated in DC in the future.

Many probabilistic programming languages (e.g., Church) adopt MCMC for
inference. Such methods are applicable to DC, even though it is not easy to
guarantee that the proposal generates samples consistent with the semantics of
the DC program.

3.5 Conclusions

We proposed a flexible representation for hybrid relational domains and provided
an efficient inference algorithm, which converges quickly to the correct results
and has a limited inference cost per sample. Indeed, this framework exploits
the relational representation and (context specific) independence assumptions
to reduce the sample size (through partial worlds) and thus the inference cost.

Moreover, the proposed static algorithm EVALSAMPLEQUERY exploits LW in
a wider range of cases with respect to systems such as BLOG, and supports

complex queries with continuous variables, for which most related frameworks
fail.

The proposed solution involves a practical solution for conditional probabilities
with zero-probability evidence. Such solution is then applied in an importance
sampling algorithm without additional ad-hoc discretizations (or noise) in the
presence of zero-probability evidence, as required in other systems. Moreover,
the proposed query expansion allows to perform constraint propagation and
thus avoids rejections in a wide range of cases.

The inference algorithm EVALSAMPLEQUERY was empirically evaluated and
applied in several experiments. The results show that EVALSAMPLEQUERY
outperforms naive MC and BLOG.

EvalSampleQuery can be improved using a more advanced sampling schema.
For example, adaptive importance sampling can help to cope with complex
high-dimensional domains. Adaptive importance sampling learns the optimal
proposal distribution using the previous samples. Under certain conditions the

58 DISTRIBUTIONAL CLAUSES

proposal converges to the optimal distribution, with the estimator variance that
converges to zero.

Chapter 4

Dynamic Distributional
Clauses

In this chapter we extend Distributional Clauses for modeling dynamic domains
(Section 4.1). Then we describe the DCPF framework to perform filtering and
online learning with such language (Section 4.2). This framework has been
tested in several synthetic and tracking scenarios as described in Section 4.4.
This chapter consists of research previously published in the papers [Nitti et al.,
2013, 2014, 2016].

4.1 Dynamic Distributional Clauses

Dynamic Distributional Clauses (DDC) is a dynamic extension of Distributional
Clauses. In this framework we explicitly distinguish between the hidden state
x4, the evidence or observations z;, and the action u; (input), as in IOHMM.
Therefore, in DDC, each predicate/variable is classified as state x, action u,
or observation z, with a subscript that refers to time 0, for the initial step;
time ¢ for the current step, and ¢ 4+ 1 for the next step. The definition of a
discrete-time stochastic process follows the same idea of a Dynamic Bayesian
Network (DBN). We need sets of clauses that define:

1. the prior distribution: hy ~ D < bodyo,

2. the state transition model: hyi1y ~ D < body.t+1 (the body involves
variables at time ¢ and eventually at time ¢ + 1),

59

60 DYNAMIC DISTRIBUTIONAL CLAUSES

3. the measurement model: z; 4 ~ D ¢ body;41, and

4. clauses that define a random variable at time ¢ from other variables at
the same time (intra-time dependence): hy ~ D < bodys.

Obviously, deterministic clauses are allowed in the definition of the stochastic
process. As these clauses are all essentially distributional clauses, the semantics
remains unchanged.

Example 4.1. Let us consider a dynamic model for the position of 2 objects:
a ball and a box. For the sake of clarity we consider one-dimensional positions.

pos(ID)y ~ uniform(0, 1) < between(1,2,ID). (4.1)
pos(ID);41 ~ gaussian(~(pos(ID);),0.1). (4.2)
obsPos(ID)y41 ~ gaussian(~(pos(ID)y41),0.01). (4.3)

The object positions have a uniform distribution at step 0 (4.1). The next
position of each object is equal to the current position plus Gaussian noise
(4.2). In addition, the observation model (4.3) for each object is a Gaussian
distribution centered in the actual object position. As in Example 3.1, we can
also define the number of objects as a random variable.

4.2 DCPF: A Particle Filter For Dynamic Distribu-
tional Clauses

If we consider the time step as an argument of the random variable, inference
can be done as in the static case with no changes. However, the performance will
degrade, while time and space complexity will grow linearly with the maximum
time step considered in the query. This problem can be mitigated if we are
interested in filtering. In this case we can use a particle filter as described in
Section 2.3.5.

We now develop a (hybrid relational) particle filter for a set of dynamic
distributional clauses that define the prior distribution, state transition model
and observation model, (cf. Section 4.1). Throughout this development, we
only consider the bootstrap filter for simplicity, but other proposal distributions
are possible.

DCPF: A PARTICLE FILTER FOR DYNAMIC DISTRIBUTIONAL CLAUSES 61

4.2.1 Filtering Algorithm

The basic relational particle filter applies the same steps as the classical particle
filter sketched in Section 2.3.5 and employs the forward reasoning procedure for
distributional clauses sketched in Section 3.1. Each sample :ZZEZ) will be a complete
possible world at time ¢t. Working with complete worlds is computationally
expensive and may lead to bad performance. Therefore, we shall work with
samples that are partial worlds as in the static case. The resulting framework,
that we shall now introduce, is called the Distributional Clauses Particle Filter
(DCPF).

Starting from a DDC program P, weighted partial samples {(xf(i),wgi))}, a
new observation list z,41 = {2{,; = v;}, and a new action w1, the DCPF
filtering algorithm performs the weighting and prediction steps from time ¢ to
time ¢ + 1 expanding the partial samples as shown in Fig. 4.1. The new set of

samples is {(ifﬁ), wt(;)l)} The DCPF filtering algorithm is the following:

- Step (1): expand the partial sample to compute wt(i)l = w,gi)p(ztﬂ |:2f+(11))

- Resampling (if necessary)

- Step (2): complete the prediction step (a)

Step (1) performs the weighting step (b) and implicitly (part of) the prediction
step (a): it computes the weight wgl = wgl)p(ztﬂmﬂi)) calling

EVALSAMPLEQUERY(thrhxf(i)). EVALSAMPLEQUERY will automatically

sample relevant variables at time ¢ + 1 and ¢ until p(z441 |§cf _&)) is computable.
If there are no observations, Step (1) is skipped, and the weights remain
unchanged. At this point each sample has a new weight wt(fgl, and resampling
can be performed. For the latter, we use systematic resampling [Douc and

Cappé, 2005], but other methods are possible.

Step (2) performs the prediction step for variables that have not yet been
sampled because they are not directly involved in the weighting step. The
algorithm queries the head of any DC clause in the state transition model
(intra-time clauses excluded), thus it evaluates the body recursively. Whenever
the body is true for a substitution 8, the variable-distribution pair 7,416 ~ D8
is added to the sample. Avoiding sampling is beneficial for performance, as
discussed in section 3.2.1. Step (2) is necessary to make sure that the partial
sample at the previous time step ¢ can be safely forgotten, as we shall discuss

62 DYNAMIC DISTRIBUTIONAL CLAUSES

Before After

time ¢
Ty
| —
. . B
time ¢t +1 @i, Tt41
@CL
- i+l J

Figure 4.1: Sample partition, before (left) and after (right) the filtering algorithm.
Initially 441 is not sampled, therefore z{ 1 = x441 and z7,; = (). The inference
algorithm samples variables xy" Cxf, ity C o, 1 and adds them respectively
tozf and zf, ;. Indeed, 27 = zf Uz, 3¢ = x¢\a", &, = o Uzn | = 2y,

i =Ty \$t+1

in the next section. After Step (2) the set of partial samples ;ﬁf_ﬁ)
w§321 approximates the new belief bel(zyy1).

with weights

In the classical particle filter resampling is the last step (c¢). In contrast, DCPF
performs resampling before completing the prediction step (i.e., before Step (2)).
This is loosely connected to auxiliary particle filters that perform resampling
before the prediction step [Whiteley and Johansen, 2010]. Anticipating
resampling is beneficial because it reduces the variance of the estimation.
Intuitively, resampling before Step (2) makes the random variables sampled
in Step (2) different between particles. In contrast, resampling after Step (2)
generates exact copies of particles, which reduces the diversity among samples.
For a formal discussion we refer to [Whiteley and Johansen, 2010].

To answer a query ¢:+1, it suffices to call for each sample

(w,(l),;ﬁf,(jf) +— EVALSAMPLEQUERY(q,:fcﬁ_(?) and use formula (3.9) where ne

is replaced by wiﬁl. After querying, the partial samples ﬁg(ﬁ) fcf_p are

discarded, i.e., the partial samples remain &, _él) This improves the performance,

indeed querying does not expand -|E1)

Example 4.2. Consider an extension of Example 4.1, where the next position
of the object after a tap action is the current position plus a displacement and
plus Gaussian noise. The latter two parameters depend on its type and the
material of the object below it. We consider a single axis for simplicity.

DCPF: A PARTICLE FILTER FOR DYNAMIC DISTRIBUTIONAL CLAUSES 63

pos(ID);41 ~ gaussian(~(pos(ID);),0.01) + not(tap(ID)¢y1). (4.4)
pos(ID)y4s ~ gaussian(~(pos(ID);) + 0.3,0.04) «
type(ID, cube), on(ID,B);,material(B, wood), tap(ID)y41. (4.5)
pos(ID)y44 ~ gaussian(~(pos(ID);) + 0.2,0.02) +
type(ID, cube), on(ID,B),,material(B, fabric),tap(ID)s+1. (4.6)
pos(ID)y4s ~ gaussian(~(pos(ID);) + 1,0.1) «
type(ID,ball), tap(ID)¢ 1. (4.7)
obsPos(ID)y41 ~ gaussian(~(pos(ID)yy1),0.01). (4.8)
type(1, cube). type(2,ball). type(3,table). material(3,wood). (4.9)

We define on(A,B)y from the z position of A and B. A is on B when A is above B
and the distance is lower than a threshold. We omit the clause for brevity.

After
Before pos(1)y = 2
pos(2)y =5
pos(1)y = 2 on(1,3)s
Sampled pos(2)y =5 tap(1)¢41
pos(1)t4+1 = 2.35
on(X, Y) pos(2)s41 ~ gaussian(5,0.01)
Marginalized pos(ID)g41 on(X,Y), for (X,Y) # (1,3)
on(X,Y)¢41 on(X,Y)¢y1

Figure 4.2: A partial sample for example 4.2, before (left) and after (right) the
filtering algorithm.

To understand the filtering algorithm let us consider Step (1) for the observation
obsPos(1)y41 ~= 2.5 (there is no observation for object 2), and action
tap(1)ey1- Let us assume ;cf(i) = {pos(1)y = 2,pos(2); = 5}. The sample
before and after the filtering step is shown in Fig. (4.2). The algorithm tries to
prove obsPos(1)¢y1 ~= 2.5. Rule 2b applies for DC clause (4.8) that defines
obsPos(1)y41 for @ = {ID = 1}. The algorithm tries to prove the body and the
variables in the distribution recursively, that is pos(1)¢y1. The latter is not in
the sample and rule 2b applies for DC clause (4.4) with @ = {ID = 1}. The
proof fails, therefore it backtracks and applies rule 2b to (4.5). Its body is true
assuming that on(1,3); succeeds (and added to the sample). Thus, pos(1)¢t1

64 DYNAMIC DISTRIBUTIONAL CLAUSES

will be sampled from gaussian(2.3,0.04) and added to the sample (rule 3b).
Deterministic facts in the background knowledge, such as type(1,cube), are
common to all samples; therefore, they are not added to the sample. At this
point p(obsPos(1)yyq ~= 2.5|§c£_(11)) is given by (4.8). This is equivalent to
applying rule 3a that imposes the query to be true and updates the weight.

Step (1) is complete, let us consider Step (2). The algorithm queries all the
variables in the head of a clause in the state transition model, in this case
pos(ID)yr1. This is necessary to propagate the belief for variables not involved
in the weighting process, such as pos(2)ty1. The query pos(ID)y4q ~= Val
succeeds for ID = 2 applying (4.4), and pos(2)y+1 ~ gaussian(5,0.01) is added
to the sample. The algorithm backtracks looking for alternative proofs of q,
there are none, so the procedure ends. In the next step pos(2)yy1 is required
for pos(2)¢y2, S0 pos(2)e1 will be sampled from the distribution stored in
the sample. Note that on(A,B)y is evaluated selectively. Any other relation or
random variable eventually defined in the program remains marginalized. For
example, any relation that involves object 2 is not required (e.g., on(2,B)s).

4.2.2 Avoiding backinstantiation

We showed that lazy instantiation is beneficial to reduce the number of variables
to sample and to improve the precision of the estimation in the static case.
However, to evaluate a query at time ¢ in dynamic models, the algorithm might
need to instantiate variables at previous steps, sometimes even at time 0. We
call this backinstantiation. This requires one to store the entire sampled
trajectory xigl), which may have a negative effect on performance. If we are
interested in filtering, this is a waste of resources.

We shall now show that the described filtering algorithm performs lazy
instantiation over time and avoids backinstantiation. We will first derive
sufficient conditions for avoiding backinstantiation in DDC, and then prove that
these conditions hold for the DCPF algorithm.

DCPF: A PARTICLE FILTER FOR DYNAMIC DISTRIBUTIONAL CLAUSES 65

Rao—BIackweIIization Let us assume that the complete world at time ¢ can be
written as z; = zf Uz¢ (Fig. 4.1). Let us consider the following factorization:

bel(x?,xit) :p(x?7xit|21:tau1:t)
= p(l’ﬂl’it, Z1:ty ul:t)P(xf;t‘Zl:t, ul:t)

=p(x|xt,, 216, ur.e)bel(z],)

N
ZP |x1t) A1ty UL t)wt)5 P(>($ft)
i=1

In the particle filtering literature this is called Rao-Blackwellization [Doucet
et al., 2000a], where bel(z?,) is approximated as a set of weighted samples!
> w()§ 2P (xF,) (6,(x) is the Dirac delta function centered in v), while the

posterior distribution of x¢ is available in closed form.

Rao-Blackwellized particle filters (RBPF) described in the literature, adopt a
fixed and manually defined split of 2; = # U 2¢. In contrast, our approach
exploits the language and its inference algorithm to perform a dynamic split
that may differ accross samples, as described for the static case in Section 3.2.

Backinstantiation in the DCPF One contribution in the DCPF is that
it integrates RBPF and logic programming to avoid backinstantiation over
variables r € x1.,_1. For this reason we are interested in performing a filtering
step determining the smallest partial samples that approximate the new belief
bel(xt41) and are d-separated from the past. To avoid backinstantiation we
require that p(x “\xfii)7 Z1:t, 1) is a known distribution for each sample 4 or at
most parametrized by xP(). (x?\xfg) 21, uas t) = t(i)(xf,xf()) Note that
the latter equation does not make any independence assumptions: ft(i) is a
probability distribution that incorporates the dependency of previous states
and observations and can be different in each sample.

Formally, starting from a partial sample xiii) with weight wéi) sampled
from p(zf,|z1.4,u1.¢), a new observation 2,1, a new action usy;, and the
distribution p(x |xftz), z1:4,u1:t), we look for the smallest partial sample
ifg?l = :z:fgi) ,i?f(z) AP(z)} with :cP(Vi AP(” , such that “%55421 with weight

0 . N .
w§+1 is distributed as p(x1:t+1|zl:t+1, Upipt1) and p(x§+1|z1:t+1, 21441, Ulip41) 1S

I The Monte-Carlo approximation replaces a distribution with an empirical distribution
given by a set of (weighted) samples. If the distribution is continuous the empirical distributon
is described as a sum of Dirac delta centered in the samples.

66 DYNAMIC DISTRIBUTIONAL CLAUSES

a probability distribution available in closed form. Even though the formulation
considers the entire sequence x1.411, to estimate bel(x11) the previous samples

{z1. ti L PO} can be forgotten.

D-separation conditions. We will now describe sufficient conditions that
guarantee d-separation and thus avoid backinstantiation; then we will show
that these conditions hold for the DCPF filtering algorithm. The belief update
is performed by adopting RBPF steps.

Starting from xf(R w,g),p(xt |x1 4), 214, UTt) = t(i)(zt,scf()) and a new
observation z;41, let us expand x; P@ sampling random variables r; € var(z})

from ft (:Et,l'f)()), and ri41 € var(xiyr) from the state transition model
p(reg1]a; PG)) defined by DDC clauses, until the expanded sample {# @ 505;(11)}

and the remaining ¢, 2, | satisfy the following conditions:

1. the partial interpretation Z, +1) does not depend on the marginalized
(AP(Z)|AP(Z) (AP(Z)|AP(1)

variables x: p(&, 7 |2, 7, 2§, 1) =p(Tp0y |8 Ueg1);

2. the we1ght1ng function does not depend on the marginalized variables:

P(Zt+1|xt+1) P(Zt+1|xt+1)

va |aPG D) rna AP . .
3. p(xf+1|x1:§ll, 2141, Ulipg1) = ft(+)1(37?+13xt-£1)) is available in closed form.

Condition 1 is a common simplifying assumption in RBPF [Doucet et al.,
2000a], while condition 2 is not strictly required; however it simplifies the
weighting and the computation of ft 1~ In some cases condition 2 can be
removed, for example for discrete or linear gaussian models (using Kalman

Filters). Condition 3 guarantees that the previous samples {xl 4l 2 P)} can
be forgotten to estimate bel(x,) for 7 > ¢+ 1.

Theorem 4.1. : Under the d-separation conditions 1,2,3 the samples

A,i(zl), t(jr)l(th, ﬁfﬁ)} with weights {th approximate bel(xi41), with

, i
wt(21 X p(zt+1|xt+(l1))wt and

) P) P(i
ft(il($t+17$t+(z1)) p($t+1|331;,(521721:t+1,u1:t+1)

a
Ty

va 1aa AP APy £(0)/na. aP(a
:/ p($t+1|$t7l’t xt-ifl))ft (tvxt)d . (4.10)

If ¢, | does not depend on Zf, then f,f_?l (@gﬂ;@fﬁ)) = p(:fct“+1|§sp(i) @fﬁ))

DCPF: A PARTICLE FILTER FOR DYNAMIC DISTRIBUTIONAL CLAUSES 67

Proof. The formulas are derived from RBPF (for the bootstrap filter) for which:

D) na . AP(1 i PG & D) na. AP 1aa
ft(-s-)1 (xt+1§xt+(1)):Ep(zt-s-l‘xiﬁl)/p@wﬂxta ¥) t+1)ft (25 2y))d
&

wiy o -wi?,

where 1 = p(zt+1|;%§:§i+)1, z1:¢). Condition 2 makes p(zt+1|fct+1) p(zt+1|xt+1))
and n = p(zt+1|ff Jr(zl)), simplifying the formulas. O

Step (1) in the filtering algorithm (Section 4.2.1) guarantees condition 1 and 2,
while Step (2) guarantees condition 3, as described in the following theorems.

Theorem 4.2. Gz’ven a valid DC program P, a DC clause r ~ D < body
and a partial world ¥V, if there exists a grounding substitution 0 such that
(Vo : v € var(2P®) = rank(v) < rank(xf)) and (z¥® |= bodyf) then
p(rf|z”®) = p(rf|bodyd) = DE.

sketch. The proof can be obtained from the semantics of DC (see [Gutmann
et al., 2011], or [Milch, 2006] for a general discussion). The result is similar to
Bayesian networks for which each random variable is conditionally independent
of its non-descendants given its parents. The same result is valid for context-
specific independencies. O

Theorem 4.3. Step (1) guarantees d-separation conditions 1 and 2

(1)|AP(1) L P(i

wt»ut—&-l) = p(xt+1)|:rt Ut+1) and
p(zt+1|mt+1) p(zt+1|xt+1)). The sampling algorithm can sample a random
variable r;y; only when the body of a clause that defines 7,11 is true in
the partial sample, i.e., when there exists a substitution § and a clause
heps ~ D+ bodyi.e11 € P such that ry1 = hepq6, var(bodys.ei10) C

var(i"f,(j_)l) and ift(_gl |: bodys.s4+10. From Theorem 4.2, we know

Proof. We need to prove p(Z;

that p(r¢+1|bodys.c+10, act mt,utH) = p(r¢11|bodys.t+10) holds for each
Tip1 € mtll), this proves condition 1 since var(bodyy.tt16) C var(xff_gl)
Similarly, the sampling algorithm will sample variables that prove the evidence

z¢+1; by applying Theorem 4.2 again we have p(zt+1|xt+1) =p zt+1|xt+1). O

Theorem 4.4. Step (2) guarantees d-separation condition 3.

