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Interplay between hopping and band transport in high-mobility disordered semiconductors
at large carrier concentrations: The case of the amorphous oxide InGaZnO
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We suggest an analytic theory based on the effective medium approximation (EMA) which is able to describe
charge-carrier transport in a disordered semiconductor with a significant degree of degeneration realized at high
carrier concentrations, especially relevant in some thin-film transistors (TFTs), when the Fermi level is very
close to the conduction-band edge. The EMA model is based on special averaging of the Fermi-Dirac carrier
distributions using a suitably normalized cumulative density-of-state distribution that includes both delocalized
states and the localized states. The principal advantage of the present model is its ability to describe universally
effective drift and Hall mobility in heterogeneous materials as a function of disorder, temperature, and carrier
concentration within the same theoretical formalism. It also bridges a gap between hopping and bandlike
transport in an energetically heterogeneous system. The key assumption of the model is that the charge carriers
move through delocalized states and that, in addition to the tail of the localized states, the disorder can give rise
to spatial energy variation of the transport-band edge being described by a Gaussian distribution. It can explain
a puzzling observation of activated and carrier-concentration-dependent Hall mobility in a disordered system
featuring an ideal Hall effect. The present model has been successfully applied to describe experimental results
on the charge transport measured in an amorphous oxide semiconductor, In-Ga-Zn-O (a-IGZO). In particular, the
model reproduces well both the conventional Meyer-Neldel (MN) compensation behavior for the charge-carrier
mobility and inverse-MN effect for the conductivity observed in the same a-IGZO TFT. The model was further
supported by ab initio calculations revealing that the amorphization of IGZO gives rise to variation of the
conduction-band edge rather than to the creation of localized states. The obtained changes agree with the one
we used to describe the charge transport. We found that the band-edge variation dominates the charge transport
in high-quality a-IGZO TFTs in the above-threshold voltage region, whereas the localized states need not to be
invoked to account for the experimental results in this material.
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I. INTRODUCTION

The advent of a new class of high-mobility thin-film
semiconductors enables the realization of the next generation
of thin-film transistor (TFT) technology and eventually opens
a new frontier for large-area electronics called “flexible
electronics,” which means electronic circuits fabricated on
flexible plastic substrates [1,2]. Since thin films are typically
amorphous or polycrystalline, their charge-carrier mobility
(μ) is far lower than that measured in perfect single-
crystal semiconductors [3]. Nonetheless, a major advantage
of amorphous semiconductors is that one can deposit uniform
large-area thin films easily at relatively low temperatures,
a process that is compatible with plastic substrates. This
is a driving motive in this rapidly growing field and an
important stimulant for applied and fundamental research.
Although the understanding of charge transport is crucial
for the realization of high-performance TFTs, its theoretical
description is still far from complete. Rather, the description
of charge transport in disordered solids with charge mobilities
around 1−10 cm2/V s, which are relevant for many advanced
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organic and amorphous oxide TFTs, is still an unsolved
problem. This falls into an intermediate mobility regime where
neither the concept of thermally activated hopping transport in
low-mobility disordered solids nor the classical band transport
model is applicable. A theoretical description of charge
transport in this intermediate regime remains a challenge [4].

It is a general notion that disorder, inevitably present in
organic as well as in inorganic thin-film semiconductors,
lowers the charge mobility significantly. This has an important
bearing on the device performance. Structural disorder gives
rise to a broad distribution of localized states which include
shallow (band-tail) states as well as deep traps. In disordered
organic solids, all electronic states are localized due to
weak intermolecular interaction. Thus, temperature-assisted
incoherent hopping through a manifold of localized states,
forming a density-of-states (DOS) distribution (typically of
Gaussian shape), is the dominant charge transport mechanism.
This hopping-type transport was interpreted in terms of the
Gaussian disorder formalism, initially introduced by Bässler
and co-workers [5,6] and then extended further by different
groups to account for additional important aspects of the
transport such as spatial energy correlation effects [7], molec-
ular geometry fluctuations [8], and charge-carrier density
effects [9–12]. On the other hand, in conventional inorganic
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disordered semiconductors, such as amorphous silicon (a-
Si:H), hopping is restricted to low and moderate temperatures
[3,13]. This is because the Fermi level is usually located
within the distribution of localized electron states. At low
temperatures only a few electrons occupy extended states
above the mobility edge while most of the electrons are
in localized states. Therefore, charge transport is thermally
activated and mainly governed by trapping and release pro-
cesses. The delocalized states above the mobility edge are
generally believed to control charge transport only at high
enough temperatures, when an essential fraction of charge
carriers fills these states [3].

The traditional hopping transport description can become
problematic when the Fermi level is very close to the mobility
edge. This can happen in heterogeneous systems with a
relatively small density of the localized tail states below the
mobility edge and at sufficiently large carrier concentrations.
Considerable advances were made in the last years in obtaining
thin-film semiconductors with greatly improved charge-carrier
mobilities exceeding 1 cm2/V s. The associated activation
energies, defined as the energy difference (�) between the
Fermi level and the mobility edge, turned out to be as low as
∼10–40 meV or even less at sufficiently large gate voltages
[14–19]. According to Fermi-Dirac statistics such semicon-
ductor should be degenerated at room temperature as, by
definition, degeneration occurs when � � 3kBT [20]. In this
case a large fraction of charge carriers would populate the de-
localized states above the mobility edge. Another remarkable
characteristic of high-mobility disordered semiconductors is
their well-developed free-electron-like Hall effect [14–17,21].
It turns out that the Hall mobility virtually coincides with the
drift field-effect transistor (FET) mobility featuring a similar
thermally activated behavior. The latter observation is the most
intriguing because (i) only delocalized charge carriers can give
rise to the ideal Hall effect, and (ii) a temperature-activated
Hall mobility (dμ/dT > 0) is incompatible with conventional,
i.e., nonactivated, band transport. Obviously, a more advanced
model that goes beyond the conventional multiple trap and
release (MTR) formalism is needed to describe adequately
both the FET and Hall mobilities in these materials.

An approach based on a band transport percolation concept
was recently suggested by Kamiya and Nomura [21] to
describe thermally activated Hall and drift charge-carrier
transport in amorphous oxide semiconductors. The key as-
sumption of the model is that the charge transport occurs via
delocalized states in a conduction band with a square-root
energy dependence of the DOS, yet with the addition of
random potential barriers above the conduction-band edge.
These barriers are assumed to have a Gaussian-type dis-
tribution, so the manifold of potential barriers in the band
can hinder the electrical conduction, especially in low-energy
band states. In the Kamiya-Nomura percolation model [21]
the effective conductivity in such heterogeneous medium is
calculated by averaging the local band conductivity over a
specific distribution called “transmission probability” which
runs from zero to unity to account for the barrier effect. This is
an arguable procedure because it is in variance to established
percolation theories based on the percolation threshold that
depends on the dimensionality of the system. The Kamiya-
Nomura model considers implicitly the conductivity along

an essentially one-dimensional percolative path. However, in
such a situation the effective conductivity would be limited
by the minimal conductivity at the highest barrier in this
path rather than by its average value when the Fermi level
is within the energy range of the barrier height variations.
Only at large enough carrier concentrations, when the Fermi
level exceeds all the barrier heights, the averaging procedure
used in [21] might be warranted. The problems related to
electrical conductivity calculations in inhomogeneous systems
have been thoroughly described by Shklovskii and Efros [22]
who demonstrated that averaging of the local conductivity
yields a significantly overestimated effective conductivity
because it leads to an overestimation of the contribution from
regions with high local conductivities. There are actually
not enough of high conductive regions to create the infinite
percolation cluster enabling conductance in the energetically
inhomogeneous system. Besides, we would like to mention
that percolation theory is widely accepted as a suitable tool
to describe the hopping transport in strongly inhomogeneous
disordered systems and its applicability to weakly and moder-
ately disordered media is still less justified. For these reasons
the application of the Kamiya-Nomura model to the current
problem is questionable.

