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ABSTRACT  

Despite frequently declared benefits of using wireless accelerometers to assess running gait in 

real-world settings, available research is limited. The purpose of this study was to investigate 

outdoor surface effects on dynamic stability and dynamic loading during running using tri-axial 

trunk accelerometry. Twenty eight runners (11 highly-trained, 17 recreational) performed 

outdoor running on three outdoor training surfaces (concrete road, synthetic track and 

woodchip trail) at self-selected comfortable running speeds. Dynamic postural stability (tri-axial 

acceleration root mean square (RMS) ratio, step and stride regularity, sample entropy), dynamic 

loading (impact and breaking peak amplitudes and median frequencies), as well as spatio-

temporal running gait measures (step frequency, stance time) were derived from trunk 

accelerations sampled at 1024 Hz. Results from generalized estimating equations (GEE) analysis 

showed that compared to concrete road, woodchip trail had several significant effects on 

dynamic stability (higher AP ratio of acceleration RMS, lower ML inter-step and inter-stride 

regularity), on dynamic loading  (downward shift in vertical and AP median frequency) , and 

reduced step frequency (p <0.05). Surface effects were unaffected when both running level and 

running speed were added as potential confounders. Results suggest that woodchip trails 

disrupt aspects of dynamic stability and loading that are detectable using a single trunk 

accelerometer. These results provide further insight into how runners adapt their locomotor 

biomechanics on outdoor surfaces in situ. 

Keywords: Running gait, running surface; trunk accelerometer; dynamic stability; dynamic 
loading. 
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Introduction  1 

Worldwide millions of people participate in recreational and competitive running. It is an easily 2 

accessible sport with numerous proven health benefits. However, repetitive collisions with the 3 

ground also make running a sport with a high incidence of chronic overload injuries [1]. 4 

Dynamic loading related variables such as higher vertical loading rates [2] or peak tibial 5 

accelerations [3] have been prospectively associated with lower-limb overuse running injuries 6 

such as stress fractures.  It is commonly believed that these dynamic loads and subsequently 7 

overuse injury risk is exacerbated on harder surfaces such as concrete or asphalt. However, 8 

epidemiological research has thus far failed to find any relationship between surface hardness 9 

and injury, possibly due to difficulty in accurately quantifying time and intensity on typical 10 

running surfaces [4]. Identifying how dynamic loads are moderated on typical running surfaces 11 

could therefore add insights into appropriate preventative strategies for overuse running injury. 12 

Laboratory studies have shown that small alterations in running surface can induce changes in 13 

human running mechanics. For example, it is known that softer [5–7] or uneven [8,9] running 14 

surfaces cause runners’ to rapidly increase their leg stiffness, while peak ground reaction forces 15 

are mostly moderated with a stable centre of mass (CoM) trajectory [5–7]. Although, Dixon et al., 16 

[10] reported individual specific adaptations in knee kinematics between asphalt and a softer 17 

rubber-modified surface, they [10] also observed an overall reduction in vertical loading rates 18 

when switching to the softer surface. While these aforementioned studies provide essential 19 

insights, the mechanisms for moderating are perhaps not directly applicable to “real-world” 20 

running surfaces that naturally vary in composites of hardness, evenness, and gradient.  21 

In attempt to secure ecological validity, some researchers have investigated how runners adapt 22 

their loading and mechanics to typical outdoor running surfaces. Using cinematography, Creagh 23 

et al., [11] found that running in long grass decreased step lengths while increased hip vertical 24 

displacement, knee lift and peak upper leg angles compared to running on tarmac. Others who 25 

have used portable wearable devices such as in-shoe plantar pressure measurements or tibial 26 