Proof. Condition 3 is satisfied iff the posterior distribution of the marginalized
. P i .
variables: ft+1(xt+1, mt_ﬁ)) = 1_[7,#1672,?4rl ff_?l (ri4+1; Parents(ryyq)) is com-

puted for each sample. The probability distribution ft(_?l is represented using

68 DYNAMIC DISTRIBUTIONAL CLAUSES

DDC clauses or storing ry14 ~ D in the sample. There are two cases to discuss
for each random variable ry 4 € 2§, ;:

cl ry4q is defined with a grounded DC clause of the form hy 16 ~ DO <

body.+16 (derived from hy ~ D < bodys), with ryyy = hyt16. In this

case no actions are required because in the next step ryiy — ry and

t(l) (ry; Parents(ry)) is defined by hyf ~ D <« body,f. The variable

ry+1 may depend on random variables dy4+1 € bodyyy16 that are not yet

sampled: d¢yy € ¢, . In this case, if d¢y4 is defined by intra-time clauses

of the form d¢y; ~ D ¢ dbody,1, the case cl applies recursively. If

dy41 is defined by inter-time clauses: dy4q4 ~ D < dbodyy.41, the case c2
applies.

¢2 ry4q is defined with a grounded DC clause of the form hy 16 ~ DO <+
bodyy.t+16 (derived from the state transition model) with ry1y = heyq6.
In this case Step (2) queries ry44, thus variables in bodyy.¢ 16 will be

eventually sampled if not in :cftH If bodyy.t410 is true in :cftH, Step
(2) adds ry41 ~ DO is to the sample. Indeed, from Theorem 4.1 we have

ft(?l(rtJrl; Parents(ryy1)) = P(rt+1|@f @ xt+(1) =Do.

O

The case cl implies that Step (2) does not need to query variables defined by
intra-time clauses hy1q1 ~ D < bodyyyi. Querying those variables would sample
unnecessary random variables. For the remaining variables, Step (2) performs
the prediction step, that is, determines the distribution of such variables (case
c2). If lifted belief update or precomputed belief are used for a random variable

r¢4+1, the marginal distribution ft(i)l of such variable is defined by DDC clauses.
In conclusion, ¢l and ¢2 show that Step (2) guarantees that the distributions of
the marginalized variables are defined in any situation.

EVALSAMPLEQUERY used in Step (1) and (2) will never need to sample variables

at time ¢ — 1 or before, because the belief distribution of marginalized variables
re € ¢ is f, @ (s :%f(z)) available in closed form and (eventually) parameterized

by &, P , while 7,1 € ¢, are sampled from the state transition model. After

Step (2) any ry41 € &f,; is derivable from fol) together with the DDC program.

These conditions avoid backinstantiation during filtering or query evaluation,

thus previous partial states xgjgi) can be forgotten.

Step (2) avoids computing the integral (4.10). The integral is approximated
with a single sample, or equivalently the partial sample is expanded until
2¢,, does not depend on marginalized 2¢, for which ft(j_)l (gﬁgﬂ;fcﬂ?) =

DCPF: A PARTICLE FILTER FOR DYNAMIC DISTRIBUTIONAL CLAUSES 69

p(2E, |2 P a?zr(zl)) is derivable from the DDC program. In detail, for each
P(i) ~P(i)

rip10 € ¢, Step (2) stores ri 10 ~ DO, where DO = p(ry110|2; 7, 2,0,), e.g.,
pos(2)¢4+1 ~ Gaussian(5,0.01) = f(jr)l(pos(2)t+1) as shown in Fig. 4.2. Such
distribution is not parametrlzed and it is generally different in each sample.
In contrast, p(size(A)|z: +), 21:t,u1¢) = Gaussian([if type(A,ball) then
w=1;else p =2],0.1) = ftl (size(A)y; P)) is a distribution parametrized
by other variables in mf Y. Tt is sufficient to store this parametric function
once, using DDC clauses, instead of storing each distribution separately for each
sample. Similarly, the DDC clause that defines on(A,B), from object positions
at time ¢ is sufficient to represent all marginalized facts on(a,b); not in xf @
In general, intra-time DDC clauses can represent distributions of marginalized
variables for an unspecified number of objects. Thus, Step (2) does not need to
query variables defined by intra-time clauses, as proved in Theorem 4.4.

Step (2) could be improved applying (4.10) whenever possible. Moreover, if
there is a set of variables that has the same prior and transition model, the belief
update (4.10) can be performed once for the whole set. Whenever a variable
is required, it will be sampled. This does not require to bounding the number
of such sets of variables, and it can be considered as a simple form of lifted
belief update. In some cases the belief ft((¢, mf (z)) can be directly specified
for any time ¢, we call this precomputed belief. As lifted belief update, this is

applicable to an unbounded set of variables, and avoids unnecessary sampling.

Theorem 4.5. DCPF has a space complexity per step and sample bounded by

the size of the largest partial state x, P@ , together with ft (xt ; xf(z)).

Proof sketch. The filtering algorithm proposed for DCPF avoids backinstantia-
tion, therefore the space complexity is bounded by the dimension of the state
space at time t. A tighter bound is the size of the largest partial state. (I

4.2.3 Comparison with Murphy’s interface algorithm

Murphy [Murphy, 2002] proposed the interface algorithm for Dynamic Bayesian
Networks to perform efficient exact filtering. It is based on the notion of
interface: the set of variables that have children in the next time slide.

In DCPF, we can define the interface as the set of random variables that
appears in the body of a clause of the state transition model. The interface is
sufficient to d-separate the future from the past. Thus, Step (2) can perform the
prediction step only for random variables in the interface. However, to query

a non-interface variable h;, the partial sample x,i(? is required in addition to

70 DYNAMIC DISTRIBUTIONAL CLAUSES

wf(i) (while :Eg:g% can be forgotten). This is because the prediction step is not
performed for non-interface variables. Unfortunately, the interface is fixed and
does not consider context-specific independencies, therefore the non-interface
set might be empty or small in several domains.

For the described reasons the interface concept is less appealing for inference
optimization in DCPF. Therefore, the interface is not exploited in the current
implementation. Nonetheless, some domains might benefit of this improvement.

4.2.4 Limitations

We will now describe the limitations of the proposed algorithms.

Lazy instantiation is beneficial only when there are facts or random variables
that are irrelevant during inference. For example, this is true when the model
includes background knowledge that is not entirely required for a query. In
fully-connected models or when the entire world is relevant for a query, lazy
instantiation is useless. Nonetheless, the proposed method generalizes LW, thus
it can be beneficial even in the described worse cases.

The above issues apply also to inference in dynamic models, but the latter raises
additional issues for filtering in particular. One is the curse of dimensionality
that produces poor results for high-dimensional state spaces, or equivalently it
requires a huge number of samples to give acceptable results. There are some
solutions in the literature (e.g., factorising the state space [Ng et al., 2002]).
To make the particle filter more efficient, the optimal proposal distribution
p(z41|t, ze41) and the corresponding weight p(z¢41|2z:) can be used. Given a
complex nonlinear transition model those distributions are not easy to compute
analytically, therefore in DCPF we adopt suboptimal solutions.

4.3 Online Parameter Learning

So far we assumed that the model used to perform state estimation is known.
In practice, it may be hard to determine or to tune the parameters manually,
and therefore the question arises as to whether we can learn them. We will first
review online parameter learning in classical particle filters, then we will show
how to adapt those methods in DCPF.

ONLINE PARAMETER LEARNING 71

4.3.1 Learning in Particle Filters

A simple solution to perform state estimation and parameter learning with
particle filters consists of adding the static parameters 6 to the state space:
Zy = {t,0}. The posterior distribution p(#t|z1.+) is then described as a set of
samples {zgz), 6()}. However, this solution produces poor results due to the
following degeneracy problem. As the parameters are sampled in the first
step and left unchanged (since they are static variables), after a few steps the
parameter samples #() will degenerate to a single value due to resampling. This
value will remain unchanged regardless of incoming new evidence. Limiting or
removing resampling is not a good solution, because it will produce poor state
estimation results. Better strategies have been proposed and are summarized
in [Kantas et al., 2009]. We focus on two simple techniques with limited
computational cost: artificial dynamics [Higuchi, 2001] and resample-move
[Gilks and Berzuini, 2001]. Both methods introduce diversity among the samples
to solve the described degeneracy problem.

The first method adds artificial dynamics to the parameter 6: 6,11 = 0;+€441,
where €41 is artificial noise with a small and decreasing variance over time.
This strategy has the advantage to be simple and fast, nonetheless it modifies
the original problem and requires tuning [Kantas et al., 2009]. We will show
that this technique is suitable for the scenarios considered in this thesis (for a
limited number of parameters).

The second method is resample-move that adds a single MCMC step to
rejuvenate the parameters in the samples. There are several variants of this
technique, the most notable are Storvik’s filter [Storvik, 2002] and Particle
Learning [Carvalho et al., 2010a]. To understand these approaches, consider
the following factorization of the joint distribution of interest:

P(%:t,@, Zt‘zlztfl)
p(Zt \Zl:t—l)

p(:L'O:ta 0|let) =

p(2t|$t7 9)10(331& |$t717 9)

= p(0|xo.4— e G e
p(|$C0.t 1, 21:t 1)P(9€0.t 1|Z1.t 1) p(Zt|Z1:t—1)

In addition to the standard propagation and weighting steps, both algorithms

perform a Gibbs sampling step that samples a new parameter value H,Ei) from the

distribution p(0|9382, 21:4) = p(@\sgi)) where sgi) captures the sufficient statistics

72 DYNAMIC DISTRIBUTIONAL CLAUSES

of the distribution. p(0|zg.¢, 21.¢) is recursively updated as follows:
p(0]st) = p(0lzo:t, 21:¢)

x p(zt, Tt, 0|To:t—1, 21:4—1)

= p(Olzo.t—1, 21:0-1)P(2e |2y, O)p(@i|Ti-1, 0)

= p(0]si—1)p(2t|we, O)p(at]a:-1,0) (4.11)

This leads to a deterministic sufficient statistics update s;=5S(st—1, Z¢, xe—1, 2¢).
Storvik’s filter algorithm goes as follows:

- propagate: mgi) g(z @

|mt 1 9,571, Zt)v

) (D) g(D) (D)), ()
. . L) p(zlw 0,7)p(xy l=9,,0)
- resample samples with weights: w,”’ = ol)|m(NI ,

- propagate sufficient statistics: sgi) = S(sgl)l, mg), mgz)l,zt()), and

- sample Gt(i) ~ p(9|sti)).

The Particle Learning [Carvalho et al., 2010a] is an optimization of Storvik’s
filter since it adopts the auxiliary particle filter [Pitt and Shephard, 1999] and
an optimal proposal distribution g. Resample-move strategies do not change
the problem as in the artificial dynamics, and have been proven to be successful
for several classes of problems [Carvalho et al., 2010a,b; Lopes et al., 2010].
However, they suffer from the sufficient statistics degeneracy problem that can
produce an increasing error in the parameter posterior distribution [Andrieu
et al., 2005].

4.3.2 Online Parameter Learning for DCPF

We now propose an integration of the mentioned learning methods in DCPF.
The main contribution is to adapt artificial dynamics and the Storvik’s filter for
DCPF and allow learning of a number of parameters defined at run-time. Indeed,
the relational representation allows to define an unbounded set of parameters
to learn, e.g., the size of each object size(ID). The number of objects and thus
parameters to learn is not necessarily known in advance.

Artificial dynamics in DCPF. To describe the integration of artificial dynamics
in DCPF we consider an object tracking scenario called Learnsize (Section 4.4.3),

ONLINE PARAMETER LEARNING 73

in which the parameters to learn are the sizes of all objects. We defined a
uniform prior: size(ID)y ~ uniform(0,20). Since the number of objects is not
defined in advance we can directly define the size distribution at time ¢ for any
size(ID); not yet sampled: size(ID); ~ uniform(0,20) (i.e., ft(i)(xf;xf(i)) is
directly defined for not sampled size(ID)y). Whenever the size of an object x
(not yet sampled) is needed for inference, size(x); is sampled for the above rule
with no need to perform backinstantiation. While the transition model defines
the artificial dynamics: size(ID)y41 ~ gaussian(~(size(ID);),5%/T*), where
T is the time step, X is a fixed exponent (set to 1 in the experiments) and &2
is a constant that represents the initial variance. Initially the variance is high,
thus the particle filter can “explore’ the parameter space, after some steps the
variance decreases in the hope that the parameter converges to the real value.

&

Figure 4.3: Left: HMM-like dynamic model parameterized by 6. Right: modified
version used to apply a Storvik’s filter variant in DCPF.

Storvik’s filter in DCPF. Equation (4.11) shows how to update the parameter
posterior and then the sufficient statistics for each sample. However, this
formulation needs a conjugate prior for the parameter likelihood. For a complex
distribution this may be hard. We developed a variant of Storvik’s filter to
overcome this problem. In detail, we add 0, to the state that represents the
currently sampled “parameter” value, while 6 is the parameter to estimate,
e.g., the mean of 6 (Fig. 4.3 on the right). We also assume the state z;
and the observations depend only on 0,: p(xe|ri—1, ét,ﬁ) = p(x¢|zi1, ét) and

74 DYNAMIC DISTRIBUTIONAL CLAUSES

p(z¢|xy, 0,, 0) = p(z¢|xs, ét) Thus, the posterior becomes:
p(x0:0,0, 0ot | 21:0) x p(2t, Tose, 0, Bose| 21:0—1) =
= p(2e, 4, 04,0, 0041, To:—1) 21:0—1) =
= p(2¢|as, 00)p(ae|ze—1,0:)p(0:10)p(0]00.t—1)p(Oo:t—1, Tore—1|21:6-1)-
Knowing that p(0|é0:t,x0:t, 21:4) X p(xo.t, 0, éO:t|let) we replace (4.11) with:
P(0100:t, To:t, 21:¢) < p(0¢10)p(0100:—1) = p(0:10)p(O]5¢—1).-

Thus p(9|é0;t,xo:t,z1;t) = p(0|é0:t) = p(f|st). At this point we can avoid
sampling 6 as required by the Storvik’s filter, but sample ¢; from the marginal
distribution: p(fy|si—1) = [, p(6¢|0)p(6]s—1)do.

For example, in the Learnsize scenario, for each object ID we have 6, =
cursize(ID); and the parameter to learn is § = size(ID). For each object
p(04]0) is defined as cursize(ID); ~ Gaussian(~(size(ID)),52), where 52 is a
fixed variance. The conjugate prior of size(ID) is a Gaussian with hyperpa-
rameters 11(ID)o, 02(ID)o: size(ID) ~ Gaussian(u(ID)o,02(ID)e). As explained
0 = size(ID) need not be sampled, indeed §; = cursize(ID), is directly sampled
from p(fy|s;_1), i.e. cursize(ID); ~Gaussian(u(ID)¢_1,02(ID)¢_1 4 02). For
each ID the posterior p(f|s;) is a Gaussian as the prior, and the sufficient
statistics s; = pu(ID)s,02%(ID), are computed using Bayesian inference. The
posterior distribution of the parameters can become peaked in few steps, causing
again a degeneration problem. This issue is mitigated reducing the influence of
the evidence during the Bayesian update.

4.4 Experiments

This section answers the following questions:

(Q1) How do the DCPF and the classical particle filter compare?

(Q2) How does the DCPF perform with respect to a representative state-
of-the-art probabilistic programming language for dynamic domains?

(Q3) Is the DCPF suitable for real-world applications?

(Q4) How do the learning algorithms perform?

EXPERIMENTS 75

Among the several state-of-the-art probabilistic languages, BLOG [Milch et al.,
2005a] is a system that shares some similarities with DC and DCPF. For this
reason, we compared the performance with DBLOG [de Salvo Braz et al., 2008],
an extension of BLOG for temporal domains.

All algorithms were implemented in YAP Prolog and run on an Intel Core i7
3.3GHz for simulations and on a laptop Core i7 for real-world experiments.
To measure the error between the predicted and the exact probability for a
given query, we compute the empirical standard deviation (STD). The average
used to compute STD is the exact probability when available or the empirical
average otherwise. We report STD 99% confidence intervals. Notice that those
intervals refer to the uncertainty of the STD estimation, not to the uncertainty
of the probability. If the number of samples is not sufficient to give an answer
(e.g., all samples are rejected), a value is randomly chosen from 0 to 1. The
results are averaged over 500 runs. In all the experiments we measure the CPU
time (“user time" in the Unix “time" command). This makes a fair comparison
between DCPF (not parallelized in the current implementation) and DBLOG
that often uses more than one CPU at the time. Time includes initialization:
around 0.3s for DBLOG, 0.03s for DCPF.

We first describe experiments in synthetic domains, then in real-world scenarios.

4.4.1 Synthetic dynamic domains

We now answer questions Q1 and Q2 comparing the classical particle filter,
DCPF and DBLOG in dynamic domains. In all dynamic experiments we
disabled the query expansion because it is not necessary.

In this section we used a probabilistic Wumpus world (inspired by [Russell
and Norvig, 2009]). This is a discrete world with a two-dimensional grid of
cells, that can be either free, a wall, or a pit. In one of the cells the horrible
wumpus lives and each cell can contain gold. Each pit produces a breeze in
the neighboring cells, and the wumpus produces a stench in the neighboring
cells. The agent has to estimate the hidden state consisting of the wumpus’
location, the state of each cell (free, wall or pit), as well as its own position
in the maze. The agent has four stochastic ‘move’ actions: up, down, left,
right, which change the position by 1 cell or lead to no change with a particular
probability. Furthermore, the agent has noisy sensors to observe whether there
is a breeze, a stench, or gold in the cell, and whether there are walls in the
neighboring cells. We assume that the agent starts from position (0,0), therefore
the cell (0,0) is free.

In the Wumpus domain we use a lifted belief update or precomputed

76 DYNAMIC DISTRIBUTIONAL CLAUSES

belief. For example, if the belief at time ¢ for each cell not in the partial
sample is maze(X,Y); ~ finite([0.6:free,0.4:wall]) and the state transition
is maze(X,Y)yy1 ~ val(~(maze(X,Y);)) (the next cell state is equal to the
current cell state), the belief update can be done once for all the cells that
have not been sampled yet. In this case the belief remains the same over
time, thus, we can directly define the belief at time ¢ without doing lifted
belief update. If a cell maze(x,y): is required it will be sampled, and the
belief update for this cell will be performed by sampling. For non-sampled
cells maze(X,Y); ~ finite([0.6:free, 0.4:wall]) is used instead. Lifted belief
update and precomputed belief do not require that the size of the grid is
specified.

Classical Particle Filter (Q1). The classical particle filter samples the entire
state every step with a forward reasoning procedure.

In the first experiment (Wumpusl) there are no pits and no wumpuses. The
goal is to compute the joint distribution of 3 cells state (maze(0, 2),, maze(1, 1)y,
maze(2,0);) given noisy gold and cell observations. The experiment consists of
3 steps (to keep exact inference feasible) with one or two observations per step.
In the classical particle filter, we need to limit the size of the grid in advance.
In contrast, the DCPF estimates the borders of the maze itself. To measure the
error between the predicted and the exact posteriors we use the total variation
distance (i.e., the sum of absolute differences averaged over runs). Figures 4.4a
and 4.4b show that both algorithms provide correct results, but our DCPF
produces lower errors and is faster when compared to the classical particle filter
for the same number of samples (Figure 4.4b). This is because DCPF reduces
the number of tracked variables and therefore reduces both the variance in the
sampling process and the execution time. As expected, the maze size of the
classical particle filter affects the performance. The DCPF by contrast does not
require a fixed grid size using a precomputed belief or lifted belief update. This
makes DCPF more flexible and faster in comparison (Q1).

