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COUPLED CANONICAL POLYADIC DECOMPOSITIONS AND
(COUPLED) DECOMPOSITIONS IN MULTILINEAR

RANK-(Lr,n, Lr,n, 1) TERMS—PART II: ALGORITHMS∗

MIKAEL SØRENSEN† , IGNAT DOMANOV†, AND LIEVEN DE LATHAUWER†

Abstract. The coupled canonical polyadic decomposition (CPD) is an emerging tool for the
joint analysis of multiple data sets in signal processing and statistics. Despite their importance,
linear algebra based algorithms for coupled CPDs have not yet been developed. In this paper, we
first explain how to obtain a coupled CPD from one of the individual CPDs. Next, we present
an algorithm that directly takes the coupling between several CPDs into account. We extend the
methods to single and coupled decompositions in multilinear rank-(Lr,n, Lr,n, 1) terms. Finally,
numerical experiments demonstrate that linear algebra based algorithms can provide good results at
a reasonable computational cost.

Key words. coupled decompositions, higher-order tensor, polyadic decomposition, parallel fac-
tor, canonical decomposition, canonical polyadic decomposition, coupled matrix-tensor factorization

AMS subject classifications. 15A22, 15A23, 15A69

DOI. 10.1137/140956865

1. Introduction. In recent years the coupled canonical polyadic decomposition
(CPD) and its variants have found many applications in science and engineering, rang-
ing from psychometrics, chemometrics, data mining, and bioinformatics to biomedical
engineering and signal processing. For an overview and references to concrete appli-
cations we refer the reader to [35, 33]. For a more general background on tensor
decompositions, we refer the reader to the review papers [22, 4, 6] and references
therein. It was demonstrated in [35] that improved uniqueness conditions can be
obtained by taking the coupling between several coupled CPDs into account. We
can expect that it is also advantageous to take the coupling between the tensors into
account in the actual computation.

There are two main approaches to computing a tensor decomposition, namely,
linear algebra (e.g., [24, 9, 14]) and optimization based methods (e.g., [37, 5, 30]). For
many exact coupled decomposition problems an explicit solution can be obtained by
means of linear algebra. However, in practice data are noisy, and consequently the
estimates are inexact. In many cases the explicit solution obtained by linear algebra
is still accurate enough. If not, then the explicit solution may be used to initialize
an optimization based method. On the other hand, optimization based methods for
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1016 M. SØRENSEN, I. DOMANOV, AND L. DE LATHAUWER

coupled decompositions may work well in the case of noisy data but are not formally
guaranteed to find the decomposition (i.e., the global optimum), even in the exact
case.

So far, mainly optimization based methods for computing the coupled CPD have
been proposed (e.g., [1, 32]). The goal of this paper is to develop algebraic methods
for computing coupled CPDs. In contrast to optimization based methods, algebraic
methods are under certain working conditions guaranteed to find the decomposition in
the exact case. We first explain how to compute a coupled CPD by first computing one
of the individual CPDs, and then handling the remaining ones as CPDs with a known
factor. Next, we present an algorithm that simultaneously takes the coupling between
the different CPDs into account. In signal processing polyadic decompositions (PDs)
may contain factor matrices with collinear columns, known as block term decomposi-
tions (BTDs) [10, 11, 12]. For a further motivation, see [35, 33] and references therein.
Consequently, we also extend the algebraic framework to single or coupled decompo-
sitions in multilinear rank-(Lr,n, Lr,n, 1) terms. This also leads to a new uniqueness
condition for single/coupled decompositions in multilinear rank-(Lr,n, Lr,n, 1) terms.

The paper is organized as follows. The rest of the introduction presents our no-
tation. Sections 2 and 3 briefly define the coupled CPD without and with a common
factor matrix with collinear components, respectively. Next, in section 4 we present
algorithms for computing the coupled CPD. Section 5 considers CPD models where
the common factor matrix contains collinear components. Numerical experiments are
reported in section 6. We end the paper with a conclusion in section 7. We also men-
tion that in the supplementary materials an efficient implementation of the iterative
alternating least squares (ALS) method for coupled decompositions is reported.

1.1. Notation. Vectors, matrices, and tensors are denoted by lowercase bold,
uppercase bold, and uppercase calligraphic letters, respectively. The rth column
vector of A is denoted by ar. The symbols ⊗ and " denote the Kronecker and
Khatri–Rao product, defined as

A⊗B :=




a11B a12B . . .
a21B a22B . . .
...

...
. . .



 , A"B :=
[
a1 ⊗ b1 a2 ⊗ b2 . . .

]
,

in which (A)mn = amn. The Hadamard product is given by (A ∗B)ij = aijbij .

The outer product of N vectors a(n) ∈ CIn is denoted by a(1) ◦ a(2) ◦ · · · ◦ a(N) ∈
CI1×I2×···×IN , such that

(
a(1) ◦ a(2) ◦ · · · ◦ a(N)

)

i1,i2,...,iN
= a(1)i1

a(2)i2
· · · a(N)

iN
.

The identity matrix, all-zero matrix, and all-zero vector are denoted by IM ∈ CM×M ,
0M,N ∈ CM×N , and 0M ∈ CM , respectively. The all-ones vector is denoted by
1R = [1, . . . , 1]T ∈ CR. Dirac’s delta function is defined as

δij =

{
1, i = j,

0, i &= j.

The cardinality of a set S is denoted by card (S).
The transpose, conjugate, conjugate-transpose, inverse, Moore–Penrose pseudo-

inverse, Frobenius norm, determinant, range, and kernel of a matrix are denoted by
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COUPLED TENSOR DECOMPOSITIONS 1017

(·)T , (·)∗, (·)H , (·)−1, (·)†, ‖ ·‖F , |·|, range (·), and ker (·), respectively. The orthogonal
sum of subspaces is denoted by ⊕.

MATLAB index notation will be used for submatrices of a given matrix. For
example, A(1 : k, :) represents the submatrix of A consisting of the rows from 1 to
k of A. Dk (A) ∈ CJ×J denotes the diagonal matrix holding row k of A ∈ CI×J

on its diagonal. Similarly, Diag(a) ∈ CI×I denotes the diagonal matrix holding the
elements of the vector a ∈ CI on its main diagonal. Given X ∈ CI1×I2×···×IN ,
Vec (X ) ∈ C

∏N
n=1 In denotes the column vector

Vec (X ) =
[
x1,...,1,1, x1,...,1,2, . . . , xI1,...,IN−1,IN

]T
.

The reverse operation is Unvec (Vec (X )) = X . Let A ∈ CI×I ; then Vecd (A) ∈ CI

denotes the column vector defined by (Vecd (A))i = (A)ii.
The matrix that orthogonally projects on the orthogonal complement of the col-

umn space of A ∈ CI×J is denoted by

PA = II − FFH ∈ CI×I ,

where the column vectors of F constitute an orthonormal basis for range (A).
The rank of a matrix A is denoted by r (A) or rA. The k-rank of a matrix A is

denoted by k (A). It is equal to the largest integer k (A) such that every subset of
k (A) columns of A is linearly independent. Let Ck

n = n!
k!(n−k)! denote the binomial

coefficient. The kth compound matrix of A ∈ Cm×n is denoted by Ck (A) ∈ CCk
m×Ck

n ,
and its entries correspond to the k-by-k minors of A ordered lexicographically. See
[20, 13] for a discussion of compound matrices.

2. Coupled canonical polyadic decomposition. We say that a ◦ b ◦ c ∈
CI×J×K is a rank-1 tensor if it is equal to the outer product of some nonzero vectors
a ∈ CI , b ∈ CJ , and c ∈ CK . The decomposition of a tensor X ∈ CI×J×K into
a minimal number of rank-1 tensors is called the canonical polyadic decomposition
(CPD). We say that a set of tensors a(n) ◦ b(n) ◦ c ∈ CIn×Jn×K , n ∈ {1, . . . , N}, is a
coupled rank-1 tensor if at least one of the involved tensors a(n) ◦ b(n) ◦ c is nonzero,
where “coupled” means that the set of tensors {a(n) ◦ b(n) ◦ c} share the third-mode
vector c. A decomposition of a set of tensors X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N}, into
a sum of coupled rank-1 tensors of the form

X (n) =
R∑

r=1

a(n)r ◦ b(n)
r ◦ cr, n ∈ {1, . . . , N},(2.1)

is called a coupled polyadic decomposition (PD). The factor matrices in the first and
second modes are

A(n) =
[
a(n)1 , . . . , a(n)

R

]
∈ CIn×R, n ∈ {1, . . . , N},

B(n) =
[
b(n)
1 , . . . ,b(n)

R

]
∈ CJn×R, n ∈ {1, . . . , N}.

The factor matrix in the third mode,

C =
[
c1, . . . , cR

]
∈ CK×R,

is common to all terms. Note that the columns ofC are nonzero, while columns ofA(n)

and B(n) can be zero. We define the coupled rank of {X (n)} as the minimal number
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1018 M. SØRENSEN, I. DOMANOV, AND L. DE LATHAUWER

of coupled rank-1 tensors a(n)
r ◦ b(n)

r ◦ cr that yield {X (n)} in a linear combination.
Since each third-mode vector is shared across a coupled rank-1 tensor, the coupled
CPD of {X (n)} leads to a different decomposition compared to ordinary CPDs of the
individual tensors in {X (n)}. If R in (2.1) equals the coupled rank of {X (n)}, then
(2.1) is called a coupled CPD. The coupled rank-1 tensors in (2.1) can be arbitrarily
permuted, and the vectors within the same coupled rank-1 tensor can be arbitrarily
scaled provided the overall coupled rank-1 term remains the same. We say that
the coupled CPD is unique when it is only subject to these trivial indeterminacies.
Uniqueness conditions for the coupled CPD have been derived in [35].

A special case of (2.1) is the coupled matrix-tensor factorization
{

X (1) =
∑R

r=1 a
(1)
r ◦ b(1)

r ◦ cr,
X(2) =

∑R
r=1 a

(2)
r ◦ cr.

