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Abstract 30 

A combination of mechanical tissue disintegration techniques (i.e blending and high pressure 31 

homogenization) and heat treatments (i.e. high and low temperature) were deliberately applied 32 

in processing carrot purées. The chemical structure of serum pectin and its influence on the 33 

consistency of the differently prepared purées was evaluated. High temperature treatment of 34 

carrot pieces prior to high pressure homogenization (HTT+HPH) resulted in high apparent 35 

molar mass (MM) serum pectin, while the reverse order of purée preparation 36 

(HPH+HTT) generated a relatively lower MM. The exceptional high apparent 37 

MM of HTT+HPH sample is possibly related to proteins bound to pectin. The importance of 38 

the order of heat treatment and tissue disruption was also reflected in largely different 39 

carrot purée consistencies in which HTT+HPH was more consistent. Low temperature treated 40 

(LTT) carrot purées, whereby endogenous pectin methyl-esterase was stimulated, had less 41 

consistent purées and low molar mass serum pectins.        42 

Keywords: carrot purée, consistency, serum pectin, structure, high pressure homogenization  43 
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Introduction  44 

The edible portions of fruits and vegetables are commonly processed into dispersed 45 

food systems such as soups, purées and juices. This enables the preservation of these highly 46 

perishable commodities, facilitates easier distribution and offers a variety of high quality 47 

products to consumers that can lead to increased daily intake of fruits and vegetables. The 48 

incorporation of particulated/puréed vegetables in a variety of foods could increase vegetable 49 

intake (Blatt, Roe, & Rolls, 2011). The production of these particulated/puréed fruit and 50 

vegetable products mainly involves tissue disintegration (e.g. blending and high pressure 51 

homogenization) and preservation (e.g. thermal processing). These processes result in a 52 

complex multi-scale and multi-phase food system structured by particles dispersed in a 53 

continuous liquid (serum) phase. The particle phase consists of cell fragments, clusters and 54 

insoluble cell wall components, while the serum phase is characterized by soluble cell 55 

contents and cell wall polysaccharides such as pectin (Lopez-Sanchez et al., 2011a; Augusto 56 

et al., 2012; Moelants et al.,  2014). Pectin is present in both the particle and serum phase, and 57 

is thus a component that significantly contributes to the textural, rheological and/or nutritional 58 

functionalities of fruit and vegetable derived products. Specifically, changes in pectin 59 

structure during processing can lead to changes in the flow behavior of particulated fruit and 60 

vegetable products (Christiaens et al., 2012; Houben et al., 2013) or pectin can act as an 61 

emulsifier in low fat containing systems thereby influencing the bio-accessibility of lipophilic 62 

nutrients such as carotenoids (Verrijssen et al. 2014).  63 

Pectin, an important cell wall polysaccharide, is a structurally intricate biopolymer that 64 

comprises several polysaccharide domains. The most abundant pectic polysaccharides are 65 

homogalacturonan (HG) and rhamogalacturonans (RG) that are believed to be covalently 66 

cross-linked to one another (Ridley, Neill, & Mohnen, 2001). HG, the most abundant pectic 67 

domain, is a linear chain of 1,4 linked α-D-galacturonic acid (GalA) residues that are 68 
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methyl-esterified on the C-6 carboxyl groups up to 70% to 80% and O-acetylated at O-3 or 69 

O-2 depending on the plant source (Voragen et al., 2009). RG-I consists of a backbone of the 70 

repeating disaccharide [-α-D-GalA-1,2-α-L-Rha-1-4-]n and represents 20-35% of pectin. Side 71 

chains containing individual, linear, or branched oligosaccharide residues are attached to the 72 

rhamnose residues of the RG-I backbone. Linear arabinan and (arabino)galactan are the 73 

predominant RG-I side chains (Voragen, Beldman & Schols, 2001; Caffall & Mohnen, 2009). 74 

Finally, RG-II is the most structurally complex among the pectic polysaccharides and makes 75 

up 10% of pectin. It has a HG rather than a RG backbone which consists of at least 8 GalA 76 

residues with side branches of either structurally distinct disaccharide or oligosaccharide. 77 

(Mohnen, 2008; Caffall & Mohnen, 2009).  78 

Pectin structure in relation to its functionality under various conditions (e.g. pH) has 79 

been widely explored and exploited. The gelling and stabilizing abilities of pectin have been 80 

ascribed to the degree and pattern of methyl-esterification of HG (Thakur et al. 1997; Fraeye 81 

et al., 2010). The emulsifying capacity of pectin which is continuously being investigated has 82 

been attributed to a number of structural properties such as a combination of molar mass and 83 

degree of methyl-esterification, degree of acetylation, neutral sugar side chains and the 84 

proteinaceous moiety of pectin (Akhtar et al., 2002; Leroux et al., 2003; Nakauma et al., 85 

2008). Moreover, process induced changes in the structure of pectin and its influence on the 86 

texture of intact tissues has been thoroughly examined (Sila et al., 2009; Christiaens et al., 87 

2011a; Christiaens et al., 2011b). On the other hand, pectin structural modifications in 88 

particulated fruit and vegetables and its functionality have also been sought. Christiaens et al. 89 

