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Abstract

Weighted model counting (WMC) is a well-known inference task on knowledge

bases, and the basis for some of the most efficient techniques for probabilistic

inference in graphical models. We introduce algebraic model counting (AMC),

a generalization of WMC to a semiring structure that provides a unified view

on a range of tasks and existing results. We show that AMC generalizes many

well-known tasks in a variety of domains such as probabilistic inference, soft

constraints and network and database analysis. Furthermore, we investigate

AMC from a knowledge compilation perspective and show that all AMC tasks

can be evaluated using sd-DNNF circuits, which are strictly more succinct, and

thus more efficient to evaluate, than direct representations of sets of models.

We identify further characteristics of AMC instances that allow for evaluation

on even more succinct circuits.

Keywords: Knowledge Compilation, Model Counting, Logic

1. Introduction

Today, some of the most efficient techniques for probabilistic inference em-

ploy reductions to weighted model counting (WMC) both for propositional and

for relational probabilistic models (Park, 2002; Sang et al., 2005; Darwiche,

2009; Fierens et al., 2011; Van den Broeck et al., 2011). The resulting weighted5
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model counting task is often solved by a single pass over a propositional circuit,

which is a compact graphical representation of the models of interest. This

approach makes it possible to perform the possibly expensive knowledge com-

pilation step, that is, the construction of the circuit, only once, and to then

evaluate this circuit repeatedly, for instance, under different evidence or with10

different parameters.

On the other hand, it is well-known that probabilistic inference as well as

many other tasks can be generalized to a sum of products computation over

models with suitable operators from a semiring structure. This has led to com-

mon inference algorithms for a variety of different inference problems in many15

fields, including parsing (Goodman, 1999), dynamic programming (Eisner et al.,

2005), constraint programming (Meseguer et al., 2006), databases (Green et al.,

2007), Bayesian inference (Bacchus et al., 2009), propositional logic (Larrosa

et al., 2010), networks (Baras & Theodorakopoulos, 2010) and logic program-

ming (Kimmig et al., 2011). The work presented here provides a unified view20

on these two lines of work by introducing both a general definition of model

counting in a semiring setting and a solution approach for this task based on

knowledge compilation.

As our first contribution, we introduce the task of algebraic model counting

(AMC). AMC generalizes weighted model counting to the semiring setting and25

supports various types of labels (or weights), including numerical ones as used

in WMC, but also sets (e.g., to collect relevant variables), Boolean formulae

(e.g., to obtain explicit representations of models), polynomials (e.g., for sen-

sitivity analysis in probabilistic models), and many more. It thus provides a

framework that covers many different tasks from a variety of different fields.30

As our second contribution, we investigate how to solve AMC problems using

knowledge compilation. As AMC is defined in terms of the set of models of a

propositional logic theory, we can exploit the succinctness results of the know-

ledge compilation map of Darwiche & Marquis (2002). We show that AMC can

in general be evaluated using sd-DNNF circuits, which are more succinct, and35

thus more efficient to evaluate, than a direct representation of the set of models.
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Furthermore, we identify a number of characteristics of AMC tasks that allow

for evaluation on even more succinct types of circuits. Our results provide a

unified view on existing results, which also allows us to generalize well-known

insights for satisfiability and model counting in circuits to broad classes of AMC40

tasks and to extend the task classification in algebraic Prolog (Kimmig et al.,

2011) to more succinct types of circuits. As our third contribution, we further

broaden the applicability of the AMC framework by linking it to semiring sums

of products defined over derivations, that is, sequences of possibly repeated

variables, instead of over models.45

This paper is organized as follows. We introduce algebraic model counting

in Section 2. Section 3 provides task characteristics that allow for correct eval-

uation on specific classes of circuits and shows how these generalize previous

results. We discuss future work and conclude in Section 4.

2. Algebraic Model Counting50

Our definition of algebraic model counting builds upon the well-known task

of weighted model counting for propositional logic theories. Given a proposi-

tional logic theory T over a set of variables V, an interpretation of V assigns

a truth value from the set {true, false} to every variable in V. The set M(T )

of models of theory T contains exactly those interpretations of V for which T55

evaluates to true. We here view interpretations (and models) as sets of literals,

that is, for each variable v ∈ V, an interpretation contains either the positive

literal v or the negative literal ¬v. We use L to denote the set of literals for the

variables in V. In weighted model counting, non-negative real-valued weights

are associated with all literals, and the weighted model count of a propositional60

theory is obtained by multiplying these weights for each model of the theory,

and summing the results for all models.1

1The case where weights are associated with joint assignments to groups of variables, as in

factor graphs, can be mapped to the case considered here; cf. Section 2.2.
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Definition 1 (Weighted Model Counting (WMC)). Given

• a propositional logic theory T over a set of variables V and

• a weight function w : L → R≥0, mapping literals of the variables in V to65

non-negative real-valued weights,

the task of weighted model counting (WMC) is to compute

WMC(T ) =
∑

I∈M(T )

∏
l∈I

w(l). (1)

Algebraic model counting generalizes multiplication and summation of real-

valued weights to corresponding operations from an arbitrary commutative semi-

ring. It thus extends WMC to more general classes of weights, which are not70

necessarily real-valued. To emphasize the latter, we use the terms labeling func-

tion and label in the context of algebraic model counting.

Definition 2 ((Commutative) Semiring). A semiring is a structure

(A,⊕,⊗, e⊕, e⊗), where

• addition ⊕ is an associative and commutative binary operation over the75

set A,

• multiplication ⊗ is an associative binary operation over the set A,

• ⊗ distributes over ⊕,

• e⊕ ∈ A is the neutral element of ⊕, i.e., for all a ∈ A, a⊕ e⊕ = a,

• e⊗ ∈ A is the neutral element of ⊗, i.e., for all a ∈ A, a⊗ e⊗ = a, and80

• e⊕ is an annihilator for ⊗, i.e., for all a ∈ A, e⊕ ⊗ a = a⊗ e⊕ = e⊕.

In a commutative semiring, ⊗ is commutative as well.