A particularly useful approach for calculating the effective
conductivity in moderately and weakly disordered systems can
be based upon the effective medium approximation (EMA)
method [23], notably since it allows accounting for the dimen-
sionality of the system. It should be noted that the analytical
EMA approach has been demonstrated to be an efficient
theoretical tool for studying charge transport properties in
hopping transport systems [12,24–27]. It was also found that
the use of the so-called transport energy concept reduces
the complex phonon-assisted hopping process to essentially
a trap-limited transport with a broad distribution of localized
states and can be implemented into the EMA formalism to
extend its applicability to a stronger disordered system as well.

In the present paper, we suggest an EMA theory which
is not restricted to conventional hopping transport. Rather it
bridges the gap between hopping and bandlike transport in
energetically heterogeneous systems containing delocalized
and localized states. It is therefore applicable to describe
both drift and Hall charge-carrier mobilities in disordered
systems in which charge motion occurs via delocalized states.
This EMA model is based on averaging the Fermi-Dirac
carrier distributions using a suitably normalized cumulative
density-of-state (DOS) distribution that includes both extended
(delocalized) and localized states. The key assumption of our
model is that, in addition to the tail of localized states distri-
bution, disorder can also give rise to static spatial variation
of the conduction-band edge εm. As will be demonstrated
below, it is more appropriate to discuss εm for the amorphous
oxide semiconductors in terms of the conduction-band edge
instead of the mobility edge. Both factors can contribute to
the temperature- and carrier-concentration dependence of the
effective charge-carrier mobility in the system, while their
relative contribution is material specific. At low carrier concen-
tration and/or sufficiently strong disorder the charge transport
is controlled by the localized states. However, if the density of
the localized states is low enough, a degeneration regime can
be realized in such heterogeneous system even at moderate
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temperatures at a high enough carrier concentration, i.e., when
Fermi level is very close to (or above) the transport-band edge.
In this limiting case, charge transport will predominantly be
controlled by the static variations in the potential landscape
of the εm giving rise to thermally activated drift and Hall
mobilities that depend on the carrier concentration. The
variation of εm is assumed to obey a Gaussian distribution
[28] with the standard deviation δ0. This closely resembles the
idea of a barrier distribution in the conduction band introduced
in the Kamiya-Nomura model [21]. In the latter case, however,
the Gaussian distribution was centered at an energy offset from
the band edge by the average barrier height.

We applied the present theory to describe the
charge transport properties in an amorphous metal ox-
ide n-type semiconductor—indium–gallium–zinc–oxide (a-
IGZO)—used here as a model high-mobility disordered
system [2,14,29]. a-IGZO can be considered as an intrinsically
disordered solid because the constituting ions are statistically
distributed at the lattice sites [2,21,29]. This material has
recently attracted a lot of interest because it can possibly
replace a-Si:H in applications in backplanes for large-area
active matrix displays. It is also a promising semiconductor
material for emerging transparent flexible electronics because
it is highly transparent in the whole visible range, and has a
high charge-carrier mobility and superior spatial uniformity
over a wide area due to the absence of grain boundaries.
A further advantage is that the films can be fabricated by a
conventional sputtering method [14] or a solution based de-
position technique [30]. a-IGZO films feature a charge-carrier
mobility of 10 cm2/V s or more at room temperature [2,14],
that is one to two orders of magnitude greater than in a-Si:H
films where typical FET mobility is about 0.1−1.0 cm2/V s
[31,32]. This is due to the fact that the bottom of the conduction
band is composed of metal s orbitals which are weakly
influenced by the amorphization. Therefore the density of
localized states is significantly much lower in this material.
Remarkably, an a-IGZO film shows a well-developed Hall
effect [29,33] suggesting that the mobile charge carriers are
actually delocalized and that the length of the electron mean
path is much larger than in other amorphous semiconductors.
Although the charge mobility is large, both drift FET and Hall
mobilities typically feature a thermally activated behavior with
an activation energy ∼15–10 meV at large gate voltages.

We characterized a high-quality a-IGZO TFT device over a
range of temperatures and gate voltages and the experimental
results support well our EMA model. Using ab initio calcula-
tions we (i) confirmed that the electron conductions states are
delocalized in a-IGZO, and (ii) found that the amorphism of
a-IGZO gives rise to variations of the conduction-band edge
rather than to the creation of localized states. The latter are
probably of defect origin that is in line with the very low
density of the localized states observed experimentally in
similar a-IGZO films [34] as compared to other disordered
semiconductors. We find that the localized states might not
need to be taken into account to describe the transport
properties of our advanced a-IGZO TFT devices at sufficiently
large gate voltages. It turns out that the only fitting parameter
necessary to explain the experimental data in our a-IGZO films
is the standard deviation δ0 of the conduction-band-edge distri-
bution. The estimated δ0 parameter is well consistent with that

obtained from ab initio calculations. The present theory also
provides a qualitative description of the temperature-activated
Hall mobility measured in IGZO at different carrier concentra-
tions. The formulated generalized EMA model goes beyond
the traditional multiple trap-and-release (MTR) concept and
encompasses both multiple trapping transport and band-type
transport dominated regimes in a disordered semiconductor.

II. THEORETICAL MODEL

We consider an amorphous semiconductor where structural
disorder can give rise to potential variations that, in turn, result
in the coexistence of randomly distributed localized states and
extended states. In the present study we will limit our consider-
ation to a disordered semiconductor with an exponential DOS
distribution of localized states that is appropriate for inorganic
disordered solids [3] and we focus here on amorphous oxide
semiconductors. In the present paper we will compare our
model with relevant experimental data obtained for a-IGZO
films as a representative high-mobility disordered medium.
At finite temperature and at large carrier concentration some
fraction of the charge carriers are in extended states above
the conduction-band edge, which are characterized by a high
mobility and contribute to the conductivity, while the others are
located in localized states characterized by a very low hopping
mobility of charge carriers between them.

A key assumption of our model is that the disorder in a solid
can play a dual role—namely, not only generate localized states
in the band gap, but also gives rise to random spatial potential
variation of the conduction-band edge εm as schematically
illustrated for the two-dimensional case in the inset to Fig. 1.
By εm we actually mean a “local conduction-band edge,”
i.e., an energy separating localized and delocalized states.
We assume that the spatial potential variations are sufficiently
smooth with the characteristic length of variations larger than
the mean free path of a charge carrier so that the local
electrical conductivity can be treated classically, but much

FIG. 1. Cumulative DOS Dtot(ε) distribution calculated accord-
ing to Eq. (6) including localized and delocalized states using parame-
ters Nm = 8 × 1018 cm−3 eV−1, DC0 = 1.4 × 1021 cm−3 eV−3/2, and
E0 = 0.067 eV [34]. The inset shows a schematic two-dimensional
representation of spatial fluctuation of the band edge εm.
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smaller than the length of the system. The potential variations
are considered to be independent of one another.

