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Abstract
We present the first version of an automated spelling correction system for Dutch Internet users with Intellectual Disabilities (ID). The
normalization of ill-formed messages is an important preprocessing step before any conventional Natural Language Processing (NLP)
process can be applied. As such, we describe the effects of automated correction of Dutch ID text within the larger framework of a
Text-to-Pictograph translation system. The present study consists of two main parts. First, we thoroughly analyze email messages that
have been written by users with cognitive disabilities in order to gain insights on how to develop solutions that are specifically tailored to
their needs. We then present a new, generally applicable approach toward context-sensitive spelling correction, based on character-level
fuzzy matching techniques. The resulting system shows significant improvements, although further research is still needed.

Keywords: Automated Spelling Correction, Intellectual Disabilities, Pictograph Translation, Alternative and Augmentative Com-
munication

1. Introduction
The Internet has influenced our daily lives in various ways.
Being able to stay in touch with family and friends via
email or social media websites strengthens the feeling of
belonging to a community, even at distances. Therefore,
not being able to access or use information technology is
a major form of social exclusion. There is a dire need for
digital communication interfaces that enable people with
Intellectual Disabilities (ID) to contact one another.
We are developing a Text-to-Pictograph and Pictograph-to-
Text translation system for the WAI-NOT1 communication
platform. WAI-NOT is a Flemish non-profit organization
that gives people with severe communication disabilities
the opportunity to familiarize themselves with computers,
the Internet, and social media. Their safe website environ-
ment offers an email client that makes use of the pictograph
translation solutions. The Text-to-Pictograph translation
system (Vandeghinste et al., 2015; Sevens et al., 2015a) au-
tomatically augments written text with Beta2 or Sclera3 pic-
tographs and is primarily conceived to improve the compre-
hension of textual content. The Pictograph-to-Text transla-
tion system (Sevens et al., 2015b) allows the user to insert
a series of Beta or Sclera pictographs, automatically trans-
lating this image sequence into natural language text where
possible, hereby facilitating the construction of textual con-
tent.
The Text-to-Pictograph translation system consists of var-
ious sub-processes. During the preprocessing phase, ba-
sic spelling correction (see section 5.1.) is applied, as some
users have the ability to write short messages without hav-
ing to rely on the pictograph selection menu. However,
these messages often contain severe spelling errors. While
it is important to encourage people with ID to write their
own messages if they have the ability to do so, the re-

1http://www.wai-not.be/
2https://www.betasymbols.com/
3http://www.sclera.be/

Figure 1: Example of an erroneous Text-to-Beta translation

sulting text may pose several problems. First, even if the
receivers of the ill-formed messages are (to some extent)
able to read written text, they might not be able to under-
stand these messages because of all these mistakes. Sec-
ondly, as noted by Sproat et al. (2001), text normaliza-
tion is recommended before applying a more conventional
Natural Language Processing (NLP) process. The Text-to-
Pictograph translation tool, which translates the email into
pictographs for people who have reading difficulties, may
retrieve wrong pictographs or no pictographs at all for erro-
neously written words. Vandeghinste et al. (2015) evaluated
the Text-to-Pictograph translation system and showed that
there is clearly room for further improvement in the auto-
mated spelling correction process, as the scores for the up-
per bound (manual spelling correction) were significantly
better than the scores for the basic, automated spelling cor-
rection process (see Figure 1).
We present the first version of an automated spelling correc-
tor that is specifically tailored to users with ID. After a dis-
cussion of related work (section 2.), we thoroughly analyze
tweets and messages sent with the WAI-NOT system and
show that users with ID make more and different spelling
mistakes than users who do not have cognitive disabilities
(section 3.). We then proceed to describe the system archi-
tecture. On the one hand, the system consists of a variant
generation and filtering step that is partially based on dis-
covering phonetic similarities. On the other hand, we ap-
ply character-based fuzzy matching as a novel approach to



context-sensitive spelling correction (section 4.). Our eval-
uations show that improvements over the baseline in the
Text-to-Pictograph translation tool were made (section 5.).
Finally, we conclude and describe future work (section 6.).

