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Abstract Line and plane searches are used as accelerators and globalization strate-
gies in many optimization algorithms. We introduce a class of optimization problems
called tensor optimization, which comprises applications ranging from tensor decom-
positions to least squares support tensormachines.Wedevelop algorithms to efficiently
compute the global minimizers of their line and plane search subproblems. Further-
more, we introduce scaled line and plane search, which compute an optimal scaling of
the solution simultaneously with the optimal line or plane search step, and show that
this scaling can be computed at almost no additional cost. Obtaining the global mini-
mizers of (scaled) line and plane search problems often requires solving a bivariate or
polyanalytic polynomial system. We show how to compute the isolated real solutions
of bivariate polynomial systems and the isolated complex solutions of polyanalytic
polynomial systems using a single generalized eigenvalue decomposition. Finally,
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we apply block term decompositions to the problem of blind multi-user detection-
estimation in DS-CDMA communication to demonstrate that exact line and plane
search can significantly reduce computation time of the workhorse tensor decompo-
sition algorithm alternating least squares.

Keywords Exact line search · Exact plane search · Tensor decomposition ·
Tensor optimization · Bivariate polynomial system

1 Introduction

Line and plane search algorithms are an integral component of many optimization
algorithms, both for accelerating and guaranteeing convergence to an optimum. In
this paper, we develop several types of exact line and plane search algorithms for a
broad class of optimization problems, dubbed tensor optimization problems, in which
the residual function is a polynomial tensor. In fact, these search algorithms may just
as well be applied to the more general class of polynomial optimization problems, in
which the objective function and constraints are (possibly polyanalytic) polynomials.
However, we restrict our discussion to tensor optimization, which is interesting in and
of itself and comprises applications ranging from tensor decompositions [10,33] to
data fusion [2] and least squares support tensormachines [55]. Line and plane searches
can often significantly reduce the length of so-called swamps [4,31,43,46], in which
the optimization algorithm’s convergence almost slows down to a halt.

The line and plane searches we develop are not limited to tasks which can be
formulated as tensor optimization problems. In general, any nonlinear least squares
problem can benefit from exact line or plane search by using a higher-order Taylor
series expansion as an approximation of its residual function, effectively turning the
nonlinear least squares problem into a tensor optimization problem.

Furthermore, we propose a variant of these search problems called scaled line and
plane search which allows for an optimal scaling of the solution while simultaneously
minimizing the objective function along a line or on a plane of search directions.
Remarkably, we will see that for tensor optimization problems with a homogeneous
residual function, the optimal scaling parameter can be obtained for almost no addi-
tional cost compared to a regular line or plane search.

Finally, we show that tensor optimization line and plane search subproblems are tan-
tamount to solving a bivariate or polyanalytic polynomial system and present amethod
to compute the isolated solutions of bivariate and polyanalytic polynomial systems
using a single generalized eigenvalue decomposition. In our numerical experiments,
we compare a total of six line and plane search algorithms to accelerate complex ten-
sor decomposition algorithms for blind detection-estimation of multi-user DS-CDMA
communication using structured rank-(Lr , Lr , 1) block term decompositions [19,42].
The search algorithms are able to reduce the CPU time of the baseline algorithm, alter-
nating least squares, by between 50 and 75 %.

The paper is organized as follows. In the next subsection we review our notation
and introduce some basic definitions. Section 2 introduces tensor optimization and
how it can be used to compute various tensor decompositions. In Sect. 3 we define
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the tensor optimization (scaled) line and plane search subproblems, explain what type
of objective functions they correspond to and show that in the case of a scaled line or
plane search, the scaling parameter can be obtained at little additional cost. In Sect. 4
we present a method to compute the isolated real solutions of bivariate polynomial
systems and isolated complex solutions of polyanalytic polynomial systems using a
single generalized eigenvalue decomposition. In Sect. 5 we evaluate the performance
of the proposed search algorithms with Monte Carlo simulations in which we blindly
separate and equalize multi-user DS-CDMA signals using structured rank-(Lr , Lr , 1)
block term decompositions. We conclude the paper in Sect. 6.

1.1 Notation and preliminaries

A tensor is an element of a tensor product of vector spaces. In this article, we refer to
a tensor represented as a multidimensional array, given a choice of bases for each of
these vector spaces. The order, or the number of modes, of a tensor is the number of
indices associated with each element of that tensor. Vectors are denoted by boldface
letters and are lower case, e.g., a. Matrices are usually denoted by capital letters, e.g.,
A. Higher-order tensors are denoted by Euler script letters, e.g.,A . An entry of a vec-
tor a, matrix A or tensor A is denoted by ai , ai j or ai jk..., depending on the number
of modes. A colon is used to select all entries of a mode. For instance, a: j corresponds
to the j th column of a matrix A. When there is no confusion, we also use a j to denote
the j th column of the matrix A. Sequences are denoted by a superscript in paren-
theses, e.g., {A(n)}Nn=1. The superscripts ·T, ·H, ·−1 and ·† are used for the transpose,
Hermitian conjugate, matrix inverse and Moore–Penrose pseudoinverse, respectively.
The identity matrix of order n is denoted by In and the complex conjugate is denoted
by an overbar, e.g., a is the complex conjugate of the scalar a. We use parentheses to
denote the concatenation of two or more vectors, e.g., (a, b) is equivalent to

