
A Note on the Reuse of the Results of a

Termination Analysis Based on

Polymorphic Types

Maurice Bruynooghe Michael Codish

Samir Genaim Wim Vanhoof

Report CW383, September 2003

Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

A Note on the Reuse of the Results of a

Termination Analysis Based on

Polymorphic Types

Maurice Bruynooghe Michael Codish

Samir Genaim Wim Vanhoof

Report CW383, September 2003

Department of Computer Science, K.U.Leuven

Abstract

This short report complements a paper published in the proceedings of SAS
2002. It gives an improved version of the main theorem and a detailed sketch
of a proof.

The original paper was about the use of polymorphic type-based norms in
termination analysis of logic programs.

Keywords : termination analysis.
CR Subject Classification : D.3, F.3.2,

A Note on the Reuse of the Results of a

Termination Analysis Based on Polymorphic

Types

Maurice Bruynooghe Michael Codish Samir Genaim

Wim Vanhoof

September 2003

Abstract

This short report complements a paper published in the proceedings
of SAS 2002. It gives an improved version of the main theorem and a
detailed sketch of a proof.

The original paper was about the use of polymorphic type-based norms
in termination analysis of logic programs.

1 Introduction

This note addresses a problem in the SAS2002 paper [1] of the same authors.
Peter Stuckey pointed out to us that the result claimed in Theorem 1 not always
holds. Analysis revealed that we overlooked the possibility that I(σ′

i)∩I(σ
′
j) 6= ∅

in which case there is undesirable interference between the σ′
i and the σ′

j ab-
stractions in the formula obtained through reuse of the result of the polymorphic
analysis. The overlooked problem is solved by introducing extra constituents in
the polymorphic type such that I(σ′

i) ∩ I(σ
′
j) = ∅ holds.

A minor problem, observed when working out the details of the proof is that,
even when I(σ′

i) ∩ I(σ
′
j) = ∅, the formula obtained through reuse is not neces-

sarily equivalent with the formula obtained by using the types of the instance.
In fact, a stronger result holds: The formulae obtained through reuse imply the
formulae obtained by a direct analysis using the type instance (while still being
correct).

In what follows we provide a new version for this theorem and prove it’s
correctness.

2 The setting

In the rest of this note we assume that the types are defined by a polymorphic
type definition ρ with polymorphic parameters Ti. We assume also that p is

1

imported in another program component Q imposing a monomorphic type in-
stance ρ′ = ρ[. . . , Ti 7→ τi, . . .] for p. Note that p is typed by ρ as well as by
ρ′. We enumerate the (polymorphic) constituents of ρ and the (monomorphic)
constituents of ρ′ as follows:

C (ρ) = {σ1, . . . , σk, . . . , Ti, . . .} and C (ρ′) = {σ′
1, . . . , σ

′
l}

For two types τ1 and τ2, if τ1 is a constituents of τ2 we write τ1 � τ2, and if it
is a strict constituents we write τ1 ≺ τ2.

2.1 Normal Form

For the sake of simplicity we assume the program is given in the following normal
form:

• facts (sometime we call them base cases) can be of the form:

- p(x, y)← x = y

- p(x, y1, . . . , yn)← x = f(y1, . . . , yn)

• clauses are of the form p(x̄0)← p1(x̄1), . . . , pn(x̄n) where each x̄i is a tuple
of variable and in particular x̄0 a tuple of distinct variables.

Note that any program can be transformed to this normal form.

2.2 Abstraction

Given a program in the above normal form, its abstraction to Pos with respect
to a set of constituents C = {σ1, . . . , σl} is done as follows:

Base Case I: The abstraction of a fact of the form p(x, y)← x = y is:

p(xσ1 , yσ1 , . . . , xσl , yσl) ←
XC

g ∧ αC(xσ1 = yσ1) ∧ . . . ∧ αC(xσl = yσl)

where XC
g is a conjunction of the variables such that xσj (yσj) in the conjunction

iff σj 6� type(x). In other words, those variables of size zero are assumed to be

rigid. αC(xσj = yσj

) is equal to xσj ↔ yσj if σj � type(x); otherwise true.