Generally, it is worth noting that the concept of long-range
static potential fluctuations that modulate the conduction-band
edge in disordered semiconductors is not new and has been
widely applied to heavily doped and highly compensated
semiconductors (HDCSs) [22]. Band-edge fluctuations were
also invoked to describe electrical conduction in chalcogenide
glasses (see Ref. [35] for review) and in solid semiconductor
solutions [36]. It has been shown that in analogy with HDCS,
the concept of long-range fluctuations is also applicable to
amorphous semiconductors [37] and the theories exploiting
random potential fluctuations were used to interpret the data
for transport phenomena and the optical absorption in doped
a-Si:H [38,39]. This concept was often used as an alternative
description to the more conventional models of charge-carrier
transport in noncrystalline materials based on pointlike band-
tail localized states [13,38].

Further we assume that the random long-range variations of
εm are described by a Gaussian distribution with the standard
deviation δ0

g(εm) = 1

δ0

√
2π

exp

[
−1

2

(
εm

δ0

)2
]
. (1)

It should be noted that a Gaussian-type distribution of
potential barriers in disordered inorganic semiconductors was
suggested long ago in terms of the Thomas-Fermi approxima-
tion [28] and then used in some percolation theories [40]. We
have further corroborated this notion by ab initio calculations
of an amorphous IGZO, which demonstrated that the variation
of the conduction-band edge in this material is consistent with
Eq. (1) and will be shown further below.

For calculating the charge transport properties, the cumula-
tive (total) density-of-state (DOS) distribution in the whole
energy range is needed. The distribution of the localized
states at ε < εm in inorganic semiconductors normally has
an exponential profile with the width E0,

DL(ε) = Nm exp

(
ε − εm

E0

)
, (2)

where Nm is the density of localized states at the band edge.
In crystalline materials devoid of disorder and localized states,
the density of extended (transport band) states at ε > εm is
usually approximated as [20]

DC(ε) = DC0
√

ε − εm, (3)

where for a-IGZO thin films DC0 = 1.4 × 1021 cm−3 eV−3/2

has been reported before [21].
To obtain a total DOS for the system we proceed from the

condition that the density of localized states is equal to that
of the delocalized states at ε = εm; i.e., DL(εm) = DC(εm).
Equation (3) can be rewritten as

DC(ε) = DC0

√
ε − εm + �. (4)

Equalizing Eqs. (2) and (4) at εm yields a relation for �:

� =
(

Nm

DC0

)2

. (5)

The total DOS can then be obtained in general form as

Dtot(ε,εm) = θ (ε − εm)DC0

√
ε − εm +

(
Nm

DC0

)2

+θ (εm − ε)Nm exp

[
ε − εm

E0

]
, (6)

where θ (t) is the unit function: θ (t) = 1 if t � 0 and θ (t) = 0
if t < 0.

The relative weight of localized states with respect to de-
localized ones in the cumulative DOS distribution is critically
important for quantitative fitting of experimental results in
relevant amorphous semiconductors. In Fig. 1 we depict a
cumulative DOS Dtot(ε) using realistic parameters already
reported for a-IGZO films, namely Nm = 8 × 1018 cm−3 eV−1

and E0 = 0.067 eV from Ref. [34], as appropriate represen-
tative values. Although the DOS distribution in Fig. 1 has a
discontinuity at εm = 0 we consider it as a sufficiently good
approximation for the a-IGZO films.

III. THEORETICAL RESULTS

A. The drift mobility

Let σ be the dc conductivity of the system. The key point
of the present calculations is that the effective longitudinal
drift conductivity σe in a disordered system under a weak
electric field E = {E,0,0} can be calculated by the effective
medium approximation (EMA) method suggested earlier by
Kirkpatriсk [23] and also verified by our group recently [26],
which leads to the following self-consistency equation for σe:〈

σ (εm) − σe

σ (εm) + (d − 1)σe

〉
= 0, (7)

where σ (εm) is the “local” conductivity at the band edge
and d is the spatial dimension. Hereafter we consider a
three-dimensional (3D) system. Angular brackets 〈· · · 〉 denote
the configuration averaging over the distribution of σ (εm), or
more specifically it implies averaging over an ensemble of εm

values at some space point employing the distribution given
by Eq. (1). Thus, we in fact use here the ergodic hypothesis
which assumes that for an infinite system the spatial average
is the same as the statistical ensemble average.

Hereafter we consider a disordered system with the cumu-
lative DOS distribution (Fig. 1) given by Eq. (6) and assume
that charge carriers are distributed over the total DOS in the
way that some part of them occupy extended states and the rest
are in localized states depending on the position of the Fermi
level εF . The total local concentration of charge carriers at a
given εm value can be calculated as

ntot(εm) = DC0

∫ ∞

εm

dε

√
ε − εm +

(
Nm

DC0

)2

1 + exp
(

ε−εF

kBT

)

+Nm

∫ εm

−∞
dε

exp
(

ε−εm

E0

)
1 + exp

(
ε−εF

kBT

) . (8)

Since the charge-carrier mobility through the extended
states is generally much higher than the hopping charge
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mobility via the manifold of the localized states, the conductiv-
ity is dominated by the charge carriers in extended states above
εm. In the present model we neglect any hopping transitions
between localized states. Therefore the local concentration of
mobile charge carriers at arbitrary εm is

n(εm) = DC0

∫ ∞

εm

dε

√
ε − εm +

(
Nm

DC0

)2

1 + exp
(

ε−εF

kBT

) . (9)

The local drift conductivity σ (εm) at arbitrary εm, i.e., at a
given point of varying εm potential surface (cf. Fig. 1, inset),
can be written as

σ (εm) = eμ0n(εm), (10)

where e is the elementary charge and

μ0 = e

m∗ 〈τ 〉 (11)

is the intrinsic (band) drift charge-carrier mobility in extended
states determined by the electronic effective mass m∗ and
the average scattering time 〈τ 〉, which for simplicity’s sake
is considered as a constant at this stage.

The Fermi level εF in the system can be calculated using the
total average concentration ntot of charge carriers in the whole
system (the average carrier concentration in a semiconductor)
from ntot = ∫ ∞

−∞ dεDtot(ε){1 + exp[(ε − εF )/kBT ]}−1. The
total concentration ntot is defined as sum of concentrations
of charge carriers in extended states n1 and in localized states
n2, which could be calculated by averaging Eq. (8) over the
distribution given by Eq. (1),

ntot = n1 + n2, (12)

where

n1 = 1

δ0

√
2π

∫ ∞

−∞
dεm exp

[
−1

2

(
εm

δ0

)2
]

×DC0

∫ ∞

εm

dε

√
ε − εm +

(
Nm

DC0

)2

1 + exp
(

ε−εF

kBT

) , (13)

n2 = 1

δ0

√
2π

∫ ∞

−∞
dεm exp

[
−1

2

(
εm

δ0

)2
]

×Nm

∫ εm

−∞
dε

exp
[

ε−εm

E0

]
1 + exp

(
ε−εF

kBT

) . (14)

Although we assume here that the charge carriers with
concentration n2 in localized states do not contribute to the
conductivity, these carriers must, however, be taken into
account for the calculation of the Fermi level εF , it being
determined by ntot. In fact, the conductivity is determined by
the carriers in extended states with concentration n1; therefore,
it is effectively n1 = ne.