(2.2)

2.1. Matrix representation. Let X(i··,n) ∈ CJn×K denote the matrix slice for

which (X(i··,n))jk = x(n)
ijk ; then X(i··,n) = B(n)Di(A

(n))CT and

CInJn×K * X(n)
(1) :=

[
X(1··,n)T , . . . ,X(In··,n)T

]T
=
(
A(n) "B(n)

)
CT .(2.3)

Similarly, let X(··k,n) ∈ CIn×Jn be such that (X(··k,n))ij = x(n)
ijk ; then X(··k,n) =

A(n)Dk (C)B(n)T and

CInK×Jn * X(n)
(3) :=

[
X(··1,n)T , . . . ,X(··K,n)T

]T
=
(
C"A(n)

)
B(n)T .(2.4)

By stacking expressions of the type (2.3), we obtain the following overall matrix
representation of the coupled PD of {X (n)}:

X =





X(1)
(1)
...

X(N)
(1)



 =




A(1) "B(1)

...
A(N) "B(N)



CT = FCT ∈ C(
∑N

n=1 InJn)×K ,(2.5)

where

F =




A(1) "B(1)

...
A(N) "B(N)



 ∈ C(
∑N

n=1 InJn)×R.(2.6)

3. Coupled BTD. We consider PDs of the following form:

X =
R∑

r=1

Lr∑

l=1

a(r)
l ◦ b

(r)
l ◦ c

(r) =
R∑

r=1

(
A(r)B(r)T

)
◦ c(r).(3.1)

Equation (3.1) can be seen as a PD with collinear columns c(r) in the third factor
matrix. We say that (ABT ) ◦ c is a multilinear rank-(L,L, 1) tensor if ABT has
rank L and c is a nonzero vector. If the matrices A(r)B(r)T in (3.1) have rank Lr,
then (3.1) corresponds to a decomposition into multilinear rank-(Lr, Lr, 1) terms [10].
Uniqueness conditions for the decomposition of X into multilinear rank-(Lr, Lr, 1)
terms can, for instance, be found in [10, 11, 27].
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COUPLED TENSOR DECOMPOSITIONS 1019

We say that a set of tensors (A(n)B(n)T ) ◦ c ∈ CIn×Jn×K , n ∈ {1, . . . , N}, is
a coupled multilinear rank-(Ln, Ln, 1) tensor if at least one of the involved tensors
(A(n)B(n)T )◦c is a multilinear rank-(Ln, Ln, 1) tensor, where again “coupled” means
that the set of tensors {(A(n)B(n)T )◦c} shares the third-mode vector c. In this paper
we consider a decomposition of a set of tensors X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N},
into a sum of coupled multilinear rank-(Lr,n, Lr,n, 1) tensors of the following form:

X (n) =
R∑

r=1

Lr,n∑

l=1

a(r,n)
l ◦ b(r,n)

l ◦ c(r) =
R∑

r=1

(
A(r,n)B(r,n)T

)
◦ c(r).(3.2)

We call the coupled multilinear rank-(Lr,n, Lr,n, 1) term decomposition (3.2) a coupled
block term decomposition (BTD) for brevity.

The coupled multilinear rank-(Lr,n, Lr,n, 1) tensors in (3.2) can be arbitrarily
permuted without changing the decomposition. The vectors or matrices within the
same coupled multilinear rank-(Lr,n, Lr,n, 1) tensor can also be arbitrarily scaled or
transformed, provided that the overall coupled multilinear rank-(Lr,n, Lr,n, 1) term

remains the same (e.g., (A(r,n)B(r,n)T ) ◦ c(r) = (2 ·A(r,n)N)(3 ·B(r,n)N−T )T ◦ 1
6c

(r),
where N is an arbitrary nonsingular matrix). We say that the coupled BTD is unique
when it is only subject to the mentioned indeterminacies. Uniqueness conditions for
the coupled BTD are given in [35].

3.1. Matrix representations. Denote Rtot,n =
∑R

r=1 Lr,n, and define

A(r,n) =
[
a(r,n)1 , . . . , a(r,n)Lr,n

]
∈ CIn×Lr,n ,

A(n) =
[
A(1,n), . . . ,A(R,n)

]
∈ CIn×Rtot,n , n ∈ {1, . . . , N},

B(r,n) =
[
b(r,n)
1 , . . . ,b(r,n)

Lr,n

]
∈ CJn×Lr,n ,

B(n) =
[
B(1,n), . . . ,B(R,n)

]
∈ CJn×Rtot,n , n ∈ {1, . . . , N},

C(red) =
[
c(1), . . . , c(R)

]
∈ CK×R,(3.3)

C(n) =
[
1T
Lr,n
⊗ c(1), . . . ,1T

LR,n
⊗ c(R)

]
∈ CK×Rtot,n ,(3.4)

where “red” stands for reduced. We have the following analogues of (2.3)–(2.4):

CInJn×K * X(n)
(1) =

[
X(1··,n)T , . . . ,X(In··,n)T

]T
=
(
A(n) "B(n)

)
C(n)T ,(3.5)

CInK×Jn * X(n)
(3) =

[
X(··1,n)T , . . . ,X(··K,n)T

]T
=
(
C(n) "A(n)

)
B(n)T .(3.6)

Similar to (2.5), we have the following matrix representation of (3.2):

X =
[
X(1)T

(1) , . . . ,X(N)T
(1)

]T
= F(red)C(red)T ∈ C(

∑N
n=1 InJn)×K ,(3.7)

where F(red) ∈ C(
∑N

n=1 InJn)×R is given by

F(red) =





Vec
(
B(1,1)A(1,1)T

)
· · · Vec

(
B(R,1)A(R,1)T

)

...
. . .

...

Vec
(
B(1,N)A(1,N)T

)
· · · Vec

(
B(R,N)A(R,N)T

)




.(3.8)D
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4. Algorithms for computing the coupled CPD. So far, for the compu-
tation of the coupled CPD, mainly optimization based methods have been proposed
(e.g., [1, 32]). Standard unconstrained optimization methods proposed for ordinary
CPDs (e.g., nonlinear least squares methods) can be adapted to coupled CPDs; see
[1, 32] and references therein for details. A linear algebra based method for the com-
putation of the coupled CPD of two tensors has been suggested in [17]. However, the
method requires that each individual CPD be unique and have a full column rank
factor matrix. We also mention that in the case where all factor matrices {A(n)}
and C in (2.1) have full column rank, it is possible to transform the coupled CPD
problem into an ordinary CPD problem via a joint similarity transform [2]. As in
[17], a drawback of this approach is that it basically requires the individual CPDs
to be unique. In contrast, we first present in subsection 4.1 a linear algebra inspired
method for coupled CPD problems in which only one of the involved CPDs is required
to be unique. Next, in subsection 4.2 we present a linear algebra inspired method for
coupled CPD problems which only requires that the common factor matrix have full
column rank (i.e., none of the individual CPDs is required to be unique).

4.1. Coupled CPD via ordinary CPD. Consider the coupled CPD of the
third-order tensors X (n), n ∈ {1, . . . , N}, in (2.1). Under the conditions in [35,
Theorem 4.4] the coupled CPD inherits uniqueness from one of the individual CPDs.
Assume that the CPD of X (p) with matrix representation

(4.1) X(p)
(1) =

(
A(p) "B(p)

)
CT

is unique for some p ∈ {1, . . . , N}. We first compute this CPD. Linear algebra based
methods for the computation of the CPD can be found in [24, 9, 36, 14]. For in-
stance, if A(p) and C2(B

(p)) " C2(C) have full column rank, then the simultaneous
diagonalization (SD) method in [9, 14], reviewed in subsection 4.2.1, can be applied.
Optimization based methods can also be used to compute the CPD of X (p); see [22, 30]
and references therein. Next, the remaining CPDs may be computed as “CPDs with
a known factor matrix” (i.e., matrix C):

X(n)
(1) =

(
A(n) "B(n)

)
CT , n ∈ {1, . . . , N} \ p .

If C has full column rank, then the remaining factor matrices of the coupled CPD

of {X (n)} follow from the well-known fact that the columns of Y(n)
(1) = X(n)

(1) (C
T )† =

A(n) " B(n), n ∈ {1, . . . , N} \ p, correspond to vectorized rank-1 matrices. For the
case where C does not have full column rank, a dedicated algorithm is discussed
in [34]. The results may afterward be refined by an optimization algorithm such as
ALS, discussed in the supplementary materials. The extension to coupled CPDs of
Mnth-order tensors with Mn ≥ 4 for one or more n ∈ {1, . . . , N} is straightforward.

For the coupled matrix-tensor factorization problem (2.2), the factor matrix C
is required to have full column rank in order to guarantee uniqueness of A(2) [34].
Consequently, we may first compute the CPD of the tensor X (1) in (2.2) and thereafter
obtain the remaining factor as A(2) = X(2)(CT )†.

4.2. Simultaneous diagonalization (SD) method for coupled CPDs. In
[9] the computation of a CPD of a third-order tensor was reduced to a matrix general-
ized eigenvalue decomposition (GEVD) in cases where only one of the factor matrices
has full column rank. This generalizes the more common use of GEVD in cases where
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at least two of the factor matrices have full column rank [24]. In this subsection, first
we briefly recall the result from [9], following the notation of [14]. For simplicity we
will explain the result for the noiseless case and assume that the third factor matrix
is square. Then we present a generalization for coupled CPDs. For this contribution,
we will consider the noisy case, and we will just assume that the third factor matrix
has full column rank.

4.2.1. Single CPD. Let X =
∑R

r=1 ar ◦ br ◦ cr be an I × J × R tensor with
frontal slices X(:, :, 1), . . . ,X(:, :, R). The basic idea behind the SD procedure is to
consider the tensor decomposition problem of X as a structured matrix decomposition
problem of the form

(4.2) X(1) = FCT ,

where F is subject to a constraint depending on the decomposition under consider-
ation. In the single CPD case, F is subject to the Khatri–Rao product constraint
F = A " B; i.e., the columns of F are assumed to be vectorized rank-1 matrices.
The other way around, we can interpret a rank constrained matrix decomposition
problem of the form (4.2) as a CPD problem. By capitalizing on the structure of F,
the SD method transforms the constrained decomposition problem in (4.2) into an
SD problem involving a congruence transform, as will be explained in this section.
The advantage of the SD method is that in the exact case it reduces a tensor decom-
position problem into a generalized eigenvalue problem, which in turn can be solved
by means of standard numerical linear algebra methods (e.g., [16]). We assume that

(4.3)

{
C has full column rank,

C2 (A)" C2 (B) has full column rank.

