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Reinforcement L earning

o N

Based on psychological principles
® Observe behavior
® Reward desired behavior

® [Improvement in behavior

Computer science

® online >[ Agent ]
trial and error state rreward action
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RL - formal

o N

Given
® a set of possible states S.
#® a set of possible actions A.

#® a - for the agent unknown - transition function
0: S xA—S.

#® a - forthe agent unknown - reward functionr : S x A — R.

Find a policy 7* : § — A, that maximizes

©.@)
7 - )
V7™(st) = E YT
1=0
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Relational Reinforcement Learning

o N

A relation representation to represent states, actions and
policies
#® Allows use of

s oObjects

s properties of objects

» relations between objects

#® Allows generalisation
» over states, actions, goals

s re-use previous experience
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|nformed Reinforcement L earning

-

#® a RRL-agent doesn’t know what he is doing

s Just tries to maximize his future reward
#® reason about actions, states, goals
The idea of IRL Is
® inspired by modelbased reinforcement learning
® (o generate or learn extra information

# use this information to accelerate convergence
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|nformed Reinforcement L earning

o N
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Thel InIRL
| -

What to learn?

# properties of the environment and his objects
s goal

s subgoals (interesting properties to achieve)

® possible actions
s preconditions

» postconditions
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What do with 1t?
| -

Use this extra information in a goal-directed way to accelerate
convergence

# utility function
® action selection
® |ookahead

# planning
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A note

o N

Hierarchical abstraction

# allow to define action sequences
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A starting point
- -

Reason about goals and “subgoals”
Accelerate convergence, using goal-oriented reasoning

o start at the end of an epsiode
#® reason backwards

#® search for “interesting” properties / conditions
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Theblocksworld
L -

A planning problem

#® agent only receives reward when goal Is reached
3 goals

# stacking

# unstacking

® on(A,B)

Each state is a set of facts, e.g. clear(a), clear(b), on(c,d),

on(d,floor)
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Theon(A,B) goal
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Theon(A,B) goal
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A starting point
-

Approaches to find interesting properties
#® frequent pattern mining
#® probabilities
Approaches to use this information
# action selection by more advanced agent
# standard RRL + extended reward function

# something in between, e.g. Q-function
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Using probabilities
B -

After an episode, update| property | Goal | NSR | Avg
probabillities on(a,b) 1 0 0
» if goal reached clear(a) 1 1 0.3
# If goal reached in the clear(b) 0 1 0.3

next state on(e,floor) | 0.28 | 0.28 | 0.31
# If goal not reached
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Using probabilities
f N\ T

After an episode, update| property Gzal NSR | Avg

probabilities // on(@b) | 1 | 0o | O

» if goal reached clear(a) 1 1 0.3
# If goal reached in the clear(b) 0 1 0.3
next state on(e,floor) | 0.28 | 0.28 | 0.31

# |If goal not reached
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Using probabilities

-

After an episode, update

probabillities /

# |if goal reached

next state

# |If goal not reached

or ty Ggal NiS’R Avg
%n(a,b) 1 0 0
clear(a) 1 0.3
clear(b) 0 1 0.3
on(e,floor) | 0.28 28 | 0.31
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Using probabilities

After an episode, update M al | N

probabilities /%

# |if goal reached

' d in the clear(b) 0
next state / on(e,floor) | 0.28 | 0.

8 | 0.31
# |If goal not reached
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Extended exloration function

o N

Interesting preconditions

#® properties with a significant difference between
P(Goal|Property) and P(Auvg|Property)

Extended exploration function

#® Use an agent that can explore the environment in a more
goal-directed way.

® more information Is needed

But, the agent needs to know how to accomplish these prop-
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Extended reward function

-

#® Extend the reward function with probability of reward in
next state

# State S = clear(a), on(a,floor), clear (b) ...
R'(S,A) = R(S,A) + wP(RNS|S)
Compute P(NSR|S) with e.g. Naive Bayes

P(RNS|S) = P(RNS|clear(a)).P(RNS|on(a, floor))
.P(RNS|clear(b)) ...

More advanced techniques (BLP, .. .)
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A Bayesian approach
B -

#® Learning structure is guided by goal.
# Example in BLP format:

reward(t) | goal(on(A,B)),on(A,B,t).
on(A,B,t) | action(move(A,B),t-1).
on(A,B,t) | on(A,B,t-1).
success(move(A,B),t) | clear(A,t),clear(B,t).
clear(A,t) | clear(A,t-1).

clear(A,t) | on(B,A,t-1),action(move(B,C),t-1),B+£C.
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Conclusions

o N

Conclusions
#® a short overview of Informed Reinforcement Learning

# a starting point

» discovering subgoals

s frequent pattern mining (warmr)
s probabilities

s extending reward function
Future work

® see previous slides
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Questions?
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