Substituting Eq. (10) in (7), the subsequent configuration
averaging in Eq. (7) yields the following transcendental

equation for the effective drift conductivity σe:

∫ ∞

−∞
dt exp

(
−1

2
t2

) ∫ ∞
t

dt1

√
t1−t+b

1+exp [x(t1−xF )] − Xe∫ ∞
t

dt1

√
t1−t+b

1+exp [x(t1−xF )] + 2Xe

= 0, (15)

where Xe = σe/σ0, σ0 = eμ0DC0δ
3/2
0 , x = δ0/kBT , xF =

εF /δ0, and b = (Nm/DC0)2/δ0. The effective drift mobility in
extended states can then be obtained as

μe = σe/ene, (16)

where the effective drift conductivity σe is given by Eq. (15).
It should be pointed out that the presented model basically

reduces to the well-known multiple trap-and-release (MTR)
model in the limiting case devoid of the spatial variations of
the conduction-band edge εm (i.e., at δ0 → 0).

Figure 2(a) (red bold curves) shows the charge-carrier drift
mobility μe as a function of temperature calculated for dif-
ferent charge-carrier concentrations within the present EMA
model in a disordered semiconductor with the cumulative DOS
given by Eq. (6) and assuming a Gaussian distribution of εm

with standard deviation δ0 = 0.05 eV in Eq. (1). The thermally
activated character of the charge transport in such system is
evident and it is largely determined by the disorder-induced
distribution of εm provided that the density of localized states
at the conduction-band edge is rather small, e.g., Nm = 8 ×
1018 cm−3 eV−1 as it is for a-IGZO films [34]. At such material
parameters, the localized states do not alter significantly the
calculated temperature dependences [blue dashed curves in
Fig. 2(a)], and can therefore be neglected. Note that when
reducing δ0 tenfold to 0.005 eV, all curves at considered carrier
concentrations collapse into a single, temperature-independent
graph [upper bunch of curves in Fig. 2(a)] as expected for a
system without potential fluctuations of the conduction-band
edge.

The calculated μe(T ) dependences can be well approxi-
mated by linear dependences in an Arrhenius representation
[thin straight lines in Fig. 2(a)] which, rather, feature a
so-called Meyer-Neldel (MN) compensation behavior [25,27];
i.e., ln(μFE) vs T −1 graphs intersect at some finite isokinetic
temperature (TMN) when extrapolated to a higher temperature.
The MN compensation phenomenon has often been observed
for thin-film field-effect transistor (FET) characteristics, e.g.,
in amorphous Si, chalcogenide glasses, and amorphous oxides
as well as in organic FETs [25,27,41,42]. The results in
Fig. 2(a) are closely reminiscent of a MN behavior described
recently for the FET charge-carrier mobility in the hopping
transport regime within a Gaussian distribution of localized
states [25,27].

The temperature-dependent effective conductivities σe(T )
calculated by Eq. (15) for different carrier concentrations in
the same system are shown in Fig. 2(b) (bold red curves).
Thin straight lines in Fig. 2(b) depict the asymptotes to
the above-calculated Arrhenius plots made in the tempera-
ture range where the ln(σe/σ0) ∝ 1/T law is obeyed. It is
remarkable that the asymptotes to the set of σe(T ) curves
feature a single crossing point at a “negative” temperature
[Fig. 2(b)]. This is reminiscent of the so-called inverse-MN
rule (or anti-Meyer-Neldel rule) behavior with negative MN
energy, that is in contrast to the normal MN-type behavior
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)(

)(

FIG. 2. Temperature dependences of the effective charge-carrier
mobility μe (a) and conductivity σe (b) calculated at different carrier
concentrations ntot (red bold curves) in a disordered system with the
cumulative DOS given by Eq. (6) using Nm = 8 × 1018 cm−3 eV−1

and E0 = 0.067 eV from Ref. [34] and assuming δ0 = 0.05 eV. Note
that the upper bunch of curves in (a) was calculated at much smaller
δ0 = 0.005 eV and the curves virtually coincide at the considered
carrier concentrations. The same calculations were done for a DOS
distribution devoid of the localized states and accounting for the
extended states only using the same δ0 values (blue dashed lines).
Thin straight lines represent the approximations toward a higher
temperature. The isokinetic temperature is indicated by a vertical
arrow (note that it is negative for conductivity and positive for
mobility). Vertical dashed line in (b) denotes 1/T = 0 and is just
a guide to the eye.

for the μe(T ) in the same system [Fig. 2(a)]. It should be
mentioned that the inverse-MN effect has been observed before
for the temperature-dependent conductivity in heavily doped
microcrystalline Si [43,44] and some a-Si:H devices [45].

Figure 3 shows carrier-concentration dependence of the
drift charge-carrier mobility [ln(μe/μ0) vs ntot] calculated for
different temperatures by the present model (red bold curves).

)(

FIG. 3. Dependence of the effective charge-carrier mobility
ln(μe/μ0) on the charge-carrier concentration ntot at different tem-
peratures calculated within the present model in a disordered system
with the DOS distribution given by Eq. (6) assuming Nm = 8 ×
1018 cm−3 eV−1, E0 = 0.067 eV [34], and δ0 = 0.05 eV (red bold
curves). The calculations using δ0 = 0.005 eV are shown by the upper
bunch of curves. The same carrier-concentration dependences were
calculated upon ignoring the localized states and accounting for the
extended states only (blue dashed curves).

As expected for a disordered semiconductor, the μe increases
with increasing carrier concentration. This dependence is
more pronounced as the temperature decreases. Note that for
comparison purposes the upper bunch of curves in Fig. 3 was
calculated at much smaller parameter, δ0 = 0.005 eV, and the
curves virtually were found to coincide at all temperatures
featuring no noticeable carrier concentration dependence.

In order to check whether the spatial fluctuations of the
εm [cf. Eq. (1)] or, rather, the localized states, contribute
most to the temperature and carrier-concentration dependence
of μe and σe in the considered disordered system, we
performed calculations using the DOS distribution devoid
of the localized states and accounting for the extended
states only. The results are presented in Figs. 2 and 3 by
dashed blue curves and they suggest that the temperature
and carrier-concentration dependences of μe and σe in the
considered carrier concentration range are governed mostly
by potential variations of the conduction-band edge and are
not limited by the localized states, provided that their density
is sufficiently small. Localized states might therefore be
disregarded in some materials, e.g., in a-IGZO films where
the realistic density of localized states at the conduction-band
edge is Nm = 8 × 1018 cm−3 eV−1. Such a behavior seems to
be specific to oxide semiconductor films owing to relatively
low Nm in these materials, which is direct cause for the Fermi
level to be very close or within the conduction band.