[
aT bT

]T.
The vec(·) operator represents the column-wise vectorization of matrices and ten-

sors. LetT ∈ C
I1×···×IN andU ∈ C

J1×···×JN be two N th-order tensors. In a mode-n
matricization T(n) ∈ C

In×I1···In−1 In+1···IN of the tensor T , tensor element with indices
(i1, . . . , iN ) is mapped to matrix element (in, j) such that

j = 1 +
N∑

k=1
k �=n

(ik − 1)Jk with Jk =
k−1∏

m=0
m �=n

Im ,

wherein we define I0 := 1. The inner product of T and U (assuming In ≡ Jn) is
defined as 〈T ,U 〉 = ∑I1

i1=1 · · · ∑IN
iN=1 t i1···iN ui1···iN . The Frobenius norm is then

given by ‖T ‖F = √〈T ,T 〉. The outer product T ◦ U is the tensor defined by
(T ◦ U )i1···iP j1··· jQ = ti1···iP u j1··· jQ . The mode-n product T •n A of the tensor T
with a matrix A ∈ C

J×In is the tensor defined by (T •n A)(n) = A · T(n).
We will associate a coefficient vector p ∈ C

dp+1 and coefficient matrices Q ∈
C

(d(y)
q +1)×(d(x)

q +1) and R ∈ C
(d(z)

r +1)×(d(z)
r +1) with polynomials p(z), bivariate poly-

nomials q(x, y) and polyanalytic polynomials r(z, z), defined by
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p(z) := [
1 z · · · zdp ] p,

q(x, y) :=
[
1 y · · · yd(y)

q

]
Q

[
1 x · · · xd(x)

q

]T
and

r(z, z) :=
[
1 z · · · zd(z)

r

]
R

[
1 z · · · zd(z)

r

]T
,

respectively. The term polyanalytic refers to the fact that the function is not analytic
in its argument z, but is analytic when viewed as a function of its argument z and
its complex conjugate z as a whole [52]. Here, pdp+1 �= 0 and maxi |qi,d(x)

q +1
| ·

max j |qd(y)
q +1, j

| �= 0, so that dp is the degree of p(z) and q
d(x)
q

and q
d(y)
q

are the

coordinate degrees of Q. An analogous condition holds for R, so that d(z)
r and d(z)

r are
its coordinate degrees. The total degree of the polynomial q(x, y) (r(z, z)) is defined
as the largest value i + j for which qi+1, j+1 �= 0 (ri+1, j+1 �= 0).

2 Tensor optimization

Tensor optimization is a special case of the more general class of polynomial opti-
mization, in which the objective function and constraints are polynomials. Let T
be a given tensor in C

I1×···×IN and let M (z) : CK → C
I1×···×IN be a polynomial

tensor-valued function. A polynomial tensor is a tensor whose elements are (possi-
bly polyanalytic) multivariate polynomials. The degree dM of a polynomial tensor
M (z) is the maximum total degree of its elements. If each element’s total degree is
equal to dM ,M is called homogeneous. Unconstrained tensor optimization problems
considered here are nonlinear least squares problems with a polynomial tensor-valued
residual function F of the form

minimize
z ∈CK

1

2
‖F (z)‖2F, where F (z) := M (z) − T . (TO)

Among others, this model comprises the canonical polyadic decomposition (CPD)
[8,31], low multilinear rank approximation or Tucker approximation (LMLRA) [33,
56,61], block term decompositions (BTD) [14,15,20], data fusion as coupled matrix
and tensor factorizations (CMTF) [2] and least squares support tensor machines (LS-
STM) [55]. Due to the inner product, the objective function in (TO) is polyanalytic in
z, meaning it is function of both z and z and its Taylor series in z and z is convergent for
every point on its domain. More specifically, the objective function is a polyanalytic
polynomial of total degree 2dM in K complex variables.

For instance, the CPD approximates a tensor by a sum of R rank-one tensors. Let
A(n) ∈ C

In×R , n = 1, . . . , N , consist of nonzero columns, then

T ≈ MCPD(z) :=
R∑

r=1

a(1)
r ◦ · · · ◦ a(N )

r (CPD)

is a CPD of T in R rank-one tensors. The model MCPD has degree N and its argu-
ment z ∈ C

∑
In R concatenates the factor matrices as (vec(A(1)), . . . , vec(A(N ))). In
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Fig. 1 A LMLRA of a
third-order tensor

T
≈ S

U (1)
U (2)

U(3)

principle, the decomposition is only called canonical if it is exact and R is minimal.
However, in the approximation sense the term can be interpreted to mean that R is the
smallest integer forwhich the decomposition approximates the tensor sufficientlywell.

To a large extent, the practical importance of the CPD stems from the fact that
it is unique under relatively mild conditions. A CPD is called (essentially) unique
when it is subject only to a permutation and scaling ambiguity. It is clear that one can
arbitrarily permute the different rank-one terms. Also, the vectors in a single rank-one
term may be arbitrarily scaled, as long as their product remains the same. The most
well-known sufficient condition for uniqueness is due to Kruskal [34,35] and more
recent results on uniqueness can be found in [24,25]. This striking property has been
exploited in a wide range of applications in signal processing [10], including blind
source separation [11,12,17], blind multi-user detection-estimation in DS-CDMA
communication [1,51], multiple-invariance sensor array processing [49], 3D radar
clutter modeling and mitigation [44] and multi-dimensional harmonic retrieval [49].

One could also consider isolating the r th rank-one tensor’s norm in the real scalar
λr and constraining the vectors a

(n)
r to have unit norm, leading to the modified model

MmCPD :=
R∑

r=1

λr · a(1)
r ◦ · · · ◦ a(N )

r (mCPD)

of degree N + 1. This form of the CPD is useful in the context of CMTF, as we will
see later. Although the scaling ambiguity is largely resolved in the modified model, it
is still subject to a phase ambiguity if the decomposition is complex.

