
Fast Relational Data Mining
Query Optimization for Improving the Efficiency of Relational Data Mining Systems

Jan Struyf

Abstract—Data mining is the process of building predictive
or descriptive models based on a large data set, often stored
in a relational database. Propositional data mining systems
require that the data is converted into one single table. Re-
lational data mining systems, on the other hand, can build
models directly from the relational database. While build-
ing a model, relational data mining systems execute a huge
number of queries on the database and this consumes much
CPU time. In our work, we propose a number of query op-
timization techniques that speed up query execution. Rela-
tional data mining systems generate queries and access the
data in a structured way. Our optimizations exploit this
structure as much as possible.

Keywords— Relational Data Mining, Machine Learning,
Efficient Algorithms, Query Optimization

I. Introduction

DATA mining is the process of building predictive or
descriptive models based on large data sets. Many

types of data sources can be used for data mining. The
data can be stored in a relational database (RDB), it can
be a collection of HTML or XML documents, a set of DNA
sequences or a number of molecule descriptions.

In predictive data mining, the goal is to build a model
that maps an instance to a valid prediction, i.e. a class in
case of a classification task or a real value in case of a regres-
sion task. For example, a predictive model could predict
whether or not a given customer will buy a certain product
or it could predict the mutagenicity of a molecule. Rule
sets, decision trees, instance based representations, neural
networks and support vector machines are frequently used
predictive models.

Descriptive data mining algorithms are designed to dis-
cover interesting knowledge from the data, such as fre-
quently occurring patterns or clusters of similar instances.
Basket analysis is a typical descriptive data mining ap-
plication where one is interested in sets of items that are
frequently bought together, for example, by the customers
of a supermarket.

II. Relational Data Mining

Data mining algorithms can be classified in several cat-
egories depending on the way the input data is represen-
ted. Many systems are designed to work on data stored in
a single table. We call such systems propositional systems
because their data representation is equivalent to propos-
itional logic. In our work we focus on a second class of
data mining systems: relational data mining systems. Re-
lational data mining systems can learn directly from data

Jan Struyf is a PhD. student at the Department of Computer Sci-
ence, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001
Leuven, Belgium, jan.struyf@cs.kuleuven.ac.be.

stored in a RDB. The difference between propositional and
relational data mining systems is depicted in Figure 1.

Data Source

Propositionalization

Propositional DM

Propositional Model

Relational/FOL Representation

Relational DM/ILP

Relational Model

Q
ue

ry
E

xe
cu

tio
n

Q
ue

ry
O

pt
im

iz
at

io
n

Fig. 1. Propositional and Relational Data Mining.

The main drawback of propositional systems is that the
data has to be converted into a single table, where each row
describes a specific instance with a fixed set of features or
attributes. This conversion process, called propositionaliz-
ation, is difficult, may require non-trivial human interac-
tion and results in many cases in loss of information. Re-
lational data mining systems do not require this complex
conversion step because they can learn from the data in its
original representation. Another benefit of relational data
mining is that the output can also be formulated in terms
of the original representation, which makes interpretation
of the induced models easier for the domain expert.

Inductive Logic Programming (ILP) systems are data
mining systems that can learn from data represented as a
logic program. Logic programs are a subset of first order
logic (FOL). Because FOL is a very expressive formalism,
the representation used by many data sources (including
RDBs) can be considered a special case. An advantage of
ILP systems is that they can incorporate expert knowledge
formulated as a FOL theory.

III. Query Optimization

Relational frequent pattern mining is a generalization of
basket analysis. A relational pattern (or query) can be
represented in FOL as a conjunction of first order liter-
als. Consider the following example query (we represent
variables with capital letters).

person(X) ∧ buys(X, pizza) ∧ friend(X, Y ) ∧
buys(Y , wine).



The frequency of this query is equal to the proportion of
persons X in the RDB that buy pizza and have a friend Y
who buys wine. If this frequency is above a given threshold,
the query is called a frequent query.

In order to build a model from a RDB, an ILP system has
to execute a huge number of queries on it. For example,
for the relational pattern mining application, the system
will execute a set of candidate queries on de data, compute
the frequency of each candidate and output those that are
found frequent. Because one query may involve several
relations, query execution is much more complex than in
the propositional case and consumes much CPU time. As
a consequence, efficient query execution is essential for ILP
systems.