Base Case II The abstraction of a fact of the form p(x, y1, . . . , yn) ← x =
f(y1, . . . , yn) is:

p(xσ1 , y
σ1

1
, . . . , yσ1

n , . . . , xσl , y
σl
1

, . . . , y
σl
n) ←

XC
g ∧ αC(xσ1 = f(yσ1

1
, . . . , yσ1

n)) ∧ . . . ∧ αC(xσl = f(y
σl
1

, . . . , y
σl
n))

where XC
g as for the base case I. αC(xσj = f(y

σj

1 , . . . , y
σj
n)) is equal to:

xσj ↔ ∧{y
σj

i |σj � type(yi)}

if σj � type(x); otherwise true.

2

Clauses: The abstraction of a clause p(x̄0) ← p1(x̄1), . . . , pn(x̄n) is the ab-
stract clause:

p(X̄C

0)← p1(X̄
C

1), . . . , pn(X̄C
n)

where X̄C
i is a combination of the variables of X̄i with respect to the constituents

(of) C. When we want to refer to the set of variables in a tuple X̄ we write X.

3 Reuse of polymorphic results

Definition 3.1 (T ′-abstraction) For a type definition ρ with a polymorphic
parameter Ti we define the T ′

i -abstraction as a regular type-based abstraction
where T ′

i 6=Ti is a fresh type symbol under the assumption that T ′
i≺Ti. 2

For the polymorphic type based analysis, we extend the constituents of ρ to
include {T

′

i,σ′ |σ′ 6= τi ∈ C (τi)} where each T
′

i,σ′ is considered as a T ′
i constituent.

Note that this assumes τ is know; in fact, the assumption is that one knows a
finite upper bound on the number of constituents of τ . So, in a sense it would
be preferable to name the extra constituents T ′

1, . . . T
′
m but that would make the

next definition more complex.

Definition 3.2 Let ρ be a polymorphic type definition and ρ′ = ρ[. . . , Ti 7→
τi, . . .] a monomorphic instance of ρ. Let T ′

i be a type variable not occurring
in ρ which is treated as a proper constituent of Ti (T ′

i � Ti and T ′
i 6= Ti). We

denote by I(σ′) the type constituents in ρ that correspond to the constituent σ′

of ρ′. It is defined as:

I(σ′) = {σ ∈ C (ρ) | σ′ = σ[Ti 7→ τi]} ∪

{

{Ti} if σ′ = τi
{T ′

i,σ′} if σ′ � τi and τi 6= σ′

∅ otherwise
2

Observation 3.1 I(σ′
i) ∩ I(σ

′
j) = ∅ for i 6= j. 2

Theorem 3.1 (reuse of polymorphic results) Let p/n be a predicate typed
under the polymorphic type definition ρ. Let {σ1, σ2, . . . , σk} denote the exten-
ded (polymorphic) constituents of ρ. Let:

p(xσ1

1 , . . . , xσ1

n , . . . , xσk

1 , . . . , xσk
n) ← π ∈ [[P ρ]]CLP(N)

p(xσ1

1 , . . . , xσ1

n , . . . , xσk

1 , . . . , xσk
n) ← ϕ ∈ [[P ρ]]Pos

denote respectively size relation and rigidity information (success set), derived in
the combined analysis using the type-based norms corresponding to the extended
constituents of ρ (π is a linear constraint and ϕ is a Boolean formula). Also
let:

p(x
σ′

1

1 , . . . , x
σ′

l

1 , . . . , x
σ′

1

n , . . . , x
σ′

l
n) ← π′ ∈ [[P ρ′

]]CLP(N)

p(x
σ′

1

1 , . . . , x
σ′

l

1 , . . . , x
σ′

1

n , . . . , x
σ′

l
n) ← ϕ′ ∈ [[P ρ′

]]Pos

3

denote respectively size relation and rigidity information (success set), derived
in the combined analysis using the type-based norms corresponding to the con-
stituents σ′