2. Related work
The rapid dissemination of electronic communication de-
vices has triggered the emergence of new forms of written
texts (Kobus et al., 2008). Microtext, or chatspeak-style
text, such as tweets or text messages, is characterized by
the use of abbreviations, misspellings, phonetic text, collo-
quial and ungrammatical language, lack of punctuation, and
inconsistent capitalization, among other things (De Clercq
et al., 2013). Several linguistic models and algorithms have
been proposed to deal with errors. We will focus on three
popular models for the correction of microtext in particular,
as proposed by Kobus et al. (2008): the Noisy Channel or
Spell Checking model, the Machine Translation model, and
the Speech Recognition model.
The concept behind the Noisy Channel model, also called
the Spell Checking model, is to consider a spelling error
as a noisy signal that has been distorted somehow dur-
ing transmission (Bassil and Alwani, 2012). The Noisy
Channel model applies spelling correction on a word-per-
word basis and is often limited to the correction of Out
of Vocabulary (OOV) words. It relies on orthographic or
phonemic surface similarity between two forms. Exam-
ples of the Noisy Channel approach for spelling correc-
tion are the rule-based system developed by de Neef and
Fessard (2007), the system incorporating phonetic infor-
mation developed by Toutanova and Moore (2002), and
the Hidden Markov Model developed by Choudhury et al.
(2007), which handles both graphemic variants and pho-
netic plays. Beaufort et al. (2010) note that the Noisy Chan-
nel model places excessive confidence in word boundaries.
The Machine Translation (MT) model considers the ill-
formed text as the source language, and the correct text
as the target language. Aw et al. (2006), for example, use
phrase-based MT to tackle the spelling correction problem.
It should be noted, though, that it is labor-intensive to con-
struct an annotated corpus to cover ill-formed words and
context-appropriate corrections (Han and Baldwin, 2011),
especially since the lexical creativity in microtext is dif-
ficult to capture. Another issue is the fact that Statistical
Machine Translation allows to handle many-to-many corre-
spondences and applies methods to model the possible mis-
match in word order (Kobus et al., 2008), while the normal-
ization task is almost deterministic (Beaufort et al., 2010),
with no change in word order. De Clercq et al. (2013) im-
plement an MT-based approach and describe the first (and
to our knowledge, only) proof-of-concept system for Dutch
user-generated content normalization, but they do not con-
sider users with ID.
The Speech Recognition model converts the input string
into a phone lattice, followed by the creation of a word-
based lattice using phoneme-to-grapheme rules, after which
a language model is applied and a best-path algorithm is
used (Beaufort et al., 2010). An example of this method is
presented by Kobus et al. (2008). Han and Baldwin (2011)
identify normalization candidates for an OOV word by de-

coding the pronunciation of all in-vocabulary words and re-
trieving all words that lie within a threshold character edit
distance between the OOV word’s pronunciation and the
dictionary words’ pronunciation.
Our spelling correction system can be considered as a com-
bination of all three approaches, while also introducing
new ideas. Although not only OOV words are considered,
spelling variants are generated for individual tokens (Noisy
Channel model). More specifically, these variants are gen-
erated (in the first place) by considering the ill-formed
word as a result of phonetic confusion (Speech Recogni-
tion model). Finally, we match our new spelling hypothe-
ses against a target language corpus of correctly written text
(Machine Translation model). The system does not require
large amounts of annotated data.

3. Error distribution: Comparison with
tweets

Whenever microtext is considered in the literature, its de-
scription is often (if not always) limited to the analysis of
SMS messages and tweets. Spelling correction for micro-
text is a young domain of research, due to the recent boom
of social media websites, and its focus lies on users who do
not necessarily have a cognitive disability. However, many
people with cognitive disabilities resort to specialized com-
munication platforms and apps, such as the WAI-NOT envi-
ronment. The fact that the spelling correction tool possibly
needs to deal with a completely new and different type of
microtext should not be ignored. In order to verify this, we
compared tweets written by people who supposedly do not
have a cognitive disability with emails that were sent with
the WAI-NOT email client.