If condition (4.3) is satisfied, then the rank of X is R, the CPD of X is unique,
and the factor matrices A, B, and C can be determined via the SD method [9, 13].
In other words, condition (4.3) ensures that scaled versions of ar⊗br, r ∈ {1, . . . , R},
are the only Kronecker-structured vectors in range

(
X(1)

)
.

We define a C2
IC

2
J ×R2 matrix R2(X ) that has columns

(4.4)
Vec ( C2(X(:, :, r1) +X(:, :, r2))− C2(X(:, :, r1))− C2(X(:, :, r2)) ) , 1 ≤ r1, r2 ≤ R,

where C2(·) denotes the second compound matrix of its argument and is defined in
subsection 1.1. We also define an R2 × C2

R matrix R2(C) that has columns

1

2
(cr1 ⊗ cr2 + cr2 ⊗ cr1), 1 ≤ r1 < r2 ≤ R.

So the columns of R2(X ) (resp., R2(C)) can be enumerated by means of R2 (resp.,
C2

R) pairs (r1, r2). For both matrices we follow the convention that the column asso-
ciated with the pair (r1, r2) is preceding the column associated with the pair (r′1, r

′
2)

if and only if either r′1 > r1 or r′1 = r1 and r′2 > r2.

Expression (4.4) implies the following entrywise definition of R2(X ): if 1 ≤ i1 <
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1022 M. SØRENSEN, I. DOMANOV, AND L. DE LATHAUWER

i2 ≤ I, 1 ≤ j1 < j2 ≤ J , and 1 ≤ r1, r2 ≤ R, then

the

(
(j1(2j2 − j1 − 1)− 2)I(I − 1)

4
+

i1(2i2 − i1 − 1)

2
, (r2 − 1)R+ r1

)
th

entry of the matrix R2(X ) is equal to
∣∣∣∣
xi1j1r1 + xi1j1r2 xi1j2r1 + xi1j2r2

xi2j1r1 + xi2j1r2 xi2j2r1 + xi2j2r2

∣∣∣∣−
∣∣∣∣
xi1j1r1 xi1j2r1

xi2j1r1 xi2j2r1

∣∣∣∣−
∣∣∣∣
xi1j1r2 xi1j2r2

xi2j1r2 xi2j2r2

∣∣∣∣

= xi1j1r1xi2j2r2 + xi1j1r2xi2j2r1 − xi1j2r1xi2j1r2 − xi1j2r2xi2j1r1 .

(4.5)

Since (4.5) is invariant under permutation of r1 and r2, R2(X ) only consists of C2
R+1

distinct columns (i.e., switching r1 and r2 in (4.5) will not change R2(X )).

Let πS : CR2 → CR2
be a symmetrization mapping:

πS(Vec (F)) = Vec
(
(F+ FT )/2

)
, F ∈ CR×R;

i.e., πS is the vectorized version of the mapping that sends an arbitrary R×R matrix
to its symmetric part. It is clear that dim range(πS) = R(R+ 1)/2 (dimension of the
subspace of the symmetric R×R matrices) and that

πS(x⊗ y) = πS(Vec
(
yxT

)
) = Vec

(
(yxT + xyT )/2

)
= x⊗ y + y ⊗ x, x,y ∈ CR.

Hence, range(R2(C)) is a subspace of range(πS). Let W denote the orthogonal com-
plement to range(R2(C)∗) in range(πS),

(4.6) range(πS) = range(R2(C)∗)⊕W or W = ker(R2(C)T ) ∩ range(πS).

It was shown in [14] that if C has full column rank, then

(4.7) dim range(R2(C)∗) = R(R − 1)/2, dimW = R,

and that

[x1 . . . xR] coincides with C−T up to permutation and column scaling ⇔
x1 ⊗ x1, . . . ,xR ⊗ xR form a basis of W.

(4.8)

If one can find the subspace W (from X ), then one can reconstruct the columns of
C up to permutation and column scaling by SD techniques. Indeed, if the vectors
m1 = Vec (M1) , . . . ,mR = Vec (MR) form a basis of W (yielding that M1, . . . ,MR

are symmetric matrices), then by (4.8), there exists a nonsingular R × R matrix
L = [l1 . . . lR] such that

(C−T "C−T )[l1 . . . lR] = [m1 . . . mR],

or, in matrix form,

(4.9) C−1 Diag(l1)C
−T = M1, . . . ,C

−1 Diag(lR)C
−T = MR.

Thus, the matrices M1, . . . ,MR can be reduced simultaneously to diagonal form by
congruence. It is well known that the solution C of (4.9) is unique (up to permutation
and column scaling); see, for instance, [19, 24]. The matrices A and B can now be
easily found from X(1)C

−T = A"B.
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The following algebraic identity was obtained in [14]:

(4.10) (C2(A)" C2(B))R2(C)T = R2(X ).

Since by assumption the matrix C2(A) " C2(B) has full column rank, it follows from
(4.6) and (4.10) that

(4.11) W = ker(R2(C)T ) ∩ range(πS) = ker(R2(X )) ∩ range(πS).

Hence, a basis m1, . . . ,mR for W can be found directly from X , which in turn means
that C can be recovered via SD techniques (cf. (4.9)).

Algorithm 1 summarizes what we have discussed about the link between CPD
and SD (for more details and proofs, see [9] and [14]).

The computational cost of Algorithm 1 is dominated by the construction ofR2(X )
given by (4.5), the determination of a basism1, . . . ,mR for the subspace ker(R2(X ))∩
range(πS), and solving the SD problem (4.9). The following paragraphs discuss the
complexity of the mentioned steps.

From (4.5) we conclude that the construction of R2(X ) requires 7C2
IC

2
JC

2
R+1

flops1 (four multiplications and three additions/subtractions per distinct entry of
R2(X )).

Once R2(X ) has been constructed, we can find a basis {mr} for W . Since the
rows of R2(X ) are vectorized symmetric matrices, we have that range

(
R2(X )T

)
⊆

range(πS). Consequently, a basis {mr} for W can be obtained from a C2
IC

2
J × C2

R+1
submatrix of R2(X ), which we denote by P. More precisely, let P = R2(X )S, where
S is an R2×C2

R+1 column selection matrix that selects the C2
R+1 distinct columns of

R2(X ) indexed by the elements in the set {(i− 1)R+ j | 1 ≤ i ≤ j ≤ R}.
We choose the R right singular vectors associated with the R smallest singular

values of P as the basis {mr} for W . The cost of finding this basis via an SVD is
of order 6C2

IC
2
J (C

2
R+1)

2 when the SVD is implemented via the R-SVD method [16].
Note that the complexity of the R-SVD is proportional to I2J2R4, making it the
most expensive step. If the dimensions {I, J} are large, then we may find the basis
{mr} for W via PHP. (This squares the condition number.) Without taking the
structure of PHP into account, the matrix product PHP requires (2C2

IC
2
J − 1)C2

R+1
flops, while, on the other the hand, the complexity of the determination of the basis
{mr} for W via the R-SVD method is now only proportional to (C2

R+1)
3.

Note that for large dimensions {I, J} the complexity of the construction of R2(X )
and PHP is proportional to (IJR)2. By taking the structure of PHP into considera-
tion, a procedure for determining a basis m1, . . . ,mR for the subspace ker(R2(X )) ∩
range(πS) with a complexity proportional to max

(
IJ2, J2R2

)
R2 is described in the

supplementary materials. This makes it more suitable for large dimensions {I, J}. We
also note that the complexity of Algorithm 1 in the case of large dimensions {I, J}
can be reduced by an initial dimensionality reduction step, as will be briefly discussed
in subsection 4.3.

The SD problem (4.9) can in the exact case be solved by means of a generalized
Schur decomposition (GSD) of a pair (Mr,Ms). According to [16], the complexity
of the GSD implemented via the QZ step is of order 30R2. However, in the inexact
case, there does not exist a simple algebraic method for solving the SD problem

1Complexity is measured here in terms of floating point operations (flops). Each multiplication,
addition, and subtraction corresponds to a flop [38]. Furthermore, as in [38], no distinction between
complex and real data is made.
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(4.9). An iterative procedure that simultaneously tries to diagonalize the matrices
{Mr} is applied in practice. A well-known method for the latter problem is the ALS
method with a complexity of order 8R4 flops per iteration [30]; see also [30] for other
optimization based methods.

Algorithm 1 SD procedure for a single CPD (noiseless case) assuming that condition
(4.3) is satisfied.

Input: Tensor X =
∑R

r=1 ar ◦ br ◦ cr such that (4.3) holds
Step 1: Estimate C

Construct the matrix R2(X ) by (4.5)
Find a basis m1, . . . ,mR of the subspace ker(R2(X )) ∩ range(πS)
Denote M1 = Unvec (m1) , . . . ,MR = Unvec (mR)
Solve simultaneous matrix diagonalization problem

C−1 Diag(l1)C
−T = M1, . . . , C−1 Diag(lR)C

−T = MR

(the vectors l1, . . . , lR are a by-product).
Step 2: Estimate A and B

Compute Y = X(1)C
−T

Find ar and br from yr = ar ⊗ br, r = 1, . . . , R,
Output: A, B, and C

4.2.2. Coupled CPD. We now present a generalization of Algorithm 1 for
the coupled PDs of the tensors X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N}, with matrix
representation (2.5) and, repeated below,

X = FCT ,(4.12)

where F ∈ C(
∑N

n=1 InJn)×R now takes the form (2.6). Comparing (4.2) with (4.12) it
is clear that the only difference between SD for single CPD and coupled CPD is that
now F is subject to a blockwise Khatri–Rao structural constraint.

Define

E =





C2

(
A(1)

)
" C2

(
B(1)

)

...

C2

(
A(N)

)
" C2

(
B(N)

)




∈ C(

∑N
n=1 C2

In
C2

Jn)×C2
R ,(4.13)

and assume that

(4.14)

{
C has full column rank,

E has full column rank.

(Compare to (4.3).) Then by [35, Corollary 4.11], the coupled rank of {X (n)} is R,
and the coupled CPD of {X (n)} is unique. In other words, condition (4.14) guarantees

that only scaled versions of [(a(1)
r ⊗ b(1)

r )T , . . . , (a(N)
r ⊗ b(N)

r )T ]T , r ∈ {1, . . . , R}, are
contained in range (X).