Examples of commutative semirings can be found in columns 2–6 of Table 1;

these will be discussed below. Generalizing weighted model counting to labeling

functions defined over commutative semirings, we now define algebraic model85

counting as follows:
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Definition 3 (AMC Problem). Given

• a propositional logic theory T over a set of variables V,

• a commutative semiring (A,⊕,⊗, e⊕, e⊗), and

• a labeling function α : L → A, mapping literals L of the variables in V to90

values from the semiring set A,

the task of algebraic model counting (AMC) is to compute

A(T ) =
⊕

I∈M(T )

⊗
l∈I

α(l). (2)

That is, starting from semiring values associated with individual literals via

the labeling function, AMC assigns a value to each interpretation of the variables

by combining the values of corresponding literals with semiring multiplication,95

and a value to the theory by combining values of all its models with semiring

addition.

2.1. Examples of AMC Tasks

To provide a better idea of the variety of tasks covered by this general

definition, we next discuss examples of AMC tasks based on semirings and100

labeling functions found in the literature, as summarized in Table 1. Probably

the most basic instance of AMC is the evaluation of a Boolean formula for a given

interpretation (Bool), where the labeling function assigns the truth values given

by the interpretation to the literals, i.e., labels are Boolean, α(v) = true if v is

true in the given interpretation (and α(v) = false else), negative literals ¬v are105

labeled ¬α(v), and those labels are combined using the usual Boolean semiring

with ⊕ = ∨ and ⊗ = ∧. In fact, this instance can be seen as providing the

basis for the evaluation of AMC tasks via knowledge compilation as discussed

in Section 3. Using the same Boolean semiring, but in combination with a

labeling function that assigns true to all literals, we obtain an instance of AMC110

that corresponds to the satisfiability task of propositional logic (SAT).
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As can already be seen from their definitions, weighted model counting

(WMC) itself is another instance of AMC, which combines non-negative real

numbers as labels with ordinary multiplication and addition. The well-known

task of model counting (#SAT) corresponds to the special case where all lit-115

eral weights are 1 (and counts thus restricted to the natural numbers), whereas

probabilistic inference (Prob) in a setting where all variables are independently

assigned truth values at random restricts the labeling function of WMC to val-

ues from [0, 1] such that labels of positive and negative literals for each variable

sum to one, i.e., for every variable v, α(v) ∈ [0, 1] and α(¬v) = 1− α(v).120

We can extend the Prob setting to an AMC task to perform sensitivity

analysis (Sens) by allowing the use of variables instead of constant probabilities

as labels, i.e., a positive literal v can be labeled with a value in [0, 1] as before,

or with variable v, and negative literals are still labeled α(¬v) = 1− α(v). The

corresponding semiring uses summation and multiplication of polynomials as ⊕

and ⊗, respectively. That is, the algebraic model count is an explicit function

of the probabilities of the literals labeled with variables, which can directly

be evaluated for various choices of these model parameters. Still within the

same probabilistic setting, calculating the gradient with respect to one variable,

which is an important subtask in many parameter learning approaches, can be

formulated as AMC task as well (Grad). In this case, literal labels are tuples

(pi, gi) with pi ∈ [0, 1] the probability of the literal and gi the gradient with

7



respect to the kth variable2:

α(vi) =

 (pi, 1) if i = k

(pi, 0) if i 6= k
(3)

α(¬vi) =

 (1− pi,−1) if i = k

(1− pi, 0) if i 6= k
(4)

(a1, a2)⊕ (b1, b2) = (a1 + b1, a2 + b2) (5)

(a1, a2)⊗ (b1, b2) = (a1 · b1, a1 · b2 + a2 · b1) (6)

If the second element of the label denotes a cost, the GRAD semiring calculates

expected costs.

Another well-known task in the probabilistic setting is finding the probability

of the most likely model (MPE), which is formulated as AMC task by using the

Prob setting except for ⊕, which now is maximization rather than summation.125

The next two settings, finding the length of the shortest path (S-Path) and

finding the width of the widest path (W-Path), are inspired by optimization

tasks in weighted networks.3 In both cases, positive literals are labeled with a

natural number, and negative literals with the neutral element e⊗ of the cor-

responding semiring multiplication, which ensures that the latter are not taken130

into account when calculating labels of models. Furthermore, the choice of semi-

ring operators ensures that optimization ⊕ always selects the value of a model

containing a minimal set (w.r.t. cardinality) of positive literals (corresponding

to the edges on a path). In the case of shortest path, ⊗ sums labels of literals

and ⊕ minimizes over these sums, whereas in the case of widest path, ⊗ mini-135

mizes over labels of literals (thus finding the narrowest part or bottleneck of a

path), and ⊕ maximizes over those.

The Fuzzy AMC task is closely related to W-Path, also using ⊕ = max

and ⊗ = min, but assigns values from the interval [0, 1] to literals, reflecting

2By using (n+ 1)-tuples, this can directly be extended to calculate gradients with respect

to n variables in parallel.
3We will discuss the relationship between algebraic path problems and AMC in Section 3.5.
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their degree of membership in a fuzzy model. The algebraic model count then140

corresponds to the highest minimal degree of membership of a literal in a model.

Similarly, kWeight is closely related to S-Path and also uses ⊕ = min, but

imposes an upper bound on the value of any model by restricting literal weights

to integers {0, . . . , k} and using bounded addition +k as ⊗. The algebraic model

count then is the minimal value of a model, or k if no model has a smaller value.145

As illustrated by the OBDD< task, labels in AMC can also be complex struc-

tures. OBDD< circuits, which are canonical representations of Boolean functions,

are a popular data structure in many fields of computer science, ranging from

hardware verification to artificial intelligence. To use them for AMC, we la-

bel each literal with its OBDD< circuit, and set ⊕ and ⊗ to disjunction and150

conjunction on OBDD<, respectively.

The last two tasks in the table originate from probabilistic databases under

the positive relational algebra RA+ and are thus defined in terms of (possibly

repeated) positive literals only. We will discuss such algebraic derivation count

(ADC) tasks and their relation to AMC in Section 3.5. In contrast to S-Path155

and W-Path, which also are instances of ADC originally, expressing Why

and RA+-provenance requires to bring the propositional theory into a specific

form; we will come back to the details in Section 3.5. Negative literals are

again labeled with the neutral element e⊗ of semiring multiplication. Why-

provenance (Why) collects the set of identifiers of all tuples an answer depends160

on. It labels positive literals with α(v) = {v}, and uses set union as both ⊕

and ⊗. RA+-provenance constructs polynomials that also take into account the

number of times the tuples are used. Positive literals are labeled with α(v) = v,

and ⊕ and ⊗ are summation and multiplication on polynomials, respectively.