In a LMLRA, a tensor is approximated by a tensor of low multilinear rank (cf.
Fig. 1). Let S ∈ C

R1×···×RN and let U (n) ∈ C
In×Rn , n = 1, . . . , N , then

T ≈ MLMLRA(z) := S •1 U
(1)

•2 · · · •N U (N ) (LMRLA)

is a rank-(R1, . . . , RN ) LMLRA of T . The modelMLMLRA(z) now has degree N +
1 and its argument z ∈ C

∏
Rn+∑

In Rn concatenates the core tensor S and factor
matrices U (n) as (vec(S ), vec(U (1)), . . . , vec(U (N ))). The LMLRA offers a way to
generalize subspace problems in signal processing tomulti-way data,with applications
in dimensionality reduction [21], feature extraction and classification [30,38,57] and
noise reduction [32].

Theblock termdecompositions frameworkunifies theCPDandLMLRAbyapprox-
imating tensors with a sum of low multilinear rank terms. Of particular interest is the
rank-(Lr , Lr , 1)BTD,which approximates a tensor by a sumof outer products of rank-
Lr matrices and nonzero vectors (cf. Fig. 2). The rank-(Lr , Lr , 1) BTD combines the
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Fig. 2 A rank-(Lr , Lr , 1) BTD
of a third-order tensor

T
≈

A1

B1

c1

+ · · · +
AR

BR

cR

Y X
Z

Fig. 3 Coupled data sets of different orders. The tensor X has modes restaurant × meal × customer
and contains ratings assigned by a customer to a meal at a certain restaurant. The matrix Y has modes
restaurant × category, is coupled along the first mode with X and contains information about the type of
restaurant. The matrix Z has modes customer × customer, is coupled along the third mode with X and
contains social network information between customers

mild conditions for uniqueness of the CPD [15,16] with the more general low-rank
structure of a LMLRA to form a promising new candidate for blind source separation
[16,18,19,42,43,49–51]. Let Ar ∈ C

I1×Lr and Br ∈ C
I2×Lr , r = 1, . . . , R, have

rank Lr and let C ∈ C
I3×R consist of nonzero columns, then

T ≈ MBTD(z) :=
R∑

r=1

(
Ar · BT

r

) ◦ cr (BTD)

is a rank-(Lr , Lr , 1) BTD of the third-order tensor T . The model MBTD has degree
three and its argument z ∈ C

(I1+I2)
∑

Lr+I3R concatenates the factor matrices as
(vec(A1), . . . , vec(AR), vec(B1), . . . , vec(BR), vec(C)).

The CPD, LMLRA and rank-(Lr , Lr , 1)BTD are all examples of multilinear poly-
nomial tensors. A function is said to be multilinear in its argument z if for all i it is
linear in zi when the remaining variables z j ( j �= i) are fixed. However, this property
can be lost by imposing symmetry. For example, INDSCAL [8] is a special case of the
CPD for third-order tensors in which A(1) ≡ A(2). Its model is a polynomial tensor,
but is no longer multilinear.

In CMTF, the objective is tominimize a weighted sum of tensor optimization objec-
tive functions

∑
k λk‖Fk(z)‖2F, wherein Fk are coupled polynomial tensor-valued

residual functions. Data fusion in the form of CMTF is readily cast as a tensor opti-
mization problem by vectorizing and concatenating the residual functions Fk into a
single polynomial tensor-valued residual function as

FCMTF(z) :=
(√

λ1 vec(F1(z)), . . . ,
√

λK vec(FK (z))
)
.

The polynomial tensor-valued function FCMTF can then be separated into a model
MCMTF(z) and a constant T as in (TO). The degree of the model MCMTF is then
equal to the maximum degree of its constituent models.

Consider for example the coupled dataset shown in Fig. 3. One way to jointly
analyze this dataset would be to compute a CMTF consisting of three modified CPD
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models (mCPD) as follows. If the tensorX is decomposed using the factor matrices
A(1), A(2), A(3) and scaling vector λ, the matrices Y and Z can be coupled with
X by decomposing them using the modified CPD models B · diag(μ) · A(1)T and
A(3) · diag(ν) ·CT, respectively. The absolute values of the scaling vectors λ, μ and ν

give an indication of how strongly certain factors are shared between the two matrices
and the tensor. Note that although we have treated the three scaling vectors separately
from the factor matrices, they may equally well be interpreted as factor matrices of
canonical polyadic decompositions of tensors of one order higher than shown in Fig. 3.
More specifically, λ, μ and ν are the factor matrices corresponding to the singleton
dimension following the last nonsingleton dimension ofX , Y and Z , respectively.

3 Exact line and plane search

In optimization, two-dimensional subspace minimization is a prevalent subproblem
in trust region globalization strategies. Given a vector-valued residual function F , a
current iterate zk and two search directions Δz1 and Δz2, the objective is to minimize
‖F(z)‖ in the plane spanned by the two search directions, subject to a norm constraint
on the step. The corresponding optimization problem

minimize
α, β ∈R

1

2
‖F(zk + αΔz1 + βΔz2)‖2

subject to ‖αΔz1 + βΔz2‖2 ≤ δ2

is often simplified using a linear approximation of F around zk in order to make the
problem tractable. The resulting Gauss–Newton two-dimensional subspaceminimiza-
tion problem [7]

minimize
α, β ∈R

1

2

∥∥
∥∥F(zk) + dF

d z
(zk) · (αΔz1 + βΔz2)

∥∥
∥∥

2

subject to ‖αΔz1 + βΔz2‖2 ≤ δ2

is equivalent to solving a bivariate polynomial systemwith polynomials of total degree
two. Instead of a linear approximation, one could consider using a second-, third- or
higher-order Taylor series approximation of F . In that case, the approximation is a
polynomial tensor, and we will see that the two-dimensional subspace minimization
problem still leads to a bivariate polynomial system, but where one of the two poly-
nomials now has a total degree higher than two.

