A Portrait of a Scientist as a Computational
Logician

Maurice Bruynooghe, L.M Pereira, Jorg H. Siekmann,
Maarten H. van Emden

Throughout his prolific scientific career, Robert (Bob) Kowalski was motiv-
ated by his desire to reshape logic from an abstract mathematical discipline into
a working tool for problem solving. This led him towards a wide exploration of
logic in computer science, artificial intelligence, cognitive science, and law.

His scientific achievements in these pursuits have become landmarks. To this
we should add the enthusiasm and leadership with which he has enrolled into
this venture an entire community extending over two generations of researchers.

Below we detail by topic some of his accomplishments.

Automated Theorem Proving

Bob’s early work was part of the enormous enthusiasm generated by Robinson’s
discovery of the resolution principle. Bob started off with important technical
contributions, with Hayes on semantic trees and with Kuehner on SL resolution.
The pinnacle of this line of research is Bob’s Connection Graph proof procedure.

Already before the Connection Graph proof procedure, Bob was concerned
with the redundancy of unrestricted resolution. He collaborated with workers
in operations research applying search techniques to guide resolution theorem-
provers.

Logic for Problem Solving

A formative episode in Bob’s development was the backlash against resolution
theorem-proving. Green had shown how goals of plans could be elegantly for-
mulated in logic and that the plans themselves could be read off from the proofs
that showed the goals were achievable. On the one hand there was the com-
pleteness of resolution that suggested this might be feasible. On the other hand
there was the painful fact that no existing resolution theorem-prover could im-
plement this research program. An implicit revolt was brewing at MIT with,
for example, the development of Hewitt’s PLANNER.

Resolution theorem-proving was demoted from a hot topic to a relic of the
misguided past. Bob doggedly stuck to his faith in the potential of resolution
theorem proving. He carefully studied PLANNER. He worked with Colmerauer
on the representation of grammars in logic, discovering the importance of Horn



clauses. In this way it was discovered how proofs could be parses, vindicating
part of Green’s grand vision according to which proofs could be executions of
plans that achieve goals formulated in logic. Thus Logic for Problem Solving
was born.

Logic Programming

Logic for problem-solving, specifically how to represent grammars in logic and
how to parse by resolution proofs, influenced the conception of Prolog by Colmerauer
and Roussel. Conversely, Prolog influenced logic for problem-solving so that it
spawned a well-defined subset that we now know as logic programming.

The birth of the logic programming paradigm had a great impact. Its el-
egance, simplicity and generality offered a new perspective on many areas in
computer science and artificial intelligence. It resulted in several novel pro-
gramming languages, led to the development of deductive databases, was the
foundation for the influential constraint logic programming paradigm, inspired
much innovating work in natural language processing, had great influence on
developments within knowledge representation, and was the basis for inductive
logic programming, a recent offspring from machine learning.

Bob’s influential dictum ” Algorithm = Logic + Control“ provided funda-
mental direction for increasing clarity and scope in the description of algorithms
and design of new control mechanisms for logic programming languages, namely
through meta-programming. His subsequent research revealed the potential of
the logic programming paradigm in many areas.

Logic across the Children’s Curriculum

Bob’s research program, born in the dark days around 1971, was vindicated in
the programming language area when a prominent member of the MIT Al group
said, much later, ”Prolog is PLANNER, done right”. But the research program
is more radical: logic is not just a good model for programming languages, but
also for the way humans think by nature. To test this wider concept, a project
was started at a school in London for a class of children who were about 13 years
old. A key ingredient was Micro-Prolog, a version of Prolog that ran on micro-
computers (as PCs were then called). This system, at the time a revelation,
was developed in Bob’s group by McCabe and Clark. Another key ingredient
was Ennals, a school teacher, who was trained by Bob in logic programming.
Together they developed a curriculum, which was taught on a regular basis
for a year by Ennals, with the children writing and running Prolog programs
on computers at the school. It showed that with English-like syntax, Horn
clauses can be used by children to support their curriculum material in English,
mathematics, geography, and history.