We will now extend the SD method to coupled CPDs for the case where condition
(4.14) is satisfied. First we reduce the dimension of the third mode. By [35, Proposi-
tion 4.2], the matrix F = [(A(1)"B(1))T . . . (A(N)"B(N))T ]T has full column rank.
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Hence, X = FCT is a rank-R matrix. If X = UΣVH is the compact SVD of X, then
by (2.5)

UΣ =





X̃
(1)

(1)
...

X̃
(N)

(1)



 = FC̃
T
, C̃ := VTC ∈ CR×R,(4.15)

where X̃
(n)

(1) := X(n)
(1)V and where X̃ (n) :=

∑R
r=1 a

(n)
r ◦ b(n)

r ◦ c̃r has matrix represen-

tation X̃
(n)

(1) . Applying (4.10) to tensors X̃ (n) for n ∈ {1, . . . , N}, we obtain

(4.16) E · R2(C̃)T =




R2(X̃ (1))

...
R2(X̃ (N))



 =: R2(X̃ (1), . . . , X̃ (N)).

Since the matrix E has full column rank, it follows that

W = ker(R2(C̃)T ) ∩ range(πS) = ker(R2(X̃ (1), . . . , X̃ (N))) ∩ range(πS).

Thus, the matrix C̃ can be found from W using SD techniques as before.
Since the matrix F has full column rank, it follows that range(V∗) = range(XT ) =

range(CFT ) = range(C), and the matrix C can be recovered from C̃ as C = V∗C̃.
Finally, the factor matrices A(n) and B(n) can be easily obtained from the PD of

X (n) taking into account that the third factor matrix C is known. An outline of the
SD procedure for computing a coupled CPD is presented as Algorithm 2.

Comparing Algorithm 1 for a single CPD with Algorithm 2 for a coupled CPD,
we observe that the increased computational cost is dominated by the construction
of R2(X̃ (1), . . . , X̃ (N)) given by (4.16) and the determination of a basis m1, . . . ,mR

for the subspace ker(R2(X̃ (1), . . . , X̃ (N)) ∩ range(πS).
From (4.5) and (4.16) we conclude that the construction of the distinct elements

of R2(X̃ (1), . . . , X̃ (N)) requires 7(
∑N

n=1 C
2
InC

2
Jn
)C2

R+1 flops.

Since the rows of R2(X̃ (1), . . . , X̃ (N)) are vectorized symmetric matrices, we have
that range (R2(X̃ (1), . . . , X̃ (N))T ) ⊆ range(πS). As in Algorithm 1, a basis {mr} for

W can be obtained from a (
∑N

n=1 C
2
InC

2
Jn
)×C2

R+1 submatrix of R2(X̃ (1), . . . , X̃ (N)),

which we denote by P = R2(X̃ (1), . . . , X̃ (N))S, where S is an R2 × C2
R+1 column

selection matrix that selects C2
R+1 distinct columns of R2(X̃ (1), . . . , X̃ (N)). The R

right singular vectors associated with the R smallest singular values of P are then
chosen as the basis {mr} forW . The cost of finding a basis ofP via the R-SVD method

is now in order of 6(
∑N

n=1 C
2
In
C2

Jn
)(C2

R+1)
2 flops. If the dimensions {In, Jn} are large,

then we may find the basis {mr} for W via PHP. Without taking the structure of

PHP into account, the matrix product PHP requires
∑N

n=1(2C
2
InC

2
Jn
−1)C2

R+1 flops,
while, on the other the hand, the complexity of the determination of the basis {mr}
for W via the R-SVD now is only proportional to (C2

R+1)
3 flops.

For large dimensions {In, Jn} the complexity of building R2(X̃ (1), . . . , X̃ (N)) and
PHP is proportional to (

∑N
n=1 I

2
nJ

2
n)R

2. By taking the structure of PHP into ac-

count, a procedure for finding a basis {mr} for the subspace ker(R2(X̃ (1), . . . , X̃ (N))∩
range(πS) with a complexity proportional to max((

∑N
n=1 InJ

2
n), (

∑N
n=1 J

2
n)R

2)R2 is
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described in the supplementary materials. This makes it more suitable for large di-
mensions {In, Jn}. As in Algorithm 1, the complexity of Algorithm 2 can in the case
of large dimensions {In, Jn} be reduced by an initial dimensionality reduction step,
as will be briefly discussed in subsection 4.3.

Algorithm 2 SD procedure for coupled CPDs assuming that condition (4.14) is
satisfied.

Input: Tensors X (n) =
∑R

r=1 a
(n)
r ◦ b(n)

r ◦ cr, n ∈ {1, . . . , N}.
Step 1: Estimate C

Build X given by (2.5)
Compute SVD X = UΣVH

Build X̃ (1), . . . , X̃ (N) by (4.15)
Build R2(X̃ (1)), . . . ,R2(X̃ (N)) by (4.5) and R2(X̃ (1), . . . , X̃ (N)) by (4.16)
Find a basis m1, . . . ,mR of ker(R2(X̃ (1), . . . , X̃ (N))∗) ∩ range(πS)
Denote M1 = Unvec (m1) , . . . ,MR = Unvec (mR)
Solve simultaneous matrix diagonalization problem

C̃−1 Diag(l1)C̃
−T = M1, . . . , C̃−1 Diag(lR)C̃

−T = MR.

(the vectors l1, . . . , lR are a by-product)
Set C = V∗C̃

Step 2: Estimate {A(n)} and {B(n)}
Compute

Y(n)
(1) = X(n)

(1)

(
CT
)†

, n ∈ {1, . . . , N} .

Solve rank-1 approximation problems

min
a(n)
r ,b(n)

r

∥∥∥y(n)
(1) − a(n)

r ⊗ b(n)
r

∥∥∥
2

F
, r ∈ {1, . . . , R}, n ∈ {1, . . . , N} .

Output: {A(n)}, {B(n)}, and C

4.2.3. Higher-order tensors. The SD procedure summarized as Algorithm 2
can also be extended to coupled CPDs of tensors of arbitrary order. More precisely,
as explained in [35, subsection 4.5], the coupled CPD of

CI1,n×···×IMn,n×K * X (n) =
R∑

r=1

a(1,n)
r ◦ · · · ◦ a(Mn,n)

r ◦ cr, n ∈ {1, . . . , N},(4.17)

can be reduced to a coupled CPD of a set of third-order tensors, which may be
computed by means of Algorithm 2. An efficient implementation of the SD method
for coupled CPDs of tensors of arbitrary order is also discussed in the supplementary
materials. In short, the SD method addresses the coupled CPD problem (4.17) as a
low-rank constrained structured matrix decomposition problem of the form

X = FCT ,(4.18)
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COUPLED TENSOR DECOMPOSITIONS 1027

where F is now subject to the blockwise higher-order Khatri–Rao constraint

F =




A(1,1) " · · ·"A(M1,1)

...
A(1,N) " · · ·"A(MN ,1)



 .

Comparing (4.2) and (4.12) with (4.18) it is clear that the only difference between SD
for single/coupled CPDs and single/coupled CPDs for tensors of arbitrary order is
that F is now subject to a blockwise higher-order Khatri–Rao structural constraint.

4.2.4. Coupled matrix-tensor factorization. Due to its simplicity, the cou-
pled matrix-tensor factorization (2.2) is frequently used; see [35] for references and
a brief motivation. Note also that the SD procedure can be used to compute the
coupled matrix-tensor decomposition (2.2) in the case where the common factor C
has full column rank. Recall that the latter assumption is actually necessary in the
uniqueness of A(2) in the coupled matrix-tensor decomposition [35]. More precisely,
let X = UΣVH denote the compact SVD of

X =

[
X(1)

(1)

X(2)

]
=

[
A(1) "B(1)

A(2)

]
CT .

Partition U as follows: U = [U(1)T ,U(2)T ]T ∈ CI1I2×R in which U(n) ∈ CIn×R. Then
A(1), B(1), and C can be obtained from U(1)Σ via the ordinary SD method [9]. Once
C is known, A(2) immediately follows from A(2) = X(2)(CT )†.

4.3. Remark on large tensors. Consider the tensorsX (n) ∈ CI1,n×···×IMn,n×K ,
n ∈ {1, . . . , N}, for which the coupled CPD admits the matrix representation

(4.19) C
∏Mn

m=1 Im,n×K * X(n) =
(
A(1,n) " · · ·"A(Mn,n)

)
CT , n ∈ {1, . . . , N}.

For large dimensions {Im,n,K} it is not feasible to directly apply the discussed SD
methods. However, in data analysis applications the coupled rank R is usually very
small compared to the large dimensions {Im,n,K}. In such cases it is common to
compress the data in a preprocessing step [29, 23]. Many different types of Tucker
compression schemes for coupled tensor decompositions can be developed based on
the existing literature, ranging from methods based on alternating subspace based
projections (e.g., [3, 7, 8, 39]) and manifold optimization (e.g., [28, 21]) to randomized
projections (e.g., [15, 18]). Briefly, a Tucker compression method looks for columnwise
orthonormal projection matrices U(m,n) ∈ CIm,n×Jm,n and V ∈ CK×L, where Jm,n ≤
Im,n and L ≤ K denote the compression factors. This leads to the compressed
tensors Y(n) ∈ CJ1,n×···×JMn,n×L, n ∈ {1, . . . , N}, for which the coupled CPD admits
the matrix representation

C
∏Mn

m=1 Jm,n×L * Y(n) =
(
U(1,n)H ⊗ · · ·⊗U(Mn,n)H

)
X(n)V∗

=
(
B(1,n) " · · ·"B(Mn,n)

)
DT , n ∈ {1, . . . , N},(4.20)

in which B(m,n) = U(m,n)HA(m,n) and D = VHC. Once the coupled CPD of the
smaller tensors {Y(n)} has been found, then the coupled CPD factor matrices of
{X (n)} follow immediately via A(m,n) = U(m,n)B(m,n) and C = V∗D.
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1028 M. SØRENSEN, I. DOMANOV, AND L. DE LATHAUWER

5. Algorithms for computing the coupled BTD. In this section we adapt
the methods described in the previous section to coupled BTD.