1, . . . , σ
′
l of ρ′ (which is an instance of ρ). Under the assumption that

no widening was used in the analysis, the following:

p(x
σ′

1

1 , . . . , x
σ′

1

n , . . . , x
σ′

l

1 , . . . , x
σ′

l
n) ← ∃X : π∧

l
∧

j=1

n
∧

i=1

(x
σ′

j

i =
∑

σ∈I(σ′

j
)

xσ
i)

p(x
σ′

1

1 , . . . , x
σ′

1

n , . . . , x
σ′

l

1 , . . . , x
σ′

l
n) ← ∃X : ϕ∧

l
∧

j=1

n
∧

i=1

(x
σ′

j

i ↔
∧

σ∈I(σ′

j
)

xσ
i)

where X = {xσ1

1 , . . . , xσ1

n . . . , xσk

1 , . . . xσk
n } provide correct size relation and ri-

gidity information for the monomorphic version of the predicate p/n that is at
least as precise as ϕ′ and π′. 2

4 Proof Sketch for Theorem 3.1

In what follows we will proof Theorem 3.1 for the case of the Pos analysis.
Assume the program is polymorphically typed under ρ and that the (mono-
morphic) typing ρ′ is an instance of ρ. Assume that C = {σ1, . . . , σk} are the
(extended) constituents of ρ and that C ′ = {σ′

1, . . . , σ
′
l} are the constituents

of ρ′. The proof is done in several steps: (1) In Section 4.1 we provide some
notation and lemmas; (2) In Section 4.2 we prove that the reuse of polymorphic
results is more precise; and (3) In Section 4.3 we prove that it’s also correct
(sound).

4.1 Some notations and lemmas

For the sake of simplicity we want to use a new notation for Theorem 3.1: Given
a polymorphic formula p(X̄C)← ϕ, we define the monomorphic version, i.e. the
reuse, of it to be p(X̄C′

)← ∃XC . [U(XC′

) ∧ ϕ] where:

U(X) =
∧

xσ′
∈X

(xσ′

↔
∧

σ∈I(σ′)

xσ)

Lemma 4.1 For a given set of variables X,X1, X2, if X = X1 ∪X2 and X1 ∩
X2 = ∅ then: (1) vars(U(X1)) ∩ vars(U(X2)) = ∅; and (2) U(X) = U(X1) ∧
U(X2).
Proof. By observation 3.1 and the definition of U . 2

Lemma 4.2 ∃X. U(X) ≈ true 2

4.2 The reuse is more precise

The proof is by induction and is done according to the following steps:

(1) we show that the reuse of the base cases gives the same result;

4

(2) we show that the lub does not cause precision loss; and

(3) assuming that the reuse is at least as precise up to iteration i−1, we show
that it is also at least as precise in the i-th iteration.

4.2.1 The base case of the induction

We will show that for the base cases the reuse of the polymorphic results is
exactly equivalent the monomorphic results.

Base case I:

We will show that:

Xρ′

g ∧
∧

σ′∈ρ′

α(xσ′

= yσ′

) = ∃Xρ. [U(Xρ′

) ∧Xρ′

g ∧
∧

σ∈ρ

α(xσ = yσ)]

The idea is that any α(xσ′

= yσ′

) can be represented as follows:

∃xσ, yσ. [U({xσ′

, yσ′

})∧
∧

σ∈I(σ′)

α(xσ = yσ)]

Now since:

(1) I(σ′
i) ∩ I(σ

′
j) = ∅ (thanks to the different T ′ constituents); and

(2) The Boolean formulas obtained by abstracting two different equations
α(xσi = xσi) and α(xσj = xσj) do not share any variable

the instances of the above equation for two different constituents σ′
i and σ′

j do

not share variables – exactly like α(xσ′

i = yσ′

i) and α(xσ′

j = yσ′

j). Hence no
relation are introduced when putting all of them in one conjunction.