In the second experiment (Wumpus2) we used a wumpus world with one
wumpus that produces stench sensed with a noisy sensor. We also model the
agent’s energy as a continuous variable that decreases over time with Gaussian
noise. The probability to move is a function of the energy. We randomly
generated worlds of different sizes (2 worlds per size, 5 runs per world), together
with a sequence of 100 actions and observations (neighboring cells state, stench
and energy). The sequence of actions and observations was used as the input
to the particle filter (classic or DCPF) with 1000 samples. The model is too
complex to compute exactly, therefore we focused on runtime evaluation. The
results (Figure 4.4c) show that DCPF is faster than the classical particle filter

EXPERIMENTS 7

(Q1), because it reduces the sample size. For completeness, in the last step the
average number of sampled variables in DCPF was 30.8, 40.6, 51.8, 53.1, 61.4
respectively for worlds 5x5, 9x9, 13x13, 17x17, 21x21.

3.0,
oo
0.0020 DCPF_ 0.0020 o—a DCPF 7
s ClassicPF 7x7 % ClassicPF /
A4 Classics’F 13x13 . 2.5 /
LA <
8 N 3 oo K
5 0.0010; X, V. 5 0.0010 7\\ 2.0 /
° N 12} AN X
] \ 5 ~ .
s X v, c @ /
2 N 2 215 J
& - &
£ 0.0005 X v < 0.0005 . IS K
> AN . > S ’
kel * v k<l x| 1.0 /
e e X
o— DCPF 0.5 *,/
0.0002, 0.0002% = ClassicPF 7x7 ’_,;’:u___n——n—'
v--¥ ClassicPF 13x13 0
0.01 0.10 1.00 5.00 100 1000 'gxﬁ 9x9 13x13 17x17 21x21
Time (s) Samples Grid size
(a) Wumpusl (b) Wumpusl (¢) Wumpus2

Figure 4.4: Experiments. Total variation distance as a function of run-time
(a) or the number of samples (b) for the probabilistic wumpus example. (c)
Run-time for various grid sizes with 1000 samples. (a) and (b) are in logarithmic
scale.

DBLOG (Q2). Because DBLOG cannot fully cope with continuous evidence
as DCPF, we now focus on a discrete case for a further comparison.

In the third experiment (Wumpus3) we used a Wumpus domain similar
to Wumpusl to compare DCPF with DBLOG. We executed 10 steps and
queried ¢ = (maze(2,1); ~= free,maze(0,1); ~= free,maze(1,0); ~= free,
gold(1,1); ~= true); the error and time performance are shown in Fig. 4.5.
The results highlight that DCPF has a slightly lower error than DBLOG for
the same number of samples (Fig. 4.5b). In addition DCPF is faster for a small
number of samples (Fig. 4.5¢). For a large number of samples DBLOG becomes
faster, probably because of the unoptimized prolog implementation of DCPF.

The fourth experiment (Wumpus4) is similar to the previous one (Wumpus3)
where the evidence contains statements such as the observed cell on the left is
equal to the observed cell of the right. The results are shown in Fig. 4.6 and
highlight that DCPF has a lower error for the same number of particles (Fig.
4.6b) because DCPF exploits LW with such complex evidence.

DBLOG does not currently implement Step (2) of our filtering algorithm?. This
requires a workaround that consists in manually querying all the variables that

2 According to the following bug report https://github.com/BayesianLogic/blog/issues/
330

https://github.com/BayesianLogic/blog/issues/330
https://github.com/BayesianLogic/blog/issues/330

78

0.100

$-1 pBLOG 12 gg;‘ze
4 DpcPF _
0.050 0.050, 10
8
=
o a >
£ 0.020 £ 0020 2
E
.
0010 0.010, 4
2 %)
0.005 0.005 4
0

DYNAMIC DISTRIBUTIONAL CLAUSES

0.1

1.0
Time (s)

(a)

10.0

100

1000

Samples

(b)

10000

2000 4000 6000 8000 10000
Samples

(c)

Figure 4.5: Experiments (Wumpus3). Time refers to 10 steps. The axes in (a)
and (b) are in logarithmic scale. For STD there is a 99% confidence interval.

t-4 DBLOG| 0ol F., t-1 pBLOG 20 BBLoG
0.1 i H ocpr 4 4 ocer ~— DCPF
RS 15
0.05 0.050
1. -
e g 4 ry
5 = . g 10
0.02 0.020 E
i
5 .-
0.01 0010 }\.
i po
0.005 0
. 100 1000 10000 2000 4000 6000 8000 10000
Time (s) Samples Samples
(a) (b) (c)

Figure 4.6: Wumpus experiments with complex evidence (Wumpus4). The axes
in (a) and (b) are in logarithmic scale. Time refers to 10 steps. For STD there
is an 99% confidence interval.

might be relevant for the given query, thus to fix the number of random variables
(e.g., the size of the maze). In Wumpus3 and Wumpus4 this is avoided because
the cell variables are static and they do not require belief updates. If the cell
state changes over time, DBLOG needs to query all the the cells at each step.
This makes DBLOG equivalent to a classical particle filter, where the size of
the maze is fixed and sampled entirely. Thus, DBLOG becomes slow with high
variance, while for DCPF we exploit lifted belief update. This is shown in the
fifth experiment (Wumpus5, Fig. 4.7) where the cells state changes over time.
It is problematic for DBLOG when the worlds may contain different numbers of
random variables. It is not trivial to determine in advance which variables are
relevant for a given query at time ¢. Indeed, every sample will have different
variables, thus propagation has to be performed in a different way for each

EXPERIMENTS 79

"1 -4 pBLOG
4 bcpr

0
i {-4 pBLOG +-+ DBLOG
R 4 pcpPF ~—= DCPF

0.020
= 10 .
n
. 0.010]
kS .
. ”
‘t 0.005] 5 e
-
”
0.1 1 10 0.002 100 1000 10000 0 2000 4000 6000 8000 10000
Time (s) Samples Samples
(a) (b) (c)

Figure 4.7: Wumpus experiments with changing cells (Wumpus5). Time refers
to 4 steps. For DBLOG the rows and columns cells from [—3, 3] has been queried
at each step. The axes in (a) and (b) are in logarithmic scale.

sample. In contrast, Step (2) in DCPF samples variables that are sufficient to
guarantee d-separation, and those variables can be different in different samples
because of context-specific independences. This avoids backinstantiation with
the possibility to use lifted belief updates and precomputed beliefs.

4.4.2 Real-world dynamic domains

The experiments shown so far are generated from synthetic data. We also ran
experiments with real-world data (Q3). We considered two tracking scenarios
called Packaging and Learnsize; the latter is used to evaluate parameter learning.
The objects have markers for an easy detection with a camera (Fig. 4.11).

Packaging scenario

The goal of this scenario is to track objects moved by a human during a
packaging activity with boxes (Fig. 4.9). The framework should be able to
keep track of objects inside boxes. To solve this problem we defined a model in
Dynamic Distributional Clauses where the state consists of the position, the
velocity and orientation of all objects, plus the relations between them. The
relations considered are left, right, near, on, and inside plus object properties
such as color, type and size; whenever a new object is observed its pose is added
to the state together with all the derived relations.

We modelled the following physical principles (Fig. 4.8b) in the transition
model:

80 DYNAMIC DISTRIBUTIONAL CLAUSES

yaw = /2
1T I
yaw = X
111 v Q
B B
yaw = —3/4n - >
(a) (b)

Figure 4.8: (a) Yaw of an object. Yaw is positive in quadrants I and II. (b)
Physical principles considered.

1. if an object is on top of another object, it cannot fall down;

2. if there are no objects under an object, the object will fall down until it
collides with another object or the table;

3. an object may fall inside the box only if it is on the box in the previous
step, is smaller than the box and the box is open-side up;

4. if an object is inside a box it remains in the box and its position follows
that of the box as long as it is open-side up;

5. if the box is rotated upside down the objects inside will fall down with a

certain probability.

As example consider the property 3: if an object A is not inside a box, is on
top of a box B with rotation yaw(B); > 0 (i.e. open-side up, Fig. 4.8a) and the
object A is smaller than the box B, then it falls inside B with probability 0.8 in
the next step. This can be modelled by the following clause:

inside(A,B)¢4+1 ~finite(]0.8:true,0.2: false]) <+ not(inside(A,C); ~=true),
on(A,B)s, type(B, box), ~(yaw(B)y) > 0,smaller(A,B). (4.12)
To model the position and the velocity of objects in free fall we use the rule:

, ~(pos,(A)y)+At-~(vel,(A),)—0.5gAt?
pos_vel, (A)¢yq gau551an<{ ~(vel,(A):) — ght 2

<+ not(inside(A,C)y ~=true),not(on(A,D);),held(A); ~= false. (4.13)

It states that if the object A is neither ‘on’ nor ‘inside’ any object, and is
not held, the object will fall with gravitational acceleration® g. For simplicity

3To avoid high velocities in the experiments, we use an acceleration lower than the actual
gravitational acceleration.

EXPERIMENTS 81

we specify only the position and velocity for the coordinate z. The variable
held(A), indicates whether the object is held or not, let us assume the following
distribution:

held(A); ~ finite([0.6:true, 0.4:false]). (4.14)

The measurement model is the product of Gaussian distributions around each
object’s position (thereby assuming i.i.d. measurements):

obsPos(A);41 ~ gaussian(~(pos(A)y),Sobs)- (4.15)

Where pos(A); is the subvector of pos_ vel; related to the x,y, z position, and
Yobs 18 a fixed covariance matrix.

Furthermore, if A is inside B at time ¢, the relation holds at ¢4 1 with probability
close to one (clause omitted). The inside concept is transitive, therefore we
defined a transitive inside relation tr inside(A,B); from inside(A,B)y:

tr_inside(A,B); + inside(A,B); ~= true.

tr_inside(A,B); < inside(A,C); ~= true,tr inside(C,B)s.

In addition, we assume that the probability of observing an object inside a
box is null. Therefore, to improve the performance we consider a proposal
distribution for inside(A,B); that depends on the observation of A.

For the packaging scenario we performed several test-cases. We assume the
type, size and color are known for each object. We also encoded the static
object ‘table’, therefore when an object is not held it will fall down until it
collides with another object or the table. The first test-case consists in taking a
box, putting an object inside the box, moving the box and then rotating the
box upside down. The second test-case consists in putting an object inside a
small box, putting the small box in a bigger box, then moving the bigger box
and rotating it upside down. Finally, we put an object inside a small box and
then rotate the box on top of another box, the object inside has to fall inside
the other object. For this scenario we used 600 samples. The results (Fig. 4.9)
showed that the model is stable, correctly tracks the objects, and successfully
estimates the transitive relation inside (Q3). For example, whenever we put an
object in a box the DCPF estimates that it is inside the box or still outside
with a small probability. Similarly, when we rotate a box upside down the
object that was inside falls outside and goes inside the box below. One issue
that was encountered is when the objects are moved rapidly, in this case the
filter keeps track of the visible objects but may lose the sample diversity of the
invisible objects. To avoid this problem the variance in the state transition and
observation model needs to be increased.

82 DYNAMIC DISTRIBUTIONAL CLAUSES

(a) cube on the small (b) cube inside the (c¢) rotated small box (d) cube and box
box small box on the big box inside the big box

Figure 4.9: Packaging scenario experiments. The bottom images represent
moments of the experiment, while the top images show the corresponding
estimated objects’ positions, where each colored point represents an object in a
sample. The cube is represented in blue, the small box in fuchsia and the big
box in beige.

In this scenario we can consider queries such as how many objects there
are in the box with the respective probability for each object, or if there
is a blue cube in the red box. The second query would be the conjunction:
type(A,cube),color(A,blue),inside(A,B), ~=true,type(B,box),color(B,red).
The answer is the probability that the query is true. Alternatively we can list
all objects pairs (A,B) that satisfy the query with the respective probability.

The filter performance for this scenario depends on the number of objects, the
framework spends around 0.37 ms, 0.6 ms, 0.87 ms and 1.08 ms per sample
respectively for 1, 2, 3 and 4 objects, assuming all objects are visible. If some
objects are not visible the performance is better. Figure 4.10 shows an example
of execution time per step with 3 objects and 500 samples.

4.4.3 Learnsize scenario

To illustrate the described learning algorithms and their adaptation for DCPF
we consider an object tracking scenario called Learnsize. In this scenario we
have a table with several objects. The goal is to track the objects moved by
a human (or a robot), and estimate online the size of the objects from their
interaction. This problem involves static parameters, that is, the objects’ size.
This makes the problem difficult as explained in Section 4.3.1. The state

EXPERIMENTS 83

O
[
£
Fo.4

10 20 30 40 50 60 70
Steps

Figure 4.10: Inference time per step in the packaging scenario, with 3 objects
and 500 samples.

size(2) real size | 4
A +
‘o) estimated size
average 3
estimated size
— 2 3 1
size(1) s s
estimated positions
overlap 02 0.0 0.2

Figure 4.11: Learnsize scenario. Sketch on the left: the objects are pushed
away from each other when they overlap, applying a displacement. Picture on
the center with 3 objects. The right figure represents the estimated objects’
positions (yellow, orange and grey), and the estimated size (one point per
sample) using artificial dynamics. The blue lines are the real size and the black
lines the average estimated size. The distance is measured in meters.

variables to estimate are the object positions, the size for each object (i.e.,
diameter assuming round objects), and the object ID moved by a human or
robot (if any). The observation is a set of noisy object positions, and there
are no actions. Whenever the objects touch (or overlap) each other, each object
is pushed away from the other one (Fig. 4.11). The actual objects never overlap,
nonetheless this can happen in the samples. The overlap occurs when the
distance between the center of the two objects is smaller than the sum of the
objects’ radiuses (average of the diameter). If there is an overlap we apply a
displacement proportional to the absolute difference between the distance and
the radiuses sum. Multiple displacements can be applied to the same object, in
that case the total displacement is the sum of the simple components. However,
whenever the object is held we assume the displacement is 0. The object size

84 DYNAMIC DISTRIBUTIONAL CLAUSES

distribution is defined in Section 4.3.2 according to the learning method.

In this scenario we need to estimate which object is held and moved by a human.
To simplify the problem we assume the human can move at most one object at
a time. Thus, we added the variable move, in the state that indicates the object
ID held/moved or zero for none. We defined the following transition model,
which considers more probable to remain in the same state:

moveg 1 ~uniform([~(move;), ~(move;)|L]) - £indall(ID, object(ID)~=V,L).

Whenever move; has the value ID the transition model for object ID will have a
noise variance double that of the other unmoved objects, e.g., for the axis x:

posy(ID)¢11 ~ gaussian(~(pos,(ID);), o) <—=~(move;) = ID. (4.16)

2
posx(ID)gr1 ~ gaussian(:(posx(ID)t)—l— ~(totDispx(ID)s), %) —

~(movey) # ID.

If the object is not held we take in account the eventual displacements
caused collisions with other objects. Thus, totDisp,(ID); is the sum of all
displacements displacement,(ID,C); applied to object ID along the x axis and
caused by contact with object C.

Finally, to improve the performance we used a suboptimal proposal distributions.
Let us assume that the state is ; = {a¢, b;} and the observations depend only
on byy1, then the weight can be written as:
o _ P lb)p0ih g, o)p(ai laf)
Wb = W @) 1.0 '
g lzg, ze41)

A suboptimal proposal is g(zes1|2{) 2 11) = p(bysalass, 2\ 201)p(acsalal),
with weight w&)l = wﬁl)p(2t+1|a§217 xtz)). If p(by1]ais1, x4) is a linear Gaussian
transition model or discrete we can easily compute the above suboptimal proposal
and relative weight after sampling a;y1. In the scenarios, b; is the set of the
objects’ positions, while the remaining states define the set a;. For example,

the proposal that replaces (4.16) is:

posx(ID)s4+1 ~ gaussian(M, Var) «
Var is (672 +w™?)7 1,
M is Var * (~(obsPos, (ID);)w ™ 2+ ~(pos,(ID);)o ?),

~(move;) = ID. (4.17)

RELATED WORK 85

Where w? is the variance of the Gaussian measurement model.

We tested the two described learning algorithms in the Learnsize scenario:
artificial dynamics and the proposed Storvik’s filter variation. We performed
10 trials for each of the two algorithms for three objects. In each trial we
randomly pulled and pushed one object at a time. The results of the experiments
are summarized in Table 4.1 and were performed using 700 samples. In the
experiments with three objects both learning strategies perform reasonably well
(Q4). Artificial dynamics performs better and is faster than Storvik’s filter

Table 4.1: Learnsize scenario results. Avg error is the absolute distance between
the ground truth and the averaged estimation of the objects size (averaged over
over objects and trials). ‘Correct’ is the total number of objects size estimated
correctly, that is with an error below 1.5cm.

Algorithm Correct | avg error (em) | time per sample (ms)
Artificial dynamics 27/30 0.7 1.6
Storvik’s filter variation | 23/30 1.3 24

variation. An example with three objects using artificial dynamics is shown
in Fig. 4.11. Learning becomes harder with a higher number of objects. For
better performance offline methods are required. In addition, the performance
are highly dependent on the pushes/pulls performed. Indeed, there are different
objects sizes that can produce a similar behavior when moved. To make the
algorithms converge to the ground truth all objects were put in contact with
all the others during the experiments®. The videos of the described and other
experiments are available at https://dtai.cs.kuleuven.be/ml/systems/DC/

4.5 Related Work

In this section we will review related frameworks and applications for dynamic
inference.

4This is valid for 3 or more objects, with 2 objects it is not possible to learn the objects
size from pushes. Indeed, any pair of objects with the same sum of sizes produces the same
behaviour, because the distance between the objects during contact is the same.

https://dtai.cs.kuleuven.be/ml/systems/DC/

86 DYNAMIC DISTRIBUTIONAL CLAUSES

4.5.1 Frameworks

DCPF is related to probabilistic programming languages such as BLOG, Church
[Goodman et al., 2008], ProbLog [Kimmig et al., 2008], and Distributional
Clauses [Gutmann et al., 2011]. While these languages are expressive enough to
be used for modeling dynamic relational domains, these languages do not support
explicitly filtering (BLOG excluded), which makes inference prohibitively slow
or unreliable for dynamic models. Also worth mentioning is first-order logical
filtering (e.g., see [Shirazi and Amir, 2011]), the logical deterministic counterpart
of probabilistic filtering. This method can inspire further DCPF extensions,
nonetheless the absence of a probabilistic framework and continuous distributions
make them less suitable for the range of applications considered in this thesis.

There exist probabilistic programming approaches for temporal models. A
variant of BLOG for filtering in dynamic domains (DBLOG [de Salvo Braz
et al., 2008]) has been proposed, it instantiates the variables needed for inference
as BLOG. However, as discussed in Section 4.4.1, DBLOG does not currently
implement Step (2) of our filtering algorithm. This requires one to manually
query all the variables that d-separate from the past or at least those that might
be relevant for the given query. In contrast, DCPF automatically determines
which variable to samples to guarantee d-separation, exploiting context specific
independences. This avoids backinstantiation with the possibility to use lifted
beliefs update and precomputed beliefs. Furthermore, all the considerations
about LW in complex queries and continuous evidence are valid for the dynamic
case.

Logical HMMs [Kersting et al., 2006] employ logical atoms as observations
and states and hence, their expressivity is more limited. The lifted relational
Kalman filter [Choi et al., 2011], performs efficient lifted exact inference for
continuous dynamic domains, but it assumes linear Gaussian models. The
relational particle filter of [Manfredotti et al., 2010] cannot handle partial
samples. Finally, the approaches that are most similar to ours are those of
[Zettlemoyer et al., 2007] and Probabilistic Relational Action Model (PRAM)
[Hajishirzi and Amir, 2008]. The former employs first-order formulas to represent
a set of states called hypothesis; these are similar to our partial worlds in that
they represent a potentially infinite number of states. The key difference is that
our approach explicitly defines random variables, (in)dependence assumptions,
and their conditional distributions in relationship to other random variables,
which allows us to efficiently compute the distribution of a random variable
that needs to be sampled and added to the sample. In PRAM the filtering
problem is converted into a deterministic first-order logic problem that can be
solved using progression, regression and sampling. PRAM is mainly suited for
relational domains, that are inherently discrete and binary. In addition, PRAM

RELATED WORK 87

performs regression of a formula from time ¢ to time 0 that implies performance
issues as previously discussed.

