Informed Reinforcement Learning An overview

Tom Croonenborghs

Tom.Croonenborghs@cs.kuleuven.ac.be

Department of Computer Science, Katholieke Universiteit Leuven Celestijnenlaan 200A, B-3001 Leuven, Belgium

Overview

- Introduction
 - Reinforcement Learning
 - Relational Reinforcement Learning
 - Informed Reinforcement Learning
- The IRL framework
- A starting point
- Conclusions

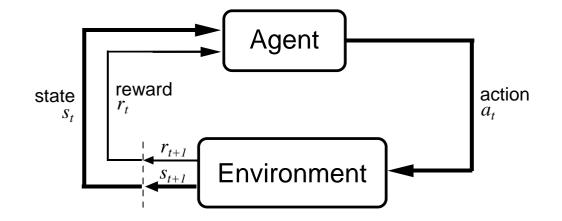
Reinforcement Learning

Based on psychological principles

- Observe behavior
- Reward desired behavior
- Improvement in behavior

Computer science

- online
- trial and error
- interaction
- state based world
- optimal policy



RL - formal

Given

- a set of possible states S.
- a set of possible actions A.
- **a** for the agent unknown *transition function* $\delta: S \times A \rightarrow S$.
- **•** a for the agent unknown reward function $r: S \times A \rightarrow R$.

Find a policy $\pi^*: S \to A$, that maximizes

$$V^{\pi}(s_t) = \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

Relational Reinforcement Learning

A relation representation to represent states, actions and policies

- Allows use of
 - objects
 - properties of objects
 - relations between objects
- Allows generalisation
 - over states, actions, goals
 - re-use previous experience

Informed Reinforcement Learning

- a RRL-agent doesn't know what he is doing
 - just tries to maximize his future reward
- reason about actions, states, goals

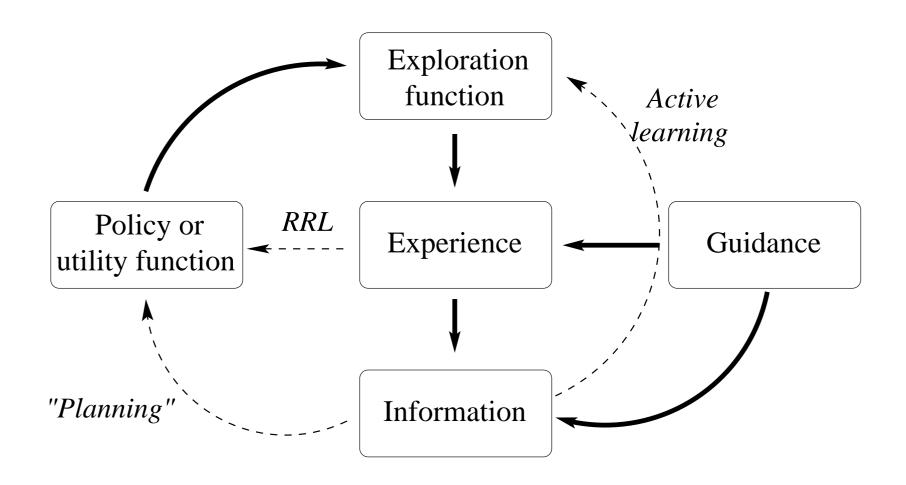
The idea of IRL is

- inspired by modelbased reinforcement learning
- to generate or learn extra information
- use this information to accelerate convergence

Overview

- Introduction
 - Reinforcement Learning
 - Relational Reinforcement Learning
 - Informed Reinforcement Learning
- The IRL framework
- A starting point
- Conclusions

Informed Reinforcement Learning



The I in IRL

What to learn?

- properties of the environment and his objects
 - goal
 - subgoals (interesting properties to achieve)
- possible actions
 - preconditions
 - postconditions

What do with it?

Use this extra information in a goal-directed way to accelerate convergence

- utility function
- action selection
- lookahead
- planning

A note

Hierarchical abstraction

allow to define action sequences

Overview

- Introduction
 - Reinforcement Learning
 - Relational Reinforcement Learning
 - Informed Reinforcement Learning
- The IRL framework
- A starting point
- Conclusions

A starting point

Reason about goals and "subgoals"

Accelerate convergence, using goal-oriented reasoning

- start at the end of an epsiode
- reason backwards
- search for "interesting" properties / conditions

The blocks world

A planning problem

agent only receives reward when goal is reached

3 goals

- stacking
- unstacking
- on(A,B)

Each state is a set of facts, e.g. clear(a), clear(b), on(c,d), on(d,floor)

The blocks world

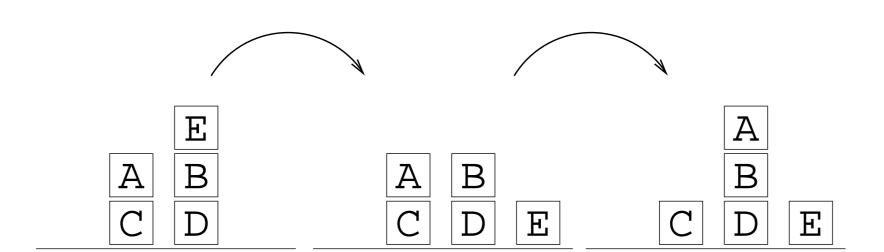
A planning problem

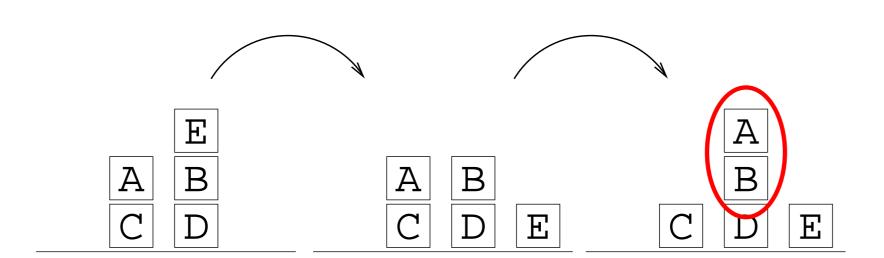
agent only receives reward when goal is reached