Both settings thus provide insight into the way answers to database queries have165

been derived, and can be used for instance to understand unexpected answers

and to identify possible causes of wrong answers.

As a summary of this discussion, we obtain:

Theorem 1. Evaluation of Boolean formulae (Bool), satisfiability (SAT),

9



model counting (#SAT), weighted model counting (WMC), probabilistic in-170

ference (Prob), sensitivity analysis (Sens), gradient (Grad), probability of

most likely states (MPE), shortest (S-Path) and widest (W-Path) paths,

fuzzy (Fuzzy) and k-weighted ( kWeight) constraints, and OBDD< construc-

tion are instances of AMC, with the semirings and labeling functions provided

in Table 1.175

While all tasks listed in Table 1 are representative examples from the litera-

ture, cf. the references given in the table, this is by no means an exhaustive list

of semirings and labeling functions that can be used for AMC.

2.2. Related Work

As the examples discussed above illustrate, the AMC task shares its use of180

semirings with a number of other tasks. The class of sum-of-products prob-

lems generalizes factor graphs to the algebraic setting, but uses factors over

discrete valued variables as basic building blocks (Bacchus et al., 2009), that

is, the task is to compute
⊕

I(V)
⊗n

i=1 fi(Ei), where I(V) are all possible value

assignments to the set of variables V, and the fi are functions on sets of vari-185

ables Ei ⊆ V taking values from the underlying semiring. In this context, affine

algebraic decision diagrams (Sanner & McAllester, 2005) and AND/OR multi-

valued decision diagrams (Mateescu et al., 2008) have been used for inference

with real-valued semirings. It has been shown before that the factor representa-

tion can be transformed into a propositional logic representation by introducing190

additional variables corresponding to factors (Chavira et al., 2006; Sang et al.,

2005). Consider for example an algebraic factor f(x1, x2) associating a label

with each of the four joint assignments of Boolean variables x1 and x2:

x1 x2 f(x1, x2)

0 0 α00

0 1 α01

1 0 α10

1 1 α11

10



This factor could for instance represent the conditional probabilities Pr(x2|x1) =195

f(x1, x2) for the edge x1 → x2 in a Bayesian network. In this case, the equiv-

alent AMC Prob task would consist of one logical equivalence for every row

of the table, e.g., θ01 ≡ ¬x1 ∧ x2 for the second row, and the labeling function

would assign α(θij) = αij , and α(l) = 1 for all other literals l. This principle

generalizes to arbitrary AMC tasks, where we use the neutral element of mul-200

tiplication e⊗ instead of 1 as the label of all other literals. For more details on

the transformation, we refer to Chavira et al. (2006); Sang et al. (2005). The

restriction to two-valued variables allows us to directly compile AMC tasks to

propositional circuits without adding constraints on legal variable assignments

to the theory.205

In soft constraint programming, additional constraints are imposed on the

semiring, which ensure that addition optimizes the degree of constraint satis-

faction (Meseguer et al., 2006). Wilson (2005) provides an algorithm that com-

piles semiring-based systems into semiring-labelled decision diagrams, which are

closely related to unordered binary decision diagrams (also known as free binary210

decision diagrams or FBDDs), to compute valuations. Semiring-induced propo-

sitional logic labels clauses with semiring elements with a weight associated to

their falsification and is restricted to semirings whose induced pre-order is par-

tial (Larrosa et al., 2010). In algebraic Prolog (aProbLog), a semiring-labeled

logic program is reduced to AMC for inference (Kimmig et al., 2011).215

In the context of knowledge compilation and algebraic frameworks, Fargier

& Marquis (2007) introduce valued negation normal form (VNNF), a general-

ization of NNF circuits from the Boolean domain to valuation structures over

ordered sets, and study the complexity of a range of queries and transforma-

tions on different subclasses of VNNFs. In contrast, we generalize a single task220

(model counting) to the semiring setting and relate it to well-established sub-

classes of NNF. In both cases, properties of the circuit classes such as determinism

and decomposability (cf. Sec. 3) as well as of the valuation structure (such as

distributivity) play key roles.
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While AMC sums over models, other tasks sum over sequences of possibly re-225

peated variables. Examples include algebraic path problems (Baras & Theodor-

akopoulos, 2010), semiring parsing (Goodman, 1999), provenance semirings

for positive relational algebra queries in databases (Green et al., 2007), and

semiring-weighted dynamic programs (Eisner et al., 2005). We will discuss the

difference between such derivation-based settings and AMC in more detail in230

Section 3.5.

3. AMC using Knowledge Compilation

Propositional circuits represent Boolean formulae as rooted acyclic graphs

where terminal nodes are labeled with literals and inner nodes with Boolean

operators applied to their child nodes, cf. Figure 1 for examples. Given such a235

representation, the underlying formula can be evaluated (as in the Bool task)

by a single bottom-up pass from the terminal nodes to the root, which first

assigns truth values to literals and then combines truth values of subcircuits

at each inner node. In their knowledge compilation map, Darwiche & Marquis

(2002) provide an overview of succinctness relationships between various types240

of propositional circuits. Furthermore, they show which other reasoning tasks

in propositional logic, such as (weighted) model counting (#SAT/WMC) or

satisfiability checking (SAT), can be evaluated on which circuits in time poly-

nomial in the size of the circuit. In these cases, the operations performed during

circuit evaluation are adapted according to the problem at hand, for instance,245

assigning weights to literals and replacing disjunction by summation and con-

junction by multiplication for WMC. Propositional circuits are often used as a

representation language in weighted model counting and similar tasks, includ-

ing for instance probability calculation and sensitivity analysis in probabilistic

databases (Jha & Suciu, 2011; Kanagal et al., 2011) and inference in probabilis-250

tic and algebraic Prolog (Fierens et al., 2011; Kimmig et al., 2011).