Furthermore, none of the frameworks of [Thon et al., 2011; Kersting et al.,
2006; Zettlemoyer et al., 2007; Hajishirzi and Amir, 2008; Natarajan et al.,
2008] supports continuous random variables (other than through discretization),
therefore these techniques cannot deal with real-world applications in robotics.
Discretization is not always a good solution, and it can dramatically increase the
number of states, therefore it is unclear whether these algorithms would maintain
good performance in such cases. Finally, their first-order logic representation
allows discrete and fixed probabilities (for the transition and measurement
model), instead DCPF provides a flexible language to represent continuous and
discrete distributions that can be parameterized by other random variables or
logical variables used in the body. This allows a compact model and faster
inference.

Several improvements to classical particle filtering have been proposed, such as
Rao-Blackwellization [Casella and Robert, 1996] and Factored Particle Filtering
[Pfeffer et al., 2009]. The first method has been exploited in our approach, but
further improvements are possible. Factored Particle Filters cluster the state
space reducing the variance and improving the accuracy. These methods are
complementary to our work and could be adapted in future work.

4.5.2 Applications

Some state estimation applications with a relational representation have been
proposed. The relational particle filter of [Cattelani et al., 2012] uses relations
such as ‘walking together’ in people tracking to improve prediction and the
tracking process. They divide the state in two sets: object attributes and
relations, making some assumptions to speed up inference. In their approach a
relation can be true or false. In contrast, our approach does not make a real
distinction between attributes and relations, indeed, each random variable has
a relational representation, regardless of the distribution (binary, discrete or
continuous). This allows parametrization and template definition for any kind
of random variable. Furthermore, our language and inference algorithm are
more general, keeping inference relatively fast. In addition, it is not clear if they
can support partial states and integrate background knowledge while keeping
good performance. A relational representation has been used in [Meyer-Delius
et al., 2008] for situation characterization over time. However, this work is
based on HMMs and uses only binary relations (true or false). Interesting
works have been proposed [Tenorth and Beetz, 2009], [Beetz et al., 2012] for
manipulation tasks exploiting a relational representation. Those works integrate

88 DYNAMIC DISTRIBUTIONAL CLAUSES

relational knowledge about the world to reason about the objects and perform
complex tasks. For probabilistic inference and belief update they use MLNs
(Markov Logic Networks). However, MLNs are arguably less efficient for filtering
inference because they are undirected models that might require MCMC or
the computation of the partition function at each step, even though recent
optimizations have been proposed [Papai et al., 2012].

4.6 Conclusions

We proposed a flexible representation for hybrid relational domains and provided
an efficient inference algorithm for filtering. This framework exploits the
relational representation and (context specific) independence assumptions to
reduce the sample size (through partial worlds) and the inference cost.

The proposed static algorithm EVALSAMPLEQUERY exploits LW in a wider range
of cases with respect to systems such as BLOG, and supports complex queries
with continuous variables, for which most related frameworks fail. These features
are also valid for dynamic domains, where DCPF calls EVALSAMPLEQUERY
during filtering. At the same time, DCPF avoids backinstantiation to bound the
space complexity and reduce time performance variability. This makes DCPF
particularly suited for online applications.

One of the advantages of a relational framework like DCPF is the flexibility and
generality of the model with respect to a particular situation. Indeed, whenever
a new object appears all the respective properties and relations with other
objects are implicitly defined (but not necessary computed and added to the
sample). In addition, the expressivity of the language helps to bridge the gap
between robotics and the high-level symbolic representation used in artificial
intelligence.

DCPF was empirically evaluated and applied in several synthetic and real-world
scenarios. The results show that DCPF outperforms the classical particle filter
and DBLOG for a small number of samples. The DCPF averaged error is lower
than the DBLOG error for the same number of samples. Nonetheless, DBLOG
seems to be faster for a large number of samples, which might be caused by
implementation reasons.

The object tracking experiments show that DCPF is promising for robotics
applications. The overall performance is acceptable, but could be improved
to scale well with high-dimensional states. Indeed, each sample represents the
entire state, therefore inference can be computationally intensive for a high

CONCLUSIONS 89

number of objects and relations. Nonetheless, DCPF exploits the structure of the
model and partial samples to speed up inference and improve the performance.

Finally, both learning strategies tested in this framework perform reasonably
well for a limited number of parameters. More sophisticated strategies and
offline methods need to be investigated for a higher number of parameters.

Chapter 5

Planning

In this chapter we extend the proposed framework for probabilistic planning tasks
in fully observable environments. This chapter consists of research previously
published in the papers [Nitti et al., 2015b,a] and a submitted journal paper
[Nitti et al.].

5.1 Introduction

The DDC language can be easily extended to define MDPs. Beside the state
transition model, we need to define a reward function R(s¢,a), the terminal
states that indicate when the episode terminates, and the applicability of an
action a; is a state s; as in PDDL/STRIPS.

Example 5.1. Let us consider an object search scenario (objsearch) used in
the experiments, in which a robot looks for a specific object in a shelf. Some
of the objects are visible, others are occluded. The robot needs to decide which
object to remove to find the object of interest. Fvery time the robot removes
an object, the objects behind it become visible. This happens recursively, i.e.,
each new uncovered object might occlude other objects. The number and the
types of occluded objects depend on the object covering them. For example, a box
might cover several objects because it is big. This scenario involves an unknown
number of objects and can be written as a partially observable MDP. However,
it can be also described as a MDP in DDC where the state is the type of visible
objects; in this case the state grows over time when new objects are observed or
shrink when objects are removed without uncovering new objects. The probability

90

INTRODUCTION 91

of observing new objects is encoded in the state transition model, for example:
type(X)t4+1 ~ val(T) - type(X); ~=T, not(removeObj(X):). (5.1)
numObjBehind(X)¢41 ~ poisson(1l) <
type(X)y ~= box, removelbj(X)s. (5.2)
type(ID)y41 ~ finite([0.2 : glass, 0.3 : cup, 0.4 : box, 0.1 : canl)
type(X)y ~= box,removeObj(X);, numObjBehind(X)s4q1 ~= N,
getLastID(Last),,NewID is Last + 1,
EndNewID is NewID + N, between(NewID, EndNewID, ID). (5.3)

Clause (5.1) states that the type of each object remains unchanged when we do
not perform a remowve action. Otherwise, if we remove the object, its type is
removed from the state at time t + 1 because it is not needed anymore. Clauses
(5.2) and (5.3) define the number and the type of objects behind a box X, added
to the state when we perform a remove action on X. Similar clauses are defined
for other types. The predicate getLastID(Last), returns the highest object ID
in the state and is needed to make sure that any new object has a different ID.

To complete the MDP specification we need to define a reward function R(sy,a)
and the terminal states:

stops < type(X); ~= can.
reward(20); < stops.
reward(—1); < not(stopy).
That is, a state is terminal when we observe the object of interest (e.g., a can),

for which a reward of 20 is obtained. The remaining states are nonterminal
with reward —1.

To define action applicability we use a set of clauses of the form
applicable(action) < preconditionss.

For example, action removeObj(X); is applicable for each object X in the state,
that is when its type is defined with an arbitrary value Type:

applicable(removeObj(X);) < type(X)s ~= Type.

92 PLANNING

In DDC a (complete) state contains facts as in standard relational MDPs
and statements variable ~= v (the value of variable is v) for continuous
or categorical random variables, e.g.: on(1,2);,clean(1);,on(1,table)s,
energy; ~= 1.3. All the facts not in the state are assumed false and all
variables not in the state are assumed not existent.

5.2 HYPE: Planning by Importance Sampling

In this section we introduce HYPE (= hybrid episodic planner), a planner for
hybrid relational MDPs described in DDC. HYPE is a planner that adopts an
off-policy strategy [Sutton and Barto, 1998] based on importance sampling
and derived from the transition model. Related work is discussed more
comprehensively in Section 5.4, but as we note later, sample-based planners
typically only require a generative model (a way to generate samples) and
do not exploit the model of the MDP (i.e., the actual probabilities) [Keller
and Eyerich, 2012]. In our case, this knowledge leads to an effective planning
algorithm that works in discrete, continuous, hybrid domains, and domains
with an unknown number of objects under weak assumptions. Moreover, HYPE
performs abstraction of sampled episodes. In this section we introduce HYPE
without abstraction; the latter will be introduced in Section 5.3.

5.2.1 Basic algorithm

In a nutshell, HYPE samples episodes E™ and stores for each visited state
sy an estimation of the V-function (e.g., the total reward obtained from that
state). The action selection follows an given strategy (e.g., e-greedy), where the
Q-function is estimated as the immediate reward plus the weighted average of
the previously stored V-function points at time ¢ + 1. This is justified by means
of importance sampling as explained later. The essential steps of our planning
system HYPE are given in Algorithm 1.

The algorithm realizes the following key ideas:

e Q and V denote approximations of the Q and V-function respectively.
o Lines 8 select an action according to a given strategy.

e Lines 9-12 sample the next step and recursively the remaining episode of
total length T, then stores the total discounted reward G(E]") starting from
the current state si*. This quantity can be interpreted as a sample of the

HYPE: PLANNING BY IMPORTANCE SAMPLING 93

Algorithm 1 HYPE without abstraction

1
2
3:
4
5
6:

10:

11:
12:
13:
14:

: function SAMPLEEPISODE(d, s}*,m) ©> Horizon d, state s}* in episode m
if d =0 then
return 0
end if
for each applicable action a in si* do > @-function estimation

m—1

7”1‘7;71(si+1)

Q' (s, 0) = R(s]", 0) + 7 =28t
end for ~ =
a” < policy({QT (s7*,a)}) > action policy, e.g., e-greedy
sample st | ~ p(sip1 | 87, ai) > sample next state

G(E?") < R(s}",a}") + v -SAMPLEEPISODE (d — 1, s {,m) > recursive
call

Vi (sp) < G(EP)

store (s}, V" (s7), d)

return V)" (s") > V-function estimation for sj* at horizon d
end function

expectation in formula (2.21), thus an estimator of the V-function. For this
and other reasons explained later, G(E}") is stored as V" (si").

Most significantly, line 6 approximates the Q-function using the weighted
average of the stored V;_; (s} ;) points:

1 e ,
Z?;o w'Vy_ 1 (S141)
Yigtwt

where w' is a weight function for episode i at state s¢ +1- The weight exploits
the transition model and is defined as:

le(s;”,a) —R(s",a) + (5.4)

wi = PG [5750) iy (5.5)
Q(5%+1)

Here, for evaluating an action a at the current state s;, we let w® be the ratio

of

the transition probability of reaching a stored state s 11 and the probability

used to sample s¢ 11, denoted using g. Recent episodes are considered more
significant than previous ones, and so « is a parameter for realizing this. We
provide a detailed justification for line 6 below.

We note that line 6 requires us to go over a finite set of actions, and so in the
presence of continuous action spaces (e.g., real-valued parameter for a move
action), we can discretize the action space or sample from it. More sophisticated
approaches are possible [Forbes and Andre, 2002; Smart and Kaelbling, 2000].

94 PLANNING

V@=98 e a’po V=90
Vl=97 o \éom

Figure 5.1: Left: weight computation for the objpush domain. Right: a sampled
episode that reaches the goal (blue), and avoids the undesired region (red).

Example 5.2. As a simple illustration, consider the following example called
objpush. We have an object on a table and an arm that can push the object in a
set of directions; the goal is to move the object close to a point g, avoiding an
undesired region (Fig. 5.1). The state consists of the object position (x,y), with
push actions parameterized by the displacement (DX,DY). The state transition
model is a Gaussian around the previous position plus the displacement:

pos(ID)y+s ~ gaussian(~(pos(ID);)+ (DX,DY), cov) + push(ID, (DX,DY)).
(5.6)

The clause is valid for any object ID; nonetheless, for simplicity, we will consider
a scenario with a single object. The terminal states and rewards in DDC are:

stopy < dist(~(pos(4):),(0.6,1.0)) < 0.1.
reward(100); + stops.
reward(—1); < not(stopy),dist(~(pos(4)),(0.5,0.8)) >=0.2.

reward(—10), < not(stop),dist(~(pos(4);),(0.5,0.8)) < 0.2.

That is, a state is terminal when there is an object close to the goal point
(0.6,1.0) (i.e., distance lower than 0.1), and so, a reward of 100 is obtained.
The nonterminal states have reward —10 whether inside an undesired region
centered in (0.5,0.8) with radius 0.2, and R(s¢, ar) = —1 otherwise.

Let us assume we previously sampled some episodes of length T = 10, and we
want to sample the m = 4-th episode starting from so = (0,0). We compute
Q7((0,0),a) for each action a (line 6). Thus we compute the weights w'
using (5.5) for each stored sample Vg’(s’l) For example, Figure 5.1 shows the
computation of Q74((0,0),a) for action a' = (—0.4,0.3) and a” = (0.9,0.5),
where we have three previous samples i = {1,2,3} at depth 9. A shadow

HYPE: PLANNING BY IMPORTANCE SAMPLING 95

represents the likelihood p(si|so = (0,0),a) (left for a’ and right for a”’). The
weight w' (5.5) for each sample s% is obtained by dividing this likelihood by q(s})
(with « = 1). If ¢*(s}) is uniform over the three samples, sample i = 2 with
total reward Vg (s?) = 98 will hcwe higher weight than samples i =1 and 1 = 3.
The situation is reversed for a’. Note that we can estimate Q' (s}", a) using
episodes i that may never encounter sj*, a; provided that p(si+1|stm, ar) > 0.

5.2.2 Computing the (Approximate) Q-Function

The purpose of this section is to motivate our approximation to the Q-function
using the weighted average of the V-function points in line 6. Let us begin by
expanding the definition of the @-function from (2.23) as follows:

Qg(st, at) :R(Su (lt) + ’Y/ G(Et+l)p(3t+1:T7 at+1:T|5ta Qg 7T)d$t+1:T7 Q¢41:T,

St4+1:T,At4+1:T
(5.7)

where G(F}1) is the total (discounted) reward from time t+1 to T: G(Fi41) =
ZZ:H_l y*t=1R(sk,ar). Given that we sample trajectories from the target
distribution p(sty1.7, @4+1.7|8¢, at, 7), we obtain the following approximation to
the @-function equaling the true value in the sampling limit:

1 .
Q7 (st,at) = R(s¢,a¢) + ~7 21: G(Ei11)- (5.8)

Policy evaluation can be performed sampling trajectories using another policy,
this is called off-policy Monte-Carlo [Sutton and Barto, 1998]. For example, we
can evaluate the greedy policy while the data is generated from a randomized
one to enable exploration. This is generally performed using (normalized)
importance sampling [Shelton, 2001b]. We let w® be the ratio of the target and
proposal distributions to restate the sampling limit as follows:

Q7 (st,ar) = R(st, ar) + VZ?U Ei) (5.9)

In standard off-policy Monte-Carlo the proposal distribution is of the form:

T-1

p(serrm, arprerlse an 7) = [7 (axsalskin)p(sisal s, ax).
k=t

The target distribution has the same form, the only difference is that the policy
is 7 instead of 7’. In this case the weight becomes equal to the policy ratio
because the transition model cancels out. This is desirable when the model is not

96 PLANNING

available, for example in model-free Reinforcement Learning. The question is
whether the availability of the transition model can be used to improve off-policy
methods. This thesis shows that the answer to that question is positive.

We will now describe the proposed solution. Instead of considering only
trajectories that start from sy, a; as samples, we consider all sampled trajectories
from time t+41 to 7. Since we are ignoring steps before t+1, the proposal
distribution for sample 7 is the marginal

T-1
p(5t+1:Taat+1:T|50aWi):qi(5t+1)7ri(at+1|5t+l) H Wi(ak+1\5k+1)p(5k+1|8k7ak)7
k=t+1
where ¢' is the marginal probability p(s¢1]so, 7). To compute Q7*(s}*, a) we
use (5.9), where the weight w’ (for 0 < i < m — 1) becomes the following:

)) , T_1) , , o
p(shl s a)ﬂ(ahl |5§+1) Hk:t+1 W(a}c—&-l |52+1)p(52+1|527 aj,)

QZ(S%H)W(G%H |3i+1) Hk:t+1 Wl(a}c-u ‘3i+1)17(3;c+1|5}w a;c)

) T_1))
_ p(31+1|_5;n7a) Hk:t W(a}g+1‘52+1) (5.10)
q*(sty) Hf;tl ﬂi(af'cﬂ\szﬂ)

~ p(5%+1|_5%na a) am=1)

q'(s41) (51

Thus, we obtain line 6 in the algorithm given that Vi ,(si) = G(E}, ;). In our
algorithm the target (greedy) policy 7 is not explicitly defined, therefore the
policy ratio is hard to compute. We replace the unknown policy ratio with
a quantity proportional to a(™~% where 0 < a < 1; thus, formula (5.10) is
replaced with (5.11). The quantity a(m=9 becomes smaller for an increasing
difference between the current episode index m and the i-th episode. Therefore,
the recent episodes are weighted (on average) more than the previous ones, as in
recently-weighted average applied in on-policy Monte-Carlo [Sutton and Barto,
1998]. This is justified because the policy is improved over time, thus recent
episodes should have higher weight.

In general, ¢’(s{, ;) is not available in closed form; we adopt the following
approximation:

¢'(s141) = P(s141 50, i) =/ P(sipalse, ar)p(se, arlso, mi)

1 i+D - 4 '
Mo Do Pialstal). (5.12)

j=i—D

HYPE: PLANNING BY IMPORTANCE SAMPLING 97

Where we are assuming that 7 ~ 7 for i—D < j < i+D, and the samples s{, a{
refer to episode E7. Each episode E7 is sampled from p(so.r, ao.7|s0, 7;), thus

samples (s, a]) are distributed as p(s;, a;|so, 7;) and are used in the estimation

of the integral.

The likelihood p(s} 4 |s}", a) is required to compute the weight. This probability
can be decomposed using the chain rule, e.g., for a state with 3 variables we
have:

P(5§+1|5§na a) = p(’Ug|’U2, U1, S;nv a)p(rU?lUl? S?Lv a)p(m |S;n7 a)v

where s{,; = {v1,v2,v3}. In DDC this is performed evaluating the likelihood of
each variable in v; following the topological order defined in the DDC program.
The target and the proposal distributions might be mixed distributions of
discrete and continuous random variables; importance sampling can be applied
in such distributions as discussed in Section 3.2.2.

To summarize, for each state s}*, Q(s}*, a;) is evaluated as the immediate reward
plus the weighted average of stored G(E;_ ;) points. In addition, for each state
sy the total discounted reward G(E;") is stored. We would like to remark
that we can estimate the @-function also for states and actions that have never
been visited, as shown in Example 5.2. This is possible without using function
approximations (beyond importance sampling).

5.2.3 Extensions

Our derivation follows a Monte-Carlo perspective, where each stored point is
the total discounted reward of a given trajectory: V" (si*) < G(E}"). However,
following the Bellman equation, VJ*(s7*) + maz,Q7'(si*,a) can be stored
instead. The @-function estimation formula in line 6 is not affected; indeed we
can repeat the same derivation using the Bellman equation and approximate it
with importance sampling:

Qaq(st,ar) = R(st,ar) + 7/ Vi1 (st41)p(St41lse, ar)dsita

St+1

w’ i i Am
~ Rsna) +7) Vi (i) = Qf (e, (513)

P(siqalse,ae)

@Gy T o |
an estimation of V;_,(s},,), while ¢*(s},) is the probability with which s},
has been sampled. This derivation is valid for a fixed policy ; for a changing
policy we can make similar considerations to the previous approach and add the

with w' = and s} ; the state sampled in episode i for which we have

98 PLANNING

term o™~%. If we choose V;i_,(si,;) = G(E},,), we obtain the same result as
in (5.4) and (5.11) for the Monte-Carlo approach.

Instead of choosing between the two approaches we can use a linear combination,
i.e., we replace line 11 with V*(si") ¢+ AG(E/™) + (1 — Nmaz, Q7 (s}, a).
The analysis from earlier applies by letting A = 1. However, for A = 0,
we obtain a local value iteration step, where the stored V is obtained
maximizing the estimated Q values. Any intermediate value balances the
two approaches (this is similar to, and inspired by, TD(A) [Sutton and
Barto, 1998]). Another strategy consists in storing the maximum of the two:
Vi (sit) < maz(G(EM), maz,Q (s7, a)). In other words, we alternate Monte-
Carlo and Bellman backup according to which one has the highest value. This
strategy works often well in practice; indeed it avoids a typical issue in (on-
policy) Monte Carlo methods: bad policies or exploration lead to low rewards,
averaged in the estimated Q/V-function.