# OOV # RWE # Words % Errors
WAI-NOT 481 183 8077 8.2%
Tweets 182 88 10964 2.5%

Table 1: Total amount of misspelled tokens. OOV = Out-
of-Vocabulary tokens; RWE = Real-word errors

We selected a total of 1000 subsequent tweets from the
Dutch Twitter feed, having excluded those messages that
were not personal, such as news articles or advertisements.
Additionally, a total of 1000 random WAI-NOT emails
were selected after having thrown away 49 completely un-
readable messages and 330 messages that consisted of pic-
tographs only. We manually corrected all tweets and email
messages, while analyzing the different types of errors that
were made.4

Generally speaking (see Table 1), many more errors can
be found in the WAI-NOT messages (8.2%) than in tweets
(2.5%). Both OOV words and real-word errors were con-
sidered.
As shown in Table 2, the majority (52.1%) of spelling mis-
takes that are made by people with ID is caused by phonetic
confusion, defined here as the orthographic approximation
of a word’s pronunciation (such as wiekent for weekend).
Although this phenonemon can also be observed in tweets

4The corrected tweets and WAI-NOT emails are available on
request. The emails may only be used for research purposes.



Total # misspelled # PW % PW
WAI-NOT 664 346 52.1%
Tweets 270 95 35.2%

Table 2: Total amount of misspelled words that are a pho-
netic approximation of the correct word. PW = Phonetic
words

(35.2%), Twitter users’ phonetic spellings tend to be much
more systematic. They usually concern deliberate mistakes
in an attempt to mimic speech (such as the final t deletion in
da or nie for dat “that” and niet “not”), or recurrent gram-
matical mistakes (such as jou “you” versus jouw “your”
or gebeurt “happens” versus gebeurd “happened”). Han
and Baldwin (2011) note that ill-formedness in regular mes-
sages is often intentional, whether due to the desire to save
characters or keystrokes, due to the wish to belong to a
social group, or due to convention. Phonetic mistakes in
WAI-NOT messages are most likely undeliberate mistakes
in an attempt to write a correct piece of text, and are there-
fore much more diverse. This idea is reinforced by the fact
that a large part of the analyzed messages were addressed at
teachers or caregivers, for whom one might do a deliberate
effort.

LD # Words Percentage
WAI-NOT

1 479 72.1%
2 128 19.3%
3 44 6.6%
4 9 1.4%
5 2 0.3%
6 2 0.3%

Tweets
1 166 61.5%
2 66 24.4%
3 19 7%
4 7 2.6%
5 4 1.5%
6 4 1.5%
7 2 0.7%
8 1 0.4%

12 1 0.4%

Table 3: Overview of total amount of character operations
required per erroneously spelled word. LD = Levenshtein
distance

As an additional error measure, we counted the number of
insertions, deletions, and substitutions needed to get from
the original messages to their corrected counterparts (see
Table 3). On the average, messages in WAI-NOT require
1.4 operations per erroneously spelled word, while tweets
require 1.7 operations. This difference can be explained as
follows. Relatively speaking, Twitter users are more likely
to delete characters (75.6% of all required character oper-
ations are insertions) than WAI-NOT users (48.6%). This
observation is most likely due to the 140-character limit for
tweets or the wish to belong to a social group. Examples of
deliberate abbreviations in tweets that require many char-
acter insertions are wrschnlk for waarschijnlijk “probably”
and mssch for misschien “maybe”.

# FL # PN # EN # AB
WAI-NOT 10 0 6 0
Tweets 9 0 72 59

Table 4: Other factors that should be taken into considera-
tion. FL = Flooding; PN = Phonetic numbers; EN = English
words; AB = Abbreviations

There are other problems related to spelling errors that may
need correction (see Table 4). Flooding, the constant repeti-
tion of one character, which occurs when emphasis is given
by the user (such as noooooo or coooool), can be found
in both genres, while we did not encounter any examples
of numbers encoding phonetic values (such as m8 for mate
in English). English words were hardly used in the Dutch
WAI-NOT messages (with the exception of I love you). Ab-
breviations (such as m.b.t. “w.r.t.” for met betrekking tot
“with respect to”) did not occur in these messages at all.
Therefore, as long as our system focuses on users with ID,
it should not be dealing with foreign language detection or
abbreviation solving.
From this analysis, it can be concluded that text written
by people with ID is indeed a different kind of microtext.
Not only does it contain more errors and phonetic approx-
imations, common abbreviations are lacking, and the users
barely use any English words for which a Dutch alternative
is available.
Spelling errors made by children who are still learning how
to spell and people with Alzheimer’s disease might be very
similar to text written by people with ID. 5 This hypothesis
will have to be tested.

