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Reinforcement Learning

Based on psychological principles

Observe behavior

Reward desired behavior

Improvement in behavior

Computer science

online

trial and error

interaction

state based world

optimal policy

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state
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RL - formal

Given

a set of possible states S.

a set of possible actions A.

a - for the agent unknown - transition function
δ : S × A → S.

a - for the agent unknown - reward function r : S ×A → R.

Find a policy π∗ : S → A, that maximizes

V π(st) =
∞∑

i=0

γirt+i
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Relational Reinforcement Learning

A relation representation to represent states, actions and
policies

Allows use of

objects

properties of objects

relations between objects

Allows generalisation

over states, actions, goals

re-use previous experience
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Informed Reinforcement Learning

a RRL-agent doesn’t know what he is doing

just tries to maximize his future reward

reason about actions, states, goals

The idea of IRL is

inspired by modelbased reinforcement learning

to generate or learn extra information

use this information to accelerate convergence

Informed Reinforcement Learning – p.6/23



Overview

Introduction

Reinforcement Learning

Relational Reinforcement Learning

Informed Reinforcement Learning

The IRL framework

A starting point

Conclusions

Informed Reinforcement Learning – p.7/23



Informed Reinforcement Learning

"Planning"

Guidance
Policy or RRL

Active
learning

Exploration
function

utility function
Experience

Information
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The I in IRL

What to learn?

properties of the environment and his objects

goal

subgoals (interesting properties to achieve)

possible actions

preconditions

postconditions
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What do with it?

Use this extra information in a goal-directed way to accelerate
convergence

utility function

action selection

lookahead

planning
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A note

Hierarchical abstraction

allow to define action sequences
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A starting point

Reason about goals and “subgoals”
Accelerate convergence, using goal-oriented reasoning

start at the end of an epsiode

reason backwards

search for “interesting” properties / conditions
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The blocks world

A planning problem

agent only receives reward when goal is reached

3 goals

stacking

unstacking

on(A,B)

Each state is a set of facts, e.g. clear(a), clear(b), on(c,d),

on(d,floor)
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The on(A,B) goal
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A starting point

Approaches to find interesting properties

frequent pattern mining

probabilities

Approaches to use this information

action selection by more advanced agent

standard RRL + extended reward function

something in between, e.g. Q-function
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Using probabilities

After an episode, update
probabilities

if goal reached

if goal reached in the
next state

if goal not reached

property Goal NSR Avg

on(a,b) 1 0 0

clear(a) 1 1 0.3

clear(b) 0 1 0.3

on(e,floor) 0.28 0.28 0.31

. . . . . . . . . . . .
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Extended exloration function

Interesting preconditions

properties with a significant difference between
P (Goal|Property) and P (Avg|Property)

Extended exploration function

Use an agent that can explore the environment in a more
goal-directed way.

more information is needed

But, the agent needs to know how to accomplish these prop-

erties.
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Extended reward function

Extend the reward function with probability of reward in
next state

State S = clear(a), on(a,floor), clear (b) . . .

R′(S, A) = R(S, A) + ωP (RNS|S)

Compute P (NSR|S) with e.g. Naive Bayes

P (RNS|S) = P (RNS|clear(a)).P (RNS|on(a, floor))

.P (RNS|clear(b)) . . .

More advanced techniques (BLP, . . .)
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A Bayesian approach

Learning structure is guided by goal.

Example in BLP format:

reward(t) | goal(on(A,B)),on(A,B,t).
on(A,B,t) | action(move(A,B),t-1).
on(A,B,t) | on(A,B,t-1).
success(move(A,B),t) | clear(A,t),clear(B,t).
clear(A,t) | clear(A,t-1).

clear(A,t) | on(B,A,t-1),action(move(B,C),t-1),B 6=C.
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Conclusions

Conclusions

a short overview of Informed Reinforcement Learning

a starting point

discovering subgoals

frequent pattern mining (warmr)
probabilities

extending reward function

Future work

see previous slides
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Questions?

Questions?
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