5.2.4 Practical improvements

In this section we briefly discuss some practical improvements of HYPE. To
evaluate the Q-function the algorithm needs to query all the stored examples,
making the algorithm potentially slow. This issue can be mitigated with solutions
used in instance-based learning, such as hashing and indexing. For example,
in discrete domains we avoid multiple computations of the likelihood and the
proposal distribution for samples of the same state. In addition, assuming policy
improvement over time, only the Ny, most recent episodes are kept, since
older episodes are generally sampled with a worse policy.

HYPE’s algorithm relies on importance sampling to estimate the @-function,
thus we should guarantee that p > 0 = ¢ > 0, where p is the target and ¢ is
the proposal distribution. This is not always the case, like when we sample
the first episode. Nonetheless we can have an indication of the estimation
reliability. In our algorithm we use > w® with expectation equal to the number
of samples: E[>" w’] =m. If > w’ < thres the samples available are considered
insufficient to compute Q7' (s7", a), thus action a can be selected according to
an exploration policy. It is also possible to add a fictitious weighted point in
line 6, that represents the initial Q7 (s7", a) guess. This can be used to exploit
heuristics during sampling.

A more problematic situation is when, for some action a; in some state s;, we
always obtain null weights, that is, p(s},|s¢,a;) = 0 for each of the previous
episodes 7, no matter how many episodes are generated. This is the case
when the state contains continuous variables and the state transition model is
deterministic and probabilistic according to the chosen action. This issue is

ABSTRACTION 99

solved by adding noise to the state transition model, e.g., Gaussian noise for
continuous random variables. This effectively ‘smoothes’ the V-function. Indeed
the @Q-function is a weighted sum of V-function points, where the weights are
proportional to a noisy version of the state transition likelihood.

5.3 Abstraction

By exploiting the (relational) model, we can improve the algorithm by using
abstract states, because often, only some parts of the state determine the total
reward. The idea is to generalize the specific states into abstract states by
removing the irrelevant facts (for the outcome of the episode). This resembles
symbolic methods to exactly solve MDPs in propositional and relational domains
[Wiering and van Otterlo, 2012]. The main idea in symbolic methods is to apply
the Bellman equation on abstract states, using logical regression (backward
reasoning), as described in Section 2.6.2 and Section 5.4, symbolic methods
are more challenging in hybrid relational MDPs. The main issues are the
intractability of the integral in the Bellman equation (2.22), and the complexity
of symbolic manipulation in complex hybrid relational domains.

Algorithm 2 HYPE with abstraction

1: function SAMPLEEPISODE(d, s}, m) > Horizon d, state s}*, episode m
2 if d =0 then
3: return ((,0)
4: end if
5 for each applicable action a in sj* do > Q-function estimation
m—=1_ icri i
6: Q:l"(s;", a) < R(s",a) + y==2 wm‘_/[f_li(st“)
end for =
al" + policy({Q7 (s, a)}) > action policy, e.g., e-greedy
9: sample sy}, ~ p(s¢41]sy”, af)
10: (8741, v) <—sampPLEEPISODE(d — 1,57} 1, m)
11: 57" < REGREss({R(s}",a}") A 874, }, {si", a, 3711 }) > abstraction

12: G(ET") < R(si,ai™) + v
13 V(i) « G(EM™)

14: store (87, V. (s7), d)

15: return (5, V"(si"))

16: end function

To overcome these difficulties, we propose to perform abstraction at the level of
samples. The modified algorithm with abstraction is sketched in Algorithm 2.
The main differences with Alg. 1 are:

100 PLANNING

o Q-function estimation from abstracted states (line 6)
o regression of the current state (line 11)

o the procedure returns the abstract state and its V-function, instead of
the latter only (line 15). This is required for recursive regression.

goal on(2,1) with reward 100, -1 otherwise

; 5
R(si,,) = 100 ‘.
G(Ej) =100 [T

R(Szlurl) -1 0
G(E},) =99 h“ p(8; 417" a

Figure 5.2: Blocksworld with abstraction. Current full state on the right, and a
sampled episode on the left. The abstracted states are circled.

5.3.1 Basic principles of abstraction

Before describing abstraction formally, let us consider the blocksworld example
to give an intuition. Fig. 5.2 shows a sampled episode from the first state (left
down) to the last state (left up) that ends in the goal state on(2,1). Informally,
the relevant part of the episode is the set of facts that are responsible for
reaching the goal, or more generally responsible for obtaining a given total
reward. This relevant part is called the abstracted episode. Fig. 5.2 shows the
abstract states (circled) that together define the abstract episode. Intuitively,
objects 3,4,5 and their relations are irrelevant to reach the goal on(2,1), and
thus do not belong to the abstracted episode.

The abstraction helps to exploit the previous episodes in more cases, speeding
up the convergence. For example, Fig. 5.2 shows the computation of a weight
w’ (using (5.5)) to compute the Q-function of the (full) state s depicted on the
right, exploiting the abstract state 8}, indicated by the arrow (from episode
i). If the action is moving 4 on top of 5 we have p(8},[s}"*,a) > 0 = w* > 0.
Thus, the Q-function estimate Q' (s;,a) will include w' - 99 in the weighted
average (line 6 in Alg. 2), making the action appealing. In contrast, without
abstraction all actions get weight 0, because the full state si 11 is not reachable
from s7* (p(sjy1]sy",a) = 0). Therefore, episode i cannot be used to compute
the Q-function. For this reason abstraction requires less samples to converge to
a near-optimal policy.

ABSTRACTION 101

This idea is valid in continuous domains. For example, in the objpush scenario,
the goal is to put any object in a given region; if the goal is reached, only one
object is responsible, any other object is irrelevant in that particular state.

5.3.2 Mathematical Derivation

In this section we formalize sample-based abstraction and describe the
assumptions that justify the @Q-function estimation on abstract states (line
6 of Alg. 2).

Abstraction applied to importance sampling

The @Q-function estimation (5.9) can be reformulated for abstract states as
follows. For an episode from time t, E; =<s¢, ay, ..., ST, ar>, let us consider
an arbitrary partition E, = {E;, E}} such that G(E;) = G(E,), i.e., the total
reward depends only on E,. The relevant part of the episode has the form
B, =<3, ay, ..., 37, ar>, while E] = B, \ By, =<s), ..., s> is the remaining non-
relevant part'. The partial episode E, is called abstract because the irrelevant
variables have been marginalized, in contrast F; is called full or complete. The
Q-function estimation (5.9) is reformulated for abstract states marginalizing

1We assumed that the actions are relevant, otherwise they will belong to FE’.

102 PLANNING

irrelevant variables:

ngrga>=t/ (|, a, m)G(Ey)dE, =
Ey

- / (/ p(Et,E;|s?,a,ﬂ)dEg)G(Et)dEt_
B, "

= [pBlsit, o mG(E)aE =
Ey

RGP+ [p(Eeals? 0 mG(Ee)dEr =

Eita

p(Et+1‘5;ﬂ7a77{) [

= R(8",a) + 7/ 4(Ei11)G(Ery)dE

Eiia q(Et-i-l)

w(Eiq1)

m—1
R a) v A Z w t+1 t+1) (5.14)
Z'L 0 w Etl-‘rl 1=0

The above estimation is based on importance sampling just like in the non-
abstract case (5.9), with similar target and proposal distributions. The main
difference is the marginalization of irrelevant variables.

Importance weights for abstract episodes

Formula (5.14) is valid for any partition such that G(E;) = G(E,), but
computing the weights w(E;,1) might be hard in general. To simplify the
weight computation let us assume that the chosen partition guarantees the
Markov property on abstract states, i.e., p(§i+1/S0:t, a0:t) = p(8¢41|5t, a¢). To
estimate Q7 (s7", a) (episode m), the weight for abstract episode i < m becomes

ABSTRACTION 103

the following:

p(EtH\s;”,a,w) fEéﬂp(StH:T,at+1:T|5§n,a,7T)dE£+1

qi(Et+1) fE;+1p(5t+1:T7at+1:T|8077Ti)dE£+1

w(EByi1)=

p(3t4+1.7; arrrr|8"s a,)
(81411, Apy1:7|50,)

_ PBesalsi”, a)m(ais1|8e41, 57", @)
@ (8¢41)m (at41]8441, S0)

[Tt m(ansr |8ty ek, 87)p(8gt |8, a)

HZ:_;H T Ah41|8t41:k4+15 Qe 1:k5 50)P (8418, ak)

. T-1 R
p(8e41lsy, a) [1sy m(arsi|Se41:0415 Gk, 537, Q)

_ +1 t 7 (5.15)
q"(8¢41) Hf:tl T (ak41]8t41:k41, G145 S0)
. T—1 N

_ PBuira|st"s a) Tlizy m(argr|Se41:041, Gegrik, So) (5.16)
q*(8¢41)]_[Z;tl T (ak1118¢41:6+1, At 41:%5 50)
A m

~ PB1lsi® @) ni) (5.17)

qi(§t+1)

Where ¢'(8;+1) = p(8i4+1]|s0,7") and can be approximated with (5.12) by
replacing s;+1 with §,11. The final weight formula for abstracted states is
similar to the non-abstract case. The difference is abstraction of the next state
8¢4+1, while the state s in which the Q-function is estimated remains a complete
state.

We will now explain the weight derivation and motivate the approximations
adopted. Until formula (5.15) the only assumption made is the Markov property
on abstract states. No assumptions are made about the action distributions
(policies) 7, 7%, thus the probability of an action a; might depend on abstracted
states in previous steps. Then (5.15) is replaced by (5.16) as discussed later.
Finally, the policy ratio in (5.16) is replaced in (5.17) as in HYPE without
abstraction.

Let us now discuss the approximation introduced in (5.16). Using (5.16) instead
of (5.15) is equivalent to using the following target distribution:

p(341]57", a)

= p(Str1.1; arrrrlso, ™) = p(3eylsy”s a)p(3e4 2.7, ary1:7| 3641, S0,),
q'(8¢41)

104 PLANNING

instead of

p(§t+1:Ta at+1:T|5:na a, 71') = p(§t+1|3;n; a)p(§t+2:T7 at+1;T\§t+17 ST’ a, 71')-

Since the state transition model is the same in both distributions, the only
difference is the marginalized action distribution (target policy). The one used
in (5.16) is

W(ak+1|§t+1:k+17at+1:k7SO) (5~18)

instead of m(ak41l8t+1:k+1, 41,57, a) for & = ¢,..., T — 1. Tt is not
straightforward to analyze this result because these actions distributions are
obtained from the same policy m by applying a different marginalization.
Nonetheless, it is worth mentioning that the marginalized target policy (5.18)
does not depend on the specific state sj’*, but only on abstract states and on
the initial state sg. This is arguably a desirable property for the (marginalized)
target policy.

Using (5.18) as target policy, and thus (5.16) as weight, is useful when the
proposal policies are equal to the target policy: Vi : 7 = 7'. In this case the
weight is exactly: _

P8t lsi®, a)
qi(§§+1)
because the policy ratio cancels out. This formula is also applicable when
Vi:m =" and 7(a|s;) = 7(al$;) or at least m(ags1|8i+1:k+1, Qts1:k, S @) =
T(ars1]8t41:k415 Gtg1:k550) = T(@k41|5t41:641, G11:1), that are indeed special
cases of (5.18) and (5.16). Imposing or assuming w(a|s;) = 7(a|§;) seems a
reasonable choice, even though (5.18) is a weaker assumption. The optimal
policy 7*, might depend only on abstract states, thus 7*(a|s;) = 7*(al8:).
Indeed, we expect that the optimal policy depends only on the relevant
part of the state. However, we can neither assume 7‘(als;) = 7*(al8;) nor
T (k41 |8¢41:k+15 Qe1:k5 S0) = T (Aht1[St+1:14+1, G41:1) as proposal policy. This
is because the proposal policy 7* used to sample episode ¢ has to explore with a
non-zero probability all the actions: abstract states are generally not sufficient
to determine the admissible actions. Thus, the dependence on the initial state
S0 is inevitable. In conclusion, the marginal target policy (5.18) is one of the
weakest assumptions to guarantee a weight (5.19) for Vi : 7 = 7’. For w # =

the weight becomes (5.16).

w(ti+1) =) (5.19)

Now let us focus on (5.17) derived from (5.16). Since the policies 7% used in
the episodes are assumed to improve over time, we replaced the policy ratio
in (5.16) with a quantity that favors recent episodes as in the propositional
case (formula (5.11)). Another way of justifying (5.17) is estimating for each
stored abstract episode i, the Q-function le (s, a), with target policy m = 7,
and using only the i-th sample. With a marginalized target policy given by

ABSTRACTION 105

(5.18), the single weight of each estimate Qgi (si",a) is exactly (5.19). The used

Q-function estimate can be a weighted average of le(s{”,a), where recent
estimates (higher index) receive higher weights because the policy is assumed
to improve over time. Thus, the final weights are given by (5.17).

HYPE with abstraction adopts formula (5.14) and weights (5.17) for Q-function
estimation. Note that during episode sampling the states are complete,
nonetheless, to compute Q7 (si*,a) at episode m all previously abstracted
episodes ¢ < m are considered. Finally, when the sampling of episode m is
terminated, it is abstracted (line 11) and stored (line 14).

Ineffectiveness of lazy instantiation

Before explaining the proposed abstraction in detail, let us consider an
alternative solution that samples abstract episodes directly, instead of sampling
a complete episode and performing abstraction afterwards. If we are able
to determine and sample partial states 57, we can sample abstract episodes
directly and perform @Q-function estimation. Sampling the relevant partial
episode E, can be easily performed using lazy instantiation, where given the
query G(FE;), only relevant random variables are sampled until the query can
be answered. Lazy instantiation can exploit context-specific independencies
and be extended for distributions with a countably infinite number of variables,
as in BLOG [Milch et al., 2005b,a]. Similarly, Distributional Clauses search
relevant random variables (or facts) using backward reasoning, while sampling
is performed in a forward way. For example, to prove R; the algorithm needs
to sample the variables §; relevant for R;, §; depends on §;_; and the action
as—1 depends on the admissible actions that again depend on §;_1, and so
on. At some point variables can be sampled because they depend on known
facts (e.g., initial state sp). This procedure guarantees that G(F;) = G(Et),
p(814150:¢,at) = p(8¢41]3¢, ar) and 7(als;) = m(alds), thus (5.15) is exactly
pGopalsisa) T, m(@rsaldii)

a*(8¢+1) H:;l m(ak41]8k+1)
approximation (5.17) can be used. Unfortunately, this method avoids only
sampling variables that are completely irrelevant, therefore in many practical
domains it will sample (almost) the entire state. Indeed, evaluating the
admissible actions often requires sampling the entire state. In other words, the
abstract state §; C s; that guarantees 7(a|s;) = 7(al8;) is often equal to s;.
The solution adopted in this thesis is ignoring the requirement 7(a|s;) = 7¢(a|5;)
and approximate (5.15) with (5.16), or equivalently using (5.18) as marginalized
target policy distribution.

equal to (5.16) and it simplifies to . Finally, the

106 PLANNING

5.3.3 Sample-based abstraction by logical regression

In this section we describe how to implement the proposed sample-based
abstraction. Algorithm 2 samples complete episodes and performs abstraction
afterwards. The abstraction of £, from E; (REGRESS function at line 11) is
decomposed recursively employing backward reasoning (regression) from the
last step ¢ = T till reaching sg. We first regress the query R(sr,ar) using sr
to obtain the abstract state §7 = Ep (computing the most general §7 such that
R(8r,ar)=R(sr,ar)). Fort =T —1,...,0 we regress the query R(ss, as) A 841
using a¢, s € FE; to obtain the most general §; C s tha}t guarantees
R(3t,at) = R(st,at) and p(8;11]st, ar) =p(8¢+1/5¢, ar). Note that By = §;U Eyyy.
This method assumes that the actions are given, thus it avoids to determine
the admissible actions, keeping the abstract states smaller. For this reason,
REGRESS guarantees only G(E;) = G(E’t) and p(8¢11/80.¢, ar) = p(8t4118¢, ar),
in contrast 7 (als;) = 7%(a|3;) is not guaranteed. Those conditions are sufficient
to apply weight formula (5.15) that is approximated by (5.16) and (5.17) as
discussed in the previous section. Note that derivation (5.14) assumes a fixed
partition, thus exploits only conditional independencies, but the idea can be
extended to context-specific independencies.

Algorithm 3 Episode abstraction

1: function REGRESS(Query,Facts) > regress Query using Facts

2. S« 10

3: for L € Query, L # action(_) do

4 Find 6 = mgu(L, F) with F € Facts

5 if 3(H ~ D «+ B),3p s.t. Facts X Bf and F is H@ ~= v then > the
clause could have generated F'

6: Query « QuerydB\F U Bf

7: else > LB = F not regressable
8: S+ SUF

9: Query Queryd\F
10: end if
11: end for
12: return S

13: end function

The algorithm REGRESS for regressing a query (formula) using a set of facts is
depicted in Algorithm 3. The algorithm tries to repeatedly find literals in the
query that could have been generated using the set of facts and a distributional
clause. If it finds such a literal, it will be replaced by the condition part of the
clause in the query. If not, it will add the fact to the state to be returned.

Example 5.3. To illustrate the algorithm, consider the blocksworld example in
Fig. 5.2. Let us consider the abstraction of the episode on the left. To prove the

RELATED WORK 107

last reward we need to prove the goal, thus 85 = on(2,1),. Now let us consider
time step 1, the proof for the immediate reward is not(on(2, 1)), while the proof
for the next abstract state 8o is on(2,table)s, clear(1)s, clear(2);, therefore the
abstract state becomes §; = on(2,table)s, clear(1);, clear(2);, not(on(2,1);).
Analogously, sj = on(1,2)o,on(2,table)y, clear(1)o,not(on(2,1)). The same
procedure is applicable to continuous variables.

5.4 Related work

In this section we will describe non-relational and relational planners related to
the proposed algorithms.

5.4.1 Non-relational planners

There is an extensive literature on MDP planners, we will focus mainly on Monte-
Carlo approaches. The most notable sample-based planners include Sparse
Sampling (SST) [Kearns et al., 2002], UCT [Kocsis and Szepesvari, 2006] and
their variations. SST creates a lookahead tree of depth D, starting from state sg.
For each action in a given state, the algorithm samples C' times the next state.
This produces a near-optimal solution with theoretical guarantees. In addition,
this algorithm works with continuous and discrete domains with no particular
assumptions. Unfortunately, the number of samples grows exponentially with
the depth D, therefore the algorithm is extremely slow in practice. Some
improvements have been proposed [Walsh et al., 2010], although the worst-case
performance remains exponential. UCT [Kocsis and Szepesvdri, 2006] uses
upper confidence bound for multi-armed bandits to trade off between exploration
and exploitation in the tree search, and inspired successful Monte-Carlo tree
search methods [Browne et al.]. Instead of building the full tree, UCT chooses
the action ‘a’ that maximizes an upper confidence bound of Q(s,a), following
the principle of optimism in the face of uncertainty. Several improvements
and extensions for UCT have been proposed, including handling continuous
actions [Mansley et al., 2011] (see [Munos, 2014] for a review), and continuous
states [Couetoux, 2013] with a simple Gaussian distance metric; however the
knowledge of the probabilistic model is not directly exploited. For continuous
states, parametric function approximation is often used (e.g., linear regression),
nonetheless the model needs to be carefully tailored for the domain to solve
[Wiering and van Otterlo, 2012].

There exist algorithms that exploit instance-based methods (e.g. [Forbes and
Andre, 2002; Smart and Kaelbling, 2000; Driessens and Ramon, 2003]) for

108 PLANNING

model-free reinforcement learning. They basically store @-point estimates, and
then use e.g., neighborhood regression to evaluate Q(s,a) given a new point
(s,a). While these approaches are effective in some domains, they require the
user to design a distance metric that takes into account the domain. This is
straightforward in some cases (e.g., in Euclidean spaces), but it can be harder
in others. We argue that the knowledge of the model can avoid (or simplify)
the design of a distance metric in several cases, where the importance sampling
weights and the transition model, can be considered as a kernel.