4. System architecture
We describe our prototype version of a spelling corrector
that is specifically tailored to Dutch text written by people
with ID (see Figure 2). In the first phase, the input text to be
corrected undergoes a number of preprocessing steps (sec-
tion 4.1.). Next, spelling variants are generated for all OOV
tokens and infrequent real words (section 4.2.); a trigram
language model is used to narrow down the final amount of
possibilities. The third step consists of using a character-
based fuzzy matching technique for finding the best com-
bination of spelling variants and, additionally, performing
new character substitutions when a strong context match
is found (section 4.3.). Finally, we describe the parameter
tuning process (section 4.4.).

4.1. Preprocessing
The input text undergoes a number of preprocessing steps.
The word builder module (Vandeghinste, 2002) takes every
two adjacent tokens and checks whether they can be put
together in order to form a real word. The word builder pa-
rameters (see section 4.4.) set different threshold frequen-
cies for the (non-)acceptance of the newly created com-
pound word.
The rule-based tokenizer splits the punctuation signs from
the words, as the variant generation module works on the
token level. Given that the hyphen/dash and the apostrophe

5We thank one of the anonymous reviewers for this suggestion.



Figure 2: System architecture

often belong to the word, they are not dealt with by the
tokenization process.
Although most messages sent by the users only contain one
sentence, sentence detection is applied. Segmentation is
based on full stops.
In the next step, upper-case letters are converted to lower-
case letters. Names keep their capital first letter, so they will
not be involved in the spelling correction process, as long
as the name can be found in a database of first names. 6

The constant repetition of one character or flooding is tack-
led by reducing any repeated sequence of characters to two
characters.
Finally, we created a very small dictionary containing pop-
ular greetings (such as hey) for tokens that will have to be
left out of the correction process.

4.2. Variant generation and filtering
Spelling variants are generated for all OOV tokens and in-
frequent real words according to a reference corpus. Our
variant generation process focuses on phonetic, i.e. cogni-
tive errors (section 4.2.1.). If no variants are generated, the
system checks for basic typographic errors (section 4.2.2.).
The final amount of variants is narrowed down by a trigram
language lookup before proceeding to the next step (sec-
tion 4.2.3.).

4.2.1. Generating variants for cognitive errors
Cognitive errors occur when the writer does not know how
to spell a word, and often rely on the identical pronunci-
ation of words (Toutanova and Moore, 2002). As shown
by the error distribution (see Table 2), phonetic confusion
causes the majority of spelling errors that are made by the
target group.

Building conversion rules The approach described in
this section is partially inspired by the finite-state frame-
work for normalizing SMS messages developed by Beau-
fort et al. (2010).
First, we manually correct 1000 sentences written by WAI-
NOT users.
We then align the uncorrected and corrected sentences
on the character level, using Levenshtein Distance Align-
ment. 7 This metric (Levenshtein, 1966) computes the edit

6http://www.quietaffiliate.com/free-first-name-and-last-name-
databases-csv-and-sql/

7http://rosettacode.org/wiki/Levenshtein distance/Alignment

distance of two strings by measuring the minimum number
of operations (substitutions, insertions, deletions) required
to transform one string into the other. Delimiters, such as
commas and spaces, are also aligned. Missing characters
on either side of the alignment are indicated by inserting a
hyphen (-).
In the next step, we create token pairs. A token pair is re-
trieved when the same delimiter is found at the same lo-
cation in both the source/uncorrected and target/corrected
language character string. From these token pairs, we ex-
tract all possible character 4-grams on the source language
side and the characters they align with on the target lan-
guage side. This process is repeated for three, two, and one
character(s).8