B. The Hall mobility

To calculate the effective Hall conductivity σ
xy
e in the same

system we use the EMA approach suggested earlier by Cohen
and Jortner [46] for the Hall effect under a weak electric field
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in disordered materials:

σxy
e =

〈
σxy (εm)

[σ (εm)+(d−1)σe]2

〉
〈

1
[σ (εm)+(d−1)σe]2

〉 , (17)

where d is the spatial dimension of the system (3D in this
study) and angular brackets 〈· · · 〉 denote here the averaging
over the ensemble of εm values using the distribution given
by Eq. (1). Local Hall conductivity σxy(εm) as function of
magnetic field H = {0, 0,H } is defined as [47]

σxy(εm) = eμ
xy

0 n(εm)
μ0H

c
, (18)

where c is the speed of light, n(εm) is given by Eq. (9), and

μ
xy

0 = e

m∗

〈
τ 2

〉
〈τ 〉 (19)

is the intrinsic Hall mobility in extended states. Here 〈τ 2〉 is
the average of the square of the scattering time, which for
simplicity’s sake is considered here as a constant as well.

Substituting Eqs. (10), (15), and (18) in Eq. (17), the
subsequent configuration averaging in Eq. (17) yields to the
relation for the effective Hall conductivity σ

xy
e as

Xxy
e =

∫ ∞
−∞ dt exp

(− 1
2 t2

) ∫ ∞
t

dt1

√
t1−t+b

1+exp [x(t1−xF )]{∫ ∞
t

dt1

√
t1−t+b

1+exp [x(t1−xF )] +2Xe

}2

∫ ∞
−∞ dt exp

(− 1
2 t2

)
1{∫ ∞

t
dt1

√
t1−t+b

1+exp [x(t1−xF )] +2Xe

}2

, (20)

where X
xy
e = σ

xy
e /σ

xy

0 and σ
xy

0 = eμ
xy

0 DC0δ
3/2
0 (μ0H/c).

The effective Hall mobility, μxy
e = (c/H )(σxy

e /σe), takes the
form

μxy
e = FH

0 μ0
X

xy
e

Xe

, (21)

where FH
0 = 〈τ 2〉/〈τ 〉2 is the Hall factor, i.e., the ratio of the

intrinsic Hall mobility to the intrinsic drift mobility μ
xy

0 /μ0.
The ratio between effective Hall and drift mobilities μ

xy
e /μe is

then determined as

μ
xy
e

μe

= FH
0

ne

DC0δ
3/2
0

X
xy
e

X2
e

. (22)

The effective Hall concentration, n
xy
e = 1/eR

xy
e , is ex-

pressed by the Hall coefficient R
xy
e , which is

Rxy
e = (c/H )

(
σxy

e

/
σ 2

e

)
(23)

and can be obtained as

nxy
e = DC0δ

3/2

0

FH
0

X2
e

X
xy
e

. (24)

The n
xy
e /ne ratio between the effective Hall concentration

and effective concentrations of charge-carriers in extended
states ne can be obtained as

n
xy
e

ne

= DC0δ
3/2
0

FH
0 ne

X2
e

X
xy
e

. (25)

From Eqs. (22) and (25) it follows that

μ
xy
e

μe

= ne

n
xy
e

. (26)

This relation coincides with the classical relation between
Hall and drift mobilities in the band transport regime. Note that
it was proven to be valid also for materials with some disorder
provided that the charge coherence in delocalized states is
sufficiently large in the system [48].

Figure 4(a) shows temperature-dependent effective Hall
and drift mobilities vs δ0/kBT calculated within the present
model (bold red curves) at different total carrier concentrations
in a disordered semiconductor with the cumulative DOS
distribution presented in Fig. 1. The material parameters were
the same as those used in Figs. 2 and 3. These results clearly
reveal a thermally activated behavior of the Hall mobility
in the considered disordered system, qualitatively similar to
that obtained for the drift charge-carrier mobility. Thin lines
represent the approximations toward a higher temperature
and the MN-type compensation behavior clearly emerges for
both the Hall and drift mobilities. We should note that the
obtained TMN value depends on δ0. However, determining its
exact functional dependence is not trivial and requires further
investigations. Further, the Hall concentrations calculated
by Eq. (25) as function of temperature at different total
carrier concentrations ntot are presented in Fig. 4(b) (bold
red curves). Interestingly, the present model predicts that the
Hall concentration with respect to the effective concentration
of charge carriers in extended states n

xy
e /ne decreases with

decreasing temperature and this effect is more pronounced as
ntot is lower. Approximations of the Arrhenius plots toward
a higher temperature are shown by straight thin lines in
Fig. 4(b).

Figure 5(a) shows the ratio between effective Hall mo-
bilities and drift mobilities μ

xy
e /μe (red curve) and the ratio

between the concentration of charge carriers that contribute
to the Hall effect and the concentration of charge carriers in
extended states (blue curve) n

xy
e /ne calculated for a disordered

semiconductor with a cumulative DOS distribution given by
Eq. (6) at different temperatures. Figure 5(b) shows the same
calculations done at room temperature yet for different δ0

parameters. The calculated drift mobility μe/μ0 as function
of δ0 is also shown in Fig. 5(b) (green line).

C. Computation of the electronic structure of a-IGZO

To provide deeper insights into the electronic structure and
the properties of the conduction band of amorphous IGZO, we
carried out first-principles calculations in the framework of
the plane wave density functional theory (DFT) and ultrasoft
pseudopotentials [49], as implemented in QUANTUM ESPRESSO

[50]. We used the Perdew-Burke-Ernzerhof [51] exchange-
correlation density functional combined with a Hubbard
correction term of U = 6.08 eV to account for the electron
correlation effects on the electronic structure and on the band
gap. A set of 16 different amorphous InGaZnO4 models has
been generated, each constituted of a unit cell of 105 atoms
of InGaZnO4. The structures were generated using classical
molecular dynamics with the LAMMPS software [52], following
a melt and quenching technique [53] and the parametrization of
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)(

FIG. 4. (a) Comparison of temperature dependences of the Hall
mobility ln(μxy

e /μ
xy

0 ) and effective drift charge-carrier mobility calcu-
lated by Eqs. (21) and (16), respectively, assuming δ0 = 0.05 eV (bold
curves) at different total carrier concentrations ntot in a disordered
system with the cumulative DOS distribution given by Eq. (6) at
Nm = 8 × 1018 cm−3 eV−1, E0 = 0.067 eV [34]. (b) Arrhenius plots
of temperature-dependent Hall concentrations normalized to the
effective concentration of charge carriers in extended states, nxy

e /ne

vs δ0/kBT , calculated by Eq. (24) for different concentrations ntot.
Thin lines in (a) and (b) represent the approximations toward a
higher temperature. F H

0 = 〈τ 2〉/〈τ 〉2 is the Hall factor. The isokinetic
temperature is indicated by a vertical arrow.

the Buckingham potential proposed by Orita et al. [54]. Those
amorphous structures were then relaxed in DFT. The detailed
characterization and study of these structures is reported in
[55].