(2012) showed that different (pre)processing operations (e.g. low and high temperature 90 

blanching, blending and high pressure homogenization) in the preparation of carrot purées 91 

result in pectin structural changes that affect the flow properties of carrot purée. They showed 92 

that high pressure homogenization, a more intense mechanical tissue disruption technique, 93 
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and high temperature blanching significantly reduced the separation of particle and serum 94 

phases of the purée due to pectin solubilization. High pressure homogenization compared to 95 

conventional blending was also shown to lower the consistency of carrot purée due to the 96 

subsequent reduction of carrot tissue particles. In contrast, an increase in carrot purée 97 

consistency was observed with low temperature blanching of carrot pieces followed by either 98 

blending or high pressure homogenization because of increased resistance to particle 99 

disintegration as a result of stronger intercellular adhesion by Ca
2+

 cross-linking of 100 

de-methylesterified pectin. Furthermore, Kyomugasho et al. (2015a) also reported that pectins 101 

with different characteristics leached into the serum of carrot dispersions depending on the 102 

applied treatment (i.e. high or low temperature blanching) during subsequent mechanical 103 

disintegration. Moelants et al. (2012) revealed that strong thermal treatment of carrot tissues 104 

and intense high pressure homogenization enhances pectin solubilization into the serum of 105 

carrot purées. They found that serum viscosity had a limited influence on the rheology of 106 

carrot dispersions. However, they inferred that serum pectin may play a role in the final 107 

rheology, not only by influencing the serum viscosity but by changing interactions between 108 

particles. On the other hand, Diaz, Anthon and Barrett (2009) reported that pectin 109 

conformational changes rather than pectin depolymerization might cause the decrease of 110 

serum viscosity during industrial tomato paste production. From these aforementioned 111 

studies, the relevance and potential functionalities of solubilized pectin in the serum of plant-112 

derived dispersions can be deduced. Nonetheless, information on the detailed structure of 113 

pectins in the serum phase of plant-derived dispersions is still very limited.  114 

The objective of this current work was to characterize the chemical structure of serum 115 

pectin as influenced by different purée preparations and determine its influence on the 116 

consistency of the purées. Carrot as a pectin-rich vegetable that is commonly processed into 117 

dispersions (e.g. purées, soups) and is of economic relevance was selected. The influence of 118 
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the order of processing (thermal treatment before or after mechanical tissue disintegration) 119 

and the effect of a low temperature treatment (to stimulate endogenous pectin methyl-esterase 120 

activity) on carrot pectin structure were investigated. The quantity and type of pectin that 121 

leached into the serum of each differently prepared carrot purée was determined. Finally, the 122 

influence of different processing conditions on the composition of the dialyzed serum was 123 

also investigated.  124 

 125 

2. Materials and methods  126 

A schematic overview of the experimental set-up is shown in Figure 1. The sample codes (in 127 

italic) are based on the corresponding processing conditions of the purées.  128 

2.1 Preparation of carrot purées  129 

2.1.1 Plant material 130 

Fresh carrots (Daucus carota cv. Nerac) were purchased from a local shop in Belgium and 131 

then stored at 4 °C for maximally 3 days. Prior to processing, carrots were both peeled and cut 132 

into pieces with an average thickness of 0.5 cm.  133 

2.1.2 Mechanical tissue disruption     134 

Raw (or high temperature treated) carrot pieces were added to demineralized water in a 135 

1:1 (w/w) ratio and mechanically disrupted using a kitchen blender (Waring Commercial, 136 

Torrington, Connecticut, USA), operating the first 20 s at low speed and the next 40 s at high 137 

speed. To further disrupt the tissue, a high pressure homogenizer (Panda 2K, Gea Niro Soavi, 138 

Mechelen, Belgium) was used at 100 MPa via a single pass. The mechanical disruption is 139 

associated with pectin solubilization in carrot sera (Moelants et al., 2012). 140 

2.1.3 Heat treatments  141 

Purées (or carrot pieces) were vacuum-packed in polyethylene bags (DaklaPack® Lamigrip 142 

Stand-up Pouch Transparent; 220 mm × 300 mm + 65 mm bottom fold). The high 143 
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temperature treatment (HTT) was done at 95 °C for 30 min in a temperature-controlled water 144 

bath. In addition, for some samples, a low temperature treatment (LTT) at 60 °C for 40 min, 145 

5 h or 24 h was performed prior to the HTT to allow pectin methyl-esterase (PME) activity. 146 

HTT inactivated PME and allowed pectin thermo-solubilization into the serum phase. After 147 

HTT, samples were cooled to ambient temperature in an ice-water bath.  148 

2.2 Isolation of carrot sera  149 

The serum and particle fraction of a purée were separated according to the work of Houben et 150 

al. (2014). Purées were centrifuged at 12 400 x g for 30 min at 20 °C (J2-HS centrifuge, 151 

Beckman, CA, USA). Supernatants, the serum phases, were filtered (Machery-Nagel MN 615 152 

Ø 90 mm) under vacuum to exclude remaining pulp fragments. The sera were dialyzed 153 

(3.5 kDa, MWCO) against demineralized water for 48 h to remove small molecules (e.g. ions 154 

and monomeric sugars). Prior to dialysis, pH was adjusted to 6.0 to ionize the carboxylic 155 

groups of pectin (Manrique & Lajolo, 2002). Furthermore, to concentrate the sera and obtain 156 

the dry matter composition, lyophilization was done using a freeze-dryer (Christ alpha 2-4, 157 