From here on,F is assumed to be a polynomial tensor (approximation of a residual
function). Given a current iterate zk and two descent directionsΔz1 andΔz2, we refer
to the following tensor optimization subproblems

minimize
α

1

2
‖F (zk + αΔz1)‖2F (LS)
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minimize
α, γ

1

2
‖F (γ zk + αΔz1)‖2F (SLS)

minimize
α, β

1

2
‖F (zk + αΔz1 + βΔz2)‖2F (PS)

minimize
α, β, γ

1

2
‖F (γ zk + αΔz1 + βΔz2)‖2F (SPS)

as a line search (LS), scaled line search (SLS), plane search (PS) and scaled plane
search (SPS), respectively. We append R or C to the optimization problem’s acronym
to distinguish over which field the solution is sought, e.g., a real line search is denoted
by LS-R, while a complex scaled line search would be denoted by SLS-C.

Line and plane search problems play an important part in algorithms that solve
tensor optimization problems. Many optimization-based algorithms rely on either line
or plane searches [45] and other popular algorithms for tensor decompositions such as
alternating least squares have been combined with line searches to mitigate the effect
of so-called swamps [4,36,40,46]. In particular, LS-R and LS-C have received some
attention recently in the case of a CPD [9,43,46].

In signal processing, the recovery of data symbols transmitted through a distorting
medium is a fundamental problem. Assuming that zero-mean data symbols sn are
transmitted through a linear time-invariant time-dispersive channel of order M , the
channel output measured with an antenna array of length P can be modelled as

xn =
M∑

k=0

hksn−k + vn , (1)

where H = [
h0 · · · hM

] ∈ C
P×(M+1) contains the channel impulse responses for

each of the P antennas and vn ∈ C
P×1 is an additive noise term. The single-input

multiple-output (SIMO) model (1) reduces to the single-input single-output (SISO)
model for P = 1. The SIMO model can also be obtained by exploiting temporal
diversity (e.g., time oversampling) instead of spatial diversity (e.g., an antenna array),
and can easily be extended to the multiple-input (MIMO) case. To recover the data
symbols sn , a linear equalizer f ∈ C

PL with finite impulse response spanning L
measurements is used which produces the output symbols yn := f H x̃n , where x̃n :=
(xn, . . . , xn−L+1).Oneof themostwidespreadblind channel equalization principles is
the constantmodulus (CM) criterion [28], which looks for the filter f whichminimizes
a tensor optimization problem (TO) with a residual function FCM defined by

(FCM( f ))n := |yn|2 − 1.

Furthermore, it is not hard to show that the steepest ascent direction at the kth iterate
f k of the tensor optimization objective function is given by

gk := 2

(
dFCM

d f
( f k)

)H

· FCM( f k).
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Fig. 4 The LS-R objective function of the constant modulus problem along the steepest descent direction
−g0 at the iterate f 0 defined by the measurements x2, x1 and x0

The CM criterion often suffers from the existence of numerous local minima, usually
associated with different equalization delays, in the equalizer parameter space [22].
An exact line search may be useful to help reduce the chances of converging to an
undesired local minimum. By means of an example, we choose M = 1, P = 2
and L = 2 and consider the measurements x2 := (1 + i,−i), x1 := (1,−1) and
x0 := (1, 1−i) and an initial filter f 0 = (0.2413+0.1593i, 0.3496+0.0858i, 0.2875
+ 0.3305i, 0.5979 + 0.5929i). The line search objective function (LS) of the CM
tensor optimization problem along the steepest descent direction −g0 at f 0 is the
polynomial of degree four shown in Fig. 4. Whereas an approximate line search will
likely choose a suboptimal line search parameter α near 0.4, an exact line searchwould
find the global minimizer α∗ ≈ 12.6429. Previous work has shown that the optimal
line search parameter can be obtained by computing the roots of a polynomial of
degree three [60]. Viewed in the context of tensor optimization, scaled line searches
and even plane searches may also be applied efficiently to the problem of constant
modulus equalization.

Table 1 gives an overview of the type of objective function the different kinds of
search problems correspond to for the two most common choices of the solution field.
From the table, it is clear that LS-R and SLS-R are easy problems to solve since their
stationary points are just the roots of the derivative of their polynomial and rational
objective functions, respectively. Obtaining the global minimizer of the other four
search problems is less straightforward because their objective functions are either
bivariate or polyanalytic. Remarkably, the scaling parameter γ in SLS and SPS can be
obtained at almost no additional cost compared to LS and PS, assuming the objective
function is homogeneous and more expensive to compute than solving the underlying
polynomial system.

The following two subsections explain how to arrive at the type of objective function
given by Table 1. The last subsection describes how a norm constraint on the step can
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Table 1 The type of the
objective function each of the
search problems correspond to
for two choices of the solution
field

aAssuming M is homogeneous
b Not discussed in this article

Field R Field C

Problem LS Degree 2dM polynomial Coordinate degree dM
polyanalytic
polynomial

Problem SLSa Degree 2dM rational
function

Coordinate degree dM
polyanalytic rational
function

Problem PS Total degree 2dM
bivariate polynomial

—b

Problem SPSa Total degree 2dM
bivariate rational
function

—b

be imposed on PS-R, which generalizes two-dimensional subspaceminimization from
a linear approximation of the residual function to a polynomial tensor approximation
such as a higher-order Taylor series expansion. Section 4 then describes how to obtain
the global minimizers of (S)LS-C and (S)PS-R by recasting them as a generalized
eigenvalue problem.