For Xρ
g and Xρ′

g . If xσ′

∈ Xρ′

g then for any σ ∈ I(σ′) it must be the case that

xσ ∈ Xρ, hence xσ′

can be obtained using U({xσ′

}) ∧Xρ
g .

Base case II: Similar to the above base case.

4.2.2 The LUB does not cause precision loss

Let ϕ1 and ϕ2 be Boolean formulas obtained for the same predicate p(X̄C
0)

in the polymorphic analysis, and let ϕ′
1 and ϕ′

2 be Boolean formulas obtained
for the same predicate but in the mono analysis, i.e for p(X̄C′

0), such that
∃XC

0 . U(XC′

0) ∧ ϕi is more precise than ϕ′
i, we will show that ∃XC

0 . [U(XC′

0) ∧
(ϕ1 ∨ ϕ2)] is more precise than ϕ′

1 ∨ ϕ
′
2:

∃XC
0 . [U(XC′

0) ∧ (ϕ1 ∨ ϕ2)]

= [∃XC
0 . U(XC′

0) ∧ ϕ1] ∨ [∃XC
0 . U(XC′

0) ∧ ϕ2]
→ ϕ′

1 ∨ ϕ
′
2

5

4.2.3 The induction step

Suppose the theorem holds for all iterations smaller than i, now we will prove
that it holds also for the i-th iteration. Given a clause: C ≡ p(x̄0)← p1(x̄1), . . . , pn(x̄n)
the abstract clause wrt ρ is:

CC
≡ p(X̄C

0)← p1(X̄
C
1), . . . , pn(X̄C

n)

and wrt ρ′ is:

CC′

≡ p(X̄C′

0)← p1(X̄
C′

1), . . . , pn(X̄C′

n)

Let us denote the set XC
0 ∪· · ·∪X

C
n by XC and the set XC′

0 ∪· · ·∪X
C′

n by XC′

.
Let p(X̄C

0)← ϕ be a formula obtained in the i-th iteration of the polymorphic
analysis as follows:

ϕ = ∃XC \XC
0 .ϕ1, . . . , ϕi

where ϕj is a formula over XC
j and it represents the approximation of the

predicate pj obtained in the previous iterations. Let p(X̄C′

0)← ϕ′ be a formula
obtained in the i-th iteration of the monomorphic analysis as follows:

ϕ′ = ∃XC′

\XC′

0 .ϕ′
1, . . . , ϕ

′
i

where ϕ′
j is a formula over XC′

j and it represents the approximation of the
predicate pj obtained in the previous iterations. Now we will show that the
reuse of ϕ according to Theorem 3.1 is more precise than ϕ′ (explanations are
provided below):

ϕ′

=0 ∃XC′

\XC′

0 . ϕ′
1, . . . , ϕ

′
i

←1 ∃XC′

\XC′

0 . [(∃XC
1 . [U(XC′

1) ∧ ϕ1]) ∧ · · · ∧ (∃XC
n . [U(XC′

n) ∧ ϕn])]

=2 ∃XC′

\XC′

0 . [(∃XC . [U(XC′

1) ∧ ϕ1]) ∧ · · · ∧ (∃XC . [U(XC′

n) ∧ ϕn])]

=3 ∃XC′

\XC′

0 . [(∃XC . [U(XC′

) ∧ ϕ1]) ∧ · · · ∧ (∃XC . [U(XC′

) ∧ ϕn])]

←4 ∃XC′

\XC′

0 . [∃XC . [U(XC′

) ∧ ϕ1 ∧ · · · ∧ ϕn]]

=5 ∃XC . [∃XC′

\XC′

0 . [U(XC′

) ∧ ϕ1 ∧ · · · ∧ ϕn]]

=6 ∃XC . [∃XC′

\XC′

0 . [U(XC′

\XC′

0) ∧ U(XC′

0) ∧ ϕ1 ∧ · · · ∧ ϕn]]

=7 ∃XC . [U(XC′

0) ∧ ϕ1 ∧ · · · ∧ ϕn ∧ ∃X
C′

\XC′

0 . [U(XC′

\XC′

0)]]