Osterode, Germany). Lyophilized sera were stored over P2O5 in a desiccator until further 158 

analysis. 159 

2.3 Determination of physico-chemical properties of the purées 160 

2.3.1 pH  161 

The pH of the different purées were measured at room temperature (22 ± 1 
o
C) using a pH 162 

meter with a glass electrode (Meterlab PHM210, Radiometer Analytical, Lyon, France), 163 

calibrated with calibration buffers of pH 4.00 and 7.00 (IUPAC, Radiometer Analytical, 164 

Lyon, France).  All measurements were done in triplicate.  165 

2.3.2 Bostwick consistency  166 

The empirical Bostwick test was used to evaluate the consistency of the purées. Samples were 167 

placed into the Bostwick consistometer (CSC Scientific Company, VA, USA) and were 168 
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allowed to flow under their own weight along a level surface for 30 s at room temperature 169 

(22 ± 1 
o
C). The distance (in centimetres) covered by the purée was recorded as the Bostwick 170 

consistency index. For each sample, the measurement was performed in triplicate.  171 

2.3.3 Particle size distribution  172 

The particle size distribution of the purées was measured using a laser diffraction instrument 173 

(Beckman Coulter Inc., LS 13 320, Miami, Florida). A few drops of the purée were poured 174 

into a stirred-tank filled with demineralized water. The diluted sample was then pumped into 175 

a measuring cell wherein the laser light (H–Ne laser, wavelength 633 nm) was scattered by 176 

the particles. Based on the intensity profile of the scattered light, the volumetric particle size 177 

distributions were automatically calculated with the instrument’s software by use of the Mie 178 

theory (Verrijssen et al., 2014). The measurement was performed in triplicate.  179 

2.3.4 Dry matter and ash content 180 

Purées (2 g) were dried (in triplicate) in a convection oven at 103 °C for 16 h. Subsequently, 181 

to determine the ash content, the dried samples were incinerated in a muffle furnace 182 

(Nabertherm GmbH, Controller P330, Lilienthal, Germany) operating for 3 h at 350 °C and 183 

21 h at 550 °C.  184 

2.4 Determination of sera components  185 

2.4.1 Protein content  186 

The nitrogen content of the sera was measured using an EA 1110 CHNS-O elemental 187 

analyzer (CE-Instruments/Thermo Fisher Scientific). About 2 mg of lyophilized serum was 188 

placed in crimped tin capsules (8 mm x 5 mm) prior combustion in the elemental analyzer. A 189 

conversion factor of 6.25 was used to calculate the amount of proteins in the sample 190 

(Immerzeel et al., 2006). The analysis was done in duplicate.  191 
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2.4.2 Pectin content  192 

2.4.2.1 Uronic acid analysis  193 

The uronic acid (UA) content of the sera was determined following the method of 194 

Ahmed & Labavitch (1977). Hydrolysis of 10 mg of lyophilized serum in 8 ml concentrated 195 

sulphuric acid was performed in duplicate. Afterwards, a spectrophotometric measurement for 196 

each hydrolysate (in triplicate) was performed at 520 nm at 25 °C according to the method of 197 

Blumenkrantz & Asboe-Hansen (1973).  198 

2.4.2.2 Neutral sugar analysis 199 

The neutral sugar profile of the sera was determined based on the method of Houben et al. 200 

(2011). First, acid hydrolysis of the polysaccharides to monosaccharides was done. Briefly, 201 

5 mg of the lyophilized serum was hydrolysed in 4 M trifluoroacetic acid (TFA) at 110 °C for 202 

1.5 h. Then, the samples were cooled, dried under N2 at 45 °C, washed with 1 M NH4OH, and 203 

dried again under N2 at 45 °C to remove and neutralize TFA. Afterwards, the samples were 204 

dissolved in demineralized water (organic free, 18 MΩ cm resistance) and diluted to a final 205 

concentration of 0.1% (w/v). Before chromatographic analysis, the samples were filtered 206 

through a 0.45 µm syringe filter (Chromafil A-45/25, Macherey-Nagel, Duren, Germany). 207 

The monosaccharides were analyzed using high performance anion exchange chromatography 208 

(HPAEC) combined with pulsed amperometric detection (PAD). A Dionex HPLC system 209 

(DX600), equipped with a GS50 gradient pump, a CarboPac™ PA20 column (150 × 3 mm, 210 

pH range = 0–14), a CarboPac™ PA20 guard column (30 × 3 mm), and an ED50 211 

electrochemical detector (Dionex, Sunnyvale, USA) were used. The detector was equipped 212 

with a reference pH electrode (Ag/AgCl) and a gold electrode and was used in the PAD 213 

mode, performing a quadruple potential waveform. The applied gradients were based on the 214 

method described by Arnous and Meyer (2008). Diluted hydrolysate (10 μl) was injected and 215 

eluted at 30 °C with a flow rate of 0.5 ml/min after equilibration (−10 → −5 min: 100 mM 216 
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NaOH and −5 → 0 min: elution gradient). Two elution gradients (0.5 mM NaOH and 15 mM 217 