5.1. Coupled BTD via ordinary BTD. Consider the coupled BTD of the
third-order tensors X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N}, in (3.2). Under the conditions
stated in Theorem 5.2 in [35], the coupled BTD may be computed as follows. First
we compute one of the individual multilinear rank-(Lr,n, Lr,n, 1) term decompositions

X(p)
(1) =

(
A(p) "B(p)

)
C(p)T for some p ∈ {1, . . . , N} .

For multilinear rank-(Lr,n, Lr,n, 1) term decomposition algorithms, see [25, 26, 30] and
references therein. Next, the remaining multilinear rank-(Lr,n, Lr,n, 1) term decom-
positions may be computed as “multilinear rank-(Lr,n, Lr,n, 1) term decompositions

with a known factor matrix” (i.e., matrix C(red)):

X(n)
(1) =

(
A(n) "B(n)

)
C(n)T

=
[
Vec

(
B(1,n)A(1,n)T

)
, . . . ,Vec

(
B(R,n)A(R,n)T

)]
C(red)T ,(5.1)

where n ∈ {1, . . . , N} \ p. The results may afterward be refined by an optimization
algorithm, such as the ALS algorithm discussed in the supplementary materials. The
extension of the procedure to coupled Mnth-order tensors with Mn ≥ 4 for one or
more n ∈ {1, . . . , N} is straightforward. In the case where C(red) in (5.1) additionally

has full column rank, the overall decomposition of X(n)
(1) is obviously unique. Indeed,

from Y(n) = X(n)
(1) (C

(red)T )†, the factor matrices A(r,n) and B(r,n) follow from the

best rank-Lr,n approximation of ‖Unvec (y(n)
r ) −B(r,n)A(r,n)T ‖2F . In the rest of this

subsection we will discuss a uniqueness condition and an algorithm for the case where
C(red) does not have full column rank. Proposition 5.1 below presents a uniqueness
condition for the case where C(red) in (5.1) is known but does not necessarily have
full column rank.

Proposition 5.1. Consider the PD of X ∈ CI×J×K in (3.1), and assume that
C(red) is known. Let S denote a subset of {1, . . . , R}, and let Sc = {1, . . . , R} \ S
denote the complementary set. Define s := card (S) and sc := card (Sc). Stack the
columns of C(red) with index in S in C(S) ∈ CK×s, and stack the columns of C(red)

with index in Sc in C(Sc) ∈ CK×sc . Let the elements of S be indexed by σ(1), . . . ,σ(s),
and let the elements of Sc be indexed by µ(1), . . . , µ(sc). The corresponding partitions
of A(n) and B(n) are then given by

A(S) =
[
A(σ(1)), . . . ,A(σ(s))

]
∈ CI×(

∑
p∈S Lp),

A(Sc) =
[
A(µ(1)), . . . ,A(µ(sc))

]
∈ CI×(

∑
p∈Sc Lp),

B(S) =
[
B(σ(1)), . . . ,B(σ(s))

]
∈ CJ×(

∑
p∈S Lp),

B(Sc) =
[
B(µ(1)), . . . ,B(µ(sc))

]
∈ CJ×(

∑
p∈Sc Lp).
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COUPLED TENSOR DECOMPOSITIONS 1029

If there exists a subset S ⊆ {1, . . . , R} with 0 ≤ s ≤ rC(red) such that2 3






C(S) has full column rank (i.e., rC(S) = S) ,

B(Sc) has full column rank (i.e., rB(Sc) =
∑

p∈Sc Lp),

r([(PC(S)C̃
(Sc)

)!A(Sc), (PC(S)c
(Sc)
µ(r))⊗ II ]) = I +

∑
p∈Sc Lp − Lr ∀r ∈ Sc,

(5.2)

where C̃
(Sc)

= [1T
Lµ(1)

⊗ c(S
c)

µ(1), . . . ,1
T
Lµ(sc)

⊗ c(S
c)

µ(sc)], then the decomposition of X in

(3.1) is unique.
Proof. The result is a variant of [34, Theorem 4.8] to the case where C contains

collinear columns. A derivation is provided in the supplementary materials.
The proof of Proposition 5.1 admits a constructive interpretation that is summa-

rized as Algorithm 3. To avoid the construction of the tall matrix D̃
(Sc)
"A(Sc), we

exploited the relation (see supplementary materials for details)

DB(Sc) = (D̃
(Sc)
"A(Sc))HY(3)

=




A(µ(1))∗ · f(1,1) · · · A(µ(1))∗ · f(1,J)

...
. . .

...

A(µ(sc))∗ · f(s
c,1) · · · A(µ(sc))∗ · f(s

c,J)



 ,(5.3)

in which f(r,j) = Y(·j·)TPC(S)c
(Sc)∗
µ(r) .

5.2. SD method for coupled BTD. In this section we explain how to extend
the SD method discussed in subsection 4.2 to the decomposition in multilinear rank-
(L,L, 1) terms and to the coupled decomposition in multilinear rank-(L,L, 1) terms.
Note that we limit ourselves to the case L1 = · · · = LR = L. The notation in section
3 simplifies to

X =
R∑

r=1

(A(r)B(r)T ) ◦ c(r) =
LR∑

r=1

ar ◦ br ◦ cr =
LR∑

r=1

ar ◦ br ◦ c(&r/L'),

where

A =[A(1), . . . ,A(R)] ∈ CI×RL, A(r) = [ar(L−1)+1, . . . , arL],(5.4)

B =[B(1), . . . ,B(R)] ∈ CJ×RL, B(r) = [br(L−1)+1, . . . ,brL],(5.5)

C =[c1, . . . , cLR] = [1T
L ⊗ c(1), . . . ,1T

L ⊗ c(R)] ∈ CK×RL,(5.6)

C(red) :=[c(1), . . . , c(R)] ∈ CK×R,(5.7)

and r(A(r)) = r(B(r)) = L, c(r) &= 0K .
Recall that the basic idea behind the SD procedure is to consider the tensor

decomposition problem of X as a low-rank constrained matrix decomposition problem

2The last condition means that Mr = [(PC(S)C̃
(Sc)

) ! A(Sc), (PC(S)c
(Sc)
µ(r)

) ⊗ II ] has an Lr-

dimensional kernel for every r ∈ Sc, which is minimal since for every p ∈ {1, . . . , Lr} the vector

[nT
r , a(µ(r))Tp ]T ∈ ker (Mr) for some nr ∈ Ccard(Sc).

3Note that the set S in Proposition 5.1 may be empty; i.e., card (S) = 0 such that S = ∅. This
corresponds to the case where PC(S) = IK .
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1030 M. SØRENSEN, I. DOMANOV, AND L. DE LATHAUWER

Algorithm 3 Computation of BTD of X with known C(red) assuming that condition
(5.2) is satisfied.

Input: X(1) =
[
Vec

(
B(1)A(1)T

)
, . . . ,Vec

(
B(R)A(R)T

)]
C(red)T and C(red).

Choose sets S ⊆ {1, . . . , R} and Sc = {1, . . . , R} \ S.
Build C(S) =

[
c(σ(1)), . . . , c(σ(card(S)))

]
and C(Sc) =

[
c(µ(1)), . . . , c(µ(card(S

c)))
]
.

Find Q whose column vectors constitute an orthonormal basis for range
(
C(S)

)
.

Build C̃
(Sc)

=
[
1T
Lµ(1)

⊗ c(S
c)

µ(1), . . . ,1
T
Lµ(card(Sc))

⊗ c(S
c)

µ(card(Sc))

]
.

Compute PC(S) = IK −QQH .
Step 1. Find A(Sc) and B(Sc):

Compute Y(1) = X(1)P
T
C(S) and D̃

(Sc)
= PC(S)C̃

(Sc)
.

Reformatting: Y(3) ← Y(1).

Compute SVD Y(3) = UΣVH .

Solve
[
U,−

(
PC(S)c

(Sc)
µ(r)

)
⊗ II

]
Xr = 0KI,Lr , r ∈ Sc.

Set A(r) = Xr




∑

p∈Sc

Lp + 1 :
∑

p∈Sc

Lp + J, 1 : Lr



 , r ∈ Sc.

Build DB(Sc) in (5.3).

Compute B(Sc)T =

((
C̃

(Sc)H
D̃

(Sc)
)
∗
(
A(Sc)HA(Sc)

))−1

DB(Sc) .

Step 2. Find A(S) and B(S):

Build F(Sc) =
[
Vec

(
B(µ(1))A(µ(1))T

)
, . . . ,Vec

(
B(µ(card(Sc)))A(µ(card(Sc)))T

)]
.

Compute Z(1) = Y(1) − F(Sc)C(Sc)T .

Compute H = Z(1)

(
C(S)T

)†
.

Solve min
A(σ(r)),B(σ(r))

∥∥∥hσ(r) −Vec
(
B(σ(r))A(σ(r))T

)∥∥∥
2

F
, r ∈ S.

Output: A and B.

(and vice versa). In the case of the multilinear rank-(L,L, 1) term decomposition, the
associated low-rank constrained matrix decomposition is

(5.8) X(1) =
[
Vec

(
B(1)A(1)T

)
· · · Vec

(
B(R)A(R)T

)]
C(red)T = F(red)C(red)T ,

where the columns of F(red) are subject to a low-rank constraint. More precisely,
the columns of F(red) are assumed to be vectorized rank-L matrices. The other way
around, we can interpret a rank constrained matrix decomposition problem of the
form (5.8) as a multilinear rank-(L,L, 1) term decomposition problem. This section
explains how to adapt the SD method to low-rank constrained matrix decomposition
problems of the form (5.8).

Our derivation is based on the following identity [14] (we assume that K = R):

(5.9) [Cm(A) " Cm(B)]Rm(C)T = Rm(X ).

For m = 1 and m = 2, (5.9) coincides with (3.5) (n = 1) and with (4.10), respectively.
All the matrices are well defined if m ≤ min(I, J, LR).
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Subsection 5.2.1 further discusses (5.9). For simplicity we assume that K = R.
First, we briefly recall the construction of Rm(C) and Rm(X ) (see [14] for details).
Then we present a version of identity (5.9) for m = L + 1 and for C given by (5.6).
In subsections 5.2.2 and 5.2.3 we only assume that the matrix C(red) has full column
rank (K ≥ R) and derive algorithms for the actual computation of the decomposition
in multilinear rank-(L,L, 1) terms and the coupled decomposition in multilinear rank-
(L,L, 1) terms, respectively.