Having obtained all character 4-gram, trigram, bigram, and
unigram alignments, probabilities are estimated: For ev-
ery character n-gram on the source side, we calculate the
likelihood of obtaining a particular character sequence on
the target side. The sequence obtained is usually identi-
cal, but sometimes different. For example, the character
trigram “int” on the source/uncorrected language side re-
mained “int” in 91% of the cases, but had been corrected
into “ind” in the remainder of the sentences.
For the construction of our final rule set, we retain only
those cases where we observe a 1% to 100% probability
of changing a particular character n-gram into a different
n-gram. The idea behind this is that rarely occurring al-
ternations might actually have a typographic rather than a
phonetic origin. By contrast, more commonly occurring
mistakes are most likely due to phonetic confusion. This
idea is also reflected in the final version of our inventory.
For instance, the written sequences “int” and “ind”, “pra”
and “praa”, “orie” and “orry” can indeed be pronounced the
same way.
This inventory of commonly appearing alternations allows
us to build a system of character rewrite rules, in which
character 4-gram rules overrule trigram rules, trigram rules
overrule bigram rules, and so on.

Figure 3: Example of how the conversion rules are applied

Applying conversion rules For every non-word and ev-
ery real word that has a frequency lower than the real word
minimum frequency threshold (see section 4.4.) in our fre-
quency list,9 the conversion rules are applied (see Figure 3).

8In future work, we will evaluate whether five- or six-character
pairs make the variant generation process more robust.

9The frequency list contains roughly eighty million words of
Belgian Dutch newspaper text.



A four-character window slides over the token, starting
with the first four characters of the token, and checks if
a 4-gram rule can be found for that particular sequence. If
a rule is found, all the conversion outputs (including the
original sequence) are stored and the system will proceed
to check the next four characters of the token. If no rule
is found, the system backs off to the first three characters
of the token and attempts to find a trigram rule for that se-
quence. If, even at the one-character level, no rules could
be found, the original character is retained and the system
proceeds to find rules for the next four-character sequence.
In the end, all conversion outputs are concatenated and both
non-words and real words may have been formed. If a real
word is formed with a frequency higher than the variant
frequency (see section 4.4.), it will be retained as a variant
for that token.
Note that our approach, although phonetically similar vari-
ants are generated, does not yet decode the pronunciation
of words into phonemes.

4.2.2. Generating variants for typographic errors
Typographic errors are mostly related to the keyboard
(Toutanova and Moore, 2002). If in the previous step no
variants were generated for a non-word or a word that has
a frequency lower than the real word minimum frequency
threshold (see section 4.4.), we apply basic typographic er-
ror correction principles. We generate variants based on
five different operations.
The first operation is the word splitting module. This is
an insertion module for one space character. The system
checks whether the erroneous or infrequent token can be
split into two parts at any position. Frequency thresholds
are determined by parameters (see section 4.4.).
The next operations are one-character deletion, insertion,
substitution, or adjacent transposition at every position of
the token. If a real word is formed with a frequency higher
than the variant frequency (see section 4.4.), it will be re-
tained as a variant for that token. If the original token was
a real word, then that word will always be retained as one
of the variants.

4.2.3. Filtering the variants
It is possible that, at this point, the system has generated
multiple variants for a single erroneous word or infrequent
real word. Especially when considering very short words,
many real-word alternatives can often be created. The filter
module narrows down the total amount of possibilities be-
fore proceeding to the next step. A trigram language model
trained on a very large corpus (a combination of the Dutch
part of Europarl, Corpus Gesproken Nederlands, Cross-
Language Evaluation Forum, DGT-Translation Memory,
and Wikipedia) is used to check whether the variant ever
occurs within its context in the language model. As the to-
ken’s direct context may also contain variants, all possible
trigrams are checked until a match is found. If a match is
found, the variant will be retained. If no trigram matches
are found for any of the variants because the context does
not provide enough information, all variants are retained.