NaOH at 0→20 min) were respectively applied for a complete chromatographic separation of 218 

the analyzed monosaccharides (Jamsazzadeh Kermani et al., 2014). The column was 219 

regenerated using 500 mM NaOH (20 → 30 min). Mixtures of sugar standards (L-Fuc, 220 

L-Rha, L-Ara, D-Gal, D-Glc, D-Xyl and D-Man) at varying concentrations (1–10 ppm) were 221 

used as standards for identification and quantification. Acid hydrolysis of these standards was 222 

also performed to correct the degradation of the monosaccharides during the hydrolysis step. 223 

Peak areas of unhydrolysed and hydrolysed sugar standards were compared and the recovery 224 

values were considered in the quantification of the monosaccharides. The hydrolysis and 225 

chromatographic measurement were done in duplicate.  226 

2.4.3 Ash content  227 

The ash content of the lyophilized serum (0.1 g) was determined as in section 2.3.4  228 

2.5 Characterization of serum pectin  229 

2.5.1 Degree of methyl-esterification  230 

The degree of methyl-esterification (DM) of pectin in the sera was measured using Fourier 231 

transform infra-red (FT-IR) spectroscopy as explained and described in the work of 232 

Shpigelman et al. (2014) and Kyomugasho et al. (2015b). Briefly, the lyophilized serum was 233 

firmly pressed to remove entrapped air and ensure smooth surfaces. The compacted sample 234 

was placed on the sample holder of the attenuated total reflectance Fourier transform infrared 235 

spectrometer (ATR-FTIR, Shimadzu FTIR-8400S, Japan) and 100 scans were taken. The 236 

transmittance was recorded at wavenumbers from 4000 cm
-1

 to 400 cm
-1

 at resolution 4 cm
-1

. 237 

The spectra were converted into absorbance mode before baseline correction and reading of 238 

the absorption at the maxima of peaks at 1740 cm
-1

 (due to ester carbonyl group (C=O) 239 

stretching) and at 1600-1630 (due to carboxylate group (COO
-
)). Since peak intensities at 240 

1530 and 1650 cm
-1 

were detected due to the presence of proteins, peak deconvolution was 241 
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performed. The obtained ratio (R) between the peak intensity at 1740 cm
-1

 to the sum of the  242 

peak intensities at 1740 cm
-1 

and 1600 cm
-1

 was used to predict the DM of the samples based 243 

on the calibration line: DM (%) = 123.45 x R + 6.59 (Kyomugasho et al., 2015b).  244 

2.5.2 Degree of acetylation  245 

The degree of acetylation (DAc) of pectin was measured using an enzyme kit (Megazyme, 246 

K-ACETRM, Ireland). Prior to acetic acid measurement, lyophilized serum was hydrolysed at 247 

25 °C for 1 h with 2 M sodium hydroxide and neutralized with 2 M hydrochloric acid. 248 

Hydrolysis and colorimetric measurement at 340 nm were done in triplicate. The DAc was 249 

determined as the ratio of the molar amount of the released acetic acid to the molar amount of 250 

uronic acid multiplied by 100.  251 

2.5.3 Molar mass distribution  252 

The molar mass distribution of pectin in the sera was analyzed based on the work of 253 

Shpigelman et al. (2014; 2015). Size exclusion chromatography (SEC) coupled to multi-angle 254 

light scattering (MALS) (PN3621, Postnova analytics, Germany), refractive index (RI) 255 

(Shodex RI-101, Showa Denko K.K., Kawazaki, Japan) and a diode array detector (G1316A, 256 

Agilent technologies, Diegem, Belgium) at 280 nm to detect the presence of UV absorbing 257 

compounds, was used. Lyophilized serum (0.5% w/v) dissolved in 0.1 M acetate buffer was 258 

stirred overnight and then filtered through 0.45 µm filter (Millex-HV). 100 µl of sample 259 

solution was injected to a series of three Waters columns (Waters, Milford, MA), namely, 260 

Ultrahydrogel 250, 1000 and 2000 with exclusion limits of 8 x 10
4
, 4 x 10

6
, and 1 x 10

7
 261 

g/mol, respectively. The columns were kept at 35 °C and the flow rate of the eluent (0.1 M 262 

acetic acid buffer with 0.1 M NaNO3) was 0.5 ml/min. A dn/dc value of 0.146 ml/g was used. 263 

The molar masses were calculated using the Debye fitting method (second order) by the 264 

software provided by the manufacturer of the MALS detector (NovaMals, version 1.0.0.18, 265 

Postnova analytics, Germany). Samples were analyzed in duplicate.  266 
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3. Results and discussion  267 

3.1 Influence of processing conditions on the physico-chemical properties of carrot purées 268 

3.1.1 pH  269 

The pH values of the differently prepared purées are presented in Table 1. The pH of the sera 270 

was similar to the purées. These pH values are in close agreement with the results of Talcott 271 

and Howard (1999) on pre-treated and thermally processed (121 °C for 30 min) carrot purées, 272 

but lower than the pH of 6.27 of untreated (no heat treatment and no high pressure 273 

homogenization) carrot purée reported by Houben et al. (2013). Moreover, in this work, a 274 

lower pH for the low temperature treated carrot purées is noticeable. The pH of the 24 h low 275 

temperature treated (24 h LTT) purée had a 1.1 unit decrease compared to the carrot purées 276 

that were not subjected to low temperature treatment (HTT+HPH and HPH+HTT). This 277 

decrease in pH can be due to the protons (H3O
+
) released by the de-methoxylation of pectin 278 

and the solubilization of organic acids (Anthon & Barrett, 2012).  279 

3.1.2 Dry matter and ash content  280 

The dry matter of the purées is composed of the organic and inorganic compounds in both 281 

serum and particle fractions. The latter contributes more to the bulk of the determined dry 282 

matter. There was no discernible change in dry matter content in all differently prepared 283 

carrot purées as displayed in Table 1. Also, Lopez-Sanchez et al. (2011b) and Houben et al. 284 