In the following, we extend this approach to AMC, stating a single generic

evaluation algorithm that operates on a propositional circuit. Using knowledge
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compilation for AMC allows one to only perform the expensive compilation

step once and to then evaluate the resulting circuit many times, for instance,255

to repeatedly calculate gradients during parameter learning, to explore different

parameter combinations (by keeping some variables’ values fixed and varying

others) for sensitivity analysis, or to even perform different AMC tasks for the

same theory.

In this section, we use conjunction (∧), disjunction (∨), true (>), false260

(⊥), and propositional literals to denote generic labels of propositional circuits.

Given an AMC task, evaluation interprets these as semiring multiplication (⊗),

semiring addition (⊕), the neutral element of semiring multiplication (e⊗), the

neutral element of semiring addition (e⊕), and the labels α(l) of these liter-

als, respectively. We first repeat the relevant knowledge compilation concepts,265

closely following Darwiche & Marquis (2002).

Definition 4 (NNF). A sentence in negation normal form (NNF) over a set of

propositional variables V is a rooted, directed acyclic graph where each leaf

node is labeled with true (>), false (⊥), or a literal of a variable in V, and each

internal node with disjunction (∨) or conjunction (∧).270

Definition 5 (Decomposability). An NNF is decomposable if for each conjunc-

tion node
∧n
i=1 φi, no two children φi and φj share any variable.

Definition 6 (Determinism). An NNF is deterministic if for each disjunction

node
∨n
i=1 φi, each pair of different children φi and φj is logically inconsistent.

Definition 7 (Smoothness). An NNF is smooth if for each disjunction node275 ∨n
i=1 φi, each child φi mentions the same set of variables.

DNNF, d-NNF, s-NNF, sd-NNF, d-DNNF, s-DNNF, and sd-DNNF are the sub-

sets of NNF satisfying (combinations of) these properties, where D stands for

decomposable, d for deterministic, and s for smooth. For instance, the circuit

in Figure 1a is in sd-DNNF, while the one in Figure 1b has none of the three280

properties. DNF (disjunctive normal form) is the subset of NNF where every sen-

tence is a disjunction of conjunctions, and MODS is the subset of DNF where every
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∧

∨

¬a b a ¬b

∧

(a) sd-DNNF

∨

∧

¬a ¬b a b

∨

(b) NNF

Figure 1: Example of an sd-DNNF and NNF circuit.

sentence is deterministic and smooth.

A key characteristic when comparing different subsets of NNF is their ability

to compactly represent propositional sentences, which is captured by the notion285

of succinctness.

Definition 8 (Succinctness (Darwiche & Marquis, 2002)). Let L1 and L2 be

two subsets of NNF. L1 is at least as succinct as L2 iff there exists a polynomial p

such that for every sentence φ2 ∈ L2, there exists an equivalent sentence φ1 ∈ L1

with |φ1| ≤ p(|φ2|), where |φi| is the size of φi.290

The algebraic model count A(T ) is defined as a summation over the set

of models M(T ) of a propositional theory T , which corresponds to the MODS

language in the knowledge compilation map. However, as MODS is exponentially

less succinct than any other representation of T included in the map, converting

to MODS in order to evaluate Equation (2) directly is undesirable. In the follow-295

ing, we therefore establish a connection between characteristics of AMC tasks

and properties of the NNF circuits they can be evaluated on, resulting in the

classification scheme summarized in Table 2. The last three columns of Table 1

indicate for each example task which of the semiring characteristics it satisfies;

the tasks are also included in the corresponding field of Table 2.300

The key idea underlying NNF evaluation is to perform a bottom-up pass

over the circuit, labeling each node with the value of the subcircuit rooted at

that node. For disjunction nodes, the values of all their children are combined

14



idempotent and

general ⊗ consistency-pres. (⊗, α)

neutral non-neutral neutral non-neutral

(⊕, α) (⊕, α) (⊕, α) (⊕, α)

DNNF s-DNNF NNF s-NNF

idempotent ⊕ (Th. 5) (Th. 3) (Th. 7) (Th. 7)

SAT, S-Path, MPE, Fuzzy, Bool,

W-Path kWeight OBDD<

d-DNNF sd-DNNF d-NNF sd-NNF

non-idempotent ⊕ (Th. 4) (Th. 2) (Th. 7) (Th. 6)

Prob, Sens, Grad #SAT, WMC

Table 2: Semiring characteristics and corresponding circuits that allow for correct AMC eval-

uation, with example tasks from Table 1.

using ⊕, for conjunction nodes using ⊗.

Definition 9 (NNF Evaluation). The function Eval specified in Algorithm 1305

evaluates an NNF circuit for a commutative semiring (A,⊕,⊗, e⊕, e⊗) and label-

ing function α.

Consider for example #SAT for the two circuits in Figure 1, which both

represent an exclusive OR of two variables. Evaluation of the sd-DNNF in Fig-

ure 1a, which in fact is a MODS representation, assigns label 1 to each leaf, 1·1 = 1310

to each conjunction node, and 1 + 1 = 2 to the disjunction node at the root

and thus the entire circuit, which is correct. On the other hand, evaluation on

the general NNF in Figure 1b assigns 1 + 1 = 2 to each disjunction node and

2 ·2 = 4 to the conjunction node at the root. This overestimation is due to mod-

els shared by the children of the same disjunction node and variables shared by315

the children of the conjunction node, as we will see in more detail in Section 3.2

and 3.3.

Definition 10 (Correctness). Evaluating an NNF representation NT of a propo-
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Algorithm 1 Evaluating an NNF circuit N for a commutative semiring

(A,⊕,⊗, e⊕, e⊗) and labeling function α.

1: function Eval(N,⊕,⊗, e⊕, e⊗, α)

2: if N is a true node > then return e⊗

3: if N is a false node ⊥ then return e⊕

4: if N is a literal node l then return α(l)

5: if N is a disjunction
∨m
i=1Ni then

6: return
⊕m

i=1 Eval(Ni,⊕,⊗, e⊕, e⊗, α)

7: if N is a conjunction
∧m
i=1Ni then

8: return
⊗m

i=1 Eval(Ni,⊕,⊗, e⊕, e⊗, α)

sitional theory T for a semiring (A,⊕,⊗, e⊕, e⊗) and labeling function α is a

correct AMC computation iff Eval(NT ,⊕,⊗, e⊕, e⊗, α) = A(T ).320

In the following, we establish a general correctness result for AMC evalu-

ation on sd-DNNF circuits as well as properties of AMC tasks that guarantee

correctness for various other subclasses of NNF. Given correctness, we inherit

the polynomial complexity results of the knowledge compilation map (Darwiche

& Marquis, 2002) for semiring operators with constant cost, cf. also Section 3.4.325

Note however that there are semirings with more expensive operators. For in-

stance, labels in OBDD< may grow exponentially in the circuit size.