4.3. Character-based fuzzy matching
The combination of all variants described above leads to the
creation of a number of potentially correct sentences. Each
one of these sentences is a hypothesis, one of which will
receive the highest score through fuzzy matching. Fuzzy
matching techniques, which have been developed in the
context of translation memories (databases with source sen-
tences and their translations used by professional transla-
tors), allow to find strings in a corpus that approximately
(rather than exactly) match a string. We are applying this
technique to a monolingual corpus. In the development of
the spelling correction tool, we explored the new possibil-
ity of applying fuzzy matching techniques at the character
level.
Each one of the hypotheses is split into individual charac-
ters. The space is replaced by a dummy character, the %
sign, and should also be recognized as a character. As our
corpus, we use the Spoken Dutch Corpus (Corpus Gespro-
ken Nederlands, (Oostdijk et al., 2002)) since spoken lan-
guage better reflects the language used in user-generated
content (De Clercq et al., 2013). This corpus is also
split into individual characters. During the fuzzy match-
ing process, we use a filter called approximate query cov-
erage (Vanallemeersch and Vandeghinste, 2015). Its pur-
pose is to select candidate sentences in a corpus which are
likely to reach a minimal matching threshold when submit-
ting them to a fuzzy matching metric, in order to increase
the speed of matching. Candidate sentences share one or
more n-grams of a minimal length with the input hypothe-
sis, and share enough n-grams with the input hypothesis to
cover the latter sufficiently (according to some threshold).
In our spelling correction model, the unigram is one single
character. A very efficient search for sentences sharing n-
grams with the input hypothesis can be done by means of a
suffix array (Manber and Myers, 1993).10

A hypothesis that shares many and long character n-grams
with candidate sentences from the corpus has a bigger like-
lihood of becoming the winning hypothesis than one that
shares only few and short n-grams.11

The context-sensitivity of the fuzzy matching method al-
lows us to deal with additional spelling errors, even if the
correct variant had not been generated in the variant gener-
ation phase. If a high-scoring corpus match is found for two
strings of characters and there is a gap of maximum three
characters between those strings in both the corpus and the
original hypothesis, those characters will be replaced in the
hypothesis. For example, the hypothesis kan je dat miss-
chien nog aan jou moeder vragen “maybe you can ask your
mother” contains a common spelling mistake in Dutch. Jou
is a personal pronoun, while jouw is a possessive pronoun.
Jouw would be correct here. However, no variants were
generated for jou in the variant generation process, as it is
a highly frequent word. One of the matching strings in the
corpus is nu moeten we het nog aan jouw moeder vragen
“now we still need to ask your mother”. Looking at this

10We used the SALM toolkit (Zhang and Vogel, 2006) for
building and consulting suffix arrays.

11For sake of brevity, we refer to Vanallemeersch and Vandegh-
inste (2015).



sentence and the hypothesis, there is a character overlap
between % n o g % a a n % j o u and % m o e d e r % v r a
g e n. The system finds the character w in the corpus, sur-
rounded by the two substrings (a one-character gap). This
character is inserted in the original sentence, hereby fix-
ing the spelling mistake. We will include the maximal gap
width as one of the parameters in future work.
The winning hypothesis is cleaned up. The spaces between
the characters are removed, the % signs are converted into
spaces and the first letter is capitalized.

4.4. System parameters
The system contains a number of parameters, which were
tuned.
There are two word builder penalties. The first penalty
concerns the frequency of the separate parts of the (po-
tentially in-vocabulary) compound token. If both parts are
real words and their frequency is high enough (post-tuning
value: 120), they won’t have to pass through the word
builder module. The other penalty is the minimum fre-
quency required to accept a newly built real word (post-
tuning value: 210).
Similarly, there are two word splitter penalties. The first
penalty concerns the minimum frequency of the token. If
the frequency of this token is high enough (post-tuning
value: 1760), it will not have to pass through the word split-
ter module. However, if the frequency is not high enough
or if the token turns out to be a non-word, the system will
attempt to split the token into two real word parts. The sec-
ond penalty sets a minimum frequency for those two words
(post-tuning value: 1680). If the frequency is high enough,
the original word will be split.
The real word minimum frequency threshold determines
how common a correctly spelled word should be in order
to avoid going through the spelling variant generation pro-
cess (post-tuning value: 100).
When real word variants are generated for a token, they
need to have a minimum frequency, the variant frequency,
in order to be accepted as a variant (post-tuning value: 220).
There are also three fuzzy matching penalties. The n-
gram penalty decides on the minimum amount of contigu-
ous characters that should occur as a sequence in the cor-
pus sentence (post-tuning value: 8). The minimum score
penalty sets the minimum matching score needed to re-
trieve a corpus sentence (post-tuning value: 0.2). Finally,
the highest frequency threshold decides that, if a certain n-
gram has a very high frequency, the fuzzy matching sys-
tem will ignore it for fuzzy matching, for reasons of speed
(post-tuning value: 100).
We created a tuning corpus by manually correcting 200 new
WAI-NOT messages. We used the local hill climber algo-
rithm as described in Vandeghinste et al. (2015), which
varies the parameter values when running the spelling cor-
rector script on the test set. The BLEU metric (Papineni
et al., 2002) was used as an indicator of relative improve-
ment. BLEU is a precision-oriented metric which compares
the system output to one or more reference translations,
by counting how many n-grams overlap, and correcting for
brevity. We ran five trials of a local hill climbing algorithm.
We did this until BLEU converged onto a fixed score af-