(2014) did not find significant changes in the dry matter of carrot purées prepared through 285 

different processing conditions. On the other hand, the ash content is composed of the 286 

inorganic residues which represent the total amount of minerals in the purées. Based on Table 287 

1, there was no difference in the ash content of the differently prepared purées. This suggests 288 

that the processing conditions applied had no influence on the quantities of dry matter and 289 

inorganic matter in carrot purées.  290 
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3.1.3 Particle size distribution  291 

Compared to conventional blending, high pressure homogenization has been demonstrated to 292 

reduce the particle size and obtain a more homogenous particle size distribution of the 293 

dispersed plant-based food systems (Lopez-Sanchez et al., 2011a; 2011b). As shown in 294 

Figure 2, a unimodal particle size distribution was observed for all differently prepared 295 

purées. This was expected since the intensity of mechanical tissue disruption was similar for 296 

all purées. A slight shift to the right of the particle diameter of the HTT+HPH sample can be 297 

observed compared to the other purées. This shift only indicates a slightly larger particle size 298 

diameter in the HTT+HPH purée whereby the median (Dv50) was 84.7 µm compared to an 299 

average of 75.1 µm for the other carrot purées. Only the sample in which tissue disintegration 300 

was performed after high temperature treatment had a slightly larger particle size distribution. 301 

3.1.4 Bostwick consistency  302 

The empirical Bostwick consistency test was used to determine the flow behavior of the 303 

differently prepared purées. The Bostwick consistency indices of the purées are shown in 304 

Figure 3. Syneresis, the separation of the pulp and serum fractions, was not observed in any of 305 

the carrot purées. This observation confirms the result of Christiaens et al. (2012) wherein 306 

high pressure homogenized carrot purées clearly displayed less syneresis compared to purées 307 

that were only blended. Among the differently prepared purées, the HTT+HPH sample had 308 

the lowest Bostwick consistency index which indicates that it was more resistant to flow (i.e. 309 

high consistency). On the contrary, the other carrot purées had similar high consistency 310 

indices that indicate less resistance to flow (i.e. low consistency). LTT seems to have no 311 

influence on Bostwick consistency while reversing the order of HTT and HPH had a great 312 

influence. Differences in the particle shape and particle packing probably influenced the 313 

consistencies of the purées as the particle size distribution had no large difference. Besides 314 

particle characteristics, the solubilized polymers (e.g. pectin) in the serum may also influence 315 
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purée consistency (Moelants et al., 2012). Differences in serum polymer characteristics, 316 

discussed in the next sections, may support in  explaining these observations.  317 

3.2 Influence of processing conditions on carrot serum composition  318 

In this research work, serum components are the compounds that leached into the serum of 319 

the purée during processing and remained after isolation, dialysis (MWCO, 3.5 kDa) and 320 

freeze drying of the serum. The sum of the amounts of all compounds in the lyophilized 321 

serum from differently prepared carrot purées is presented in Table 2. Differences in the 322 

quantities of the analyzed compounds in the different sera were observed. The carrot sera 323 

predominantly contained polysaccharides consisting largely of uronic acid and to a smaller 324 

extent of neutral sugars. The amount of uronic acid, which is mainly galacturonic acid in most 325 

vegetables such as carrot, is commonly used to represent and express the amount of pectin 326 

(Koubala et al., 2008; Christiaens et al., 2012; Houben et al., 2014). It can be noticed that 327 

HTT+HPH and HPH+HTT sera had a relatively high uronic acid content which indicates 328 

leaching of the galacturonic acid rich domain of pectin into the sera. In literature, intense 329 

thermal treatment of carrots has been shown to result in high uronic acid content in the serum 330 

fraction (Moelants et al., 2012) which is attributed to a large extent of temperature-induced 331 

pectin solubilization into the serum by β-eliminative degradation of pectin present in the 332 

middle lamellae and primary cell walls (Diaz et al., 2009; Sila et al., 2009). With LTT prior to 333 

the intense thermal treatment of the purées, a lower amount of uronic acid in the sera was 334 

noticeable. During low temperature treatment of the purées, PME activity is stimulated 335 

thereby de-methoxylating pectin. In this context, Christiaens et al. (2012) observed a shift in 336 

pectin solubility (decrease in water soluble pectin and an increase in both chelator soluble and 337 

sodium carbonate soluble pectin) in carrot purée prepared from low temperature blanched 338 