5.2.1. Auxiliary results related to identity (5.9).
Definition of matrix Rm(C). Let Pm denote the set of all permutations of

the set {1, . . . ,m}. The symmetrization πS is a linear mapping that sends a rank-1
tensor t1 ⊗ · · ·⊗ tm to its symmetric part by

(5.10) πS(t1 ⊗ · · ·⊗ tm) =
1

m!

∑

(l1,...,lm)∈Pm

tl1 ⊗ · · ·⊗ tlm , t1, . . . , tm ∈ CR.

Let C =
[
c1 . . . cLR

]
∈ CR×LR. We define the Rm-by-Cm

LR matrix Rm(C) as the
matrix consisting of the columns

(5.11) m!πS(ci1 ⊗ · · ·⊗ cim), 1 ≤ i1 < · · · < im ≤ LR.

We follow the convention that the column associated with the m-tuple (i1, . . . , im) is
preceding the column associated with the m-tuple (j1, . . . , jm) if and only if either
i1 < j1 or there exists a k ∈ {1, . . . , LR − 1} such that i1 = j1, . . . , ik = jk and
ik+1 < jk+1. In what follows, such ordering of m-tuples is called lexicographical
ordering. Thus,

(5.12) Rm(C) = m!
[
πS(c1 ⊗ · · ·⊗ cm) . . . πS(cLR−m+1 ⊗ · · ·⊗ cLR)

]
.

Construction of matrix Rm(X ). Let X be an I × J ×R tensor with frontal
slices X(:, :, 1), . . . ,X(:, :, R) and 2 ≤ m ≤ min(I, J). By definition, the

(
(rm − 1)Rm−1 + (rm−1 − 1)Rm−2 + · · ·+ (r2 − 1)R+ r1

)
th column

of the Cm
I Cm

J -by-Rm matrix Rm(X ) equals

(5.13) Vec




m∑

k=1

(−1)m−k
∑

1≤p1<p2<···<pk≤m

Cm
(
X(:, :, rp1) + · · ·+X(:, :, rpk)

)


 .

One can easily check that expression (5.13) is invariant under permutation of r1, . . . , rm.
Since the number of m-combinations with repetitions from the set {1, . . . , R} equals
Cm

R+m−1, the matrix Rm(X ) has exactly Cm
R+m−1 distinct columns. Moreover, the

rows of Rm(X ) represent vectorized symmetric tensors.
For instance, if m = R = 3, then the (1 − 1)32 + (2 − 1)31 + 3 = 6th column of

the C3
IC

3
J -by-27 matrix R3(X ) equals

Vec
(
C3(X(:, :, 1)) + C3(X(:, :, 2)) + C3(X(:, :, 3))

− C3(X(:, :, 1) +X(:, :, 2))− C3(X(:, :, 1) +X(:, :, 3))− C3(X(:, :, 2) +X(:, :, 3))

+ C3(X(:, :, 1) +X(:, :, 2) +X(:, :, 3))
)
,

and the columns of R3(X ) with indices 6, 8, 12, 15, 20, and 22 are the same.
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1032 M. SØRENSEN, I. DOMANOV, AND L. DE LATHAUWER

A version of identity (5.9) for m = L+1 and for C given by (5.6). Let

the matrix R(dis)
L+1(C) be formed by all distinct columns of RL+1(C). By (5.6) and

(5.11) these columns are

(5.14) (L+1)!πS(c
(j1)⊗ · · ·⊗c(jL+1)), 1 ≤ j1 ≤ j2 ≤ · · · ≤ jL+1 ≤ R, j1 &= jL+1.

Indeed, the columns c(j1), . . . , c(jL+1) in (5.14) are obtained by choosing with repeti-
tion L + 1 out of R columns c(1), . . . , c(R) in such a way that at least one inequality

in j1 ≤ j2 ≤ · · · ≤ jL+1 is strict. Hence, the columns of R(dis)
L+1(C) can be enumerated

by means of (L+ 1)-tuples of the set
(5.15)

Ω := {(j1, . . . , jL+1) : 1 ≤ j1 ≤ j2 ≤ · · · ≤ jL+1 ≤ R} \ {(j, . . . , j) : 1 ≤ j ≤ R}.

Thus, Ω is obtained from the set of all (L + 1) combinations with repetitions from
the set {1, . . . , R} by removing the R combinations (1, . . . , 1), . . . , (R, . . . , R). Hence,

card(Ω) = CL+1
R+(L+1)−1 − R = CL+1

R+L − R and R(dis)
L+1(C) is an RL+1-by-(CL+1

R+L − R)

matrix. We will assume that the elements of Ω (and, hence, the columns of R(dis)
L+1(C))

are ordered lexicographically.
It is clear that

(5.16) RL+1(C) = R(dis)
L+1(C)PT ,

where PT is a (CL+1
R+L −R)-by-CL+1

RL matrix of which the entries are “0” or “1,” such
that each column of PT has exactly one entry “1.” Thus, the matrix PT “expands”

R(dis)
L+1(C) to RL+1(C) by adding copies of columns. Formally, if we enumerate the

rows and columns of PT by means of the elements of Ω and Σ := {(i1, . . . , iL+1) : 1 ≤
i1 < · · · < iL+1 ≤ RL}, respectively, and assume that the elements of Σ are ordered
lexicographically, then

the entry of PT associated with ((j1, . . . , jL+1), (i1, . . . , iL+1))

is equal to

{
1 if (j1, . . . , jL+1) = (3i1/L4 , . . . , 3iL+1/L4),
0 otherwise.

(5.17)

Thus, by (5.16), identity (5.9) for m = L+ 1 and for C given by (5.6) takes the form

(5.18) [(CL+1(A)" CL+1(B))P]R(dis)
L+1(C)T = RL+1(X ).

In the remaining part of this subsection we prove an analogue of (4.6)–(4.9) for the
decomposition in multilinear rank-(L,L, 1) terms.

Denote by Πs a subspace of vectorized R × · · ·×R︸ ︷︷ ︸
L+1

symmetric tensors:

Πs = span{πS(t1 ⊗ · · ·⊗ tL+1) : t1, . . . , tL+1 ∈ CR},

where πs is defined in (5.10). The following result is well known.
Lemma 5.2. Let t1, . . . , tR be a basis of CR. Then the vectors

πS(ti1 ⊗ · · ·⊗ tiL+1), 1 ≤ i1 ≤ · · · ≤ iL+1 ≤ R,

form a basis of Πs. In particular, dimΠs = CL+1
R+L.
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The following lemma makes the link between the subspace

W := ker(R(dis)
L+1(C)T ) ∩Πs ⊂ CRL+1

and columns of the matrix (C(red))−T .
Lemma 5.3. Let the matrices C and C(red) be defined as in (5.6)–(5.7) and C(red)

be nonsingular. Then

(i) dim(ker(R(dis)
L+1(C)T ) ∩Πs) = R;

(ii) a nonzero vector x ∈ CR is a solution of

(5.19) R(dis)
L+1(C)T (x⊗ · · ·⊗ x︸ ︷︷ ︸

L+1

) = 0

if and only if x is proportional to a column of (C(red))−T ;

(iii) the matrix R(dis)
L+1(C) has full column rank; that is, r(R(dis)

L+1(C)) = CL+1
R+L−R.

Proof. By Lemma 5.2, the columns of R(dis)
L+1(C) can be extended to a basis of Πs

by adding R vectors c(r)⊗ · · ·⊗ c(r), r = 1, . . . , R. This proves (i) and (iii). To prove
(ii), we note that by (5.14), equality (5.19) holds for a nonzero vector x ∈ CR if and
only if

(c(j1)Tx) · · · (c(jL+1)Tx) = 0 for all (j1, . . . , jL+1) ∈ Ω.

This is possible if and only if

(c(j1)Tx)(c(j2)Tx) = 0 for all j1, j2 such that 1 ≤ j1 < j2 ≤ R,

which in turn is possible if and only if x is proportional to a column of
(C(red))−T .

5.2.2. SD method for the decomposition in multilinear rank-(L, L, 1)
terms. We consider decomposition (3.1) and assume that

(5.20)

{
(CL+1(A)" CL+1(B))P has full column rank,

C(red) has full column rank.

(Compare with (4.3).) First we show that if (5.20) holds, then A, B, and C can be
recovered from X using Algorithm 4. Then we show that the decomposition is unique
(i.e., we show that there are no decompositions that cannot be found via Algorithm
4).

SD procedure. If the matrix C(red) is not square, then we first reduce the
dimension of the third mode. We use the fact that

F(red) =
[
Vec

(
B(1)A(1)T

)
· · · Vec

(
B(R)A(R)T

)]

has full column rank (see Lemma S.1.1 in supplementary materials).

Hence, X(1) = F(red)C(red)T is a rank-R matrix. Let X(1) = UΣVH be the
compact SVD of X(1), where U ∈ CIJ×R, V ∈ CK×R, and Σ ∈ CR×R. Then

X(1) := X(1)V = UΣ = F(red)C
T
, C := VTC(red) ∈ CR×R,(5.21)
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1034 M. SØRENSEN, I. DOMANOV, AND L. DE LATHAUWER

where X(1) is the matrix unfolding of the I×J×R tensor X :=
∑R

r=1(A
(r)B(r)T )◦cr.

Hence, all results of subsection 5.2.1 hold for X and C(red) replaced by X and C,
respectively. In particular, by (5.18),

W = ker(R(dis)
L+1(C)T ) ∩ Πs = ker(RL+1(X )) ∩ Πs,

which means that the subspace W can be found directly from X .
Let us show how to reconstruct the columns of C̃ up to permutation and column

scaling from the subspaceW by means of SD techniques. By Lemma 5.3 (i), dim(W ) =
R. Let the vectorsm1 = Vec (M1) , . . . ,mR = Vec (MR) form a basis ofW (implying
that M1, . . . ,MR are symmetric tensors). Then by Lemma 5.3 (ii), there exists a
nonsingular R×R matrix L = [l1 . . . lR] such that

(C
−T " · · ·"C

−T

︸ ︷︷ ︸
L+1

)[l1 . . . lR] = [m1 . . . mR]

or, in tensor form,

(5.22)






L1 •1 C
−1 •2 · · · •L+1 C

−1
= M1,

...