3 
 

accelerometry have found conflicting results. For example, Tessutti et al., [12]  reported higher 1 

central and lateral peak plantar pressures along with shorter contact times when running on 2 

asphalt compared to natural grass. In contrast, no differences in peak plantar pressure [13], 3 

impulse [14] , tibial shock [13] or contact times [13,14] have been found between concrete, 4 

grass, or synthetic track. Discrepancies in findings could be attributed to large inter-individual 5 

responses [10]. It appears that there is a need for a better understanding of how runners 6 

moderate their loading and gait in response to “real-world” surfaces. 7 

Measures derived from wireless tri-axial trunk accelerometers have become a popular approach 8 

to reliably and unobtrusively capture dynamic loading and CoM stability in various 9 

environments. The acceleration root mean square (RMS) as well as the autocorrelation-based 10 

coefficients referred to as inter-step and inter-stride regularity have identified a wide variety of 11 

impaired or asymmetrical stability patterns related to ageing [15], lower limb prosthesis [16], 12 

hemiplegia [17], and gross motor function [18]. When applied to running gait, these measures 13 

can detect compensations in dynamic stability due to fatigue [19,20], predict oxygen 14 

consumption [21], and classify athletes based on their training background [22]. The current 15 

paper includes stability and impact frequency components of running gait, which may be more 16 

sensitive to changes in surface relative to other measures i.e. spatio-temporal or impact peaks. 17 

However, these accelerometer measures have usually been investigated on a single running 18 

surface, thus limiting multi-terrain generalizability.  19 

Woodchip trails are becoming popular running surfaces that are specifically constructed to have 20 

“structural dampening” to reduce impact-loading related injuries and enhance participation of 21 

recreational running. Indeed, animal studies suggest that woodchip surfaces have injury 22 

preventative properties. For example, adult sheep that were exposed to prolonged activities on 23 

woodchips were less prone to development of knee osteoarthritis compared to sheep exposed to 24 

activities on hard concrete [23]. In addition, hoof impact accelerations were significantly more 25 

dampened when horses trotted at ~4 m·s-1 on woodchip surface compared to asphalt [24]. 26 
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Unfortunately, previous research on human running has primarily focused on other outdoor 1 

surfaces such as grass [11–14], with no apparent evidence on woodchip trails. The purpose of 2 

this study was to investigate outdoor surface effects on dynamic stability and loading during 3 

running using tri-axial trunk accelerometry. Based on previous laboratory research indicating 4 

smoothness of CoM trajectory under different surface conditions, we hypothesized that trunk 5 

accelerometry measures of dynamic stability and loading would be minimally affected by 6 

running surface. 7 

Methods 8 

Participants 9 

Two predetermined age-matched groups of endurance runners aged 18 to 33 years of mixed 10 

gender (# women 14, 50 %) were recruited for this study; highly-trained runners (mileage > 50 11 

km·week-1, n = 13) and recreational runners (mileage < 30 km·week-1, n = 17). All participants 12 

were screened to have no history of lower extremity injury within the past three months. 13 

Written informed consent was received from all runners prior to participation in accordance 14 

with the Declaration of Helsinki. The study was approved by the local ethics committee 15 

(Commissie Medische Ethiek KU Leuven). 16 

Experimental protocol 17 

All runners (n = 17 recreational; n = 13 highly-trained) performed a standardized warm-up. 18 

Outdoor running was performed on 90m of straight and flat concrete road, synthetic track, and 19 

woodchip trail. Photo electronic timing gates (RaceTime 2 system, Microgate, Bolzano, Italy) 20 

were positioned to capture average running speed from the 10m to 70m mark. A practice trial 21 

was provided to familiarize participants to each surface. The self-selected running speed on 22 

concrete was used as control speed on the other surfaces, and trials on subsequent running 23 

surfaces were discarded if the running speed differed by ± 1 m·s-1 of control speed. The order of 24 

the other two surfaces was randomized. To avoid any fatigue effect runners were allowed to rest 25 

during five minutes between each surface.  26 
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Accelerometry measurements 1 

Tri-axial accelerometry (X50-2 wireless accelerometer, range ± 50g, sampling at 1024 Hz, 2 