(60 °C for 40 min) carrot pieces. Recently, Kyomugasho et al. (2015a) also reported a low 339 

galacturonic acid content in the serum of carrot purée prepared from low temperature 340 
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blanched carrot pieces. The decreased pectin solubility, due to the increased amount of free 341 

carboxyl groups that can cross-link with Ca
2+

 or other ions, explains the lower uronic acid 342 

(Thakur et al., 1997). Next to (galact)uronic acid, the presence of different neutral sugar side 343 

chains in pectin is well recognized (Kravtchenko et al., 1992; Houben et al., 2011). As shown 344 

in Table 2, carrot sera evidently contained high amounts of pectic neutral sugars (fucose, 345 

rhamnose, arabinose, galactose and xylose). Among these, galactose and arabinose were 346 

higher compared to rhamnose, fucose and xylose which may also originate from free arabinan 347 

or arabinogalactan. A decrease in the neutral sugar content can also be noticed specifically 348 

with LTT that can be linked to reduced pectin solubility as compared to non-LTT treated 349 

samples. Besides pectic neutral sugars, glucose and mannose were found in appreciable 350 

quantities in all carrot sera. Since the samples were dialyzed and the sugar analysis was done 351 

in hydrolysed samples, this could indicate that the glucose present in the sera comes from a 352 

polymeric material (e.g. starch). Mannose can originate from fragments of hemicellulosic 353 

polysaccharides that leached into the serum.  354 

Furthermore, the different carrot sera also contained proteins (ranging from 81.0 to 309.5 µg/g 355 

purée) which might be free proteins or fragments from glycoproteins (e.g. arabinogalactan 356 

protein) possibly associated with pectin. HTT+HPH, when thermal treatment preceded tissue 357 

disintegration, had the highest level of proteins. The ash content of the sera was also 358 

determined. This ash content represents the amount of total minerals that leached into the 359 

serum during purée preparation. Leaching of minerals is common during cooking and/or 360 

processing of vegetables (Rees & Bettison, 1991). The HTT+HPH sera had a relatively higher 361 

ash content which suggests the greater extent of leaching of the minerals from the softened 362 

carrot tissues prior to high pressure homogenization.  363 
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From these results, it is clear that the serum phase of the differently prepared carrot purées 364 

primarily contains pectic polysaccharides. Hence, the structure of pectin in the serum was 365 

further characterized as will be discussed in the succeeding section.   366 

3.3 Influence of processing conditions on the structure of carrot serum pectin  367 

3.3.1 Degree of methyl-esterification    368 

Pectin chemical structure is commonly characterized based on the degree of 369 

methyl-esterification (DM) which is the number of moles of methyl esters per 100 moles of 370 

galacturonic acid residues (Schols & Voragen., 2002). The DM has been identified as the 371 

most important property of pectin especially for its influence on gelling ability as well as for 372 

its influence on other functional properties (e.g. stabilizing, emulsifying). As shown in Table 373 

3, HTT+HPH and HPH+HTT resulted in a similar serum pectin DM of 66.3% and 66.1%, 374 

respectively. This indicates that there was no PME activity despite enzyme and substrate de-375 

compartmentalization during the blending and high pressure homogenization of raw carrot 376 

pieces prior to the heat treatment of HPH+HTT samples. These values are comparable with 377 

the previously reported serum pectin DM (64.96%) in carrot purée prepared by strong heat 378 

treatment of carrot pieces (95 
o
C for 45 min) followed with blending and high pressure 379 

homogenization (100 MPa) (Moelants et al., 2012). Furthermore, a decreasing DM of the 380 

serum pectins in (40 min, 5 h and 24 h) low temperature treated carrot purées (60 °C) was 381 

apparent. This was expected because at 60 °C the PME activity in carrots is stimulated 382 

thereby lowering the DM of pectin (Ni et al., 2005; Sila et al., 2005; Kyomugasho et al., 383 

2015a).     384 

3.3.2 Degree of acetylation (DAc) 385 

The acetylation of galacturonic acid residues has been pointed to be a factor causing the 386 

emulsifying property of pectin and it is recognized to negatively influence pectin’s gelling 387 

ability (Thakur et al., 1997; Voragen, Beldman and Schols, 2001; Leroux et al., 2003). The 388 
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DAc of serum pectin in the differently prepared carrot purées is presented in Table 3. These 389 

values are in close agreement with the reported DAc (13%) of carrot pectin (Endress et al., 390 

2006). It can also be observed that low temperature treatment of carrot purées for a long time 391 

(5 h and 24 h) resulted to leaching of more acetylated pectic polysaccharides. It was reported 392 

that RG-I from carrot is acetylated at mainly O-3 of the galacturonic acid moieties 393 

(Komalavilas & Mort, 1989).  394 

3.3.3 Linearity/ degree of branching   395 

To gain an insight into the linearity/ branching of serum pectin, molar ratios of the pectin 396 

associated sugars were determined (Houben et al., 2011). A linear pectin structure is 397 

presumed with the backbones of RG-I and RG-II being continuous with the linear HG 398 

structure (Christiaens et al., 2015). The linearity of pectin is estimated from the molar ratio of 399 

the pectic (galact)uronic acid to neutral sugars(Fuc, Rha, Ara, Gal and Xyl). Conversely, the 400 

extent of branching of RG-I is estimated based on the molar ratio of RG-I sugar side chains 401 