The closest related works include [Shelton, 2001b,a; Peshkin and Shelton, 2002;
Precup et al., 2000], they use importance sampling to evaluate a policy from
samples generated with another policy. Nonetheless, they adopt importance
sampling differently without knowledge of the MDP model. Although this
property seems desirable, the availability of the actual probabilities cannot be
exploited, apart from sampling, in their approaches. The same conclusion is valid
for practically any sample-based planner, which only needs a sample generator
of the model. The work of [Keller and Eyerich, 2012] made a similar statement
regarding PROST, a state-of-the-art discrete planner based on UCT, without
providing a way to use the state transition probabilities directly. Our algorithm
tries to alleviate this, exploiting the probabilistic model in a sample-based
planner via importance sampling.

For more general domains that contain discrete and continuous (hybrid) variables
several approaches have been proposed under strict assumptions. For example,
[Sanner et al., 2011] provide exact solutions, but assume that continuous aspects
of the transition model are deterministic. In a related effort [Feng et al.,
2004], hybrid MDPs are solved using dynamic programming, but assuming that
transition model and reward is piecewise constant or linear. Another planner
HAO* [Meuleau et al., 2009] uses heuristic search to find an optimal plan in
hybrid domains with theoretical guarantees. However, they assume that the
same state cannot be visited again (i.e., they assume plans do not have loops, as
discussed in [Meuleau et al., 2009, sec. 5]), and they rely on the availability of
methods to solve the integral in the Bellman equation related to the continuous
part of the state. Visiting the same state in our approach is a benefit and not a
limit; indeed a previously visited state s’ is useful to evaluate Q4(s,a), when
the weight is positive (i.e., when s’ is reachable from s with action a).

For domains with an unknown number of objects, some probabilistic
programming languages such as BLOG [Milch et al., 2005a], Church [Goodman
et al., 2008], Anglican [Wood et al., 2014], and DC [Gutmann et al., 2011]
can cope with such uncertainty. To the best of our knowledge DTBLOG
[Srivastava et al., 2014] and [Vien and Toussaint, 2014] are the only proposals
that are able to perform decision making in such domains using a POMDP
framework. Furthermore, BLOG is one of the few languages that explicitly

RELATED WORK 109

handles data association and identity uncertainty. The proposed thesis does not
focus on POMDP, nor on identity uncertainty; however, interesting domains
with unknown number of objects can be easily described as an MDP in DDC
that HYPE can solve.

Among the mentioned sample-based planners, one of the most general is SST,
which does not make any assumption on the state and action space, and only
relies on Monte-Carlo approximation. In addition, it is one of the few planners
that can be easily applied to any DDC program, including MDPs with an
unknown number of objects. For this reason SST was implemented for DDC
and used as baseline for our experiments.

5.4.2 Relational planners and abstraction

There exists several modeling languages for planning, the most recent is RDDL
[Sanner] that supports hybrid relational domains. A RDDL domain can be
mapped in DDC and solved with HYPE. Nonetheless, RDDL does not support
a state space with an unknown number of variables as in Example 5.1.

Relational MDPs can be solved using model-free approaches based on Relational
Reinforcement Learning [DZeroski et al., 2001; Tadepalli et al., 2004; Driessens
and Ramon, 2003], or model-based methods such as ReBel [Kersting et al.,
2004], FODD [Wang et al., 2008], PRADA [Lang and Toussaint, 2010}, FLUCAP
[Holldobler et al., 2006] and many others. However, those approaches only
support discrete action-state (relational) spaces.

Among model-based approaches, several symbolic methods have been proposed
to solve MDPs exactly in propositional (see [Mausam and Kolobov, 2012] for a
review) and relational domains [Kersting et al., 2004; Wang et al., 2008; Joshi
et al., 2010; Holldobler et al., 2006]. They perform Dynamic Programming at
the level of abstract states; this approach is generally called Symbolic Dynamic
Programming (SDP). Similar principles have been applied in (propositional)
continuous and hybrid domains [Sanner et al., 2011; Zamani et al., 2012], where
compact structures (e.g., ADD and XADD) are used to represent the V-function.
Despite the effectiveness of such approaches, they make restrictive assumptions
(e.g., deterministic transition model for continuous variables) to keep exact
inference tractable. For more general domains approximations are needed, for
example sample-based methods or confidence intervals [Zamani et al., 2013].
Another issue of SDP is keeping the structures that represent the V-function
compact. Nonetheless, some solutions are available in the literature, such as
pruning or real-time SDP [Vianna et al., 2015].

Recently, abstraction has received a lot of attention in the Monte-Carlo planning

110 PLANNING

literature. Like in our work, the aim is to simplifying the planning task by
aggregating together states that behave similarly. There are several ways to
define state equivalence, see [Li et al., 2006] for a review. Some approaches adopt
model equivalence: states are equivalent if they have the same reward and the
probabilities to end up in other abstract states are the same. Other approaches
define the equivalence in terms of the V/Q-function. In particular, we take
note the following advances: (a) Givan et al. [2003] who compute equivalence
classes of states based on exact model equivalence, (b) Jiang et al. [2014] who
appeal to approximate local homomorphisms derived from a learned model, (c)
Anand et al. [2015] who extend Jiang et al. [2014] and Givan et al. [2003] in
grouping state-action pairs, and (d) Hostetler et al. [2014] who aggregate states
considering the V/Q-function with tight loss bounds.

In our work, in contrast, we consider equivalence (abstraction) at the level of
episodes, not states. Two episodes are equivalent if they have the same total
reward. In addition, a Markov property condition on abstract states is added
to make the weights in (5.14) easier to compute. Abstraction is performed
independently in each episode, determining, by logical regression, the set of
facts (or random variables) sufficient to guarantee the mentioned conditions.
Note that the same full state s; might have different abstractions in different
episodes, even for the same action a;. This is generally not the case in other
works. The proposed abstraction directly exploits the structure of the model
(independence assumptions) to perform abstraction. For this reason it relies on
the (context-specific) independence assumptions explicitly encoded in the model.
However, it is possible to discover independence assumptions not explicitly
encoded and include them in the model (e.g., using independence tests).

5.5 Experiments

This section answers the following questions:

(Q1) Does HYPE without abstraction obtain the correct results?
(Q2) How is the performance of HYPE in different domains?
(Q3) How does HYPE compare with state-of-the-art planners?
(Q4) Is abstraction beneficial?

The algorithm was implemented in YAP Prolog and C++, and run on a Intel
Core i7 Desktop. We will first describe experiments without abstraction, then
compare HYPE with and without abstraction.

EXPERIMENTS 111

5.5.1 HYPE without abstraction

In this section we consider HYPE without abstraction. To answer (Q1) we
tested the algorithm on a nonlinear version of the hybrid mars rover domain
(called simplerover?) described in [Sanner et al., 2011] for which the exact V-
function is available (depth d=3 and 2 variables: a two-dimensional continuous
position and one discrete variable to indicate if the picture was taken). We
choose 31 initial points and ran the algorithm for 100 episodes each. Each
point took on average 1.4s. Fig. 5.3 shows the results where the line is the
exact V, and dots are estimated V points. The results show that the algorithm
converges to the optimal V-function with a negligible error. This domain is
deterministic, and so, to make it more realistic we converted it to a probabilistic
MDP adding Gaussian noise to the state transition model. The resulting MDP
(simplerover2) is hard to solve exactly. Then we performed experiments for
different horizons, number of pictures points (1 to 4, each one is a discrete
variable) and summed the rewards. For each instance the planner searches for
an optimal policy and executes it, and after each executed action it samples
additional episodes to refine the policy (replanning). The proposed planner is
compared with SST which must replan every step. The results for both planners
are always comparable, which confirms the empirical correctness of HYPE (Q1)
(Table 5.1).

-1

0 15 -0 -5 0 5 10 15 2
Y

Figure 5.3: V-function for different rover positions (with fixed X = 0.16) in
stmplerover! domain (left). A possible episode in marsrover (right): each
picture can be taken inside the respective circle (red if already taken, green
otherwise).

To answer (Q2) and (Q3) we studied the planner in a variety of settings, from
discrete, to continuous, to hybrid domains, to those with an unknown number of
objects. We performed experiments in a more realistic mars rover domain that
is publicly available?, called marsrover (Fig. 5.3). In this domain we consider
one robot and 5 picture points that need to be taken, the movement of the robot
causes a negative reward proportional to the displacement and the pictures

2http://users.cecs.anu.edu.au/~ssanner/IPPC_2014/index.html

http://users.cecs.anu.edu.au/~ssanner/IPPC_2014/index.html

112 PLANNING

Table 5.1: Experiments without abstraction: d is the horizon used by the
planner, T the total number of steps, M is the maximum number of episodes
sampled for HYPE, while C is the SST parameter (number of samples for each
state and action). Time refers to the plan execution of one instance, from the
starting state till the goal or the maximum number of steps is reached, with a

timeout of 1800s. PROST results refer to IPPC2011.

Domain gamel game2 sysadminl sysadmin2
Planner T =40 T =40 T =40 T =40
reward 0.87+0.11 0.67+0.18 0.94+0.07 0.87+0.11
HYPE |time (s) 622 836 422 475
param M =1200,d =5 M =1200,d =5 M =1200,d =5 M =1200,d =5
reward 0.34£0.15 0.14 4+ 0.20 0.47+0.13 0.31 +£0.12
SST | time (s) 986 1000 1068 1062
param C=1,d=5 C=1,d=5 C=1,d=5 C=1,d=5
reward 0.89+0.07 0.76 £0.19 0.98 £0.06 0.86 +0.11
HYPE |time (s) 312 582 346 392
param | M=1200,d =4 M=1200,d = 4 M=1200,d = 4 M=1200,d = 4
reward 0.79+0.08 0.27 +£0.22 0.66 £ 0.08 0.46 +0.12
SST | time (s) 1538 1528 1527 1532
param C=2,d=4 C=2,d=14 C=2,d=4 C=2,d=14
PROST | reward 0.99 £+ 0.02 1.00 £0.19 1.00 £0.05 0.98 £0.09
Domain objpush simplerover2 marsrover objsearch
Planner T =30 d=T T =40 d=T
reward 83.7+7.6 11.8+£0.2 249.8 £ 33.5 2.53 £1.03
HYPE |time (s) 472 38 985 13
param M =4500,d=9 M=200,d=T =38 M = 6000,d=6 M=500,d=T =5
reward 82.7+2.7 11.4+0.3 227.7+27.3 1.46 £1.0
SST | time (s) 330 48 787 45
param C=1,d=9 C=1,d=T=8 C=1,d=6 C=5d=T=5
reward 86.4+1.0 11.7+0.2 269.0 £29.4 3.64+1.09
HYPE |time (s) 1238 195 983 17
param M = 4500,d=10 M=500,d=T=9 M = 6000,d="7 M=600,d=T =5
reward 82.4+1.9 11.3+£0.3 N/A 2.48+1.0
SST | time (s) 1574 238 timeout 138
param C=1,d=10 C=1,d=T=9 C=1,d=7 C=6,d=T=5
reward 87.5+05 11.9+03 296.3+19.5 3.3+1.6
HYPE |time (s) 373 218 1499 20
param M =2000,d=12 | M=500,d=T=10| M =4000,d=10 M=600,d=T =6
reward N/A 11.2+0.3 N/A 0.58 £1.4
SST | time (s) timeout 1043 timeout 899
param C=1d>11 C=1,d=T=10 C=1,d>8 C=5,d=T=6

EXPERIMENTS 113

can be taken only close to the interest point. Each taken picture provides a
different reward. Other experiments were performed in the continuous objpush
MDP described in Section 5.2 (Fig. 1), and in discrete benchmark domains
of the IPPC 2011 competition. In particular, we tested a pair of instances of
game of life and sysadmin domains. The results are compared with PROST
[Keller and Eyerich, 2012], the IPPC 2011 winner, and shown in Table 5.1 in
terms of scores, i.e., the average reward normalizated with respect to IPPC 2011
results; score 1 is the highest result obtained, score 0 is the maximum between
the random and the no operation policy.

As suggested by [Keller and Eyerich, 2012], limiting the horizon of the planner
increases the performance in several cases. We exploited this idea for HYPE
as well as SST (simplerover2 excluded). For SST we were forced to use small
horizons to keep plan time under 30 minutes. In all experiments we followed
the IPPC 2011 schema, that is each instance is repeated 30 times (objectsearch
excluded), the results are averaged and the 95% confidence interval is computed.
However, for every instance we replan from scratch for a fair comparison with
SST. In addition, time and number of samples refers to the plan execution
of one instance. The results (Table 5.1) highlight that our planner obtains
generally better results than SST, especially at higher horizons. HYPE obtains
good results in discrete domains but does not reach state-of-art results (score 1)
for two main reasons. The first is the lack of a heuristic, that can dramatically
improve the performance, indeed, heuristics are an important component of
PROST [Keller and Eyerich, 2012], the IPPC winning planner. The second
reason is the time performance that allows us to sample a limited number of
episodes and will not allow to finish all the IPPC 2011 domains in 24 hours.
This is caused by a non-optimized Prolog implementation and by the expensive
@-function evaluation; however, we are confident that heuristics and other
improvements will significantly improve performance and results.

Moreover, we performed experiments in the objectsearch scenario (Section 4.1),
where the number of objects is unknown, even though the domain is modeled
as a fully observable MDP. The results are averaged over 400 runs, and confirm
better performance for HYPE with respect to SST.

5.5.2 HYPE with abstraction

To evaluate the effectiveness of abstraction (Q4) we performed experiments
with the blocksworld (BW with 4 or 6 objects) and a continuous version of it
(BWC with 4 or 6 objects) with an energy level of the agent and object weights.
The energy decreases with a quantity proportional to the weight of the object
moved plus Gaussian noise. If the energy becomes 0 the action fails, otherwise

114 PLANNING

the probability of success is 0.9. The reward is —1 before reaching the goal
and 10 + Energy if the goal is reached. Then we performed experiments with
the objpush scenario. This time we consider multiple objects on the table. We
considered different goals: move an arbitrary object in the goal region (domain
pushl with 2 objects), and move a specific object in the goal region (push2 and
push3 with 3 objects). Finally, we performed experiments with the marsrover
domain, with one robot (marsl) or two of them (mars2), and 5 picture points
that need to be taken.

Table 5.2: Experiments with and without abstraction. N is the number of
sampled episodes, d is the horizon used by the planner, T is the maximum
number of steps, ‘success’ is the number of times the goal is reached.

domain | d | T N abstract reward success | time (s)
BwW4 | 10 | 10 | 200 NO 74674 82% 38
BW4 | 10 | 10 | 200 YES 80.3+7.2 88% 32
BW&6 | 16 | 16 | 200 NO -16+0 0% 112
BW&6 | 16 | 16 | 200 YES 54.8+ 134 68% 42

BWC4 | 10 | 10 | 200 NO 11.8 £ 2.7 84% 52

BWC 4 | 10 | 10 | 200 YES 142+1.9 94% 24

BWC6 | 18 | 18 | 200 NO —18.0£0 0% 186

BWC6 | 18 | 18 | 200 YES 84+24 94% 70
pushl | 20 | 30 | 1000 NO 67.6 £11 86% 734
pushl | 20 | 30 | 1000 YES 84+4.7 98% 652
push2 | 20 | 30 | 1000 NO -30+0 0% 1963
push2 | 20 | 30 | 1000 YES 30.5+14 58% 910
push3 | 20 | 40 | 500 NO —17.4+12.6 20% 638
push3 | 20 | 40 | 500 YES 89.3+1.5 100% 122
marsl | 30 | 40 | 1500 NO 280.0 £ 11.8 | 90% 1492
marsl | 30 | 40 | 1500 YES 273.3£11 86% 780
mars2 | 30 | 40 | 1000 NO 209.3 +£27.7 37% 2817
mars2 | 30 | 40 | 1000 YES 287.7+23.6 | 87% 902

The current implementation supports negation only for ground formulas.
Regression of nonground formulas is possible when the domain is purely
relational. However, it becomes challenging when there are continuous random
variables and logical variables in a negated formula. If we assume that the
domain is fixed (e.g., known number of objects used), logical variables can be
replaced with objects in the domain, making the formulas ground. For this
reason we will not consider domains with an unknown number of objects, which
HYPE without abstraction can solve.

CONCLUSIONS 115

The experiments are shown in Table 5.2. The rewards are averaged over 50
runs and a 95% confidence interval is computed. The results highlight that
abstraction improves the expected total reward for the same number of samples
or achieves comparable results. In addition, HYPE with abstraction is always
faster. The latter is probably due to a faster weight computation with abstract
states and due to the generation of better plans that are generally shorter and
thus faster. This suggests that the overhead caused by the abstraction procedure
is negligible and worthwhile. Nonetheless, we do remark that in domains with,
for example, single objects and where rewards are characterized for full states,
abstraction gives no added value.

5.6 Conclusions

We proposed a sample-based planner for MDPs described in DDC, and showed
how the state transition model can be exploited in off-policy Monte-Carlo.
The experimental results show that the algorithm produces good results in
discrete, continuous, hybrid domains as well as those with an unknown number
of objects. Most significantly, it challenges and outperforms SST. Moreover, we
extended HYPE with abstraction. We formally described how (context-specific)
independence assumptions can be exploited to perform episode abstraction.
This is valid for propositional as well as relational domains. A theoretical
derivation has been provided to justify the assumptions and the approximations
used. Finally, empirical results showed that abstraction provides significant
improvements.

There are several possible directions for future work. For example, heuristics can
be used to guide the search and indexing/hashing methods to quickly retrieve
relevant stored samples during the Q-function estimation. Indeed, Q-function
estimation is one of the most expensive part of HYPE.

Chapter 6

Conclusions and Future Work

We conclude the thesis with this chapter, which presents a summary of the
work and possible directions for future work.

6.1 Conclusions

Probabilistic logic languages and statistical relational learning (SRL) combine
logical representations, probabilistic reasoning, and machine learning. Such
approaches have been successful in many application areas ranging from natural
language processing to bioinformatics. However, many probabilistic logic
languages do not support continuous random variables, or their support for
continuous variables is limited. This makes such language less appealing for
robotics and computer vision.

This thesis addresses this issue by extending probabilistic logic programming
techniques to deal with hybrid relational domains for inference, learning, and
planning. The general aim of the thesis is to provide a probabilistic logic
framework that can tightly integrate continuous information with high-level
symbolic knowledge. This integration has several advantages: it is easier to
write models that define symbolic knowledge from low-level data, and describe
dynamic models in terms of low-level and symbolic knowledge jointly. Once
the model has been defined (or eventually learned), it can be used to perform
inference and planning. Such integration allows, for example, to estimate
the object positions from relations such as ‘inside’ and ’on’, and infer the
same relations from object positions. Moreover, high-level symbolic knowledge

116

CONCLUSIONS 117

inferred from low-level data is useful to describe such data in natural language.
For example, in an object tracking scenario it is possible to query the system
to list ‘the blue objects inside the big box’ in a language that is similar to the
natural one.

We will now describe the goals and conclusions of the thesis from a technical
perspective. The first goal of the thesis was to provide a general and efficient
inference algorithm that works in complex hybrid domains. It is efficient
with respect to the time to sample a (partial) world and with respect to the
convergence rate. We showed how the proposed algorithm is able to provide
correct results in several domains with competitive performance. In particular,
it provides a meaningful answer to queries in domains (e.g., the Indian GPA
problem) for which most related frameworks fail. The proposed solution involves
a practical solution for conditional probabilities with zero-probability evidence.
Such solution is then applied in an importance sampling algorithm without
additional ad-hoc discretizations (or noise) required in other frameworks to
handle zero-probability evidence. Moreover, the proposed query expansion
allows to perform constraint propagation and thus it avoids sample rejections
in a wide range of cases. The inference algorithm EVALSAMPLEQUERY was
empirically evaluated and applied in several experiments. The results showed
that EVALSAMPLEQUERY outperforms naive MC and BLOG, confirming the
soundness and the competitiveness of the approach.

The second goal of the thesis was to extend the framework for dynamic domains.
We proposed DCPF, a framework for filtering that exploits EVALSAMPLEQUERY.
At the same time, DCPF avoids backinstantiation to bound the space complexity
and reduce time performance variability. This makes DCPF particularly suited
for online applications. DCPF was empirically evaluated and applied in several
synthetic and real-world scenarios. The results showed that DCPF outperforms
the classical particle filter and DBLOG for a small number of samples. In
addition, the object tracking experiments showed that DCPF is promising for
robotics applications. In particular, DCPF can be used to exploit relational
and continuous information jointly to improve state estimation, and to convert
low-level information in relational (symbolic) knowledge, valuable in several
applications.