BLEU NIST WER # CO
No corrector 0.64 8.62 12.37 699
Old corrector 0.62 8.07 19.51 816
New corrector 0.84 10.49 7.57 238

Table 5: Automated evaluations on 300 email messages.
CO = Number of character operations

Old New
# Justified corrections of erroneous words 41 145
# Unjustified corrections of erroneous words 74 29
# Non-corrected erroneous words (# Real) 157 (76) 98 (70)
# Inappropriate changes to correct words 16 0

Table 6: Analysis of how the systems deal with erroneous
words

ter several thousands of iterations. Each trial was run with
random initialization values, and varied the values between
certain boundaries in order to cover different areas of the
search space. From these trials, we took the best scoring
parameter values.

5. Evaluation
We present the results of our evaluations. Section 5.1.
evaluates the system on an unseen test set of WAI-NOT
messages and compares its corrections with the corrections
made by the system that was originally developed for the
Text-to-Pictograph translation tool. Section 5.2. evaluates
the system within the context of the Text-to-Pictograph
translation pipeline.

5.1. Intrinsic evaluation
After having filtered unreadable messages and messages
that consisted of pictographs only, we took 300 random
emails from the WAI-NOT corpus and manually corrected
them to the best of our ability. Our baseline is the original
set of uncorrected messages. We also show the result of
applying the spelling correction system that was originally
developed for the Text-to-Pictograph translation tool. The
original system applies one-character substitutions, dele-
tions, and insertions to generate a list of variants and se-
lects the most frequent variant according to the frequency
list (see section 4.2.). This context-insensitive approach is
compared to the output generated by the new system.
Table 5 shows the word-based BLEU, NIST (Doddington,
2002), and Word Error Rate (WER) scores. NIST is sim-
ilar to BLEU, but gives less credit to high frequency non-
informative n-grams. WER counts the number of words
that are incorrect with respect to the reference translation(s)
and is very well suited for the evaluation of NLP tasks
where the input and output strings are closely related. We
also automatically calculated the amount of character oper-
ations needed in order to get to the reference correction.
As shown in Table 5, the original spell checker does more
things wrong than right. However, significant improve-
ments were made using the new spell checker.
Table 6 presents an analysis of how both the original and
the new system deal with erroneous words in the email
messages. The new system is able to detect more erro-
neous forms (as the original system was limited to OOV



With proper names Without proper names
Condition Precision Recall F-Score Recall F-Score
Sclera
Baseline 89.2% 86.2% 87.7% 85.2% 87.2%
New system 92.6% 89.1% 90.8% 88.2% 90.3%
Rel.improv. 3.7% 3.3% 3.5% 3.6% 3.6%
Beta
Baseline 85.9% 89.5% 87.6% 88.7% 87.3%
New system 89.8% 91.5% 90.6% 90.8% 90.3%
Rel. improv. 4.5% 2.3% 3.4% 2.4% 3.5%