3.1 (Scaled) line search

Since LS-R, LS-C and SLS-R are special cases of SLS-C, we first focus on SLS-C.
Separate F into a model M and a constant T as in (TO) and expand the objective
function in (SLS) as

1

2

(‖T ‖2F + ‖M (γ zk + αΔz1)‖2F − 〈T ,M (γ zk + αΔz1)〉
− 〈M (γ zk + αΔz1),T 〉).

Under the assumption that M is homogeneous1 with degree dM , we introduce a
change of variables c := γ dM and a := α/γ so the objective function can be written
as

f (a, a, c, c) := 1

2

(‖T ‖2F + |c|2q(a, a) − cp(a) − cp(a)
)
,

where p(a) := 〈T ,M (zk + aΔz1)〉 and q(a, a) := ‖M (zk + aΔz1)‖2F are two
univariate polynomials. In the case of a line search, c ≡ γ ≡ 1, a ≡ α and (LS) is
equivalent to

1 The homogeneity requirement, which is satisfied by most tensor decompositions, is only necessary for
scaled line and plane search.
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minimize
α ∈R

f (α) (LS-R)

minimize
α ∈C

f (α, α) (LS-C)

for LS-R and LS-C, respectively. In the case of a scaled line search, notice that f is
quadratic in c so that a global optimum (a∗, c∗) must satisfy c∗ = Re{p(a∗)}/q(a∗)
and c∗ = p(a∗)/q(a∗, a∗) for SLS-R and SLS-C, respectively. Substituting back in
f reveals that a∗ is the solution of

minimize
a ∈R

− Re{p(a)}2
q(a)

(SLS-R)

minimize
a ∈C

− |p(a)|2
q(a, a)

(SLS-C)

for SLS-R and SLS-C, respectively.

3.2 (Scaled) plane search

Analogously to scaled line search, expand the objective function in (SPS) as

1

2

(‖T ‖2F + ‖M (γ z + αΔz1 + βΔz2)‖2F
− 〈T ,M (γ z + αΔz1 + βΔz2)〉
− 〈M (γ z + αΔz1 + βΔz2),T 〉)

and assume thatM is homogeneouswith degree dM to introduce a change of variables
c := γ dM , a := α/γ and b := β/γ . For real α, β and γ , the objective function can
then be written as

f (a, b, c) := 1

2

(‖T ‖2F + c2q(a, b) − c(p(a, b) + p(a, b))
)
,

where p(a, b) := 〈T ,M (z + aΔz1 + bΔz2)〉 and q(a, b) := ‖M (z + aΔz1 +
bΔz2)‖2F are two bivariate polynomials. In the case of a plane search, c ≡ γ ≡ 1,
a ≡ α, b ≡ β and (PS) is equivalent to

minimize
α, β ∈R

f (α, β). (PS-R)

In the case of a scaled plane search, notice that f is quadratic in c so that a global
optimum (a∗, b∗, c∗) must satisfy c∗ = Re{p(a∗, b∗)}/q(a∗, b∗) . Substituting back
in f reveals that (a∗, b∗) is the solution of

minimize
a, b∈R

− Re{p(a, b)}2
q(a, b)

. (SPS-R)
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3.3 Higher-order two-dimensional subspace minimization

When F is a polynomial tensor approximation of a nonlinear tensor-valued residual
function F , it may be desirable to impose a norm constraint on the plane search step
to avoid the next iterate from straying too far from where F is considered to be an
accurate approximation of F . For example, F could be a higher-order Taylor series
expansion of F . Given a trust-region radius δ ∈ R

0+, the higher-order two-dimensional
subspace minimization problem is defined as

minimize
α, β ∈R

1

2
‖F (zk + αΔz1 + βΔz2)‖2F

subject to ‖αΔz1 + βΔz2‖2 ≤ δ2.

The case where the norm constraint is not active corresponds to solving PS-R. When
the norm constraint is active, it can be incorporated into the objective function using the
method of Lagrange multipliers. WriteF (z) asM (z)−T , let p(α, β) := 〈T ,M (z
+ αΔz1 + βΔz2)〉, q(α, β) := ‖M (z + αΔz1 + βΔz2)‖2F and r(α, β) := ‖αΔz1
+ βΔz2‖2 and introduce the Lagrange multiplier λ to obtain the Lagrangian

1

2

(‖T ‖2F + q(α, β) − p(α, β) − p(α, β)) + λ

2
(r(α, β) − δ2

)
.

Let s(α, β) := q(α, β) − 2Re{p(α, β)}. Setting the Lagrangian’s gradient equal to
zero and eliminating λ, it follows that the global minimizer (α∗, β∗) is a solution of
the bivariate polynomial system

{
∂r(α,β)

∂α
∂s(α,β)

∂β
− ∂r(α,β)

∂β
∂s(α,β)

∂α
= 0

r(α, β) − δ2 = 0
(2)

in which the polynomials are of total degree 2dM and 2, respectively.

