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Abstract

Recently, we developed the 3D Neighborhood
Kernel (3DNK), which acts on 3D structures
of small molecules and proteins. We showed
its state-of-the-art performance on several bi-
ological datasets. However, 3D data are in
many cases difficult to obtain. For this rea-
son, we adopt a different strategy: instead of
requiring actual 3D structures, we use as in-
put protein sequences, of which we approx-
imate the 3D structure through homology
modelling. Then, we apply 3DNK on the ap-
proximated 3D protein structures and show
that, on the task of predicting HIV resis-
tance, we obtain better results than when
using a kernel function based on the protein
sequences alone.

1. Introduction

An increasing number of machine learning techniques
are able to exploit structure in data, with many appli-
cations, not in the least in the biological domain, where
sequences and structures of proteins, interaction net-
works, or RNA structures have been used to predict
a variety of interesting properties (King et al., 1996;
Deforche, 2008; Shervashidze & Borgwardt, 2009). Re-
cently, we introduced the 3D Neighborhood Kernel
(3DNK), which can exploit geometrical relationships
within 3D structures of proteins and small molecules
(Schietgat et al., 2015).

In this work, we will address a specific biological task:
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predicting resistance of HIV proteins to drugs. Drug
resistance is a recurrent problem in modern medicine,
not only relevant for HIV treatment but also for treat-
ment with antibiotics, for example. Being able to ac-
curately predict whether a virus or bacteria is resistant
against a particular drug can improve the treatment
significantly. A number of algorithms tackling this
task have been introduced (Vercauteren & Vandamme,
2006), but they are limited to sequence data. Such
methods are not able to exploit the geometrical rela-
tionships between the protein’s atoms, which are im-
portant when considering the binding to a drug for ex-
ample. Therefore, we use a 3D method (3DNK), which
takes into account distances between atoms from the
backbone (or skeleton) of the protein and atoms from
the side chains (which form the protein’s exterior).

However, because it is still much more expensive to
obtain a 3D structure of a protein than obtaining a
sequence, 3D data are scarce. In order to circumvent
this limitation, we will convert protein sequences into
structures using homology modelling and then use the
predicted structures to train a model with 3DNK. In-
terestingly, while the predicted protein structures are
not perfectly accurate, the results show that the 3DNK
model based on the predicted structures works better
than a kernel method based on the sequences (also
called 1D structure) of the same proteins.

2. Methods

Homology modelling Given an amino acid sequence
of a protein, homology modelling computes an approx-
imation of its 3D structure (Šali & Overington, 1994).
The underlying assumption is that proteins with a sim-
ilar sequence have a similar structure. Therefore, the
input sequence is first aligned with other sequences
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for which the structure is known (called templates),
and then the structure of the most similar ones are
used to model the structure for the input sequence. A
number of possible solutions are generated and scored
according to an energy-based criterion. The resulting
protein structure is then the solution with the lowest
score. The method works best when there is high sim-
ilarity between the input sequence and the templates,
which is especially the case for HIV data.

3D Neighborhood Kernel (3DNK) For an intro-
duction to kernel methods, we refer to (Cristianini &
Shawe-Taylor, 2000). The idea of the 3DNK kernel is
to compare point sets based on their 3D structure: (i)
for each of both point sets, a subset of points is se-
lected (called the selected points) according to a user-
specified criterion ∆; (ii) for each selected point, its
neighborhood is retrieved according to a user-specified
neighborhood function Φ; and (iii) for each point in
the set of selected points, dΦ returns a feature vector
describing the local spatial conformation of that point
in its neighborhood, i.e. the distances to the other
points in that neighborhood. The kernel or similarity
between two point sets X and Y is then calculated by
comparing the feature vectors of all pairs of identically
labeled, selected points:

K∆,Φ(X,Y ) =
∑

a∈∆(X)

∑
b∈∆(Y )

KG (dΦ(X, a), dΦ(Y, b))

·I (λ(a) = λ(b)) ,

where KG is a Gaussian-based distance kernel, and
I(x) = 1 if x is true, 0 otherwise (Schietgat et al.,
2015). To predict HIV resistance, the selected points
are the side chain atoms of the protein, while the
neighborhood consists of the nearest n backbone atoms
(with n a parameter specified by Φ).

3. Experimental Evaluation

3.1. Datasets

Classification Sequences of HIV-1 protease proteins
were retrieved from genotype-treatment data of the
Stanford HIV resistance database (Shafer & Rhee,
2016). These sequences were extracted from patients
who were untreated (labeled not resistant) or treated
with the inhibitors IDV and NFV (labeled resistant).
This leads to two classification datasets: IDVCl (2159
sequences) and NFVCl (2192 sequences).
Regression We also extracted two regression datasets
from genotype-phenotype data of the same database,
which contains activity data of in-vitro experiments
(a real number between 0 and 1000): IDVRe (276 se-
quences) and NFVRe (326 sequences).

Table 1. AUROC and MSE of the different methods for the
classification and regression datasets.

Dataset 1D 3DNK Rega
Classification (AUROC)

IDVCl 0.81 0.99 0.73
NFVCl 0.83 0.99 0.76

Regression (MSE)

IDVRe 2.01 1.46 -
NFVRe 2.05 1.73 -

3.2. Methodology

We compare 3DNK to a kernel which acts on protein

sequences. K1D(p, q) = exp −d(p,q)
σ2 , with d(p, q) the

Hamming distance between sequence p and q and σ a
parameter of the Gaussian distance kernel. We also
compare 3DNK to the Rega algorithm, which was de-
veloped by domain experts. It consists of a number
of expert rules relating certain mutations to resistance
(REGA institute, KU Leuven, 2013). To model the
protein structures, we used Modeller v9.15 (Webb &
Sali, 2014) with standard parameters and HIV-1 tem-
plates from PDB (Berman et al., 2000).

We evaluate the performance of the kernel methods
by running support vector machines (using SVMlight

(Joachims, 2002)) on their kernel matrices. We used
10-fold cross-validation and reported AUROC for the
classification datasets and mean squared error (MSE)
for the regression datasets. We optimized the param-
eters of the different methods using an internal 5-fold
cross-validation. For the regression datasets, we used
the log values of the original targets.

3.3. Results

For both the classification and regression datasets, the
3D kernel outperforms the 1D kernel. Moreover, both
kernel methods outperformed the REGA algorithm
(Table 1). This suggests that 3DNK can extract rele-
vant information from the 3D structures.

4. Conclusions and Further Work

In this work, we showed that, when looking at the
prediction of HIV resistance, even when there are no
3D data available, it is worth approximating the 3D
structure and running a 3D method. In further work,
we will check whether the same conclusions hold for
other datasets and tasks, and for other machine learn-
ing techniques.
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