Logic and Data Bases

Influenced by the pioneering work of Minker, Gallaire, Nicolas and others on the
logical analysis and inference techniques for data bases, Bob provided central
insight, as well as numerous technical contributions, for this emerging field, that
eventually led to the amalgamation of classical data base theory with knowledge
representation formalisms in artificial intelligence, logic, and semantic networks.
Together with colleagues, Sadri, Sripada and others, he has established signific-
ant landmark contributions in various problems such as the frame problem in
logic data bases, data base integrity and temporal databases.

Logic Programming and the Law

Is mathematical reasoning just typical for proofs of mathematical theorems or
can the inspiring vision of Leibniz, that two philosophers in dispute may settle
their differences by coding their arguments into an appropriate calculus and
then calculate the truth: ?CALCULEMUS” be turned into reality?

Bob, in a team effort with Sadri, Sergot and others, showed that the British
Nationality Act as well as other highly formalized legislation can be coded into
an enchanced logic programming language — and then computed! This insight
spawned an interdisciplinary field, logic and law.

The Event Calculus

In 1986, at a time when the program of implementing temporal reasoning using
Situation Calculus in classical and nonmonotonic logics continued to struggle
with conceptual and computational problems, Bob delivered a seminal contri-
bution to the use of logic-based temporal reasoning. In an attempt to overcome
the shortcomings of situation calculus, he and Marek Sergot introduced a new
ontological concept, the event which is an occurrence of an action bound at
a specific time point and location. They developed a theory based on this
concept, called Event Calculus and implemented it in logic programming. This
work was very influential and created quite a debate between supporters of the
two approaches. Ironically, about ten years later, different researchers including
Bob himself showed a close relationship between the event and situation calculi.
The work on event calculus is still influential and is applied in the context of
Al-applications such as robot control.

Common-sense reasoning

The naive use of negation in PLANNER and early logic programming was soon
replaced by the much deeper insight into the distinction between classical neg-
ation and what became known as "negation as failure*.

Similarily, the early confusion in expert systems between deduction and
abduction led to a more thorough investigation and Bob’s collaboration with
Eshghi, Kakas, Toni and Fung spawned several papers on this issue. Amongst



other things these papers compare abduction with negation as failure and have
opened the new area of Abductive Logic Programming. Related to this is also
Bob’s work, with Dung, Toni and others, on argumentation for formalising non-
monotonic reasoning.

Logic Modelling of Agents

The recent world-wide interest in agents and their applications was met by Bob
with a challenge to the Logic Programming community to hone their tools to
the issues raised. He led the way himself, publishing with Sadri, on the balanced
combination of deliberation and reaction, integrated into an original IFF agent
cycle framework, in which the agent at turns reacts and reasons with limited
resources. His work paved the road for the involvement of the logic programming
community in the flurry of activity we have today concerning computational
logic agents and societies of agents.

Conclusion

Bob’s inspiring leadership and expertise was widely appreciated and sought after
the whole world over. His bold initiative to organise a first Logic Programming
workshop in May 1976 laid the foundation for an enthusiastic community of
logic programmers. His advisory role in projects such as the Japanese Fifth
Generation Computing Systems and in organisations such as DFKI, the German
National Research Center for A.I. was deep and very influential. As coordinator
of the ESPRIT Basic Research Action in Computational Logic, as participant to
its successor, Compulog2, and as founding chairman of the ESPRIT network of
Excellence in Computational Logic (CompulogNet), he had an enormous impact
on the European logic programming research community. His leadership and
drive for quality was an example for many young researchers. Distinctions
and prizes from many countries pay tribute to his role: MIT Distinguished
Lecture, Honorary Distinguished Alumnus of Phi Kappa Phi at the University
of Bridgeport, the “Docente a titulo individuale” from Bologna, the fellowships
of AAAI, City and Guilds of London Institute, DFKI, ECCAI, and ACM.

As this volume illustrates, Bob’s work has established logic as a tool for
problem solving and has a lasting influence in many areas of computer science.