0.016g/count resolution, 33g weight, Gulf Coast Data Concepts, MS, USA) was acquired during 3 

each running trial. The accelerometer was securely positioned over L3 spinous process of the 4 

trunk [25], and directly mounted to the skin using double sided tape and adhesive spray. 5 

Accelerometer position was unaltered between all running trials and was routinely checked 6 

between running trials for security.  Trials were discarded in the case the investigators deemed 7 

the accelerometer to be not securely fastened upon its removal (after data collection).  8 

All signal processing of acceleration curves was performed using customized software in 9 

MATLAB version 8.3 (The Mathworks Inc., Natick, MA, USA). Accelerometry-derived parameters 10 

were computed from the middle ten consecutive strides of the 10-70m measurement zone, that 11 

were first trigonometrically tilt-corrected and filtered using a zero-lag 4th order low-pass 12 

Butterworth filter (cut-off frequency 50 Hz) [20,25]. Accelerometry-derived parameters were 13 

averaged over two running trials per surface per participant.  14 

Outcome measures 15 

Spatio-temporal parameters were quantified by step frequency and stance time. The former was  16 

acquired using the time lag of the first dominant peak of the vertical acceleration’s unbiased 17 

autocorrelation [20,25]. The latter was acquired based on the heuristic that as long as the body 18 

is accelerating upwards, the foot should still be in contact with the ground [26]. Therefore, zero 19 

crossings of vertical accelerations identified periods where the vertical acceleration was  20 

positive and accelerating upwards (initial contact to final contact) [26]. 21 

Dynamic postural stability parameters were quantified from tri-axial (vertical, ML, AP) 22 

accelerations firstly using the ratio of each linear acceleration axis root mean square (RMS) 23 

relative to the resultant vector RMS to capture variability [21]; secondly using step and stride 24 

regularity (unbiased autocorrelations procedure) to capture symmetry and consistency of 25 

running steps and strides respectively, with perfect regularity equivalent to one [25]; and thirdly 26 
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using sample entropy from raw accelerations to capture the waveform predictability, with 1 

higher values indicating less periodicity or more unpredictability [27]. Detailed procedures and 2 

algorithm inputs for the computation and extraction of these dynamic postural stability 3 

parameters are explained previously [20].  4 

Dynamic loading parameters during stance were computed from extracted stance phases firstly 5 

in the time domain and secondly in the frequency domain. The former was acquired by 6 

extracting the peak positive vertical (impact) and peak negative anteroposterior (breaking) 7 

accelerations identified between 1% and 20% stance. The latter was acquired from the median 8 

frequency of vertical and AP accelerations of the entire stance phase calculated as the centroid of 9 

the power spectral density (PSD) curves within the 1 – 100 Hz range [28]. PSD was calculated 10 

from the Fast Fourier Transform (FFT) of unfiltered vertical stance phase accelerations from 0 11 

to the Nyquist (FN ) frequency, that were first processed in line with previous methods [29]: 12 

detrended, padded with zeros to equal 2048 data points (ensuring 2n periodicity), and 13 

interpolated to 1 Hz bins. 14 

Statistical analysis 15 

Group descriptive characteristics were compared using independent t-tests. Each 16 

accelerometry-derived parameter was individually evaluated for normality; skewness between 17 

>-1 and <1 was accepted. Subsequently, normally distributed data was analyzed by means of 18 

linear regression using generalized estimating equations (GEE). GEE analysis is more 19 

sophisticated than linear regression because it takes into account that measures within one 20 

subject are correlated with repeated observations. An exchangeable correlation structure was 21 

used for the GEE analysis in this study since it fit the data well (high within-subject correlations) 22 

and for simplicity to minimize the number of parameters needed. The effect of surface type on 23 

accelerometry-derived parameters was evaluated in three models: Firstly an unadjusted model, 24 

the effect of surface type (woodchips and synthetic) compared to concrete (control reference 25 