As already shown by Hosono et al. [2,29,56], the conduc-
tion band in all the models of a-IGZO is delocalized and should
allow a band conduction mechanism. This delocalization in the
conduction band can be observed in the pseudo-band-structure
given in Fig. 6(a). In opposition, the valence states have
a mostly localized character. It is worth mentioning that

)(

)(

FIG. 5. Ratio between effective Hall and drift mobilities μxy
e /μe

(red curve) and the ratio between the effective concentrations of
charge carriers that contribute to the Hall effect and charge carriers
in extended states nxy

e /ne (blue curve) calculated by Eqs. (22)
and (24) using Nm = 8 × 1018 cm−3 eV−1, ntot = 2 × 1018 cm−3 and
E0 = 0.067 eV from Ref. [34] for a disordered semiconductor
assuming δ0 = 0.05 eV at different temperatures (a) and at different
disorder parameter δ0 at T = 300 K (b). Lower green line in (b)
shows the effective drift mobility μe/μ0 calculated as function of δ0.
F H

0 = 〈τ 2〉/〈τ 〉2 is the Hall factor.

the pseudo-band-structure arises from the periodic boundary
conditions used in the first-principles calculation for the
amorphous structures. They are therefore structure specific in
contrast to normal crystalline band structures. Our calculations
within this approach yield an effective mass of 0.28me, which
is in good agreement with the reported experimental values
of 0.34me [57] and 0.36me [58]. This matching confirms the
validity of our approach. We found a similar isotropic value
of m∗ = 0.28 me in the crystalline phase of IGZO [55], which
suggests that the impact of the amorphization on the electron
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FIG. 6. (a) Pseudo-band-structure of an amorphous IGZO structure. The inset shows the k-point set used to sample the first Brillouin
zone. The zero of energy is set at the Fermi energy. In spite of the amorphous structure, the conduction band remains delocalized in all the
16 amorphous structures due to the contribution of the s orbitals of the cations. (b) Cumulative plot of the pseudo-band-structure of the 16
amorphous structures obtained after alignment on the electronic signature of the deep d electron of Ga and In (where the zero of energy is set).
All the structures have similar dispersion but the bottom of the conduction band is found to vary. (c) Closeup of the bottom of the conduction
band. The maximum energy difference between 16 amorphous structures used here is 0.11 eV; Gaussian approximation yields a standard
deviation of 0.03 eV for the conduction-band variation.

effective mass of the conduction band is negligible. These
calculations also suggest that the amorphization process does
not create localized tail states below the conduction band.
The latter might be due to defects/impurities in the material.
This justifies a quite low density of the localized states for
electrons in a-IGZO films [34], which was employed in our
EMA charge transport calculations. Thus, in contrast to the
pseudo-band-structure of most of the amorphous materials
which displays localized conduction bands, our first-principles
calculations suggest that the conduction band in a-IGZO is
unusually delocalized.

Among the different amorphous structures used, the abso-
lute position of the conduction band is found to be dependent
on the model, even after a proper alignment of the electronic
structure using the electronic signature of the deep d electrons
of Ga and In is guaranteed. The observed variation is depicted
in Figs. 6(b) and 6(c) and is found to be consistent with the
model proposed above, even though the number of tested
amorphous structures was finite (16). Indeed, the maximum
variation observed in the position of the conduction bands was
found to be 0.11 eV [cf. Fig. 6(c)], with a standard deviation
of 0.03 eV, which is close to δ0 = 0.04 eV used for the
experimental data fitting shown further below. This variation
can be explained by the variations in the metal coordination
in the different amorphous structures. An alteration of the
coordination modifies locally the interaction between the
metal and the oxygen ions. The simulations reveal that

this interaction has a main antibounding character in the
conduction band [55]. Therefore, all changes leading to a
reduction of this interaction will lessen the conduction-band
energy and, thereby, lead to a downward shift. This change in
interaction also explains the origin of the difference in the band
gap of the crystalline and amorphous phases of IGZO, which is
found to be mostly due to a downward shift of the conduction
band [55,59]. The latter shift is nevertheless emphasized in this
case, since the reduction of the metal coordination between
the crystalline and amorphous phase is more pronounced than
the variations observed between the different models of the
amorphous phase.

IV. COMPARISON WITH EXPERIMENT

To verify applicability of the present model, we compare
it with experimental results obtained for a-IGZO films that
feature both a comparatively large charge-carrier mobility and
Hall effect for a disordered martial. Temperature- and carrier-
concentration-dependent drift mobility and conductivity were
studied in FET configuration. The high-performance bottom-
gate top-contacts a-IGZO thin-film transistors were fabricated
on a highly doped silicon wafer acting as the substrate and
the gate electrode. On top of this substrate, a gate-insulating
120-nm-thick layer of silicon dioxide (SiO2) has been grown
by thermal oxidation. The a-IGZO as an n-channel active
layer was deposited using the dc-sputtering technique and
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FIG. 7. Arrhenius temperature dependence of the FET mobility
μFET(T ) measured in an a-IGZO TFT at different VG (symbols) and
results of their fitting with Eqs. (15) and (16) (solid lines). Localized
states were ignored. Fitting parameters are shown as indicated in the
inset.

patterned by wet etching. The details of a-IGZO deposition
were described before [60]. Finally, molybdenum source and
drain contacts were formed by the lift-off technique. The
channel length and width were L = 20 μm and W = 200 μm,
respectively. The FETs were passivated with a 100-nm-thick
SiO2 layer using a plasma enhanced chemical vapor deposition
(PECVD) chamber and then annealed at 165 °C in N2 for 1 h.
All layers were patterned using standard photolithography.
The transistor characteristics were measured using an Agilent
4156 parameter analyzer in dark under vacuum conditions.
For temperature-dependent measurements, the FET device
was mounted on the sample holder of a variable temperature
“cold-finger” cryostat and characterized in vacuum in the
temperature range from 80 to 325 K. The FET mobility
has been determined in the linear regime of the ID − VG

characteristics at low source-drain voltages VDS = 0.1 V,
where ID and VG is source-drain current and gate voltage,
respectively. The fabricated FETs have exhibited state-of-
the-art performance characteristics for a-IGZO films with
a mobility of μFET = 17 cm2/V s, a subthreshold slope of
0.25 V/decade, an on-off ratio of >106, no hysteresis, and a
small threshold voltage (Vth). Contact resistance of our FETs
was found to be negligible at all temperatures, as verified by
output characteristics, due to near-Ohmic contacts between
IGZO and molybdenum electrodes.

Figure 7 presents the field-effect mobility μFET (symbols)
as a function of inverse temperature measured in an a-IGZO
TFT parametric in gate voltages VG and fitted by the present
model (solid lines). The activation behavior for the μFET(T ) is
evident in this material.