Table 7: Manual evaluation of the Text2Picto translation engine

errors) and finds the appropriate correction for 83.3% of
these words, while the old system only manages to cor-
rect 35.6% of the detected words. 71.4% of the unretrieved
words in the new system are highly frequent real words.
Many of these real-word errors can be contributed to gram-
matical confusion, such as the difference between jou and
jouw (see section 4.3.). These errors lead us into the do-
main of grammar correction and are currently beyond the
scope of our work.
The old system corrects some words that should not have
been corrected in the first place. These erroneous correc-
tions mostly concern common greetings and proper names
that are not included in our list of first names and for which
a low-frequency variant is generated. These problems are
solved in the new system by the introduction of the small
greetings dictionary and the fact that low-frequency vari-
ants will not be proposed for an unknown name.
Comparing our system with other systems is difficult, as
they do not consider text written by users with ID (and most
tools focus on English text). De Clercq et al. (2013), who
created the first and only normalization tool for Dutch mi-
crotext, admit that words requiring different types of op-
erations are difficult for their system, while our approach
allows for multiple (phonetic) substitutions within a single
word. De Clercq et al. showed that their system is best
at resolving smaller words requiring only one or two in-
sertions, while especially phonetic problems turned out to
be an important obstacle for them. As our system is made
for users with ID, phonetic alternations are the core of the
variant generation process.

5.2. Extrinsic evaluation
We also manually evaluated the effects of the spelling cor-
rection system within the larger context of the Text-to-
Pictograph translation tool. The baseline, which uses the
old spelling corrector, is the system as described by Van-
deghinste et al. (2015). The new system implements the
spelling corrector as presented in this paper. We used the
same systematic and objective approach to manual evalua-
tion as Vandeghinste et al. (2015).
The evaluation set of 50 Dutch messages that have been
sent with the WAI-NOT email system consists of 84 sen-
tences (980 words). These were all translated into a se-
quence of Sclera or Beta pictographs using the Text-to-
Pictograph translation tool. 12

12Our gold standards are made available on request.

We have performed a manual annotation with one judge,
who removed untranslated words that were considered not
to contribute to the content. This allowed calculating the re-
call. For each of the translated words, she judged whether
the pictograph generated was the correct pictograph, in or-
der to calculate precision. Results are presented in Table 7.
As proper names occur frequently in e-mail messages, we
have calculated recall and F-score with and without proper
names, in the latter case removing all proper names from
the output. In the case where proper names are included,
they are not converted into pictographs. Precision remains
the same in both cases. In the WAI-NOT environment,
proper names occurring in the contact lists of the users are
converted into the pictures attached to these profiles, result-
ing in more personalized messages.

Figure 4: Example of a correct Text-to-Beta translation

An increase in precision and recall was obtained for both
the Beta and the Sclera condition. Examples of erro-
neous words that previously could not be translated into
pictographs are grapeg for grappig “funny”, ikhoop for ik
hoop “I hope” and heeeeel for heel “very”. Examples of
erroneous words that previously led to an erroneous pic-
tograph translation were wiekent for weekend “weekend”,
which was corrected into wieken “wings” (and translated
into a pictograph showing a bird’s wings, see Figure 1),
and moelijke for moeilijke “difficult”, which was corrected
into mogelijke “possible” (and translated into a pictograph
showing the verb “can”). The new spelling corrector has
managed to tackle these issues.

6. Conclusion and future work
We described the first version of an automated spelling cor-
rector for Dutch text written by people with ID. The sys-
tem can be extended to other languages, provided some cor-
rected data is available in order to infer new phonetic rules
for the variant generation step. Nevertheless, the current ap-
proach does not require massive amounts of training data.



The results show that the system already improves over the
baseline, but there is ample room for enhancement.
In the first place, the variant generation process is not yet
able to correct tokens in which both elements of phonetic
confusion and typographic errors are present. While these
are currently two completely unrelated steps within the
variant generation process, the ideal scenario would be to
find an efficient way to combine them without overgener-
ating. Additionally, phone lattices should be introduced in
order to go deeper than purely orthographic variation pat-
terns.
For the fuzzy matching step, we will add more and/or dif-
ferent corpora to the corpus and evaluate their influence
on the system’s performance. These corpora should be ex-
empt from spelling errors and share as many characteristics
with informal text or oral conversations as possible. The
corpora should contain plenty of first-person and second-
person forms.
Finally, we should consider performing a grammar check
during the spelling correction process in order to detect
real-word errors that are left out of the variant generation
process because of their high frequency.
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