The third goal of the thesis was to extend the hybrid relational framework for
planning tasks. We proposed the planner HYPE for hybrid relational MDPs,
and showed how the state transition model can be exploited in off-policy Monte-
Carlo Methods. The experiments showed that the algorithm produces good
results in discrete, continuous, hybrid domains as well as in those with an
unknown number of objects. Most significantly, it challenges and outperforms
SST. The main drawback of HYPE is the computation complexity of the Q-
function evaluation, however several optimizations can be integrated, such as

118 CONCLUSIONS AND FUTURE WORK

indexing for a fast retrieval of relevant samples and heuristics to guide the
search.

HYPE has been extended with abstraction. In particular, we formally described
how (context-specific) independence assumptions can be exploited to perform
episode abstraction. This is valid for propositional as well as relational domains.
A theoretical derivation has been provided to justify the assumptions and the
approximations used. Finally, empirical results showed that abstraction provides
significant improvements. Nonetheless, there are domains where the entire state
is relevant, in such cases abstraction is not useful. Despite this, abstraction is
computationally efficient, and thus it is convenient even when the abstraction
regards a small set of random variables in a limited number of states.

As a final remark we hope that this thesis can help to bridge the gap between
low-level continuous sensory data and the high-level symbolic representation
used in artificial intelligence.

6.2 Future Work

We end this thesis with discussing some promising directions for future work.
We will first discuss applications and then technical directions.

6.2.1 Applications

As discussed in the conclusions, the general aim of the thesis is bridging the
gap between low-level continuous sensory data and the high-level symbolic
representation. This can have impact in several domains, in particular robotics
and vision. DCPF and HYPE can be used and extended for robot manipulation
tasks that involve human interaction, as described in the introduction. In
addition, many applications that require objects or people tracking can benefit
from the proposed hybrid relational framework. For example, converting videos
in natural language sentences (or just symbolic knowledge) can be performed
using DCPF state estimation.

Nonetheless, robotics and vision applications are challenging for several reasons.
Tags used in this thesis for an easy object detection might not be appropriate.
Thus, object detection and recognition is required together with symbolic
grounding that links the object symbols in the belief state to actual objects
detected by the vision system. This issue, called data association or anchoring,
has not been analyzed in this thesis. We believe that relational inference can
bring benefits to this problem. For example, a hybrid relational ontology can be

FUTURE WORK 119

used to discard unlikely associations or spurious observations, e.g., observing a
car wheel in a kitchen is extremely unlikely, or that walls and other big objects
do not move.

Many applications in robotics involve planning. HYPE can be used for this
purpose. However, in complex domains, the state consisting of continuous and
relational variables can easily become too large for efficient planning with HYPE.
In this regard, decomposing the task hierarchically can dramatically improve
the performance. This is how humans perform planning, dividing the task at
several level of abstractions. Moreover, making the decomposition automatic
can be an interesting direction for future work.

6.2.2 Inference and planning

We will now describe directions for future work regarding inference and planning.

In Chapter 3 we discussed how conditional probability with zero-probability
evidence is defined. Unfortunately, the Borel-Kolmogorov paradox shows that
there is no unique definition of a given zero-probability evidence constraint.
Alternative definitions as the ones proposed by [Diaconis et al., 2013; Afshar
et al., 2016] can be integrated in the future. However, from an artificial
intelligence perspective, there are more fundamental questions that should be
addressed in the future work: how does a different definition of zero-probability
evidence influence the belief distribution of an agent and its decisions? Can
a zero-probability evidence definition be better than another one for belief
updating or for decision-making? These questions and the Borel-Kolmogorov
paradox itself are largely ignored by the AI and robotics communities. We
believe that these are important issues that need to be addressed with practical
consequences, not just purely theoretical ones.

Another direction for future work is improving the sampling algorithm for DC
by using more advanced sampling methods. For example, adaptive importance
sampling can help to cope with complex high-dimensional domains. Indeed,
it learns the optimal proposal distribution using the previous samples. This
principle can be used also in complex non-parametric domains, such as those
with an unknown number of objects. In addition, query expansion and the
proposed solution for zero-probability evidence will remain valid. Preliminary
results not discussed in this thesis are promising.

As an alternative, MCMC methods can be investigated for DC, even though
it might not be easy to guarantee that the jumps generate samples consistent
with the semantics of the DC program. This issue can be handled borrowing
ideas from languages such as Church that apply MCMC on execution traces.

120 CONCLUSIONS AND FUTURE WORK

Another possible direction for future work is improving DCPF inference for
dynamic domains. If the inference is performed offline, where the entire sequence
of observations is known in advance, particle smoothing can be integrated in
DCPF to achieve lower variance estimations. Smoothing is computationally
expensive (quadratic in the number of samples), but improvements are available
[Klaas et al., 2006]. Another solution for online and offline inference is state-space
factorization. This helps to mitigate the curse of dimensionality. Factorization
is relatively easy when the number of random variables is fixed. Nonetheless,
in general hybrid relational domains described in the thesis, factorization is
not trivial. Indeed, a random variable might be defined only in some worlds
(samples), and the factorization has to keep the samples consistent with the
DDC program semantics.

Finally, the planner HYPE can be improved in several ways. HYPE uses stored
samples to evaluate the Q-function. This makes its estimation computationally
expensive. For this reason, indexing/hashing methods can be implemented
to quickly retrieve relevant stored samples during the Q-function estimation.
Moreover, heuristics can be used to guide the search. Another issue is the
curse of dimensionality for high-dimensional state-action spaces. An interesting
direction regards dimension reduction techniques to learn a state representation
that is more compact and easier to handle. This would make HYPE faster
and more effective. Moreover, it might be useful to extend HYPE principles
for policy gradient methods. In such methods the policy is parametrized; this
allows the policy to generate actions in the complete continuous action space
without discretization as required by HYPE.

Bibliography

[Afshar et al., 2016] H. M. Afshar, S. Sanner, and C. Webers. Closed-form gibbs
sampling for graphical models with algebraic constraints. In Proceedings of
the 30th Conference on Artificial Intelligence (AAAI 2016), pages 3287-3293.
AAAT Press, 2016. pages 50, 56, 119, 121

[Anand et al., 2015] A. Anand, A. Grover, Mausam, and P. Singla. ASAP-
UCT: abstraction of state-action pairs in UCT. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI 2015), pages
1509-1515, 2015. pages 110, 121

[Andrieu et al., 2003] C. Andrieu, N. de Freitas, A. Doucet, and M. 1. Jordan.
An introduction to MCMC for machine learning. Machine Learning, 50(1):
5-43, 2003. pages 17, 121

[Andrieu et al., 2005] C. Andrieu, A. Doucet, and V. B. Tadic. On-line parameter
estimation in general state-space models. In Proceedings of the 44th IEEE
Conference on Decision and Control, 2005 and 2005 FEuropean Control
Conference. (CDC-ECC 2005), pages 332-337, 2005. pages 72, 121

[Apt, 1997] K. Apt. From logic programming to Prolog. Prentice-Hall
international series in computer science. Prentice Hall, 1997. pages 1, 21, 24,
121

[Bancilhon et al., 1986] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman.
Magic sets and other strange ways to implement logic programs. In Proceedings
of the 5th Symposium on Principles of Database Systems (SIGACT-SIGMOD
1986), pages 1-15, 1986. pages 36, 121

[Beetz et al., 2012] M. Beetz, D. Jain, L. Mosenlechner, M. Tenorth, L. Kunze,
N. Blodow, and D. Pangercic. Cognition-enabled autonomous robot control
for the realization of home chore task intelligence. Proceedings of the IEEE,
100(8):2454-2471, 2012. pages 87, 121

121

122 BIBLIOGRAPHY

[Boutilier et al., 2000] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic
dynamic programming with factored representations. Artificial Intelligence,
121(1):49 — 107, 2000. pages 29, 122

[Boutilier et al., 2001] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic
programming for first-order mdps. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence, IJCAI 2001, pages 690-697.
Morgan Kaufmann Publishers Inc., 2001. pages 29, 122

[Browne et al.] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. L.
Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton.
A survey of monte carlo tree search methods. IFEFE Transactions on
Computational Intelligence and Al in Games, (1):1-43. pages 107, 122

[Carvalho et al., 2010a] C. M. Carvalho, M. S. Johannes, H. F. Lopes, and N. G.
Polson. Particle learning and smoothing. Statistical Science, 25(1):88-106,
2010a. pages 71, 72, 122

[Carvalho et al., 2010b] C. M. Carvalho, H. F. Lopes, N. G. Polson, and M. A.
Taddy. Particle learning for general mixtures. Bayesian Analysis, 5(4):
709-740, 2010b. pages 72, 122

[Casella and Robert, 1996] G. Casella and C. P. Robert. Rao-Blackwellisation
of Sampling Schemes. Biometrika, 83(1):81-94, 1996. pages 87, 122

[Cattelani et al., 2012] L. Cattelani, C. Manfredotti, and E. Messina. A particle
filtering approach for tracking an unknown number of objects with dynamic
relations. Journal of Mathematical Modelling and Algorithms in Operations
Research, 13(1):3-21, 2012. pages 87, 122

[Choi et al., 2011] J. Choi, A. Guzman-Rivera, and E. Amir. Lifted relational
kalman filtering. In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI 2011), pages 2092-2099, 2011. pages 86, 122

[Couetoux, 2013] A. Couetoux. Monte Carlo Tree Search for Continuous and
Stochastic Sequential Decision Making Problems. Theses, Université Paris
Sud - Paris XI, 2013. pages 107, 122

[De Raedt, 2008] L. De Raedt. Logical and relational learning. Cognitive
technologies. Springer, 2008. pages 2, 26, 122

[De Raedt et al., 2008] L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton.
Probabilistic Inductive Logic Programming - Theory and Applications, volume
4911 of Lecture Notes in Artificial Intelligence. Springer, Berlin / Heidelberg,
2008. pages 2, 26, 122

BIBLIOGRAPHY 123

[de Salvo Braz et al., 2008] R. de Salvo Braz, N. Arora, E. Sudderth, and
S. Russell. Open-universe state estimation with DBLOG. In NIPS
Workshop on Probabilistic Programming: Universal Languages, Systems and
Applications, 2008. pages 75, 86, 123

[Diaconis et al., 2013] P. Diaconis, S. Holmes, and M. Shahshahani. Sampling
from a manifold. In Advances in Modern Statistical Theory and Applications:
A Festschrift in honor of Morris L. Eaton, volume 10, pages 102-125. Institute
of Mathematical Statistics, 2013. pages 50, 57, 119, 123

[Douc and Cappé, 2005] R. Douc and O. Cappé. Comparison of resampling
schemes for particle filtering. In Proceedings of the 4th International
Symposium on Image and Signal Processing and Analysis, (ISPA 2005),
pages 64-69. IEEE, 2005. pages 61, 123

[Doucet et al., 2000a] A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-
blackwellised particle filtering for dynamic bayesian networks. In Proceedings
of the 16th Conference on Uncertainty in Artificial Intelligence (UAI 2000),
pages 176-183. Morgan Kaufmann, 2000a. pages 65, 66, 123

[Doucet et al., 2000b] A. Doucet, S. Godsill, and C. Andrieu. On sequential
monte carlo sampling methods for bayesian filtering. STATISTICS AND
COMPUTING, 10(3):197-208, 2000b. pages 3, 20, 123

[Driessens and Ramon, 2003] K. Driessens and J. Ramon. Relational instance
based regression for relational reinforcement learning. In Machine Learning,
Proceedings of the 20th International Conference (ICML 2003), pages 123-130,
2003. pages 107, 109, 123

[Dzeroski et al., 2001] S. Dzeroski, L. De Raedt, and K. Driessens. Relational
reinforcement learning. Machine learning, 43(1-2):7-52, 2001. pages 109, 123

[Feng et al., 2004] Z. Feng, R. Dearden, N. Meuleau, and R. Washington.
Dynamic programming for structured continuous Markov decision problems.
In Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence
(UAT 2004), pages 154-161, 2004. pages 108, 123

[Fikes and Nilsson, 1971] R. E. Fikes and N. Nilsson. STRIPS: A new approach
to the application theorem proving to problem solving. Artificial Intelligence,
5(2):189-208, 1971. pages 30, 123

[Forbes and Andre, 2002] J. Forbes and D. Andre. Representations for learning
control policies. In Procedings of the International Conference on Machine
Learning Workshop on Development of Representations, pages 7—14, 2002.
pages 93, 107, 123

124 BIBLIOGRAPHY

[Fung and Chang, 1989] R. M. Fung and K. Chang. Weighing and integrating
evidence for stochastic simulation in bayesian networks. In Proceedings of the
5th Conference on Uncertainty in Artificial Intelligence (UAI 1989), 1989.
pages 17, 39, 124

[Geman and Geman, 1984] S. Geman and D. Geman. Stochastic relaxation,
gibbs distributions, and the bayesian restoration of images. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 6(6):721-741, 1984. pages 18,
124

[Getoor and Taskar, 2007] L. Getoor and B. Taskar. An Introduction to
Statistical Relational Learning. MIT Press, 2007. pages 2, 26, 124

[Gilks and Berzuini, 2001] W. R. Gilks and C. Berzuini. Following a moving
target-monte carlo inference for dynamic bayesian models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 63(1):127-146,
2001. pages 71, 124

[Givan et al., 2003] R. Givan, T. Dean, and M. Greig. Equivalence notions and
model minimization in markov decision processes. Artificial Intelligence, 147
(1-2):163 — 223, 2003. pages 110, 124

[Gogate and Dechter, 2011] V. Gogate and R. Dechter. SampleSearch:
Importance sampling in presence of determinism. Artificial Intelligence,
175:694-729, February 2011. ISSN 0004-3702. pages 56, 124

[Goodman et al., 2008] N. Goodman, V. K. Mansinghka, D. M. Roy,
K. Bonawitz, and J. B. Tenenbaum. Church: A language for generative
models. In Proceedings of the 24th Conference on Uncertainty in Artificial
Intelligence (UAI 2008), pages 220-229. AUAI Press, 2008. pages 19, 26, 56,
86, 108, 124

[Green, 1995] P. J. Green. Reversible jump markov chain monte carlo
computation and bayesian model determination. Biometrika, 82:711-732,
1995. pages 19, 124

[Gutmann et al., 2011] B. Gutmann, I. Thon, A. Kimmig, M. Bruynooghe, and
L. De Raedt. The magic of logical inference in probabilistic programming.
Theory and Practice of Logic Programming, 11:663-680, 7 2011. pages 3, 26,
32, 33, 34, 36, 56, 67, 86, 108, 124

[Gyenis et al., 2016] Z. Gyenis, G. Hofer-Szabd, and M. Rédei. Conditioning
using conditional expectations: the Borel-Kolmogorov paradox. Synthese,
pages 1-36, 2016. pages 10, 43, 124

BIBLIOGRAPHY 125

[Hajishirzi and Amir, 2008] H. Hajishirzi and E. Amir. Sampling first order
logical particles. In Proceedings of the 24th Conference on Uncertainty in
Artificial Intelligence (UAI 2008), pages 248-255. AUAI Press, 2008. pages
86, 87, 125

[Hastings, 1970] W. K. Hastings. Monte carlo sampling methods using markov
chains and their applications. Biometrika, 57(1):97-109, 1970. pages 18, 125

[Henrion, 1986] M. Henrion. Propagating uncertainty in bayesian networks by
probabilistic logic sampling. In Proceedings of the Second Annual Conference
on Uncertainty in Artificial Intelligence UAI 1986, Philadelphia, pages 149—
164, 1986. pages 17, 125

[Higuchi, 2001] T. Higuchi. Self-organizing time series model. In A. Doucet,
N. Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods in
Practice, Statistics for Engineering and Information Science, pages 429-444.
Springer New York, 2001. pages 71, 125

[Holldobler et al., 2006] S. Holldobler, E. Karabaev, and O. Skvortsova. Flucap:
A heuristic search planner for first-order MDPs. Journal of Artificial
Intelligence Research, 27:419-439, 2006. pages 29, 109, 125

[Hostetler et al., 2014] J. Hostetler, A. Fern, and T. Dietterich. State aggregation
in monte carlo tree search. In Proceedings of the 28th Conference on Artificial
Intelligence (AAAI 2014), 2014. pages 110, 125

[Jaynes, 2003] E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge
University Press, 2003. pages 7, 125

[Jiang et al., 2014] N. Jiang, S. Singh, and R. Lewis. Improving uct planning
via approximate homomorphisms. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems, pages 1289-1296.
International Foundation for Autonomous Agents and Multiagent Systems,
2014. pages 110, 125

[Joshi et al., 2010] S. Joshi, K. Kersting, and R. Khardon. Self-taught decision
theoretic planning with first order decision diagrams. In Proceedings of
the 20th International Conference on Automated Planning and Scheduling
(ICAPS 2010), pages 89-96, 2010. pages 29, 109, 125

[Kadane, 2011] J. Kadane. Principles of Uncertainty. Chapman & Hall/CRC
Texts in Statistical Science. Taylor & Francis, 2011. pages 7, 10, 43, 125

[Kalman, 1960] R. Kalman. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82, 1960. pages 20, 125

126 BIBLIOGRAPHY

[Kantas et al., 2009] N. Kantas, A. Doucet, S. S. Singh, and J. M. Maciejowski.
An overview of sequential monte carlo methods for parameter estimation in
general state-space models. In 15th IFAC Symposium on System Identification,
volume 15, pages 774-785, 2009. pages 71, 126

[Kearns et al., 2002] M. Kearns, Y. Mansour, and A. Y. Ng. A sparse sampling
algorithm for near-optimal planning in large markov decision processes.
Machine Learning, 49(2-3):193-208, 2002. pages 107, 126

[Keller and Eyerich, 2012] T. Keller and P. Eyerich. PROST: probabilistic
planning based on UCT. In Proceedings of the 22nd International Conference
on Automated Planning and Scheduling (ICAPS 2012), 2012. pages 92, 108,
113, 126

[Kersting et al., 2004] K. Kersting, M. V. Otterlo, and L. De Raedt. Bellman
goes relational. In Proceedings of the 21st international conference on Machine
learning (ICML 2004), 2004. pages 29, 109, 126

[Kersting et al., 2006] K. Kersting, L. De Raedt, and T. Raiko. Logical hidden
markov models. Journal of Artificial Intelligence Research, 25:425-456, 2006.
pages 86, 87, 126

[Kimmig et al., 2008] A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen, and
L. De Raedt. On the efficient execution of ProbLog programs. In Logic
Programming, volume 5366 of Lecture Notes in Computer Science, pages
175-189. Springer Berlin / Heidelberg, 2008. pages 26, 56, 86, 126

[Klaas et al., 2006] M. Klaas, M. Briers, N. de Freitas, A. Doucet, S. Maskell, and
D. Lang. Fast particle smoothing: If i had a million particles. In Proceedings
of the 23rd International Conference on Machine Learning (ICML 2006),
pages 481-488. ACM, 2006. pages 120, 126

[Kocsis and Szepesvari, 2006] L. Kocsis and C. Szepesvari. Bandit based monte-
carlo planning. In Proceedings of the 17th European Conference on Machine
Learning (ECML 2006), pages 282-293, Berlin, Heidelberg, 2006. Springer-
Verlag. pages 107, 126

[Koller and Friedman, 2009] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. The MIT Press, 2009. pages 11, 15, 39,
126

[Kolmogorov, 1956] A. Kolmogorov. Foundations of the Theory of Probability.
1956. pages 10, 43, 126

[Lang and Toussaint, 2010] T. Lang and M. Toussaint. Planning with noisy
probabilistic relational rules. Journal of Artificial Intelligence Research, 39:
1-49, 2010. pages 109, 126

BIBLIOGRAPHY 127

[Lemieux, 2009] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling,
volume 20. Springer, 2009. pages 15, 37, 127

[Li et al., 2006] L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory
of state abstraction for MDPs. In International Symposium on Artificial
Intelligence and Mathematics (ISAIM 2006), 2006. pages 110, 127