category) on each accelerometry outcome measure. Secondly, we assessed if training status 26 
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(highly-trained vs. recreational) was a confounding variable to the model, since trunk 1 

accelerometry parameters have been found to significantly differ between trained and untrained 2 

runners [21]. From this step, training status was only included in the model if it significantly 3 

changed any of the regression coefficients for surface type (>10%). Thirdly, we assessed the 4 

potential role of running speed as a confounder to surface type by adding it as a time-dependent 5 

continuous covariate, since some trunk accelerometry parameters show strong relationships 6 

with gait speed during running [21].  7 

Results 8 

Two subjects from the group of competitive runners were excluded from analysis since the 9 

investigator deemed the attachment of their accelerometer to not be securely fasted upon 10 

removal, and body sweat interfered with attempts at reattachment. Characteristics of the 11 

remaining participants are shown in Table 1. 12 

GEE results of the crude analysis for surface effects on accelerometry-derived parameters are 13 

shown in Fig. 1. Synthetic track did not significantly change from concrete besides one dynamic 14 

stability parameter (higher vertical stride regularity). Woodchip trail changed significantly from 15 

concrete for several parameters, including spatio-temporal (lower step frequency), dynamic 16 

stability (lower vertical but higher AP ratio of acceleration RMS, and lower step regularity and 17 

stride regularity in the ML direction only) and dynamic loading (lower vertical and AP median 18 

frequencies). The downward shift in vertical and AP median frequencies during stance from 19 

concrete to woodchips can be observed in Fig. 2, overlaid with plots of trunk acceleration 20 

signals during stance in the frequency domain.  21 

When either training status (model two) or running speed (model three) were added as 22 

potential confounders, statistical outcomes related to surface effects were unchanged. Therefore 23 

all results pooled trained and untrained runners together (n = 28) and results from the crude 24 

analysis on surface effects were reported (Table 2). 25 
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Discussion 1 

Despite the frequently cited benefits of using wireless accelerometers to asses running gait in 2 

ecological (i.e. real-world) rather than traditional (i.e. laboratory) settings, few studies have 3 

actually done so. Therefore, this study sought to investigate outdoor surface effects on dynamic 4 

stability and loading during running using tri-axial trunk accelerometry. Importantly, were that 5 

there were no significant (p > 0.05) differences in all parameters with exception to vertical 6 

stride regularity between concrete and synthetic track. In contrast, woodchip trail altered 7 

measures of dynamic stability compared to concrete; revealing significantly higher AP ratio of 8 

acceleration RMS as well as lower ML inter-step and -stride regularity.  Woodchip trail 9 

additionally decreased median frequencies of both vertical (impact) and AP (breaking) 10 

accelerations compared to concrete. In light of these results, it is reasonable to hypothesize that 11 

differences may exist in injury risk and performance between concrete and woodchip running 12 

surfaces. 13 

In agreement with previous research [5,13,14], we found that contact time was unaffected by 14 

running surface. On the other hand, we did find significantly reduced step frequencies on 15 

woodchips. Thus, our hypothesis based on the principle of smoothness of CoM trajectory under 16 

different surface conditions [5] , active “self-stabilization” [8,9] or maintenance of global support 17 

kinematics over different terrain [5,6] was not completely supported. From a biomechanical 18 

perspective, woodchip trails differ fundamentally from concrete road and synthetic track due to 19 

the presence of variously sized detached or scattered particles. Both compression and 20 

displacement of the woodchips under the foot may then occur with each consecutive running 21 

stride, causing dynamic instability and forcing lower-limb musculature to provide additional 22 

work to the point of reaction force on the surface [26]. Therefore, the irregular nature of 23 

woodchips could have interfered with the step length-step frequency relationship, as has 24 

previously been observed when running on irregular [30] or rough [11] terrain.  25 