LR •1 C
−1 •2 · · · •L+1 C

−1
= MR,

where Lr denotes a diagonal (L + 1)th order tensor with the elements of the vector

lr on the main diagonal, and Lr •n C
−1

denotes the n-mode product, defined as the
summation over the nth index:

(Lr •n C
−1

)m1,...,ml−1,p,ml+1,...,mL+1 =
R∑

s=1

(Lr)m1,...,ml−1,s,ml+1,...,mL+1(C
−1

)p,s.

Thus, the tensors M1, . . . ,MR can be reduced simultaneously to diagonal form. It
is well known that the solution C of (5.22) is unique (up to permutation and column
scaling). Indeed, the set of R equations in (5.22) can, for instance, be expressed

similarly to (4.9) in terms of the matrix slices of M1, . . . ,MR, after which C
−1

can
be found by solving a simultaneous matrix diagonalization problem of a set of RL

matrices.
Since F(red) has full column rank, it follows that range(V∗) = range(XT

(1)) =

range(C(red)F(red)T ) = range(C(red)). Hence the matrix C(red) can be recovered from
C as C(red) = V∗C. The matrices A(r) and B(r) can now be easily found from
X(1)(C

(red))† = F(red) = [Vec (B(1)A(1)T ) . . . Vec (B(R)A(R)T )].
Algorithm 4 summarizes what we have discussed about the link between the

decomposition in multilinear rank-(L,L, 1) terms and SD.
The complexity of Algorithm 4 is dominated by the cost of building RL+1(X ) as

in (5.13) with m = L + 1 and K = R. From (5.13) we observe that the computation
of RL+1(X ) involves

1. CL+1
R+(L+1)−1 matrices of the form CL+1

(
X(:, :, rp1) + · · ·+X(:, :, rpL+1)

)
,

2. C(L+1)−1
R+(L+1)−2 matrices of the form CL+1

(
X(:, :, rp1) + · · ·+X(:, :, rpL)

)
,

...
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COUPLED TENSOR DECOMPOSITIONS 1035

L+1. R = C(L+1)−L
R+(L+1)−(L+1) matrices of the form CL+1

(
X(:, :, rp1)

)
.

Recall that each entry of an (L+1)th-order compound matrix is equal to the de-
terminant of an (L+1)×(L+1) matrix. The complexity of computing the determinant
of an (L+1)×(L+1) matrix via the LU factorization is of order (L+1)3 [16]. Since the
(CL+1

I CL+1
J )×RL+1 matrix RL+1(X ) has CL+1

R+L distinct columns, we conclude that

the complexity of Algorithm 4 is of order (
∑L

m=0 C
L+1−m
R+L−m)(CL+1

I CL+1
J CL+1

R+L(L+1)3).
Uniqueness. We prove that (5.20) implies the uniqueness of decomposition (3.1).

We have already shown that if X =
∑R

r=1(A
(r)B(r)T ) ◦ c(r) with factor matrices A,

B, and C(red) that satisfy condition (5.20), then A, B, and C(red) can be recovered by
Algorithm 4. This does not yet exclude the existence of alternative decompositions
that cannot be found via Algorithm 4. To prove the overall uniqueness it is sufficient
to show that any alternative decomposition

X =
R̂∑

r=1

Lr∑

l=1

â(r)
l ◦ b̂

(r)

l ◦ ĉ
(r) =

R̂∑

r=1

(
Â

(r)
B̂

(r)T
)
◦ ĉ(r)

with R̂ ≤ R satisfies

R̂ = R,
{(

CL+1(Â)" CL+1(B̂)
)
P has full column rank,

Ĉ(red) := [ĉ(1), . . . , ĉ(R)] has full column rank,
(5.23)

which implies that in all cases Algorithm 4 can be used. Since F(red) and C(red) have
full column rank and

X(1) = F(red)C(red)T =

[
Vec

(
B̂

(1)
Â

(1)T
)

· · · Vec

(
B̂

(R̂)
Â

(R̂)T
)]

Ĉ
(red)T

,

it follows that R̂ = R and that Ĉ
(red)T

has full column rank. By (5.18),

[(CL+1(A)" CL+1(B))P]R(dis)
L+1(C)T = RL+1(X )

=
[(

CL+1(Â)" CL+1(B̂)
)
P
]
R(dis)

L+1(Ĉ)T .
(5.24)

From Lemma 5.2 (iii), (5.20), and (5.24) it follows that (CL+1(Â) " CL+1(B̂))P has
full column rank.

5.2.3. SD method for the coupled decomposition in multilinear rank-
(L,L, 1) terms. We consider coupled decomposition (3.2) subject to

(5.25) max
1≤n≤N

r(A(r,n)B(r,n)T ) = L and c(r) &= 0K for all r ∈ {1, . . . , R}.

Note that condition (5.25) does not prevent that r(A(r,n)B(r,n)T ) = Lr,n < L for
some pairs (r, n). Since we are interested in the matrices A(r,n)B(r,n)T and vectors
c(r), and since A(r,n)B(r,n)T = [A(r,n) 0Jn,L−Lr,n][B

(r,n) 0In,L−Lr,n]
T , we can w.l.o.g.

assume that Lr,n = L.
Let the matrices C(red) and P be defined by (5.7) and (5.17), respectively, and

let

E :=





CL+1

(
A(1)

)
" CL+1

(
B(1)

)

...

CL+1

(
A(N)

)
" CL+1

(
B(N)

)




P ∈ C(

∑N
n=1 CL+1

In
CL+1

Jn )×(CL+1
R+L−R),D
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1036 M. SØRENSEN, I. DOMANOV, AND L. DE LATHAUWER

Algorithm 4 SD procedure for the decomposition in multilinear rank-(L,L, 1) terms
assuming that condition (5.20) is satisfied.

Input: Tensor X =
∑LR

r=1 ar ◦ br ◦ c(&r/L').
Step 1: Estimate C(red)

Compute SVD X(1) = UΣVH

Stack UΣ in X as in (5.21)
Construct the matrix RL+1(X ) by (5.13)
Find a basis m1, . . . ,mR of the subspace ker(RL+1(X )) ∩Πs

(Πs denotes the subspace of vectorized symmetric tensors of order L+1)
Denote M1 = Unvec (m1) , . . . ,MR = Unvec (mR)
Solve simultaneous tensor diagonalization problem (5.22)

(the diagonal tensors L1, . . . ,LR are a by-product)
Set C(red) = V∗C

Step 2: Estimate A and B

Compute Y = X(1)

(
C(red)

)†

Solve rank-L approximation problems

min
A(r),B(r)

∥∥∥Unvec (yr)−B(r)A(r)T
∥∥∥
2

F
, r ∈ {1, . . . , R}.

Output: A, B, and C(red)

where A(n) = [A(1,n) · · · A(R,n)] ∈ CIn×RL and B(n) = [B(1,n) · · · B(R,n)] ∈
CJn×RL. We assume that

(5.26)

{
E has full column rank,

C(red) has full column rank.

(Compare with (4.14) and (5.20).) In this subsection we first present a generalization
of Algorithms 2 and 4 for the coupled decomposition (3.2). Then we prove that
decomposition (3.2) is unique.

SD procedure. First we reduce the dimension of the third mode. We use the
fact that the matrix F(red), given by (3.8), has full column rank (see Lemma S.1.1
in supplementary materials). Hence X = F(red)C(red)T is a rank-R matrix. Let

X = UΣVH be the compact SVD of X, where U ∈ C(
∑N

n=1 InJn)×R, V ∈ CK×R, and
Σ ∈ CR×R. Then by (3.7),

UΣ :=





X
(1)
(1)
...

X
(N)
(1)



 = F(red)C
T
, C := VTC(red) ∈ CR×R,(5.27)D
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COUPLED TENSOR DECOMPOSITIONS 1037

where X
(n)
(1) = X(n)

(1)V. Then X (n)
:=
∑R

r=1(A
(r,n)B(r,n)T ) ◦ cr has the matrix unfold-

ing X
(n)
(1) . Applying (5.18) to tensors X (n)

for n = 1, . . . , N , we obtain

(5.28) E · R(dis)
L+1(C)T =





RL+1(X
(1)

)
...

RL+1(X
(N)

)



 =: RL+1(X
(1)

, . . . ,X (N)
).

Since the matrix E has full column rank, it follows that

W = ker(R(dis)
L+1(C)T ) ∩ Πs = ker(RL+1(X

(1)
, . . . ,X (N)

)) ∩ Πs.

Hence, a basis m1, . . . ,mR for W can be found directly from X . This in turn means
that we proceed as in subsection 5.2.2: we find the matrix C from W by means of SD
techniques (cf. (5.22)), then set C(red) = V∗C, and, finally, obtain the factor matrices

A(r,n) and B(r,n) from X(n)
(1) (C

(red))†. An outline of the SD procedure for computing

coupled decomposition in multilinear rank-(L,L, 1) terms is presented as Algorithm
5.

Algorithm 5 SD procedure for the coupled decomposition in multilinear rank-
(L,L, 1) terms assuming that condition (5.26) is satisfied.

Input: Tensors X (1), . . . ,X (N).
Step 1: Estimate C(red)

Build X =
[
X(1)T

(1) , . . . ,X(N)T
(1)

]T

Compute SVD X = UΣVH

Build X̃ (1), . . . , X̃ (N) by (5.27)

Build RL+1(X
(1)

, . . . ,X (N)
) by (5.28)

Find a basis m1, . . . ,mR of ker(RL+1(X
(1)

, . . . ,X (N)
)) ∩Πs

(Πs denotes the subspace of vectorized symmetric tensors of order L+1)
Denote M1 = Unvec (m1) , . . . ,MR = Unvec (mR)
Solve simultaneous tensor diagonalization problem (5.22)

(the diagonal tensors L1, . . . ,LR are a by-product)
Set C(red) = V∗C

Step 2: Estimate {A(n)} and {B(n)}
Compute

Y(n) = X(n)
(1)

(
C(red)T

)†
, n ∈ {1, . . . , N} .

Solve rank-Lr,n approximation problems

min
A(r,n),B(r,n)

∥∥∥Unvec
(
y(n)
r

)
−B(r,n)A(r,n)T

∥∥∥
2

F
, r ∈ {1, . . . , R}, n ∈ {1, . . . , N} .