4 Solving systems of bivariate and polyanalytic polynomials

The two search problems LS-R and SLS-R are easily solved by computing the roots of
their objective function’s derivative, which is simply a univariate polynomial. On the
other hand, the four search problems (S)LS-C and (S)PS-R give rise to polyanalytic
and bivariate polynomial systems, respectively (cf. Table 1). For example, the LS-C
objective function is a polyanalytic polynomial f (α, α) of coordinate degree dM and
its stationary points are the solutions of the polyanalytic polynomial system

∂ f (α, α)

∂α
= ∂ f (α, α)

∂α
= 0,

where ∂
∂α

( ∂
∂α
) is a Wirtinger derivative and acts as partial derivative with respect to α

(α), while treating α (α) as constant [52]. The PS-R objective function is a bivariate
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polynomial f (α, β) of total degree 2dM and its stationary points are the solutions of
the bivariate polynomial system

∂ f (α, β)

∂α
= ∂ f (α, β)

∂β
= 0.

Of the many techniques to solve systems of polynomials [5,27,37,41,45,58], we
will focus on resultant-based methods [26], which originate from algebraic geometry
and are used to eliminate variables from systems of equations. The Sylvester resul-
tant is perhaps the most well-known resultant formulation for systems of bivariate
polynomials. Typically, the technique is used to eliminate one variable, say y, from
a bivariate polynomial system f (x, y) = g(x, y) = 0, leaving us with a so-called
resultant polynomial r(x). If (x∗, y∗) is a root of the system f (x, y) = g(x, y) = 0,
then x∗ is also a root of the resultant r(x).

At least two approaches can be applied to recover the corresponding y-coordinates.
The first is to eliminate both x and y separately to obtain two resultants r(x) and s(y)
[3,23,48]. Let x∗ and y∗ be roots of r(x) and s(y), respectively. For each such pair
(x∗, y∗), the task is then to determine whether or not that pair constitutes a root of the
system f (x, y) = g(x, y) = 0. The second approach is often more efficient but also
less robust. The roots of the resultant r(x) are computed as the solution of an eigenvalue
problem, and then these roots are lifted to obtain the corresponding y-coordinates by
solving an additional smaller eigen-problem for each x-coordinate [6,13,39]. How-
ever, the lifting step requires estimating the root’s multiplicity. Furthermore, for both
approaches, some real roots may have a small imaginary part due to numerical round-
ing errors. Detecting which roots are real and removing candidate roots which are not
roots of the system f (x, y) = g(x, y) = 0 are the twomost delicate steps in numerical
algorithms for solving polynomial systems based on resultants.

However, we shall see that it is possible to compute the real (x∗, y∗) roots of
the system f (x, y) = g(x, y) = 0 simultaneously as the solution of a single eigen-
problem [53]. In fact, the samemethod can be applied to solve systems of polyanalytic
polynomials f (z, z) = g(z, z) = 0. The key is that Sylvester’s resultant can also be
used to eliminate a complex variable from a polyanalytic polynomial system, as shown
by the following lemma.

Lemma 1 Let f (z, z) and g(z, z) be two nonconstant polyanalytic polynomials. If
f (z, z) and g(z, z) have a common zero z∗, then there are nonzero polynomials s(z)
and t (z) satisfying

f (z∗, z)s(z) + g(z∗, z)t (z) ≡ 0, (3)

where ds < d(z)
g and dt < d(z)

f .

Proof Write f (z, z) and g(z, z) as

f (z, z) =
d(z)
f∑

i=0

fi (z)z
i and g(z, z) =

d(z)
g∑

i=0

gi (z)z
i
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where fi (x) (gi (x)) is the polynomial in x associated with the coefficient vector f i+1,:
(gi+1,:). Since f (z∗, z∗) = g(z∗, z∗) = 0, f (z∗, z) and g(z∗, z) will have a common

factor k(z) := (z − z∗)n for some positive integer n. We have that f (z∗,z)
k(z) g(z∗, z) =

g(z∗,z)
k(z) f (z∗, z). Set s(z) := g(z∗, z)/k(z) and t (z) := − f (z∗, z)/k(z) . ��

In other words, if z∗ is a common root of f (z, z) = g(z, z) = 0, then once f and g
are partially evaluated in z∗, there exist nonzero polynomials s(z) and t (z) such that
the polynomial f (z∗, z)s(z) + g(z∗, z)t (z) is identically zero. Equation (3) can be
rewritten as a set of linear equations in terms of the coefficient vectors s and t as

S f,g(z∗) ·
[
s
t

]
= 0, (4)

where the Sylvester matrix S f,g(z) is a polynomial matrix defined as

(5)

The Sylvester matrix is singular when evaluated at a common root z∗. It follows that
by Lemma 1, the resultant res f,g(z) := det(S f,g(z)) vanishes when z is a root of the
system f (z, z) = g(z, z) = 0. Hence, the roots of a polyanalytic polynomial system
can be recovered as (a subset of) the roots of its resultant. Exploiting this fact, both
coordinates of the real roots of a bivariate polynomial system f (x, y) = g(x, y) = 0
can now be obtained by encoding the variables x and y in the complex variables z and
z using the transformation

(x, y) = 1

2

[
1 1
−i i

]
· (z, z). (6)

It is well known that a polynomial’s roots can be very sensitive to small changes
in the polynomial’s coefficients [59]. For this reason, explicitly building the resultant
res f,g(z) as the determinant of the polynomial matrix S f,g(z) [47] and then computing
its roots should be avoided. Instead, the roots can be recovered directly by noticing
that (4) is a polynomial eigenvalue problem (PEP) with matrix pencil

S(0) + S(1)z + · · · + S(d)zd , (7)
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where S(i) ∈ C
n×n for i = 0, . . . , d, n := d(z)

f + d(z)
g and d := max(d(z)

f , d(z)
g ). The

PEP (4) can be solved by linearizing it into a generalized eigenvalue problem (GEP) of
the form (A− z∗B) · y = 0. The matrices A and B are chosen so that A− z∗B has the
same spectrum as (7). For example, one such linearization is the second companion
form [29], defined by

A :=

⎡

⎢⎢⎢
⎣

−S(d−1)
In

...
. . .