3.1. sd-DNNF Evaluation

We show that AMC evaluation is correct on sd-DNNF circuits. As these are

strictly more succinct than MODS representations, they allow for more efficient330

inference.

Theorem 2 (sd-DNNF Evaluation). Evaluating an sd-DNNF representation of

the propositional theory T is a correct AMC computation.

Proof. We show that Eval(NT ,⊕,⊗, e⊕, e⊗, α) for an sd-DNNF representation

NT of the theory T computes A(T ) with respect to all variables in NT :335

1. Line 2: A(>) =
⊕

I∈{∅}
⊗

l∈I α(l) = e⊗
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2. Line 3: A(⊥) =
⊕

I∈{}
⊗

l∈I α(l) = e⊕

3. Line 4: A(l) =
⊕

I∈{{l}}
⊗

k∈I α(k) = α(l)

Due to associativity and commutativity of the semiring operators, operands of

each summation and each multiplication can be evaluated in arbitrary order.340

We therefore restrict ourselves to binary disjunction and conjunction nodes here.

In the following, we assume we have already correctly evaluated the two subcir-

cuits φ1 and φ2 over sets of variables V1 and V2, respectively. Let the circuits’

sets of models with respect to those variables be M1 and M2. We now obtain:

4. Lines 5-6: Disjunction node φ1∨φ2: For φ1 = ⊥, we have A(⊥)⊕A(φ2) =345

e⊕ ⊕A(φ2) = A(φ2) = A(⊥ ∨ φ2) by neutrality of e⊕ (and similarly for

φ2 = ⊥ by commutativity). As the circuit is deterministic, the φi cannot

be >. We now consider the case where none of the φi is ⊥ or >. As the

circuit is smooth, we have V1 = V2, and this is also the set of variables used

by the circuit rooted at the disjunction. The set of models of this circuit is350

thusM(φ1∨φ2) =M1∪M2, which is a disjoint union due to determinism.

Therefore, A(φ1)⊕A(φ2) =
(⊕

I∈M1

⊗
l∈I α(l)

)
⊕
(⊕

I∈M2

⊗
l∈I α(l)

)
=⊕

M1∪M2

⊗
l∈I α(l) = A(φ1 ∨ φ2).

5. Lines 7-8: Conjunction node φ1∧φ2: For the case of φ1 = > (or symmetri-

cally φ2 = >), we have A(>)⊗A(φ2) = e⊗⊗A(φ2) = A(φ2) = A(>∧φ2)355

by neutrality of e⊗. For the case of φ1 = ⊥ (or symmetrically φ2 = ⊥),

we have A(⊥) ⊗A(φ2) = e⊕ ⊗A(φ2) = e⊕ = A(⊥) = A(⊥ ∧ φ2) as e⊕

is an annihilator for ⊗. We now consider the case involving neither > nor

⊥ as one of the disjuncts. As V1 ∩ V2 = ∅ due to decomposability, we

obtain all models of the conjunction by combining each model of φ1 with360

each model of φ2, that is,M(φ1 ∧ φ2) = {I1 ∪ I2|I1 ∈M1, I2 ∈M2}. To-

gether with distributivity, we get A(φ1)⊗A(φ2) =
(⊕

I∈M1

⊗
l∈I α(l)

)
⊗(⊕

I∈M2

⊗
l∈I α(l)

)
=
⊕
M(φ1∧φ2)

⊗
l∈I α(l) = A(φ1 ∧ φ2).

Clearly, the correctness of AMC evaluation on sd-DNNF depends on all three365

properties of this subclass of NNF. On the other hand, circuits without these
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properties may be exponentially smaller and thus allow for more efficient infer-

ence. In the following, we therefore analyze evaluation in the absence of these

properties, which allows us to identify characteristics of the semiring and la-

beling function that ensure correct evaluation on the corresponding classes of370

circuits.

3.2. Evaluation on other Decomposable Circuits

If a circuit is not deterministic, children of a disjunction node may have

common models, in which case evaluation sums over such shared models multiple

times. For instance, consider the circuit in Figure 1b with Prob, α(a) = 0.6375

and α(b) = 0.3. Evaluation on this circuit results in 0.6 + 0.3 = 0.9 for the right

disjunction node, while A(a∨b) = 0.6 ·0.3+(1−0.6) ·0.3+0.6 · (1−0.3) = 0.72.

Definition 11 (Idempotent Operator). A binary operator � over a set A is

idempotent iff ∀a ∈ A : a� a = a.

Theorem 3 (s-DNNF Evaluation). Evaluating an s-DNNF representation of the380

propositional theory T for a semiring with idempotent ⊕ (a dioid) is a correct

AMC computation.

Proof. Reconsider point (4) of the proof of Theorem 2. Without determinism,

φ1 = > is possible, and with smoothness, we have φ2 = > in this case. Then,

A(>) ⊕ A(>) = e⊗ ⊕ e⊗ = e⊗ = A(>) = A(> ∨ >) as ⊕ is idempotent.385

The proof for φ1 = ⊥ still holds. If both subformulae involve variables, with

smoothness, but without determinism, M1(φ1) ∪M2(φ2) is no longer a union

of disjoint sets, and A(φ1) ⊕ A(φ2) =
⊕

i=1,2

⊕
Mi

⊗
l∈I α(l) sums over the

models in M1(φ1) ∩ M2(φ2) twice. Due to associativity and commutativity,

this is correct for idempotent ⊕.390

If a circuit is not smooth, the children of a disjunction node may use different

sets of variables. Each model of a child node corresponds to a set of models

for the full set of variables, but evaluation on a non-smooth circuit ignores the

labels of unmentioned variables. For instance, consider the circuit in Figure 1b

18



with MPE, α(a) = 0.6 and α(b) = 0.3. Evaluating the right disjunction node395

of this circuit results in max(0.6, 0.3) = 0.6, while A(a∨ b) = max(0.6 · 0.3, (1−

0.6) · 0.3, 0.6 · (1− 0.3)) = 0.42.