9 
 

The directional-shift in variation (ratio of acceleration RMS) from vertical to AP as well as the 1 

decrease in inter-step and inter-stride regularity mediolaterally could indeed also be directly 2 

related to the woodchip properties. This is consistent with past research, which has shown 3 

similar destabilizations and directional shift from vertical to horizontal accelerations when 4 

walking on uneven ground [31]. Thus, the runner’s dynamic stability may be compromised as a 5 

result of the irregularity of the uneven woodchips. Based on previous research in our laboratory 6 

[20], running-related fatigue on an indoor treadmill results in a 13% increase in the AP ratio of 7 

acceleration RMS. The runners in this study showed a 7% increase in the AP ratio of acceleration 8 

RMS from concrete to woodchip surface. Thus, although both internal (fatigue) and external 9 

(surface) factors contribute to destabilizing the stability of running, the magnitude of changes 10 

due to running surface appear to be relatively smaller. It would be interesting to examine the 11 

destabilizing running-related fatigue effects on a range of running surfaces, including 12 

woodchips, since energy expenditure is increased when running on uneven terrain [8]. This 13 

could provide insight into weather uneven surfaces such as woodchips are more detrimental to a 14 

runner’s stability when in a fatigued state.  15 

Dynamic loading parameters were analyzed to provide information on magnitude and 16 

proportion of propagated shock waves reaching the spine. We found no significant surface 17 

effects for the amplitudes of vertical impact shock or AP breaking peak in the time domain. It is 18 

possible that the amplitude of impact shock accelerations reaching the spine were unaffected 19 

due to initial impact attenuations by the lower extremity, acting as a low-pass filter [32]. 20 

However, we also analyzed the frequency content of impact shock waves to gain better insights 21 

in the distribution of the power content of impact, and observed a significant downward shift in 22 

the median frequencies of vertical impact and AP breaking accelerations on woodchips. Visual 23 

inspection of the frequency curves in Figure 2 indicates that on woodchips a larger proportion 24 

of both vertical and AP accelerations during stance were contained in the low frequency 25 

component (4-8 Hz), while the proportion in the high frequency “impact” component (10-20 Hz) 26 

appeared relatively unaltered. These results suggest that during stance a greater proportion of 27 
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accelerations may be needed for voluntary movements [29] and stability of the CoM on 1 

woodchips, rather than any additional “structural dampening” provided as has anecdotally been 2 

suggested. 3 

Although we observed no confounding influence of training status, it is reasonable to argue that 4 

maintaining dynamic stability could be more difficult for recreational compared to highly 5 

trained runners [21]. Unfortunately, effect modification i.e. surface type x group interaction was 6 

not directly investigated here due to low sample size and is a limitation of the current study. 7 

Secondly, given that competitive runners were more familiar with synthetic track while 8 

recreational runners were more familiar with wood chip trail, another limitation worth 9 

mentioning is that surface habituation was unaccounted for. However, all participants had at 10 

least some experience with running on all three surfaces and familiarization trials were 11 

provided for each running surface to help minimize any immediate psychological adjustments.  12 

We found that all surface effects were unaffected when running speed was added to the GEE 13 

model as a covariate. The need to control for running speed was warranted given that previous 14 

research has indicated that adjustments in running mechanics can often be explained by variable 15 

running speed [21], presenting a major analytical problem. Additionally, running speed in itself 16 

may be an adjustment to outdoor surfaces, even when pacing methods are enforced [11]. In 17 

contrast, our in-field and statistical approach to deal with running speed as a potential 18 

confounder enabled our runners to self-select speeds that were comfortable to them, with 19 

arguably more real-world applicability. 20 

Conclusion 21 

The current results suggest that woodchip trails alter running mechanics by disrupting aspects 22 

of dynamic stability and loading. The analysis presented here provides further insights into 23 

running gait adaptions in typical, real-world settings.  24 
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Table 1.  Descriptive results of participant characteristics. 