We should note that in order to minimize the number of
fitting parameters in Fig. 7 the localized states were neglected
here. The latter can be justified for the representative material
parameters of a-IGZO films [34] and sufficiently large carrier
concentrations, as it has been proven by Fig. 2. In fact, the
only key fitting parameter in Fig. 7 was δ0 = 0.04 eV, while

FIG. 8. Transfer characteristics (ISD vs VG) of a-IGZO TFT
measured (symbols) at different temperatures ranging from 80 to
300 K and fitted with the present model for the temperature-dependent
conductivity by Eq. (15) ignoring localized states (solid lines). The
parameters used in the calculations were the same as in Fig. 7.

the carrier concentration was calculated as a linear function
of (VG − Vth) taking into account the observed shift of Vth

with temperature. The estimated total carrier concentrations
were found to change within 2.24 × 1017 < ntot < 1.32 ×
1018 cm−3 when the gate voltage was ranging within VG =
2−12 V at 80 < T < 300 K. To keep this paper focused,
we limit our consideration to the μ0 = const. approximation
[cf. Eq. (11)] which does not significantly alter the results
in the focus of the present study. The intrinsic mobility
μ0 is obtained by fitting the experimental data of a-IGZO
with the present model and this yields μ0 = 22 cm2/V s.
It worth noting that this value is not much different from
the intrinsic (band) mobility μ0 in a-Si:H determined by
extrapolating experimental electron drift mobility data to
infinite temperature (see, for review, Ref. [61]); therefore it
cannot be a cause of very different effective mobility values
observed in FET devices based on a-IGZO and a-Si:H.

Figure 8 shows transfer characteristics (ISD vs VG) mea-
sured in the a-IGZO TFT at different temperatures (sym-
bols) and fitted by the present model by Eq. (15) (solid
lines) in above-threshold voltage region. It should be noted
that these fitting ISD(T ) curves were in fact used to get
theoretical μe(T ) dependences presented in Fig. 7 (solid
curves) by differentiating μe ∝ dISD/dVG. This corresponds
to the theoretical relation μe = (1/e)dσe/dn. A reasonably
good agreement between experimental data and the present
EMA model can be seen in Figs. 7 and 8, implying that
despite the above simplifications the present model reproduces
adequately basic features of the temperature-activated and
carrier-concentration-dependent charge transport in a-GIZO
films. Note that the threshold voltage Vth in this a-IGZO
TFT is slightly shifted to a negative voltage. This is known
to be due to intrinsic doping of a-IGZO film implying that the
observed conductivity at VG � 0 is not due to formation of the
conductive channel but rather is due to a bulk conductivity in
the film.
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FIG. 9. Source-drain current (ISD) vs 1/T measured in a-IGZO
TFT at different gate voltages VG (symbols) and fitted with Eq. (15)
for the conductivity (bold red lines). Thin straight lines represent
the approximations toward a higher temperature. The isokinetic
temperature is indicated by a vertical arrow (note that it is negative).
Vertical dashed line at T −1 = 0 is just a guide to the eye.

Figure 9 shows Arrhenius plots of temperature-dependent
source-drain current (ISD) measured at different gate voltages
in a-IGZO films in TFT geometry in the above-threshold
voltage region (symbols). We assume here that the current
density is proportional to the conductivity as the source-drain
voltage was the same in these measurements. Fitting of the
experimental ISD(T ) data in Fig. 9 was done by Eq. (15),
ignoring localized states as mentioned above which can
be justified for this material at sufficiently large VG, as
documented by the good agreement between experiment and
theory (see solid curves in Fig. 9). It is evident that the
extrapolations of these graphs intersect at a negative isokinetic
temperature featuring the inverse-MN compensation effect for
the conductivity, which perfectly agrees with prediction of the
present theory for such an amorphous system [cf. Fig. 2(b)]. It
should be mentioned that a similar inverse-MN effect has been
already reported for ISD(T ) data in a-IGZO TFT measured in
the above-threshold voltage region [62]. It is in sharp contrast
to the mobility data presented in Fig. 7 obtained for the same
a-IGZO TFT, which shows “normal” MN-type behavior well
predicted by the present model. Thus, both sets of experimental
data in Figs. 7 and 9 can be fitted by the present model using
the same parameters.

To compare the present model with experimental results
on the Hall effect in a-IGZO films, we fitted Hall mobilities
reported before by Kamiya et al. [33] for different temperatures
and different carrier concentrations created by deliberate
doping in a-IGZO films shown by symbols in Fig. 10(a).
The Hall mobilities calculated within the present model
are shown by solid lines. Figure 10(b) shows temperature
dependences of the drift conductivity measured in the same
a-IGZO films and the calculations by the present model
(solid lines). We should note that both drift conductivity and
Hall mobility were calculated using the same δ0 = 0.04 eV
as the only fitting parameter. Neither scattering effects on

FIG. 10. (a) Temperature dependence of the Hall mobility in
a-IGZO films (experimental data from Ref. [33]) measured at different
carrier concentrations created by deliberate doping (symbols) and
results of their fitting by the present model (solid lines). Carrier
concentrations were taken from the experiment. (b) Temperature
dependences of the drift conductivity measured in the same a-IGZO
films [33] and results of their fitting by the present model (solid lines).

the intrinsic charge transport nor localized states were taken
into account. Despite such simplifications, the present model
describes the experimental temperature dependences over a
broad range from room temperature down to 80 K and
reproduces the relative decrease in the Hall mobility and
drift conductivity upon lowering the carrier concentration in
a satisfactory way. This demonstrates that the present model
can provide an adequate basis for a quantitative description
of the temperature-activated drift and Hall charge-carrier
mobilities in amorphous oxide semiconductors in the large-
carrier-concentration transport regime that can be realized by
either doping or carrier accumulation in the conductive channel
of a FET.
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V. DISCUSSION AND CONCLUSIONS

As described above, the charge transport in high-mobility
disordered semiconductors can occur in the regime with a
significant degree of degeneration realized at large carrier
concentrations when the Fermi level is very close to the
transport-band edge. This might be a consequence of both
a reduced energy disorder resulting in low density of localized
states in the band gap and an enhanced electronic coupling. The
degeneration regime cannot probably be reached in strongly
disordered materials like a-Si:H or many other conventional
disordered (organic and inorganic) semiconductors at realistic
carrier concentrations achievable in TFT devices since the
density of the localized states is too large. However, it
apparently is realized in amorphous oxide semiconductors
like a-IGZO and perhaps in some organic TFTs where the FET
mobility appears to be relatively high and where, at sufficiently
large gate voltages, it features rather small activation energy
within a few kT at room temperature. This means that a
large part of the charge carriers (if not a major part in some
materials) are in extended states above the conduction-band
edge as described by Fermi-Dirac statistics. The latter is
a precondition for observation of an ideal Hall effect (i.e.,
μe = μHall) implying that the charge carriers contributing to
the current are delocalized and move via a predominantly
trap-free bandlike mechanism.

It is worth noting that the Hall mobility (and transverse
conductivity) in low-mobility disordered systems with hop-
ping transport is normally strongly suppressed because it
is determined by three-site (or more) hopping probabilities
instead of the two-site probabilities for the drift mobility,
that was demonstrated long ago by Böttger and Bryksin [63],
Friedman and Pollak [64] for nonpolaronic charge carriers,
and also by Emin [65] within the Holstein polaron hopping
model. The three-site approximation can give rise to the same
sign of the Hall effect for both electrons and holes implying
a “sign reversal” effect. Accounting for a larger number of
site probabilities can also result in a double sign reversal
in the Hall effect [66]. Thus, in contrast to crystals, the
sign of the Hall effect turns out to be often problematic in
disordered systems with hopping charge transport and hence
the Hall effect measurements cannot be applied in many
instances to determine the sign of the mobile carriers in such
systems as, for instance, in doped a-Si:H [67]. Since in the
present work we consider a disordered system with very low
density of the localized states and with transport through the
delocalized states, where the drift charge mobility is scarcely
affected by the localized states, the latter are expected to have
even lesser impact on the Hall mobility. Therefore the sign
reversal and double sign reversal issue is not expected in
this case. Within our continual model for a disordered system
with free-electron-like Hall effect, the sign of the Hall effect
coincides with the sign of movable charge carriers similarly
as in crystals (no sign-inversion effect), while it still fea-
tures some transport properties peculiar to hopping transport
systems.