Definition 12 (Neutral (⊕, α)). A semiring addition and labeling function pair

(⊕, α) is neutral iff ∀v ∈ V : α(v)⊕ α(¬v) = e⊗.

For instance, the semiring addition and labeling function of the Prob task in400

Table 1 are neutral, as for all v ∈ V, we have α(v)⊕α(¬v) = α(v)+(1−α(v)) =

1 = e⊗ in this case.

Theorem 4 (d-DNNF Evaluation). Evaluating a d-DNNF representation of the

propositional theory T for a semiring and labeling function with neutral (⊕, α)

is a correct AMC computation.405

Proof. Reconsider point (4) of the proof of Theorem 2. The cases involving >

or ⊥ still hold. For the remaining case of both subformulae involving variables

to be correct, the sum of the AMCs computed by the children over their sets of

variables Vi has to be equal to the AMC of the entire disjunction over the full

set of variables V1 ∪ V2. Given the child AMC AVi(φi), adding a variable v to

Vi replaces each model I of φi by two models I+ = I ∪ {v} and I− = I ∪ {¬v}.

Due to distributivity, commutativity and the neutral sum property, the algebraic

sum of these two models equals the AMC of the original model:

AVi∪{v}(I) = AVi∪{v}(I
+)⊕AVi∪{v}(I

−)

= (α(v)⊕ α(¬v))⊗
⊗
l∈I

α(l)

=
⊗
l∈I

α(l) = AVi(I)

Evaluation therefore computes AV1(φ1)⊕AV2(φ2) = AV1∪V2(φ1)⊕AV1∪V2(φ2),

which due to determinism is equal to AV1∪V2(φ1 ∨ φ2).

Note that from a complexity point of view, non-neutral (⊕, α) does not

influence the tractability of inference, as any NNF can be smoothed in polytime

preserving determinism and decomposability (Darwiche & Marquis, 2002).410
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The previous two results can directly be combined for DNNF circuits that are

neither smooth nor deterministic.

Theorem 5 (DNNF Evaluation). Evaluating a DNNF representation of the propo-

sitional theory T for a semiring and labeling function with idempotent and neu-

tral (⊕, α) is a correct AMC computation.415

Proof. Reconsider point (4) of the proof of Theorem 2. Due to neutral (⊕, α),

values for all children of a disjunction node (including>) are correct with respect

to the full set of variables (cf. proof of Theorem 4). Due to idempotent ⊕,

multiple occurrences of the same model do not influence the result (cf. proof of

Theorem 3).420

This completes the left part of Table 2, where no conditions are imposed on

semiring multiplication.

3.3. Evaluation on Non-Decomposable Circuits

If a circuit is not decomposable, the children of a conjunction node may

share variables. In this case, simply combining results for all pairs of their425

models may produce results corresponding to (multi-)sets of literals that are not

models, because they either contain contradicting literals, or several copies of

the same literal, which results in erroneous extra multiplications. For instance,

in Figure 1b, {¬a, b} is a model of both disjunction nodes, and {a, b} of the

right one only. The conjunction node sums among others the products α(¬a)⊗430

α(b)⊗ α(a)⊗ α(b), which does not correspond to a model, and α(¬a)⊗ α(b)⊗

α(¬a)⊗ α(b), where labels of both literals are multiplied twice.

Definition 13 (Consistency-Preserving (⊗, α)). A semiring multiplication and

labeling function pair (⊗, α) is consistency-preserving iff ∀v ∈ V : α(v)⊗α(¬v) =

e⊕.435

For instance, Boolean evaluation (BOOL) is consistency-preserving, as α(v)∧

¬α(v) = false = e⊕.
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Theorem 6 (sd-NNF Evaluation). Evaluating an sd-NNF representation of the

propositional theory T for a semiring and labeling function with idempotent and

consistency-preserving (⊗, α) is a correct AMC computation.440

Proof. Reconsider point (5) of the proof of Theorem 2. The set of models

of φ1 ∧ φ2 contains exactly all pairwise combinations of models of its parts

that agree on all shared variables. The circuit evaluates the AMC of φ1 ∧ φ2
as A(φ1) ⊗ A(φ2), which due to distributivity is the sum over all pairwise

combinations of models. Without decomposability, each such combination I445

contains two literals for each v ∈ V1 ∩ V2. As ⊗ is associative, commutative

and idempotent, repeated occurrences of a literal l in ⊗i∈Iα(i) do not affect the

result. If {l,¬l} ⊆ I, ⊗i∈Iα(i) includes a multiplication by α(l) ⊗ α(¬l) = e⊕,

which in a semiring means ⊗i∈Iα(i) = e⊕. Such inconsistent I thus do not

contribute to the semiring sum.450

Theorem 6 affects only conjunction nodes, whereas Theorems 3, 4 and 5

only affect disjunction nodes. Their combination thus extends our results to

non-decomposable circuits that do not satisfy (one of) the other two properties

either:

Theorem 7 (s-NNF, d-NNF, and NNF Evaluations). For a semiring and label-455

ing function with idempotent and consistency preserving (⊗, α), evaluating the

following representation of the propositional theory T is a correct AMC compu-

tation:

• s-NNF if ⊕ is idempotent

• d-NNF if (⊕, α) is neutral460

• NNF if (⊕, α) is idempotent and neutral

This completes the right part of Table 2, where using non-decomposable

circuits is possible as a consequence of restrictions on semiring multiplication.

Given a new AMC instance, this table allows one to immediately choose the
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appropriate type of circuit for efficient evaluation. Table 2 provides this classi-465

fication for the examples discussed earlier, cf. Table 1.

3.4. Discussion

The results summarized in Table 2 provide a unified view on a number of

known results. They generalize the complexity results for evaluation of SAT

and #SAT using knowledge compilation to broad classes of tasks, provide more470

succinct types of circuits for inference in algebraic Prolog, and show that all

circuits that are practically relevant for AMC are well-studied in the knowledge

compilation map. We now address these points in more detail.

