
On the problem of veri�
ation of sour
e 
ode transformations:

A 
ase study

Qiang Fu

y

, Mauri
e Bruynooghe

y

, Gerda Janssens

y

, and Fran
ky Catthoor

�

y

Departement Computerwetens
happen, Katholieke Universiteit Leuven, Belgium

fqiang,mauri
e,gerdag�
s.kuleuven.a
.be

�

IMEC vzw,Kapeldreef 75, B-3001 Hevelee, Belgium

f
atthoorg�ime
.be

Abstra
t

A re
ent method that uses geometri
 modelling is able to 
he
k the fun
tional equivalen
e of initial

and transformed programs under global sour
e 
ode transformations. However, the method makes strong

assumptions about the programming 
onstru
ts and about the kind of transformations that have been applied.

This work investigates to what extent multimedia appli
ations meet these assumptions.

1 Introdu
tion

Nowadays, 
omplex multimedia software is running on embedded systems in various 
onsumer ele
troni
 appli-

an
es. Due to the limited resour
es, software solutions have to be power eÆ
ient and adapted to spe
i�
 platform

ar
hite
tures. This requires to apply 
omplex transformations on the orignal sour
e 
ode. They are based on

an analysis of maximal memory footprint, 
ommuni
ation or a

ess bandwidth bottlene
ks, power 
onsumption,

et
. The transformations, applied manually or by tools, are global and are performed at the sour
e 
ode level,

prior to 
ompilation. One example of this kind of optimization method is Data Transfer and Storage Exploration

methodology (DTSE [CWdG

+

98℄).

The 
omplexity of the optimization phase makes the resulting program prone to errors. So it is 
ompulsory

to have an independent veri�
ation pro
ess that 
he
ks the 
orre
tness of the transformed program with respe
t

to the original one. Although the transformed program is di�erent from the original one, the observable behavior

that represents the fun
tionality of the program should be preserved.

To do the veri�
ation manually is also prone to error and time 
onsuming be
ause of the 
omplexity of

the veri�
ation task. An automated method, based on geometri
 modelling, is des
ribed in [SBCJ03℄. It is

able to verify programs that have undergone loop transformations and 
ommon expression propagations. In

what follows, we dis
uss the limitations of this method and analyse to what extent 
odes developed for some

mutimedia appli
ations 
an be veri�ed.

2 Limitations of the present method

In general, the problem of determining program equivalen
e is unde
idable. In order to obtain a de
idable

problem, it is required to fo
us on a de
idable subset of programs. The two most important 
onstraints imposed

by [SBCJ03℄ are that the 
ontrol-
ow is stati
 and that expressions in subs
ripts of array variables and loop

bounds are aÆne.

In addition, it is required that ea
h element of every (array) variable in the program is assigned a value only

on
e, i.e., that the program is in dynami
 single-assignment form (DSA form [VJB

+

03℄). The DSA form of a

program makes the data 
ow expli
it, hen
e it simpli�es the veri�
ation task. Unfortunately, general programs

are hardly ever in DSA form. Fortunately, there are methods ([VJB

+

03℄) to 
onvert a program into DSA form.

Furthermore, the 
urrent method is an intrapro
edural method. It 
an only verify that the fun
tional be-

haviour of ea
h pro
edure/fun
tion is preserved. Moreover, fun
tions/pro
edures should not perform any side

e�e
ts. Also pointers 
annot be handled by the geometri
 modelling.

These restri
tions restrain the 
lass of programs and the 
lass of transformations that 
an be veri�ed. In

order to assess to what extent these limitations 
ompromise the ability to verify designs of real-life multimedia



appli
ations, we have 
ondu
ted a 
ase study on some representative set. We have analysed whi
h assumptions

underlying the geometri
 modelling are violated by real 
ode as well as the 
lass of transformations that the

designers have applied during the development. The results of this study are intended to provide guidan
e in

extending the method so that it better addresses the veri�
ation needs of real designers.

3 Case Study

The examples we looked at are kernels of real-life multimedia appli
ations that we obtained from IMEC. They

are the following: (i). QSDPCM: Quadtree Stru
tured Di�eren
e Pulse Code Modulation is an inter-frame


ompression te
hnique for video. (ii). MP3: an implementation of the MPEG layer 3 de
oder. (iii). MPlayer:

a multimedia player that implements DivX de
oding te
hnologies. (iv). DAB FFT: an implementation of the

FFT algorithm in the Digital Audio Broad
asting appli
ation. To improve power eÆ
ien
y and performan
e,

designers have developed di�erent versions of ea
h example by applying various sour
e 
ode transformations.

These examples are typi
al multimedia appli
ations; we believe they are representative of the 
lass of programs

in this appli
ation domain. In the 
ase study, the relevant 
ode 
hara
teristi
s for the veri�
ation tool have been

extra
ted and the applied transformations have been analyzed.