−S(1)
In

−S(0)

⎤

⎥⎥⎥
⎦

and (8a)

B :=

⎡

⎢⎢
⎢
⎣

S(d)

In
. . .

In

⎤

⎥⎥
⎥
⎦
. (8b)

To further improve the accuracy of the computed eigenvalues, the system f (z, z) =
g(z, z) = 0 and its associated pencil A − z∗B can be balanced and the eigenvalues
iteratively refined and filtered by a complex Newton–Raphson algorithm. For details,
we refer the interested reader to the companion paper [53].

In summary, the polyanalytic polynomial systems arising in (S)LS-C can be solv-
ed efficiently by building the pencil (8) associated with the polyanalytic polynomial
system and then computing its eigenvalues. For bivariate polynomial systems such as
those arising in (S)PS-R, the bivariate system can first be transformed into a polyana-
lytic polynomial system using (6), after which its roots can be recovered as the real and
imaginary parts of the eigenvalues of the associated pencil. Since we are interested in
global minimizers of (S)LS-C or (S)PS-R, we have only to evaluate the correspond-
ing objective function for each of the eigenvalues to see which one corresponds to a
global optimizer. Consequently, any spurious roots introduced by the resultant are of
no concern, as they will simply evaluate to a poor objective function value.

We conclude this section by discussing the complexity of line and plane searches
for CPD of an N -th order order tensor. To solve the LS-R subproblem, the roots
of a univariate polynomial must be computed. This can be done by computing the
eigenvalues of the polynomial’s companion matrix. The degree of the polynomial to
be minimized is 2N , and so we need to compute the roots of its derivative (which
has degree 2N − 1). So, the computational complexity of solving LS-R is equal to
the cost of computing the roots of a polynomial of degree 2N − 1 as the eigenvalues
of its companion matrix. This is O((2N − 1)3). Solving the GEP is the largest cost
of solving the line and plane search subproblems, and so their cost can be described
as O((2d2)3), where d is the total degree of the to be rooted bivariate polynomials.
For example, from Table 1, we see that for PS-R d = 2N , and so the cost of PS-R
is O(8N 6), which is much more expensive than LS-R, which is only O(8N 3). On
the other hand, N is “small”, and plane search computes better steps than line search.
But in the end, both LS-R and PS-R give about the same speedup in cputime (see
Sect. 5).
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5 Numerical experiments

The following numerical experiments investigate the benefit of combining tensor opti-
mization algorithms with exact line and plane search in the context of blind separation
and equalization of convolutive DS-CDMA mixtures received by an antenna array
after multipath propagation. Similarly to [42,43], we assume that the signal of the r th
user is subject to intersymbol interference (ISI) over L consecutive symbols and that
this signal arrives at the antenna array via P specular paths.

Let I be the CDMA spreading code length and letH (r) ∈ C
I×L×P , r = 1, . . . , R,

contain the convolution of the r th user’s spreading codewith the corresponding channel
for each of the P specular paths. Furthermore, let S(r) ∈ C

J×L , r = 1, . . . , R, be a
Toeplitzmatrix containing the J transmittedQPSK symbols of the r th user (alongwith
L − 1 interfering symbols) and let A(r) ∈ C

K×P , r = 1, . . . , R, contain the response
of the K antennas according to the angles of arrival of the P paths. The convolutive
model [42] for the observed tensor Y ∈ C

I×J×K is then a rank-(L , L , P) BTD of
the form

Y =
R∑

r=1

P∑

p=1

(
H (r)::p · S(r)T) ◦ a(r)

p , (9)

which can also be interpreted as a structured CPD or rank-(L , L , 1) BTD.
In our experiments,we use pseudorandom spreading codes of length I = 32, frames

of J = 64 QPSK symbols, K = 8 antennas, L = 4 interfering symbols, P = 2 major
paths per user and R = 16 users. The signal-to-noise ratio (SNR) at the receiver
is defined as 10 log10(‖Y ‖2F/‖N ‖2F ), where Y is the complex-valued noise-free
tensor of observations and N is complex-valued zero-mean white Gaussian noise.
We measure the bit error rate (BER) and the speedup in terms of iterations and CPU
time compared to a baseline algorithm with two Monte Carlo experiments consisting
of 500 runs for each SNR level. In the first experiment, we set the condition number
of the antenna matrix A := [

A(1) · · · A(R)
]
equal to κ(A) = 1 and in the second, we

choose κ(A) = 10.
For each run, we generate the observations Y according to (9) and generate a

noise tensor N . We choose the structured alternating least squares (ALS) algorithm
implemented in Tensorlab [54] as the baseline algorithm to decompose the noisy
tensorY +N as a structuredCPD.The algorithmalternatingly computes least squares
updates for the channel tensorsH (r), the users’ symbols in S(r) and the antennamatrix
A and is in this respect similar to the ALS algorithm described in [20,42]. We also
decompose the tensor using ALS combined with the (S)LS-R, (S)LS-C and (S)PS-R
search algorithms, which are applied every four iterations. In our experience, applying
the search algorithms once every few iterations give the parent optimization algorithm
some breathing room for the iterates to stray away from valley floors in the objective
function. This allows for similar or even better gains in the number of iterations,
compared to executing the search algorithm every iteration, for a fraction of the cost.