First, Darwiche & Marquis (2002) show that SAT is correctly evaluated

in polynomial time on DNNF, while #SAT is correctly evaluated in polynomial475

time on d-DNNF, as the required smoothing to obtain an sd-DNNF is possible

in polynomial time. We generalize these results to broad classes of semirings,

always ensuring correctness, and, as discussed above, preserving polynomial

time complexity as long as each semiring operation has constant cost. More

specifically, our Theorem 5 generalizes correctness of DNNF evaluation from SAT480

to all commutative semirings and labeling functions with idempotent and neutral

(⊕, α), and our Theorem 2 generalizes correctness of sd-DNNF evaluation from

#SAT to arbitrary commutative semirings and labeling functions. As part of

their tractability study of inference in weighted bases, that is, propositional

theories with penalties on unsatisfied formulae, Darwiche & Marquis (2004)485

have shown that the weight of a weighted base in normal form, that is, with

all penalties on literals, can efficiently be computed on its DNNF representation.

This directly translates to an instance of AMC with ⊕ = min and ⊗ = + that

satisfies our criteria for DNNF evaluation.

Second, Kimmig et al. (2011) reduce inference in algebraic Prolog (aProbLog)490

to AMC evaluation on disjunctive normal form (DNF). For non-idempotent ad-

dition, a DNF whose conjunctions are not mutually exclusive is then compiled

into an ordered binary decision diagram (OBDD). For non-neutral (⊕, α), circuits

are smoothed before evaluation. This results in the settings listed in Table 3.
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neutral (⊕, α) non-neutral (⊕, α)

idempotent ⊕ DNF s-DNF

non-idempotent ⊕ d-DNF sd-DNF

OBDD s-OBDD

Table 3: Overview of AMC settings used in algebraic Prolog (Kimmig et al., 2011).

Table 2 uses the same characteristics of semiring operators and labeling func-495

tion, but does not require to transform the theory to a DNF as starting point.

The left half of Table 2 directly generalizes the aProbLog scheme to strictly

more succinct superclasses of circuits, namely (s-)DNNF instead of (s-)DNF,

and (s)d-DNNF instead of (s)d-DNF or (s-)OBDD. As probabilistic inference in

ProbLog has recently been improved by replacing OBDD-based approaches with500

weighted model counting on sd-DNNF (Fierens et al., 2011), our results promise

practical improvements for aProbLog as well.

Third, we observe that while there are interesting inference tasks that are

correctly evaluated on the more succinct class of DNNF instead of the general

sd-DNNF evaluation, the conditions for correct evaluation on non-decomposable505

circuits are too strict in most practical cases. This is in line with the knowledge

compilation map, which excludes non-decomposable circuits (with the exception

of the most general class NNF) as they do not support any of the studied tasks

in polytime (Darwiche & Marquis, 2002).

Fourth, extending weighted model counting towards negative probabilities510

makes it possible to use existential quantification when defining probabilistic

models based on first order logic (Van den Broeck et al., 2014; Beame et al.,

2015). The correctness of this generalization follows immediately from our re-

sults.

Finally, we note that our results imply general complexity bounds for AMC515

in terms of the size of the original logical theory T . For example, when T is

given in conjunctive normal form (CNF), an equivalent sd-DNNF can be compiled
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in time polynomial in the size of T and exponential in its treewidth (Darwiche,

2001). Hence, all AMC tasks in CNF with constant-cost⊕ and⊗ can be evaluated

in time polynomial in the size and exponential in the treewidth of T , and are520

thus tractable for bounded treewidth. Similar results for (d-)NNF state that

these circuits can be compiled starting from CNF or DNF in time polynomial in

the size of T (Darwiche & Marquis, 2002, Lemma A.8).

3.5. AMC and Algebraic Derivation Counting

While AMC is a sum over models, or sets of literals, many other semiring-525

based tasks require a sum over derivations, that is, sequences of possibly re-

peated variables. Examples include algebraic path problems (Baras & Theodor-

akopoulos, 2010), semiring parsing (Goodman, 1999), provenance semirings

for positive relational algebra queries in databases (Green et al., 2007), and

semiring-weighted dynamic programs (Eisner et al., 2005). We refer to this530

type of task as algebraic derivation counting (ADC), and restrict the discussion

to the case of finite, distinct sequences.

Definition 14 (ADC Problem). Given

• a set S of finite sequences of variables from a set V,

• a commutative semiring (A,⊕,⊗, e⊕, e⊗), and535

• a labeling function δ : V → A, mapping variables in V to values from the

semiring set A,

the task of algebraic derivation counting (ADC) is to compute

D(S) =
⊕

(v1,...,vn)∈S

n⊗
i=1

δ(vi). (7)

For instance, consider a graph with three nodes s, t and r, and three directed

edges e1 = (s, t), e2 = (s, r) and e3 = (r, t). A derivation in this context is a540

path in the graph represented as its sequence of edges, e.g., (e2, e3) represents
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the path from s to t via r. The ADC of the set of all paths from s to t in the

graph is then given by

D({(e1), (e2, e3)}) = δ(e1)⊕ (δ(e2)⊗ δ(e3)) (8)

For instance, if δ assigns a cost to every edge, we could use the S-Path or W-

Path semirings to compute the cost of the shortest or widest path, respectively.545

As a second example, consider the following context free grammar, where we

add the variable we will use to refer to an application of the rule in a derivation

in parentheses:

S → aS (s1) A → AA (a1)

S → AA (s2) A → a (a2)

S → ε (s3)

The word aa has two leftmost derivations in this grammar: S → aS → aaS →550

aa, using the rule sequence (s1, s1, s3), and S → AA → aA → aa, using

(s2, a2, a2). The ADC of this set of derivations is given by

D({(s1, s1, s3), (s2, a2, a2)}) = (δ(s1)⊗δ(s1)⊗δ(s3))⊕(δ(s2)⊗δ(a2)⊗δ(a2)) (9)

For instance, using the probability semiring, this corresponds to computing the

probability of aa in a probabilistic context free grammar with these rules.4

While both ADC and AMC are semiring sums over semiring products, their555

key difference is that computing ADC is based on the structure of a set of

sequences of positive variables, whereas computing the AMC is based on the

models of a propositional theory represented as an arbitrary NNF. Nevertheless,

it is possible to map each of the tasks onto the other, as we will show now.