Chara
teristi
s QSDPCM MP3 MPlayer DAB FFT

Multiple assignment Yes Yes Yes Yes

Non-aÆne expression for index

and loop bounds

no no no no

Pointers no Yes Yes no

Side e�e
ts no Yes no no

Data-dependent 
onditionals Yes Yes Yes Yes

While loops no no no Yes

Table 1: The program 
hara
teristi
s seen in the examples

Transformations QSDPCM MP3 MPlayer DAB FFT

DTSE Prepro
essing Yes Yes Yes Yes

Modi�
ation of fun
tion Call no Yes Yes Yes

Dead-
ode elimination Yes Yes no no

Data 
ow transformations Yes Yes Yes Yes

Loop transformations Yes Yes Yes Yes

Data Reuse transformations Yes no no no

Table 2: Transformations in the examples

Code 
hara
teristi
s. Table 1 shows the 
ode 
hara
teristi
s. Only those 
hara
teristi
s that are not sup-

ported by the 
urrent tool have been extra
ted. Multiple assignment 
ode is very popular in appli
ations

sin
e it is the natural way of writing 
ode. A prepro
essing step, tranforming 
ode to DSA, should allow the

veri�
ation tool to 
ope with it. Pointers are also often used in multimedia program to provide more 
exibility

for programming. The geometri
 modelling used in the 
urrent tool 
annot handle them. Data-dependent


onditionals appear frequently be
ause the applied 
omputations are often dependent on input values. They


annot be handled by the veri�
ation tool. A
tually, typi
al for the DTSE design methodology is that they

are isolated in separate fun
tions/pro
edures and are untou
hed by the subsequent global transformations. The

problem with while loops is that the loop bounds are unknown.

Transformations. Table 2 shows the kind of transformations that have been applied by the designers. DTSE

prepro
essing,modi�
ation of fun
tion 
alls, and dead-
ode elimination are transformations that enable

further optimization and are 
urrently not the target of veri�
ation sin
e the method aims at 
leaned-up 
ode

(see Figure 1 (a)). The last three transformations aim at 
ode optimization. Data 
ow transformations are

needed to optimize algorithms or to enable optimization thereof. Currently, the method to verify global algebrai


data 
ow transformations is in progress (see Shashidhar's arti
le in this pro
eedings). But how to automati
ally

2



verify more 
ompli
ated data 
ow transformations is still not 
lear at this moment. Loop transformations

and data reuse transformations 
an be veri�ed using the 
urrent method.

The observed 
ode 
hara
teristi
s prevent dire
t appli
ation of the 
urrent veri�
ation method on some

multimedia programs. By using an appropriate prepro
essing method, the multiple assignment form 
an be

transformed into DSA form ([VJB

+

03℄) and pointers 
an be removed ([vEG01℄). Changing the veri�
ation

s
hema from Figure 1 (a) to (b) 
an largely extend the 
lass of programs that 
an be veri�ed. However, it is yet

un
lear what is the impa
t of su
h prepro
essing on the 
omplexity of the veri�
ation task. Another dire
tion

for future resear
h is to extend the 
urrent method to 
ope with data-dependent 
onditionals in the veri�
ation

and to extend it to deal with more ad ho
 data 
ow transformations as used for example in QSDPCM.

Original
Program

Program
Preprocessed

DTSE Preprocessing

Transformations

Preprocessing for
Verification

Program
TransformedTransformationsOriginal

Program

Preprocessing for
Verification

Preprocessed
Original code

Preprocessed
Transformed code

Verification Tool

Transformed
Program

Verification Tool

(a) (b)

Figure 1: Veri�
ation S
hema

4 Con
lusions

In this abstra
t, we have analysed to what extent the veri�
ation method for global sour
e 
ode transformations

of [SBCJ03℄ addresses the veri�
ation needs that arise in the design of energy eÆ
ient and high performan
e

embedded mutimedia appli
ations. At this moment, only a 
ertain 
lass of transformations and 
ertain kinds

of programs 
an be veri�ed using this method. By 
losely looking at the sour
e 
odes of some representative

multimedia appli
ations, we have derived whi
h features are responsible for the distan
e between what is veri�able

and what is to be veri�ed. This work will serve as the guideline of our future resear
h on extending the 
urrent

veri�
ation method.

Referen
es

[CWdG

+

98℄ Fran
ky Catthoor, Sven Wuyta
k, Eddy de Greef, Florin Balasa, Lode Na
htergaele, and Arnout

Vande
appelle. Custom Memory Management Methodology Exploration of Memory Organisation

for Embedded Multimedia System Design. Kluwer A
ademi
 Publishers, 1998.

[SBCJ03℄ K. C. Shashidhar, Mauri
e Bruynooghe, Fran
ky Catthoor, and Gerda Janssens. Automati
 fun
-

tional veri�
ation of memory oriented global sour
e 
ode transformations. In IEEE International

High Level Design Validation and Test Workshop, 2003.

[vEG01℄ Robert A. van Engelen and Kyle A. Gallivan. An eÆ
ient algorithm for pointer-to-array a

ess


onversion for 
ompiling and optimizing dsp appli
ations. In the 2001 International Workshop on

Innovative Ar
hite
tures for Future Generation High-Performan
e Pro
essors and Systems (IWIA

2001), pages 80{89, Maui, Hawaii, January 2001.

[VJB

+

03℄ Peter Vanbroekhoven, Gerda Janssens, Mauri
e Bruynooghe, Henk Corporaal, and Fran
ky Catt-

hoor. A step towards a s
alable dynami
 single assignment 
onversion. K.U.Leuven, Department

of Computer S
ien
e, Report CW 360, April, 2003.

3