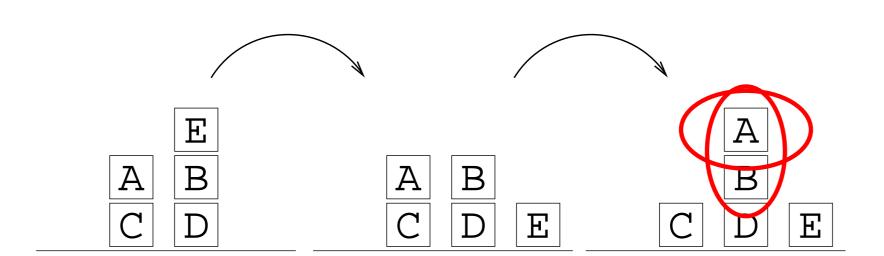
3 goals

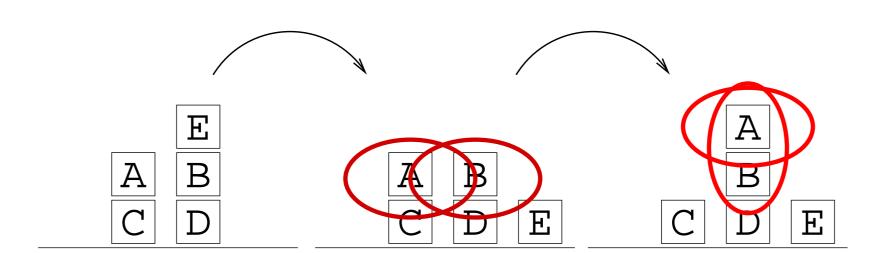
- stacking
- unstacking
- on(A,B)

Each state is a set of facts, e.g. clear(a), clear(b), on(c,d), on(d,floor)









A starting point

Approaches to find interesting properties

- frequent pattern mining
- probabilities

Approaches to use this information

- action selection by more advanced agent
- standard RRL + extended reward function
- something in between, e.g. Q-function

- if goal reached
- if goal reached in the next state
- if goal not reached

property	Goal	NSR	Avg
on(a,b)	1	0	0
clear(a)	1	1	0.3
clear(b)	0	1	0.3
on(e,floor)	0.28	0.28	0.31
		• • •	• • •

- if goal reached
- if goal reached in the next state
- if goal not reached

property	Goal	NSR	Avg
on(a,b)	1	0	0
clear(a)	1	1	0.3
clear(b)	0	1	0.3
on(e,floor)	0.28	0.28	0.31
• • •		• • •	• • •

- if goal reached
- if goal reached in the next state
- if goal not reached

property	Goal	NSR	Avg
on(a,b)	1	0	0
clear(a)	1	1	0.3
clear(b)	0	1	0.3
on(e,floor)	0.28	0.28	0.31
• • •	• • •	• • •	

- if goal reached
- if goal reached in the next state
- if goal not reached

property	Goal	NSR	Avg
on(a,b)	1	0	0
clear(a)	1	1	0.3
clear(b)	0	1	0.3
on(e,floor)	0.28	0.28	0.31
		• • •	

Extended exloration function

Interesting preconditions

• properties with a significant difference between P(Goal|Property) and P(Avg|Property)

Extended exploration function

- Use an agent that can explore the environment in a more goal-directed way.
- more information is needed

But, the agent needs to know how to accomplish these properties.

Extended reward function

- Extend the reward function with probability of reward in next state
- State S = clear(a), on(a,floor), clear (b) . . .

$$R'(S, A) = R(S, A) + \omega P(RNS|S)$$

Compute P(NSR|S) with e.g. Naive Bayes

$$P(RNS|S) = P(RNS|clear(a)).P(RNS|on(a, floor))$$

. $P(RNS|clear(b))...$

More advanced techniques (BLP, ...)

A Bayesian approach

- Learning structure is guided by goal.
- Example in BLP format:

```
reward(t) | goal(on(A,B)),on(A,B,t).

on(A,B,t) | action(move(A,B),t-1).

on(A,B,t) | on(A,B,t-1).

success(move(A,B),t) | clear(A,t),clear(B,t).

clear(A,t) | clear(A,t-1).

clear(A,t) | on(B,A,t-1),action(move(B,C),t-1),B\neqC.
```


Overview

- Introduction
 - Reinforcement Learning
 - Relational Reinforcement Learning
 - Informed Reinforcement Learning
- The IRL framework
- A starting point
- Conclusions

Conclusions

Conclusions

- a short overview of Informed Reinforcement Learning
- a starting point
 - discovering subgoals
 - frequent pattern mining (warmr)
 - probabilities
 - extending reward function

Future work

see previous slides

Questions?

Questions?