=8 ∃XC . [U(XC′

0) ∧ ϕ1 ∧ · · · ∧ ϕn]

=9 ∃XC
0 . [∃XC \XC

0 . [U(XC′

0) ∧ ϕ1 ∧ · · · ∧ ϕn]]

=10 ∃XC
0 . [U(XC′

0) ∧ ∃XC \X
C
0 . [ϕ1 ∧ · · · ∧ ϕn]]

=11 ∃XC
0 . [U(XC′

0) ∧ ϕ]

We proved that:
[

∃XC
0 . [U(XC′

0) ∧ ϕ]
]

→ ϕ′. Here are the explanations to each

of the above steps:

(0) definition of ϕ′.

6

(1) By the induction hypotheses ϕ′
i ← (∃XC

i . [U(XC′

i) ∧ ϕi])

(2) ∃x.ψ = ∃y.∃x.ψ when y 6∈ vars(ψ). In our case the variables of ϕi are
only from XC

i , hence ∃XC
i can be replaced by ∃XC since XC

i ⊆ X
C .

(3) since the formula U(XC′

\XC′

i) does not share any variable with U(XC′

i)
(by Lemma 4.1) or with ϕi (by definition). Actually this step is redundant
but it simplifies the presentation.

(4) (∃x.ϕ1) ∧ (∃xϕ2) ≥ ∃x[ϕ1 ∧ ϕ2].

(5) just switching the order of the variables in the existential quantification.

(6) recall that U(XC′

) = U(XC′

\XC′

0) ∧ U(XC′

0) (by Lemma 4.1)

(7) ∃x.ψ1 ∧ ψ2 = ψ1 ∧ ∃x.ψ2 when x 6∈ vars(ψ1). In our case vars(U(XC′

0) ∧
ϕ1 ∧ · · · ∧ ϕn) ∩ (XC′

\XC′

0) = ∅.

(8) recall that ∃XC′

\XC′

0 . [U(XC′

\XC′

0)] ≈ true (by Lemma 4.2)

(9) splitting XC to XC
0 and XC \XC

0

(10) ∃x.ψ1 ∧ψ2 = ψ1 ∧ ∃x.ψ2 when x 6∈ vars(ψ1). In our case vars(U(XC′

0))∩
(XC \XC

0) = ∅ since U(XC′

0) uses only variables form XC′

0 and XC
0 .

(11) definition of ϕ above.

Actually what we have proved above is that the monomorphic result can-
not be more precise than the result obtained by reuse of the polymorphic res-
ults. The question arises whether it can be less precise. The following example
demonstrate that it can.

Example 4.1 This example demonstrates how the reuse of the polymorphic
results can be more precise than the monomorphic results. Also, it shows how
a termination proof can be obtained when reusing the polymorphic results and
cannot be obtained using directly the results of the monomorphic analysis. The
example is similar to the one in the SAS2002 paper [1] that demonstrates the
reuse of size relations. Note that the example is not based on the fact that we
have several T ′ constituents, we even don’t use them, but on the fact that I(σ)
is sometimes not a singleton. Consider the following poly-typed logic program:

7

:- type pair(T) --> t(list(int),list(T)).

:- type list(T) --> []; [T|list(T)].

:- type list(int) --> []; [int|list(int)].

:- pred p(pair(T)).

p(X) :- q(X),h(X).

:- pred q(pair(T)).

q(t([],[|])).

:- pred h(pair(T)).

h(t([|],[])).

and suppose it is used in a context where T=int. The polymorphic results wrt
the constituent T, list(T), int and list(int) are:

p(XT , Xl(T), Xi, Xl(i))← Xl(T) ∧Xl(i)

q(XT , Xl(T), Xi, Xl(i))← Xl(i)

h(XT , Xl(T), Xi, Xl(i))← Xl(T)

and the results in the monomorphic context for the constituents int, list(int)
are:

p(X ′
i, X

′

l(i))← true

q(X ′
i, X

′

l(i))← true

h(X ′
i, X

′

l(i))← true

but the reuse of the polymorphic results gives more precise information for p/1:

p(X ′
i, X

′

l(i))← ∃Xl(T), Xl(i).