One approach for building ILP systems is to connect
them to an existing relational database management sys-
tem (RDBMS). The advantage is that queries will be ex-
ecuted efficiently because such systems typically implement
a number of query optimization techniques. However, we
argue that it is better not to do this. Instead one should
design a special purpose RDBMS. This special purpose RD-
BMS does not need to include all components of a regular
RDBMS. For instance, it does not need to provide transac-
tions and locking. These are not necessary for ILP and only
cause extra overhead. The main advantage of using a spe-
cial purpose RDBMS is that it can include optimizations
that are specific for ILP systems. Such optimizations are
possible because ILP systems generate queries and access
data in a structured way. In our work we design and evalu-
ate such specific optimizations. A possible optimization is
to store all records relevant for a certain instance together.
Because ILP systems access the database one instance at
a time, these sets of records can be loaded one by one and
cached easily in main memory.

In [1], we propose a number of query transformations
that are specific to ILP. A query transformation transforms
a query into a different form that can be executed faster.
Our transformations exploit the fact that ILP systems for
a given query and instance only need to know if the query
succeeds or not. The entire answer set does not have to
be computed. One of the transformations inserts special
control constructs in the query informing the execution en-
gine that only one solution is necessary for a certain sub-
query. Such a construct can be used if the query consists
of several independent components. A second transforma-
tion exploits the fact that queries are generated by the ILP
system by extending previously generated queries with a
number of literals. Independent components for which the
system knows that they succeed (from previous execution)
can be removed from the query. A third optimization re-
moves redundant literals from a query.

In [2] we propose a query transformation that reorders
the literals of a query. Queries can be executed faster if
selective literals are placed first. For example, if a certain
literal only succeeds for 1% of the instances, then the re-
maining literals do not need to be executed for 99% of the
data if the selective literal is executed first.

ILP systems generate queries in a structured way. A

new query is generated by extending a preceding one with
a number of literals. This implies that many queries share
common prefixes. By converting the set of queries to a tree,
computations for these common prefixes can be shared.
In our research group, a special execution mechanism for
these tree structures called query-pack execution has been
proposed. In more recent work we have exploited the tree
structure in an efficient frequent pattern mining system.
Such a system must check each new candidate query it
generates for equivalence with the preceding queries. We
show in [3] that this equivalence check can also be made
more efficient by exploiting the tree structure.

Finally, we are working on an execution mechanism that
allows one to combine query transformations with query-
pack execution. A first version of this method is described
in [4]. We hope that this new method will combine the
advantages of query transformations and query-pack exe-
cution.

IV. Conclusions

Relational data mining systems are data mining sys-
tems that can build models directly from the information
stored in a relational database. Inductive Logic Program-
ming (ILP) is one approach to relational data mining. ILP
systems spend most of their execution time on query exe-
cution. We propose a number of query optimizations for
speeding up query execution that are specific for ILP. Such
optimizations are possible because ILP systems generate
queries and access data in a structured way.

Acknowledgments

Jan Struyf is a research assistant of the Fund for Sci-
entific Research - Flanders (FWO). The author would like
to thank his supervisors Hendrik Blockeel and Bart De-
moen and also Jan Ramon and Gerda Janssens for the
many fruitful discussions.

References

[1] V. Santos Costa, A. Srinivasan, R. Camacho, H. Blockeel, B. De-
moen, G. Janssens, J. Struyf, H. Vandecasteele, and W. Van Laer,
“Query transformations for improving the efficiency of ILP sys-
tems”, Journal of Machine Learning Research, vol. 4, pp. 465–
491, Aug. 2003.

[2] J. Struyf and H. Blockeel, “Query optimization in inductive logic
programming by reordering literals”, in Proceedings of the 13th
International Conference on Inductive Logic Programming. 2003,
Lecture Notes in Artificial Intelligence, Springer.

[3] J. Ramon and J. Struyf, “Efficient theta-subsumption of sets of
patterns”, in Proceedings of Benelearn 2004, the Annual Belgian-
Dutch Conference on Machine Learning, 2003, Submitted.

[4] R. Tronçon, H. Vandecasteele, J. Struyf, B. Demoen, and G. Jans-
sens, “Query optimization: Combining query packs and the once-
transformation”, in Proceedings of the 13th Internal Conference
on Inductive Logic Programming, 2003, Short Presentations.