(Ara and Gal) to Rha. As displayed in Table 3, serum pectins with varying linearity and 402 

degree of branching were generated. It is apparent that HTT+HPH and HPH+HTT samples 403 

contained more linear and less branched serum pectin. On the contrary, serum pectins of low 404 

temperature treated samples were less linear and more branched. Pectin in low temperature 405 

treated purées was probably more strongly bound in the cell walls through Ca
2+

 cross-links 406 

due to the previously observed lower DM (Kyomugasho et al., 2015a). Ca
2+

 cross-linking of 407 

the linear GalA-rich de-methoxylated pectic domain in LTT samples makes this type of pectin 408 

less likely to leach out (Thakur et al., 1997), and thus, a more branched fraction of pectin 409 

leached into the serum. This observation is in accordance with the lower GalA content in the 410 

low temperature treated samples. In samples with higher DM, Ca
2+ 

cross-linking is less and 411 

thus linear GalA-rich pectin was more easily leached out.  412 
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3.3.4 Molar mass distribution 413 

To determine the molar mass distribution of serum polymers and qualitatively detect the 414 

presence of UV absorbing compounds (e.g. proteins, polyphenols) at 280 nm, size exclusion 415 

chromatography coupled to MALS, RI and DAD detectors was used. The serum polymers 416 

were analyzed based on their hydrodynamic volume in which large molecules elute at a 417 

shorter time than small molecules. Figure 4a presents the molar mass distribution profile and 418 

the concentration chromatograms, while Figure 4b shows the corresponding light scattering 419 

profile superimposed with the UV absorbance chromatograms. From the concentration 420 

chromatograms, two peaks can be distinguished that are characterized by high molar mass 421 

(1
st
 peak) and lower molar mass (2

nd 
peak) polymers. For the HTT+HPH sample, the weight 422 

average molar mass (MM) was 6 220 kDa for the 1
st
 peak and 527 kDa for the 2

nd
 peak which 423 

suggests thermo-solubilization of large pectic polymers (De Roeck et al., 2008). Moreover, a 424 

clear peak in the UV chromatogram at around 40 min is noticeable that can be related to the 425 

very large LS peak (Figure 4b) and high MM of the HTT+HPH sample at the same elution 426 

time. From this observation, it can be inferred that these pectic polymers were compact, 427 

aggregated polymers which are possibly associated to proteins. In this context, Christiaens et 428 

al. (2015) also observed proteins attached to the high molar mass pectic polymers in water 429 

soluble pectin fractions from carrot-derived waste streams. Perhaps this can be ascribed to 430 

arabinogalactan proteins that are hypothesized to be linked with pectin in carrots (Vincken et 431 

al., 2003; Immerzeel et al., 2006). Conversely, a higher concentration of lower molar mass 432 

polymers can be observed in HPH+HTT and low temperature treated sera. In these samples, 433 

there were no discernible peaks in the UV chromatograms at the elution time of 35-58 min but 434 

an apparent higher UV peak intensity at around 62 min was observed. This is probably 435 

indicative of the presence of low molar mass UV absorbing molecules. The HPH+HTT 436 

sample had a MM of 1 210 kDa for the 1
st
 concentration peak at around 43 min and 85 kDa 437 
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for the 2
nd

 peak at 50 min elution time. Similarly, the low temperature treated samples had a 438 

MM of 823 kDa (40 min LTT); 712 kDa (5 h LTT) and 552 kDa (24 h LTT) for the 1
st
 peaks 439 

while the 2
nd

 peaks had a MM of 102 kDa, 114 kDa and 121 kDa, respectively. This suggests 440 

that more small molecules and less large molecules leached into the serum especially for the 441 

low temperature treated samples. Furthermore, a remarkable difference in terms of MM can 442 

be noticed between HTT+HPH and HPH+HTT whereby the latter had smaller pectic 443 

molecules. For the HTT+HPH sample, this shows that predominantly large pectic polymers 444 

leached out into the serum from the thermally softened carrot tissue. High pressure 445 

homogenization of softened carrot tissue facilitated the leaching of large polymers into the 446 

serum. While for the HPH+HTT sample, there was no softening prior to tissue disintegration 447 

thus only lower MM ploymers leached and less high MM polymers. In contrast, LTT resulted 448 

in generally lower MM serum pectins probably due to the retention of high molar mass pectic 449 

polymers in the tissues/particles owing to a low DM that possibly promoted cross-linking 450 

through Ca
2+

 bridges (Kyomugasho et al., 2015a). This consequently led to the leaching of 451 

only lower molar mass pectic polymers into the serum.  452 

 453 

Conclusion  454 

Tailored serum pectin structures can be obtained by deliberate processing of carrot purées. 455 

The order of high temperature treatment and high pressure homogenization was shown to be 456 

very important because it results in totally different carrot purée consistencies. A high purée 457 

consistency was observed when thermal treatment preceded intense tissue disintegration 458 

(HTT+HPH). On the other hand, less consistent purées were observed when the reverse order 459 

of processing (high pressure homogenization prior to thermal treatment, HPH+HTT) and low 460 

temperature treatment were applied. In terms of serum pectin structure, HTT+HPH and 461 

HPH+HTT had comparable DM, DAc, linearity and degree of branching but different molar 462 
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mass distributions. HTT+HPH had relatively high apparent molar mass pectic polymers 463 

which is probably bound to proteins, while HPH+HTT had lower molar mass. The difference 464 

in purée consistencies can possibly be related to serum pectin and its association with proteins 465 

besides the influence of the particles. Low temperature treatment of carrot purées also 466 

generated different serum pectin structures, however this did not result in different Bostwick 467 

consistencies. Yet, it may be important for other functionalities (e.g. emulsifying property). 468 