[(X ′

l(i) ↔ Xl(i) ∧Xl(T))) ∧ (Xl(i) ∧Xl(T))] = X ′

l(i)

q(X ′
i, X

′

l(i))← true

h(X ′
i, X

′

l(i))← true

Now suppose this predicate is used as follow:

h :- p(X), X=t(A,B), app(A,[],C).

Using the monomorphic results one cannot infer that A is list(int)-rigid when
app/3 is called, hence one cannot prove that app/3 terminates. But reusing the
polymorphic results one can infer that A is list(int)-rigid when app/3 is called,
hence one can prove that app/3 terminates.

2

8

4.3 The reuse of the polymorphic result is sound

Note that U(XC′

) is an abstraction function from PosXC (the polymorphic
domain) to PosXC′ (the monomorphic domain). We denote this abstraction by
α. Now let αC be the abstract function from the concrete domain to PosXC

and let αC′

be the abstraction function from the concrete domain to PosXC′ .

Moreover, we can define the monomorphic abstraction function αC′

in terms
of αC and U as follows: αC′

= α(αC).
Let F be the concrete semantics, FC the abstract polymorphic semantics,

and FC′

the abstract mono semantics. Note that the reuse of FC is α(FC).
The following shows that the reuse is sound:

αC(F) ≤ FC

⇒ α(αC(F)) ≤ α(FC)

⇒ αC′

(F) ≤ α(FC)

which mean that the reuse α(FC) is an approximation of αC′

(F). Note that αC′

is the abstraction of the concrete semantics into the monomorphic domain and
not the one obtained in the monomorphic analysis, namely FC′

. Actually from
the reuse and the above proof we can conclude that: αC′

(F) ≤ α(FC) ≤ FC′

.

5 Conclusion

A problem in the SAS2002 paper [1] was pointed out to us by Peter Stuckey.
We noticed that the problem occurs when I(σ′

i) ∩ I(σ
′
j) 6= ∅. We solved the

problem by changing the way of the reuse, we introduced extra constituents in
the polymorphic type system such that I(σ′

i)∩I(σ
′
j) = ∅ holds. The method is

not as modular as the one presented in [1] because it assumes an upper bound on
the number of constituents of the instance of the polymorphic parameter. When
confronted with a call to an instance with more strict constituents of τi than
provided by the polymorphic analysis, one can still construct a correct formula
through reuse (though precision loss can occur) by splitting the strict constitu-
ents over several sets, applying the reuse formula on each set and performing a
conjunction.

The proof of Theorem 3.1 for the case of size-relation analysis is different
from the rigidity analysis, this is because in practice we use the Polyhedra
domain (part of CLP(N)) with convex-hull operation as LUB and also with a
widening operator in order to avoid infinite chains:

• If we assume that the size-relation analysis is applied over the CLP(N)
domain (where the LUB is sets union) and without applying any widening
then the proof is similar to that of Pos – since Lemma 4.1, Lemma 4.2 and
the different properties of Boolean functions used in the proof hold also
for the case CLP(N) constraints. In this case we also should use transfinite
induction. Again, recall that this is a theoretical case since the analysis
may be infinite.

9

• If we assume that the analysis is done over the Polyhedra domain with
convex-hull as LUB and also with widening operator, then in addition we
must show that the application of widening and convex-hull operations
applied on a more precise formula yields a more precise formula (confer
to what we proved about the LUB in Section 4.2.2).

References

[1] Maurice Bruynooghe, Michael Codish, Samir Genaim, and Wim Van-
hoof. Reuse of results in termination analysis of typed logic programs.
In Static Analysis, 9th International Symposium, volume 2477 of Lecture
Notes in Computer Science, pages 477–492. Springer-Verlag, 2002. URL =
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=38931.

10