 Mean (SD) 

n 28 

Male (female) 14 (14) 

Age (years) (SD) 22.62 (3.07) 

Height (m) (SD) 1.76 (6.24) 

Weight (kg) (SD) 63.05 (5.57) 

Training volume (km·week-1) (SD) 41.22 (9.91) 

Recreational (n = 17) 9.56 (11.88)* 

Highly-trained (n = 11) 72.88 (7.94) 

Concrete road running speed (m·s-1) (SD)† 3.79 (0.51) 

Recreational (n = 17) 3.56 (0.44)* 

Highly-trained (n = 11) 4.02 (0.58) 

Synthetic track running speed (m·s-1) (SD)† 3.73 (0.45) 

Recreational (n = 17) 3.54 (0.42)* 

Highly-trained (n = 11) 3.92 (0.48) 

Woodchip trail running speed (m·s-1) (SD)† 3.73 (0.45) 

Recreational (n = 17) 3.47 (0.23)* 

Highly-trained (n = 11) 3.99 (0.51) 

†: based on self-selected speeds acquired from timing gates 

*: t-test detected significantly different from highly-trained group (p < 0.05). 

 



 

Table 2. Descriptive results (mean; SD) of accelerometry-derived parameters for repeated measures (n = 28). 

 Running gait parameter Axis Concrete road Synthetic track Woodchip trail 

Spatio-temporal 
 

   Step frequency (steps.min-1) VT 169.75 (7.73) 169.03 (8.75) 167.4 (7.31) 

Stance time (s) VT 0.22 (0.02) 0.22 (0.02) 0.22 (0.02) 

Dynamic stability 
 

   Ratio of acceleration RMS (a.u) VT 1.10 (0.08) 1.09 (0.07) 1.07 (0.07) 

 

ML 0.47 (0.11) 0.48 (0.11) 0.49 (0.11) 

 

AP 0.42 (0.10) 0.43 (0.10) 0.45 (0.09) 

Step regularity (a.u) VT 0.8 (0.09) 0.82 (0.08) 0.81 (0.08) 

 

ML 0.55 (0.13) 0.57 (0.12) 0.51 (0.12) 

 

AP 0.58 (0.12) 0.59 (0.13) 0.55 (0.11) 

Stride regularity (a.u) VT 0.81 (0.09) 0.84 (0.06) 0.82 (0.08) 

 

ML 0.69 (0.12) 0.70 (0.09) 0.64 (0.10) 

 

AP 0.65 (0.12) 0.67 (0.13) 0.63 (0.12) 

Sample entropy (a.u) VT 0.12 (0.02) 0.12 (0.02) 0.12 (0.02) 

 

ML 0.32 (0.07) 0.32 (0.07) 0.32 (0.07) 

 

AP 0.37 (0.10) 0.38 (0.11) 0.38 (0.11) 

Dynamic loading 

    Impact peak (g) VT 4.02 (1.54) 3.91 (1.39) 3.67 (1.40) 

Breaking peak (g) AP 1.77 (0.60) 1.85 (0.70) 1.84 (0.66) 

Median frequency during stance (Hz) VT 16.19 (5.90) 14.82 (5.29) 13.90 (4.14) 

  AP 15.55 (5.34) 14.99 (5.17) 13.72 (5.04) 

VT: vertical; ML: mediolateral; AP: anteroposterior; a.u: arbitrary units 

 

 







Fig. 1.  Regression coefficients (95% confidence intervals) regarding GEE results for surface effects on accelerometry-

derived parameters for repeated measures (n = 28). VT: vertical; ML: mediolateral; AP: anteroposterior; a.u: arbitrary 

units. */**/*** Regression coefficient significantly different from reference category concrete road surface (p < 0.05)/ 

(p < 0.01)/ (p < 0.001). 

Fig. 2.  Group mean (n = 28) power spectra of A) vertical and B) AP trunk acceleration signals compared between 

concrete (light grey), synthetic track (dark grey), and woodchips (black). Vertical dashed lines indicate the median 

frequency for each surface respectively. 

 