Further research on the functional properties of serum pectin, for instance on its stabilizing 469 

and emulsifying properties in dispersed plant-based food systems, will enable the production 470 

of more natural plant-based food products by tailored processing. 471 
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Figure 1. Schematic overview of the experimental set-up (HTT= high temperature treatment, 

HPH= high pressure homogenization, LTT= low temperature treatment). 
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 629 

Figure 2. Particle size distribution of the differently prepared carrot purées (HTT+HPH (♦); 630 

HPH+HTT (■); 40 min LTT (▲); 5 h LTT (X); 24 h LTT (●))  (For interpretation, the reader 631 

is referred to the colored version of this figure legend in the article.) 632 
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 637 
Figure 3. Bostwick consistency of the differently prepared carrot purées 638 
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Figure 4. Size exclusion elution profile of serum polymers from differently prepared carrot 645 

purées (a) log molar mass (thick solid line) superimposed on concentration chromatogram 646 

(square dot curve) (b) Light scattering signal at 92° angle (solid curve) superimposed on UV 647 

absorbance chromatogram at 280 nm (round dot curve). HTT+HPH – black;  HPH+HTT –648 

blue; 40 min LTT – orange; 5 h LTT – green; 24 h LTT – red . (For interpretation, the reader 649 

is referred to the colored version of this figure legend in the article.) 650 
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Table 1. Average pH values, dry matter and ash contents (± standard deviation) of the differently prepared carrot purées 

Sample pH Dry matter (%) Ash (% ) 

HTT+HPH 5.77 ± 0.04 4.60 ± 0.01 0.27 ± 0.02 

HPH+HTT  5.72 ± 0.03 4.61 ± 0.02 0.23 ± 0.01 

40 min LTT 5.47 ± 0.04 4.52 ± 0.17 0.24 ± 0.02 

5h LTT 5.18 ± 0.05 4.47 ± 0.03 0.22 ± 0.02 

24h LTT 4.67 ± 0.05 4.46 ± 0.01 0.24 ± 0.01 
 

 655 

Table 2. Total amount of compounds and their corresponding quantity (± standard deviation) for each dialyzed serum sample expressed in 656 
µg/g purée 657 

 

Sample 

 

Monosaccharides 

 

Crude 

protein 

 

 

Ash content 

 

 

Total amount of 

compounds  Fuc Rha Ara Gal Glc Xyl Man UA 

HTT+HPH 3.8 ± 0.1 79.9 ± 1.7 228.7 ± 21.2 272.1 ± 32.0 103.4 ± 6.0 3.5 ± 0.5 12.9 ± 0.5 1 536.6 ± 55.9 309.5 ± 1.1 130.3 ± 5.5 2 680.4 ± 68.3  

HPH+HTT  2.5 ± 0.2  41.7 ± 6.9 143.2 ± 18.9 193.4 ± 10.6 104.8 ± 7.5 1.6 ± 0.2 13.8 ± 0.6 1 119.8 ± 19.2 155.6 ± 3.8   80.5 ± 3.3 1 856.9 ± 31.1  
40 min LTT 1.6 ± 0.2  15.3 ± 0.3 103.7 ± 10.5 168.9 ± 2.5 099.3 ± 1.5  1.1 ± 0.1 15.7 ± 0.1    520.3 ±  3.6 187.4 ± 2.0   73.7 ± 3.7 1 187.1 ± 12.2  
05 h LTT 1.3 ± 0.0  11.6 ± 0.2 093.1 ± 03.0 158.7 ± 4.5 120.4 ± 6.1  0.9 ± 0.0  15.4 ± 0.7    272.2 ±  2.8 151.6 ± 0.2   84.1 ± 1.5    909.4 ± 08.8  
24 h LTT 0.5 ± 0.0   8.8 ± 0.0 078.4 ± 00.4 123.0 ± 0.2 109.0 ± 0.2 0.6 ± 0.0  11.0 ± 0.2     112.1 ±  2.4   81.0 ± 0.1   67.5 ± 1.9    591.8 ± 03.1 
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Table 3. Average DM, DAc and linearity/branching (± standard deviation) of serum pectin 

from differently prepared carrot  purées 

 

Sample 

 

% DM 

 

% DAc 

Linearity of pectin  

(UA:Rha+Ara+Gal) 

Branching of RG-I 

(Ara+Gal/Rha) 

HTT+HPH 66.3 ± 0.55 11.2 ± 0.38 2.22 ± 0.11   6.23 ± 0.52 

HPH+HTT  66.1 ± 1.20   8.4 ± 0.57 2.40 ± 0.05   7.10 ± 0.71 

40 min LTT 53.1 ± 1.80   9.7 ± 0.14 1.54 ± 0.04 17.48 ± 0.95 

5h LTT 37.9 ± 2.67 16.3 ± 0.54 0.88 ± 0.03 21.26 ± 0.30 

24h LTT 18.4 ± 1.02 19.6 ± 0.76 0.46 ± 0.01 22.53 ± 0.04 
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Tables  