The puzzling thing is that the Hall mobility in a-IGZO is
large yet it is associated with a positive activation energy that
cannot be rationalized by classical band transport motion. This
calls for an extension of the MTR (hopping) theory applied to

disordered semiconductors. The concept of disorder-induced
static variation in the transport band of imperfect semiconduc-
tors was suggested long ago [28] and can be very useful to
formulate a more adequate charge transport model and solve
the above puzzle. A similar concept was recently used in
the band transport percolation Kamiya-Nomura model [21]
to describe the Hall mobility in highly doped a-IGZO films.
It assumes a Gaussian-type distribution of potential barriers
above the band edge, which has some energy onset in the
form g(ε) = exp[−(ε − φ0)2/(2σ 2

φ )], where φ0, the average
barrier height, and σφ , the energy distribution width, are the
major fitting parameters of the model [21,33]. This function
differs from the Gaussian distribution originally suggested in
Ref. [28] and from Eq. (1) used in the present paper. Apart
from the fact that the Kamiya-Nomura model is based on
an insufficiently justified calculation method as was already
mentioned in the Introduction, this model was never applied to
the FET charge-carrier mobilities where carrier concentration
in the conductive channel is determined by the gate voltage,
but only to the bulk films where carriers were created by
doping with electron donors. To describe qualitatively the
temperature and carrier-concentration-dependent mobility in
doped IGZO films, the authors had to assume that parameters
φ0 and σφ are changing with changing carrier concentration
[21,33], i.e., donor concentration in the a-IGZO film. Thus,
these parameters were treated in this model as not material
specific but rather operational parameters fitted for each
particular carrier concentration used. The fact that the energetic
structure of the material changes with carrier concentration is
definitely not acceptable for describing the FET mobility and
this model is not applicable to pristine (nondoped) a-IGZO
films.

The EMA model proposed in the present work is more
general since it is not limited to Boltzmann statistics only
and based on specific averaging of the Fermi-Dirac carrier
distributions using suitably normalized cumulative DOS of
superposed extended and localized states distributions. The
key assumption of the model is that, in addition to the tail of
localized states, the disorder can give rise to spatial energy
variation of the transport-band edge being described by a
Gaussian distribution with the standard deviation δ0 [Eq. (1)]
and that the charge carriers move through delocalized states.
The presented ab initio calculations have perfectly confirmed
that the spatial variation of the conduction-band edge really
occurs in pristine a-IGZO films as a result of its amorphism
while it does not seem to create localized states; the latter are
likely originated from some sort of defects in this material. In
spite of the amorphous structure, the conduction band in this
n-type semiconductor was found to be basically delocalized,
whereas the valence band states have a localized nature (Fig. 6).
In the particular case of high-quality a-IGZO TFTs used here,
the density of localized states is so low that they can be
neglected at large carrier concentrations. It is a general belief
that the density of localized states at the conduction-band edge
in a-IGZO films is exceptionally low as compared to other
disordered semiconductors like a-Si:H, and in our calculations
we used the value Nm = 8 × 1018 cm−3 eV−1 reported in
a-IGZO with a comparable charge mobility value [34]. It
should be mentioned that this conclusion is in variance to the
recent finding that the variable range hopping regime is very
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relevant to a-IGZO films and its contribution to the overall
charge transport is larger than that of the bandlike transport
above the conduction-band edge [68]. The discrepancy can
probably be explained by a considerably larger density of
localized states in a-IGZO films fabricated in Ref. [68] that
is also evidenced by much lower charge-carrier mobility in
their films.

The principal advantages of the EMA model are that it
can describe universally effective drift and Hall mobility
in heterogeneous high-mobility materials as a function of
disorder, temperature, and carrier concentration within the
same theoretical formalism, and can rationalize their thermally
activated character. The model predicts that the ratio between
effective Hall and drift mobilities μ

xy
e /μe deviates from

unity in a disordered material and the ratio progressively
increases with increasing energy disorder parameter δ0 and
lowering temperature (Fig. 5). To verify the present model
we measured the charge-carrier mobility and conductivity in
a high-performance a-IGZO TFT at different temperatures
and gate voltages. The experimentally obtained σe(T ) and
μe(T ) dependences in the above-threshold voltage region can
be described quantitatively in the framework of the present
model. Interestingly, that even restricting our consideration
solely by the variation of εm, the EMA model still reproduces
reasonably well the basic features of temperature and carrier-
concentration-dependent transport measured in our a-IGZO
TFTs (cf. Figs. 7–9) using a single fitting parameter δ0 =
0.04 eV which is closer to the standard deviation parameter
0.03 eV estimated from results of ab initio calculations. At
much smaller δ0 = 0.005 eV the above effects vanish [see
upper branch of curves in Figs. 2(a) and 3]. Within the
same theoretical formalism we were able to reproduce also
the temperature-dependent Hall mobilities measured in doped
a-IGZO films at different carrier concentrations (cf. Fig. 10)
using the same δ0 = 0.04 eV parameter, that implies that
variation of the conduction-band edge might not be much
affected by doping of the films.

Another important result of the present study is that the
suggested EMA model can reproduce well the Meyer-Neldel
type of compensation behavior in degenerate regime [see
Fig. 2(a)] regarding the temperature dependences of the
charge-carrier mobility upon varying the carrier concentration
(gate voltage), which is commonly observed in different TFT
devices. Remarkably, the model predicts distinctly different
MN behavior regarding temperature-dependent charge-carrier
mobility and conductivity measured in the same TFT device,
namely, an inverse-MN rule for the set of σe(T ) dependences
with isokinetic temperature TMN at “negative” temperature
[Fig. 2(b)] and “normal” MN-type behavior for the μe(T )
dependences with positive TMN [Fig. 2(a)]. This prediction
has been fully supported by experimental results obtained
in our high-quality a-IGZO films [cf. Figs. 7 and (9)]. We
found that a distinctly different isokinetic temperature TMN

is inherent for the compensation behavior of μe(T ) and
σe(T ) measured in the degenerate regime provided that the
charge transport is dominated by Gaussian distribution of
the conduction-band-edge variation. Interestingly, a similar
phenomenon—positive and negative TMN temperatures ap-
pearing for μe(T ) and σe(T ) dependences, respectively—was
recently predicted by EMA calculations for the hopping
transport systems with Gaussian DOS distribution of localized
states and verified experimentally in a disordered organic
solid [27]. Most probably this phenomenon appears as a
consequence of Gaussian-type distribution used to describe
these quite different charge transport mechanisms.
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