Reducing AMC to ADC. Reducing an AMC task to an ADC task is straightfor-560

ward. The set of variables in the ADC task contains one variable for each literal

in the AMC task, labeled with that literal’s label. For each model of the AMC

4Note that the input to ADC is a set of finite derivations, not the grammar, i.e., ADC does

not solve the parsing problem.
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theory T , the ADC derivation set S contains one sequence enumerating exactly

the variables corresponding to the literals in the model. Then, Equation (7)

and Equation (2) have the same structure, and the ADC of the translation thus565

equals the original AMC.

However, this reduction is clearly not desirable from a complexity point of

view, as it requires bringing T into MODS form. Alternatively, one could adapt

the semiring used. For instance, Baras & Theodorakopoulos (2010) provide

an ADC encoding of network reliability under probabilistic edge failure, that570

is, the Prob AMC task for a positive propositional formula. They essentially

modify multiplication to filter repeated literals from derivations (i.e., repeated

edges from cyclic paths), and addition to subtract shared models of its operands

(i.e., subgraphs containing multiple paths), which, while operating on the ADC

structure, drastically increases complexity of these operations. Under which575

general conditions such transformations are possible is an open question.

Reducing ADC to AMC. To reduce an arbitrary ADC task to AMC, we con-

struct a propositional theory that has one model for every sequence in the ADC

task. The construction (a) systematically uses different variables for repeated

occurrences of the same variable in a derivation, and (b) makes explicit that (re-

named) variables not appearing in a derivation do not contribute to the semiring

product by adding their negation, labeled with e⊗, to the derivation. That is, if

variable v occurs at most k times in any sequence s ∈ S, we introduce k copies

v1, . . . , vk, all labeled with δ(v). Thus, Equation (9) becomes

D({(s11, s21, s13), (s12, a
1
2, a

2
2)}) = (δ(s11)⊗ δ(s21)⊗ δ(s13))⊕ (δ(s12)⊗ δ(a12)⊗ δ(a22))
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Clearly, this construction in general does not change the ADC. Second, we

expand derivations to all variables by adding negative literals, labeled with e⊗5:

D({(s11, s21, s13,¬s12,¬a12,¬a22), (s12, a
1
2, a

2
2,¬s11,¬s21,¬s13)})

=(δ(s11)⊗ δ(s21)⊗ δ(s13)⊗ δ(¬s12)⊗ δ(¬a12)⊗ δ(¬a22))

⊕ (δ(s12)⊗ δ(a12)⊗ δ(a22)⊗ δ(¬s11)⊗ δ(¬s21)⊗ δ(¬s13))

This step again maintains the ADC, as can easily be verified using the properties

of commutative semirings. Furthermore, as we now have a 1-1-correspondence

between derivations and models, setting α to δ and T to the disjunction of the

conjunctions of elements in derivations, i.e.,
(
s11 ∧ s21 ∧ s13 ∧ ¬s12 ∧ ¬a12 ∧ ¬a22

)
∨580 (

s12 ∧ a12 ∧ a22 ∧ ¬s11 ∧ ¬s21 ∧ ¬s13
)
, completes the reduction to AMC.

While this two-step reduction from ADC to AMC on a MODS representation

is possible for any commutative semiring and ADC labeling function δ, for some

semirings, AMC effectively selects the desired model for a derivation without

need to make this explicit in the propositional theory.585

First, for commutative semirings and labeling functions with idempotent,

consistency-preserving (⊗, α) and idempotent, neutral (⊕, α) such as for in-

stance OBDD<, neither variable renaming nor model restriction are required. The

reason is that repetition within derivations is handled by idempotent ⊗, whereas

idempotent, neutral (⊕, α) implies that summing out unmentioned variables590

maps them to the label of the negative literal, e⊗ (cf. Theorem 5). However, as

noted above, such tasks are rare.

Second, if derivations do not contain repeated variables, there is no need to

rename variables. If furthermore ⊕ is idempotent and (⊕, α) is neutral, as in the

first case, we do not need to explicitly restrict models. This is for instance the595

case for the S-Path and W-Path semirings in Table 1. Intuitively, if we do not

restrict models, instead of directly summing over the products for all (acyclic)

paths, AMC additionally sums for each path over all subgraphs containing that

5Strictly speaking, ADC would require new, positive variables for those negative literals,

but we use negation for ease of exposition.
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path, but the properties of the semiring and labeling function ensure that the

results coincide. For instance, as absent edges are labeled with the minimal600

value 0 in shortest path, among all graphs containing the same path, semiring

addition (using min) effectively selects the one containing no additional edges.

On the other hand, the Why and RA+ semirings also listed in Table 1 do

not fall into this category (as can be verified by inspecting the properties of

their definitions), but require the full translation. Intuitively, Why collects all605

variables appearing in derivations, or, in its original database context, all tuples

contributing to a query answer. Evaluating this on all models instead of the

models constructed in the translation would result in the full set of variables

(all tuples in the database) instead of just the relevant ones. RA+ refines

Why by constructing a polynomial that keeps track of how often each variable610

(positively) contributes to each derivation. Again, summing over all extensions

of a derivation would add too much information to the result.

4. Conclusions and Future Work

We have introduced the task of algebraic model counting, which generalizes

weighted model counting to a semiring setting and thus to various types of615

labels, including numerical ones as used in WMC, but also sets, polynomials, or

Boolean formulae. We have shown that evaluating AMC is correct on sd-DNNF

circuits, which are known to be more succinct than the MODS language used in

the problem definition. Furthermore, we have provided characteristics of AMC

tasks that guarantee correct evaluation on more succinct classes of circuits,620

which provides a means of directly choosing a circuit type that allows for efficient

inference given a new AMC task. AMC also provides a unified view on a number

of known results as well as a framework to connect algebraic derivation counts

to AMC tasks.

Given the results presented here, it is worth investigating which other al-625

gebraic representations can be reduced to algebraic model counting. Another

line of future work concerns the introduction of additional operators that would
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make it possible to express additional tasks, for instance, partial MAP, which

requires a maximization operator in addition to summation and multiplication.
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