[Lloyd, 1987] J. Lloyd. Foundations of logic programming. Springer-Verlag New
York, Inc., 1987. pages 1, 21, 24, 127

[Lloyd and Shepherdson, 1991] J. Lloyd and J. Shepherdson. Partial evaluation
in logic programming. The Journal of Logic Programming, 11(3-4):217 — 242,
1991. pages 47, 127

[Lopes et al., 2010] H. F. Lopes, C. M. Carvalho, M. Johannes, and N. G. Polson.
Particle learning for sequential bayesian computation. In Bayesian Statistics,
volume 9, pages 317-360. Oxford University Press, 2010. pages 72, 127

[Manfredotti et al., 2010] C. E. Manfredotti, D. J. Fleet, H. J. Hamilton, and
S. Zilles. Relational particle filtering. NIPS Workshop on Monte Carlo
Methods for Modern Applications, 2010. pages 86, 127

[Mansley et al., 2011] C. R. Mansley, A. Weinstein, and M. L. Littman. Sample-
Based Planning for Continuous Action Markov Decision Processes. In Proc.
ICAPS, 2011. pages 107, 127

[Mausam and Kolobov, 2012] Mausam and A. Kolobov. Planning with Markov
Decision Processes: An AI Perspective. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2012.
pages 29, 109, 127

[Mcdermott et al., 1998] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock,
A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL - The Planning Domain
Definition Language. Technical report, CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control, 1998. pages 30, 127

[Metropolis et al., 1953] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller. Equation of state calculations by fast computing
machines. The journal of chemical physics, 21(6):1087-1092, 1953. pages 18,
127

[Meuleau et al., 2009] N. Meuleau, E. Benazera, R. I. Brafman, E. A. Hansen,
and M. Mausam. A heuristic search approach to planning with continuous
resources in stochastic domains. Journal of Artificial Intelligence Research,

34(1):27, 2009. pages 108, 127

128 BIBLIOGRAPHY

[Meyer-Delius et al., 2008] D. Meyer-Delius, C. Plagemann, G. Wichert,
W. Feiten, G. Lawitzky, and W. Burgard. A probabilistic relational model for
characterizing situations in dynamic multi-agent systems. In Data Analysis,
Machine Learning and Applications. Springer Berlin Heidelberg, 2008. pages
87, 128

[Milch et al., 2005a] B. Milch, B. Marthi, S. Russell, D. Sontag, D. Ong,
and A. Kolobov. BLOG: Probabilistic models with unknown objects.
In Proceedings of the 19th International Joint Conference on Artificial
intelligence (IJCAI 2005), pages 1352-1359, 2005a. pages 26, 52, 56, 75, 105,
108, 128

[Milch et al., 2005b] B. Milch, B. Marthi, D. Sontag, S. Russell, D. L. Ong,
and A. Kolobov. Approximate inference for infinite contingent Bayesian
networks. In R. G. Cowell and Z. Ghahramani, editors, Proceedings of the
10th International Workshop on Artificial Intelligence and Statistics, pages
238-245. Society for Artificial Intelligence and Statistics, 2005b. pages xiii,
54, 105, 128

[Milch, 2006] B. C. Milch. Probabilistic models with unknown objects. PhD thesis,
University of California, Berkeley, 2006. pages 36, 67, 128

[Munos, 2014] R. Munos. From Bandits to Monte-Carlo Tree Search: The
Optimistic Principle Applied to Optimization and Planning, volume 7 of
Foundations and Trends(r) in Machine Learning. Now Publishers, 2014.
pages 107, 128

[Murphy, 2002] K. P. Murphy. Dynamic Bayesian Networks: Representation,
Inference and Learning. PhD thesis, University of California, Berkeley, 2002.
pages 69, 128

[Murphy, 2012] K. P. Murphy. Machine Learning: A Probabilistic Perspective.
The MIT Press, 2012. pages 12, 13, 19, 128

[Natarajan et al., 2008] S. Natarajan, H. H. Bui, P. Tadepalli, K. Kersting, and
W. keen Wong. Logical hierarchical hidden markov models for modeling user
activities. In Proceedings of the 18th International Conference in Inductive
Logic Programming (ILP 2008), pages 192-209, 2008. pages 87, 128

[Neal, 2010] R. M. Neal. MCMC using Hamiltonian dynamics. In Handbook of
Markov Chain Monte Carlo, volume 54, chapter 5, pages 113-162. Chapman
& Hall/CRC Press, 2010. pages 18, 128

[Ng et al., 2002] B. Ng, L. Peshkin, and A. Pfeffer. Factored particles for scalable
monitoring. In Proceedings of the 18th Conference on Uncertainty in Artificial
Intelligence (UAI 2002), pages 370-377. Morgan Kaufmann, 2002. pages 70,
128

BIBLIOGRAPHY 129

[Nilsson and Maliszyniski, 1995] U. Nilsson and J. Maliszyniski. Logic,
Programming And Prolog. Wiley & Sons, 2nd edition, 1995. pages 1, 21, 24,
129

[Nitti et al.] D. Nitti, V. Belle, T. De Laet, and L. De Raedt. Planning in hybrid
relational MDPs. Machine Learning. under review. pages 90, 129

[Nitti et al., 2013] D. Nitti, T. De Laet, and L. De Raedt. A particle filter for
hybrid relational domains. In Proceedings of the International Conference on
Intelligent Robots and Systems (IROS 2013), pages 2764-2771, 2013. pages
59, 129

[Nitti et al., 2014] D. Nitti, T. De Laet, and L. De Raedt. Relational object
tracking and learning. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA 2014), pages 935-942, 2014. pages 59,
129

[Nitti et al., 2015a] D. Nitti, V. Belle, T. De Laet, and L. De Raedt. Sample-
based abstraction for hybrid relational MDPs, 2015a. European Workshop
on Reinforcement Learning (EWRL 2015). pages 90, 129

[Nitti et al., 2015b] D. Nitti, V. Belle, and L. De Raedt. Planning in discrete
and continuous markov decision processes by probabilistic programming.
In Machine Learning and Knowledge Discovery in Databases: Furopean
Conference, (ECML/PKDD 2015), volume 9285 of Lecture Notes in Computer
Science, pages 327-342. Springer International Publishing, 2015b. pages 90,
129

[Nitti et al., 2016] D. Nitti, T. De Laet, and L. De Raedt. Probabilistic logic
programming for hybrid relational domains. Machine Learning, 103(3):407—
449, 2016. pages 32, 59, 129

[Owen, 2013] A. B. Owen. Monte Carlo theory, methods and examples. 2013.
pages 44, 129

[Papai et al., 2012] T. Papai, H. Kautz, and D. Stefankovic. Slice normalized
dynamic markov logic networks. In Proceedings of the 26th Annual Conference
on Neural Information Processing Systems (NIPS 2012), pages 1907-1915,
2012. pages 88, 129

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 1988. pages 11, 12, 129

[Perov et al.] Y. Perov, B. Paige, and F. Wood. The indian GPA prob-
lem. URL http://www.robots.ox.ac.uk/~fwood/anglican/examples/
viewer/?worksheet=indian-gpa. pages 2, 51, 129

http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=indian-gpa
http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=indian-gpa

130 BIBLIOGRAPHY

[Peshkin and Shelton, 2002] L. Peshkin and C. R. Shelton. Learning from Scarce
Experience. In Proceedings of the 19th International Conference on Machine
Learning (ICML 2002), pages 498-505, 2002. pages 108, 130

[Pfeffer, 2001] A. Pfeffer. IBAL: A probabilistic rational programming language.
In Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI 2001), pages 733-740, 2001. pages 56, 130

[Pfeffer et al., 2009] A. Pfeffer, S. Das, D. Lawless, and B. Ng. Factored reasoning
for monitoring dynamic team and goal formation. Information Fusion, 10(1):
99-106, Jan. 2009. pages 87, 130

[Pitt and Shephard, 1999] M. K. Pitt and N. Shephard. Filtering via simulation:
Auxiliary particle filters. Journal of the American statistical association, 94
(446):590-599, 1999. pages 72, 130

[Precup et al., 2000] D. Precup, R. S. Sutton, and S. P. Singh. Eligibility traces
for off-policy policy evaluation. In Proceedings of the 17th International
Conference on Machine Learning (ICML 2000), pages 759-766, 2000. pages
108, 130

[Przymusinski, 1988] T. C. Przymusinski. Perfect model semantics. In
Proceedings of International Conference on Logic Programming, pages 1081—
1096, 1988. pages 35, 130

[Robert and Casella, 2004] C. Robert and G. Casella. Monte Carlo Statistical
Methods. Springer Texts in Statistics. Springer New York, 2004. pages 15, 16,
42, 130

[Russell and Norvig, 2009] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall Press, 3rd edition, 2009. pages 12, 75, 130

[Sanner| S. Sanner. Relational Dynamic Influence Diagram Language (RDDL):
Language Description. Unpublished paper. pages 31, 109, 130

[Sanner et al., 2011] S. Sanner, K. V. Delgado, and L. N. de Barros. Symbolic
Dynamic Programming for Discrete and Continuous State MDPs. In
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence
(UAI 2011), pages 643-652, 2011. pages 30, 108, 109, 111, 130

[Sato, 1995] T. Sato. A statistical learning method for logic programs with
distribution semantics. In Proceedings of the 12th International Conference
on Logic Programming, pages 715-729. MIT Press, 1995. pages 3, 26, 32, 34,
130

BIBLIOGRAPHY 131

[Sato and Kameya, 1997] T. Sato and Y. Kameya. Prism: a language for
symbolic-statistical modeling. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI 1997), pages 1330-1335, 1997.
pages 26, 56, 131

[Shelton, 2001a] C. R. Shelton. Policy Improvement for POMDPs Using
Normalized Importance Sampling. In Proceedings of the 17th Conference
in Uncertainty in Artificial Intelligence (UAI 2001), pages 496-503, 2001a.
pages 108, 131

[Shelton, 2001b] C. R. Shelton. Importance Sampling for Reinforcement Learning
with Multiple Objectives. PhD thesis, MIT, 2001b. pages 95, 108, 131

[Shirazi and Amir, 2011] A. Shirazi and E. Amir. First-order logical filtering.
Artificial Intelligence, 175(1):193-219, 2011. pages 86, 131

[Smart and Kaelbling, 2000 W. D. Smart and L. P. Kaelbling. Practical
reinforcement learning in continuous spaces. In Proceedings of the 17th
International Conference on Machine Learning (ICML 2000), pages 903-910,
2000. pages 93, 107, 131

[Srivastava et al., 2014] S. Srivastava, S. J. Russell, P. Ruan, and X. Cheng.
First-order open-universe pomdps. pages 742-751, 2014. pages 108, 131

[Storvik, 2002] G. Storvik. Particle filters for state-space models with the
presence of unknown static parameters. Signal Processing, IEEE Transactions
on, 50(2):281-289, 2002. pages 71, 131

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, 1998. pages 27, 92, 95, 96, 98, 131

[Tadepalli et al., 2004] P. Tadepalli, R. Givan, and K. Driessens. Relational
reinforcement learning: An overview. In Proceedings of the ICML-200/
Workshop on Relational Reinforcement Learning, pages 1-9, 2004. pages 109,
131

[Tenorth and Beetz, 2009] M. Tenorth and M. Beetz. KnowRob — Knowledge
Processing for Autonomous Personal Robots. In Proceedings of the IEEE/RSJ
International Conference on Intelligent RObots and Systems (IROS 2009),
pages 4261-4266, 2009. pages 87, 131

[Thon et al., 2011] I. Thon, N. Landwehr, and L. De Raedt. Stochastic relational
processes: Efficient inference and applications. Machine Learning, 82, 2011.
pages 87, 131

[Thrun et al., 2005] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.
The MIT Press, 2005. pages 3, 131

132 BIBLIOGRAPHY

[Vianna et al., 2015] L. G. R. Vianna, L. N. de Barros, and S. Sanner. Real-time
symbolic dynamic programming. In Proceedings of the 29th Conference on
Artificial Intelligence (AAAI 2015), pages 3402-3408, 2015. pages 30, 109,
132

[Vien and Toussaint, 2014] N. A. Vien and M. Toussaint. Model-Based
Relational RL When Object Existence is Partially Observable. In Proceedings
of the 31th International Conference on Machine Learning (ICML 2014),
pages 559-567, 2014. pages 108, 132

[Walsh et al., 2010] T. J. Walsh, S. Goschin, and M. L. Littman. Integrating
sample-based planning and model-based reinforcement learning. In M. Fox and
D. Poole, editors, Proceedings of the 24th Conference on Artificial Intelligence
(AAAI 2010). AAAT Press, 2010. pages 107, 132

[Wang et al., 2008] C. Wang, S. Joshi, and R. Khardon. First Order Decision
Diagrams for Relational MDPs. Journal of Artificial Intelligence Research
(JAIR), 31:431-472, 2008. pages 29, 109, 132

[Whiteley and Johansen, 2010] N. Whiteley and A. M. Johansen. Recent
developments in auxiliary particle filtering. Barber, Cemgil, and Chiappa,
editors, Inference and Learning in Dynamic Models. Cambridge University
Press, 38:39-47, 2010. pages 62, 132

[Wiering and van Otterlo, 2012] M. Wiering and M. van Otterlo. Reinforcement
Learning: State-of-the-Art. Adaptation, Learning, and Optimization. Springer,
2012. pages 27, 29, 99, 107, 132

[Wingate et al., 2011] D. Wingate, A. Stuhlmiiller, and N. D. Goodman.
Lightweight implementations of probabilistic programming languages via
transformational compilation. In Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics (AISTATS 2011), pages
770-778, 2011. pages 19, 132

[Wood et al., 2014] F. Wood, J. W. van de Meent, and V. Mansinghka. A new
approach to probabilistic programming inference. In Proceedings of the 17th
International Conference on Artificial Intelligence and Statistics (AISTAT
2014), pages 1024-1032, 2014. pages 26, 56, 108, 132

[Zamani et al., 2012] Z. Zamani, S. Sanner, and C. Fang. Symbolic dynamic
programming for continuous state and action mdps. In Proceedings of the
26th Conference on Artificial Intelligence (AAAI 2012), 2012. pages 30, 109,
132

[Zamani et al., 2013] Z. Zamani, S. Sanner, K. V. Delgado, and L. N.
de Barros. Robust optimization for hybrid mdps with state-dependent

BIBLIOGRAPHY 133

noise. In Proceedings of the 23rd International Joint Conference on Artificial

Intelligence (IJCAI 2013), 2013. pages 30, 109, 132

[Zettlemoyer et al., 2007] L. S. Zettlemoyer, H. M. Pasula, and L. P. Kaelbling.
Logical particle filtering. In Proceedings of the Dagstuhl Seminar on
Probabilistic, Logical, and Relational Learning, 2007. pages 86, 87, 133

Curriculum Vitae

Davide Nitti was Born in Castellana Grotte, Bari, Italy on July 31st 1983.
He went to the secondary school ‘Luigi dell’Erba’ with IT specialization in
the same city and obtained the diploma in 2002. In 2005 he obtained a
Bachelor in Computer Science Engineering at the Polytechnic of Bari, Italy.
In 2009 he received his Master diploma in Computer Science Engineering in
the same University, with specialization in Intelligent Systems. The thesis is
titled ‘Boolean Games and Description Logics for Multi-attribute Automatic
Negotiation”

In March 2011 he joined the Declarative Languages and Artificial Intelligence
(DTAI) group at KU Leuven for doctoral studies under the supervision of Prof.
Luc De Raedt. In January 2012 he received a 4 year scholarship from ITWT
(agentschap voor Innovatie door Wetenschap en Technologie) to work on his
PhD on probabilistic programming for robotics. In August 2016 he will defend
his doctoral thesis, titled “Hybrid Probabilistic Logic Programming”.

135

List of publications

Journal articles

e D. Nitti, T. De Laet, L. De Raedt. Probabilistic logic programming
for hybrid relational domains, in Machine Learning, volume 103, pages
307-449, Springer (2016).

o D. Nitti, V. Belle, T. De Laet, L. De Raedt: Planning in Hybrid Relational
MDPs. Under review at Machine Learning Journal, Springer

e B. Moldovan, P. Moreno, D. Nitti, J. Santos-Victor, L. De Raedt. Using
Relational Affordances for Multiple-Action Two-Arm Manipulation Tasks.
Under review at Robotics and Autonomous Systems Journal

Conference papers

« D. Nitti, T. De Laet, L. De Raedt: A particle filter for hybrid relational
domains. In: Proceedings of the International Conference on Intelligent
Robots and Systems (IROS 2013), pages 2764-2771 (2013)

o D. Nitti, T. De Laet, L. De Raedt: Relational object tracking and learning.
In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA 2014), pages 935-942 (2014)

e D. Nitti, T. De Laet, L. De Raedt: Distributional clauses particle filter.
In: Machine Learning and Knowledge Discovery in Databases, volume
8726 of Lecture Notes in Computer Science, pages 504-507. Springer
Berlin Heidelberg (2014)

o D. Nitti, V. Belle, L. De Raedt: Planning in discrete and continuous
Markov decision processes by probabilistic programming. In: Proceedings of

137

138

LIST OF PUBLICATIONS

the European Conference on Machine Learning and Knowledge Discovery
in Databases (ECML/PKDD 2015), volume 9285 of Lecture Notes in
Computer Science, pages 327-342. Springer International Publishing
(2015). Best Student Paper - Machine Learning Journal Award.

D. Nitti, I. Ravkic, J. Davis, L. de Raedt: Learning the Structure of
Dynamic Hybrid Relational Models. Accepted at the 22nd European
Conference on Artificial Intelligence (ECAI 2016).

Workshop Papers

« D. Nitti, T. De Laet, M. Hoffmann, I. Thon, G. Van den Broeck, L. De

Raedt A particle filter for probabilistic dynamic relational domains. In
2nd Statistical Relational AI (StaRAI-12) workshop, (2012).

D. Nitti, G. Chliveros, L. De Raedt, M. Pateraki, M. Hourdakis, P.
Trahanias: Application of dynamic distributional clauses for multi-
hypothesis initialization in model-based object tracking. In 9th Interna-
tional Conference on Computer Vision Theory and Applications (VISAPP
2014), volume 2, pages 256-261 (2014)

D. Nitti, V. Belle, T. De Laet, L. De Raedt: Sample-based abstraction
for hybrid relational MDPs. In: European Workshop on Reinforcement
Learning (EWRL 2015)

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
DTAI

Celestijnenlaan 200A box 2402

B-3001 Leuven
davide.nitti@cs.kuleuven.be

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Roadmap

	Background
	Probability Theory
	Probabilistic Graphical Models
	Bayesian networks
	Temporal models
	Dynamic Bayesian networks

	Inference
	Naive Monte-Carlo
	Importance sampling
	Sampling from a Bayesian Network
	Markov Chain Monte Carlo methods
	Inference in temporal models

	First-Order Logic
	Logic Programming

	Probabilistic Languages
	Planning
	Markov Decision Processes
	Relational MDPs
	Languages for planning

	Distributional Clauses
	Distributional Clauses
	Static Inference for Distributional Clauses
	Importance Sampling
	Sampling partial possible worlds
	Examples

	Experiments
	Related work
	Conclusions

	Dynamic Distributional Clauses
	Dynamic Distributional Clauses
	DCPF: A Particle Filter For Dynamic Distributional Clauses
	Filtering Algorithm
	Avoiding backinstantiation
	Comparison with Murphy's interface algorithm
	Limitations

	Online Parameter Learning
	Learning in Particle Filters
	Online Parameter Learning for DCPF

	Experiments
	Synthetic dynamic domains
	Real-world dynamic domains
	Learnsize scenario

	Related Work
	Frameworks
	Applications

	Conclusions

	Planning
	Introduction
	HYPE: Planning by Importance Sampling
	Basic algorithm
	Computing the (Approximate) Q-Function
	Extensions
	Practical improvements

	Abstraction
	Basic principles of abstraction
	Mathematical Derivation
	Sample-based abstraction by logical regression

	Related work
	Non-relational planners
	Relational planners and abstraction

	Experiments
	HYPE without abstraction
	HYPE with abstraction

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work
	Applications
	Inference and planning

	Bibliography
	Curriculum Vitae
	List of publications