Let z(k) be the kth iterate of the ALS algorithm. For line searches, we choose to
search along the line Δz1 := zk − zk−1 and for plane searches we add a second
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Fig. 5 Mean BER as a function of the SNR of the observed tensor and the condition number of the antenna
matrix A

directionΔz2 := zk−1 − zk−2. We refer to these two search directions as linear search
directions. The bivariate systems arising in (scaled) complex line search and real plane
search are solved using the generalized eigenvalue method described in the previous
section.All aforementioned line and plane search algorithmswere implemented as part
of Tensorlab. We measure the iteration and CPU time speedup as the mean number of
iterations and CPU time required by ALS, relative to that required by ALSwith search
algorithm, respectively. The algorithms are stopped if the maximum of 1000 iterations
has been reached or if the norm of the step relative to the norm of the current iterate
is smaller than 10−3. All experiments were performed in MATLAB 8.1 (R2013a) on
two hexacore Intel Xeon E5645 CPUs with 48GB RAM.

Figure 5 shows the mean BER of the two Monte Carlo experiments as a function
of the SNR of the observed tensor. Increasing the condition number of the antenna
matrix has an adverse effect on the BER, and combining ALS with a search algorithm
does not deteriorate nor improve the BER.

In Fig. 6a and b, we see the mean iteration and CPU time speedup compared to
ALS, respectively, for the case κ(A) = 1. Both line and plane searches offer a good
speedup of the number of iterations and CPU time, relative to the baseline algorithm
ALS. Compared to LS-R, LS-C and PS-R, the scaled searches SLS-R, SLS-C and
SPS-R offer only a small increase in iteration speedup. For real and complex line
search, their scaled counterparts also translate into slightly faster CPU times. How-
ever, the improvement is almost negligible, and in the case of real scaled plane search
even negative due to the additional overhead of solving a higher degree polynomial
system than that of a real plane search. There also does not seem to be much dif-
ference in performance between real and complex line searches. These observations
suggest that the linear search directions are already well scaled in magnitude and
phase and that ALS mainly benefits from increasing the dimension of the search
space.
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Fig. 6 Mean iteration and CPU time speedup compared to ALS as a function of the SNR of the observed
tensor. The condition number of the antenna matrix is κ(A) = 1. Both line and plane searches use linear
search directions. ALS( ), ALS+LS-R( ), ALS+SLS-R( ), ALS+LS-C( ), ALS+SLS-
C( ), ALS+PS-R( ), ALS+SPS-R( )
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Fig. 7 Mean iteration and CPU time speedup compared to ALS as a function of the SNR of the observed
tensor. The condition number of the antenna matrix is κ(A) = 10. Both line and plane searches use linear
search directions. ALS( ), ALS+LS-R( ), ALS+SLS-R( ), ALS+LS-C( ), ALS+SLS-
C( ), ALS+PS-R( ), ALS+SPS-R( )

Figure 7a and b show the speedups for the case κ(A) = 10, which is expected to
be more difficult than the previous situation as the terms in the decomposition tend to
be more similar, and hence more difficult to separate, as the condition number of the
antenna matrix increases. The search algorithms are now able to reduce the CPU time
by about 60%. The speedup now seems to depend less on the SNR of the observed
tensor.

For a final set of experiments, we define the search direction [9]

Δz1 := 2zk − 3zk−1 + zk−2 (10)

which is based on a quadratic extrapolation of the iterates zk , assuming they are
spaced equally apart. Figures 8 and 9 show the results of repeating the previous two
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Fig. 8 Mean iteration and CPU time speedup compared to ALS as a function of the SNR of the observed
tensor. The condition number of the antenna matrix is κ(A) = 1. Line searches use the quadratically extrap-
olated direction (10), while plane searches use linear search directions. ALS( ), ALS+LS-R( ),
ALS+SLS-R( ), ALS+LS-C( ), ALS+SLS-C( ), ALS+PS-R( ), ALS+SPS-R( )
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Fig. 9 Mean iteration and CPU time speedup compared to ALS as a function of the SNR of the observed
tensor. The condition number of the antennamatrix is κ(A) = 10. Line searches use the quadratically extrap-
olated direction (10), while plane searches use linear search directions. ALS( ), ALS+LS-R( ),
ALS+SLS-R( ), ALS+LS-C( ), ALS+SLS-C( ), ALS+PS-R( ), ALS+SPS-R( )

experiments using the quadratically extrapolated search direction for the line searches.
It is immediately clear that line searches are able to obtain speedups close to those of
the plane searches by using the improved search direction. Evidently, the quality of
the search direction plays an important role in the improvement a line or plane search
method can offer.

6 Conclusion

We introduced tensor optimization as a generic framework for computing tensor
decompositions, least squares support tensor machines and jointly analysing multiple
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datasets. We showed that the global minimizers of their line and plane search subprob-
lems can be obtained by computing the roots of univariate polynomials or bivariate
polynomial systems. In nonlinear least squares problems, a linear approximation of the
residual function is typically used to solve the underlying two-dimensional subspace
minimization problem. We showed that one may instead use a higher-order Taylor
series expansion of the residual function and efficiently obtain its global minimizers
in the same way as for tensor optimization problems. Furthermore, we introduced
scaled line and plane searches which compute an additional scaling parameter for
little additional cost. Finally, we showed how to obtain the real solutions of a bivariate
polynomial system and the complex solutions of a polyanalytic polynomial system
by solving a single generalized eigenvalue problem. In the numerical experiments,
we applied a structured ALS algorithm in combination with (S)LS-R, (S)LS-C and
(S)PS-R to blind multi-user detection-estimation in DS-CDMA communication, in
which the exact line and plane searches were able to speed up the computational time
by up to a factor of 3. All algorithms were implemented in the MATLAB toolbox
Tensorlab [54] and are available online.
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