Output: {A(n)}, {B(n)}, and C(red)

The SD procedure summarized as Algorithm 5 can also be extended to coupled
BTD of tensors of arbitrary order. More precisely, as explained in the supplementary
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material of [35], the problem of computing the coupled BTD of

CI1,n×···×IMn,n×K * X (n) =
R∑

r=1

a(1,n)
r ◦ · · · ◦ a(Mn,n)

r ◦ c(n)r , n ∈ {1, . . . , N},

in which C(n) = [1T
Lr,n
⊗ c(1), . . . ,1T

LR,n
⊗ c(R)] and L = max1≤n≤N Lr,n for all

r ∈ {1, . . . , R}, can be reduced to the computation of a coupled BTD of a set third-
order tensors.

Uniqueness. One can assume that there exists another coupled decomposition

X (n) =
R∑

r=1

Lr,n∑

l=1

a(r,n)l ◦ b(r,n)
l ◦ c(r) =

R∑

r=1

(
A(r,n)B(r,n)T

)
◦ c(r)

with R̂ ≤ R and prove that R̂ = R and that (5.26) holds for A, B, cr , . . . replaced

by Â, B̂, ĉr, . . . . Since the proof is very similar to that in subsection 5.2.2 (namely,
(5.28) and (5.26) are used instead of (5.18) and (5.20), respectively), we omit it.

6. Numerical experiments. We compare the algorithms discussed in this pa-
per, the ALS algorithm in the supplementary materials, and the iterative nonlinear
least squares (NLS) solver sdf nls.m in [31] on synthetic data in MATLAB. The
tensors X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N}, are given by (2.1) or (3.2) depending on
the experiment. The goal is to estimate the factor matrices from the observed tensors
T (n) = X (n) + βN (n), n ∈ {1, . . . , N}, where N (n) is an unstructured perturbation
tensor and β ∈ R controls the noise level. The real and imaginary entries of all the in-
volved factor matrices and perturbation tensors are randomly drawn from a Gaussian
distribution with zero mean and unit variance.

The following signal-to-noise ratio (SNR) measure will be used:

SNR [dB] = 10 log

(
N∑

n=1

∥∥∥X(n)
(1)

∥∥∥
2

F
/

N∑

n=1

∥∥∥βN(n)
(1)

∥∥∥
2

F

)
.

The performance evaluation will be based on the distance between a factor matrix,
say, C, and its estimate, Ĉ. The distance is measured according to the following
criterion:

P (C) = min
ΠΛ

∥∥∥C− ĈΠΛ
∥∥∥
F
/ ‖C‖F ,

where Π and Λ denote a permutation matrix and a diagonal matrix, respectively. The
distance measure is numerically computed by means of the function cpd err.m in [31].
To measure the time in seconds needed to execute the algorithms in MATLAB, the
built-in functions tic.m and toc.m are used.

Let f({T̂
(n,k)

(1) }) =
∑N

n=1 ‖T
(n)
(1) − T̂

(n,k)

(1) ‖F , where T̂
(n,k)

(1) denotes the estimate of

tensor T (n) at iteration k; then we decide that the ALS method has converged when

f({T̂
(n,k)

(1) }) − f({T̂
(n,k+1)

(1) }) < εALS = 1e − 8. Denote g({T̂
(n,k)

(1) }) =
∑N

n=1 ‖T
(n)
(1) −

T̂
(n,k)

(1) ‖2F ; then the stopping threshold
(
g({T̂

(n,k)

(1) }) − g({T̂
(n,k+1)

(1) })
)
/g({T̂

(n,0)

(1) }) <
εNLS used for the NLS method sdf nls.m in [31] will depend on the experiment
under consideration. The conclusions do not critically depend on the chosen threshold
values. We also terminate the ALS and NLS methods if the number of iterations
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COUPLED TENSOR DECOMPOSITIONS 1039

exceeds 5000. Randomly initialized ALS or NLS methods will simply be referred to
as ALS and NLS, respectively. We also consider the ALS method in which the best
out of ten random initializations is retained, referred to as ALS-10.

In the case where the common factor matrix C (resp., C(red)) has full column
rank, the coupled CPD (resp., coupled BTD) will also be computed by means of the
SD Algorithm 2 (resp., Algorithm 5) described in section 4.2 (resp., section 5.2.3). We
numerically solve the simultaneous matrix diagonalization step in the SD procedure
by means of a simultaneous GSD method [36]. In the case where the common factor
matrix does not have full column rank, but one of the individual CPDs has a full
column rank factor matrix, we compute the coupled CPD via the SD procedure for
ordinary CPDs [9] followed by CPD problems with a known factor, as described in
subsection 4.1. When the SD method is refined by at most 500 ALS iterations it will
be referred to as SD-ALS.

6.1. Coupled CPD.
Case 1. In many signal processing applications the dimension K corresponds to

the number of observations, such thatC is often tall (e.g., [33]). The model parameters
are N = 2, I1 = I2 = J1 = J2 = 5, K = 50, and R = 10. We set εNLS = 1e − 8.
The mean P (C) and time values over 500 trials as a function of SNR can be seen in
Figure 1. Above 15 dB SNR the algebraic SD method yields a good estimate of C
at a low computational cost, and only below 15 dB SNR the algebraic SD method
provides a poor estimate of C. The reason for this behavior is that in the noise-free
case SD yields the exact solution, while at low SNR values the noise-free assumption
is violated. In the former case no fine-tuning is needed, while in the latter case a
fine-tuning step may be necessary. However, by comparing the computational times
of SD and SD-ALS we also remark that almost no fine-tuning is needed. For this
particular case we observe that a reinitialization of ALS and NLS was not necessary.
ALS has a lower complexity than NLS in this simple example. Overall, SD-ALS yields
a good performance at a relatively low computational cost.

Case 2. The model parameters areN = 2, I1 = 3, J1 = 4, I2 = 4, J2 = 5, K = 10,
and R = 5. To demonstrate that the coupled CPD framework may work even if none

of the individual CPDs are unique, we set b(1)
1 = b(1)

2 , a(1)1 = a(1)
2 , and b(2)

3 = b(2)
4 ;

that is, r(A(1) "B(1)) < R and k(B(2)) = 1. We set εNLS = 1e− 8. The mean P (C)
and time values over 500 trials as a function of SNR can be seen in Figure 2. In
contrast to SD and SD-ALS, we notice that at high SNR the optimization-based ALS
and NLS methods do not always find the solution with high accuracy. The main reason
is that compared to Case 1 the problem addressed here is more difficult, which can
make the iterative ALS and NLS methods more sensitive w.r.t. their initializations.
For this reason a proper initialization of an optimization method is beneficial. We
also observe that above 25 dB SNR the algebraic SD method performs well at a low
computational cost, while below 25 dB SNR the algebraic SD method performs worse
than the ALS and NLS methods. The main reason for the performance degradation
of the SD method compared to Case 1 is that the problem is more difficult and the
fact that K has gone from 50 to 10, implying a worse estimate of range (X). However,
we again notice that SD-ALS yields a good overall performance at a relatively low
computational cost.

Case 3. The model parameters are N = 2, I1 = I2 = 6, J1 = J2 = 4, K = 4,
and R = 6. Note that the common factor matrix does not have full column rank, but
one of the individual CPDs has a full column rank factor matrix. The SD method
now follows the “coupled CPD via ordinary CPD” approach described in subsection
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4.1. More precisely, we first compute the coupled CPD of T (1) via the SD procedure
for ordinary CPDs [9] in which the first mode (I1 = R = 6) is considered as the long
mode. Thereafter, we compute the CPD of T (2) with known factor C by the method
in [34]. We set εNLS = 1e − 8. The mean P (C) and time values over 500 trials as a
function of SNR can be seen in Figure 3. We observe that the SD method performs
worse than the ALS and NLS methods. The reasons are that only one of the involved
CPDs is used when computing the common factor, and additionally the dimension
of I1 is not large compared to the rank. However, at high SNR the SD-ALS method
performs almost as well as the ALS and NLS methods but at a significantly lower
computational cost.

Case 4. The model parameters are N = 3, I1 = I2 = I3 = J1 = J2 = J3 = 20,
K = 50, and R = 3. To demonstrate that the coupled CPD framework may work

in the presence of unshared components we set a(n)n = 0In and b(n)
n = 0Jn for all

n ∈ {1, 2, 3}. The maximal number of iterations for the ALS method is increased
to 6000. We also relax the threshold of the NLS method to εNLS = 1e − 9. In this
experiment the iterative ALS and NLS methods turned out to be sensitive against
outliers. For this reason we only plot the median P (C) and time values over 500
trials as a function of SNR in Figure 4. We first observe that since the dimensions
{In, Jn,K} are large compared to the coupled rank R, all methods yield a good
estimate of C. More precisely, above 20 dB SNR, all methods perform the same,
while below 20 dB SNR, SD performs slightly worse. By also taking the complexity
of the methods into account, the SD-ALS seems to be the method of choice.

6.2. Coupled BTD.
Case 5. We now consider a coupled BTD problem with model parameters N = 2,

L1,1 = L1,2 = L2,1 = L2,2 = 2, I1 = I2 = 3, J1 = J2 = 4, and K = 50. We set

εNLS = 1e − 8. The mean and median P (C(red)) and time values over 500 trials as
a function of SNR can be seen in Figure 5. We notice that all the methods find
the solution except for ALS and NLS, which in some cases may require a proper
initialization. (The difficult cases explain the difference between mean and median
performance.) By exploiting both the coupled and BTD structure of the problem we
note that SD does not require any fine-tuning, not even at low SNR. We also observe
that SD and SD-ALS have very low cost.

Case 6. As our final example we consider a coupled BTD problem with model
parameters N = 2, L1,1 = 2, L1,2 = 3, L2,1 = 3, L2,2 = 2, I1 = I2 = J1 = J2 = 5, and
K = 50. We limit the comparison to the SD, ALS-10, and NLS methods. We also
set threshold εNLS = 1e− 10. In this experiment the iterative ALS and NLS methods
turned out to be sensitive against outliers. For this reason we only plot the median
P (C) and time values over 500 trials as a function of SNR in Figure 6. We observe
that NLS performs worse, illustrating the sensitivity of an iterative method w.r.t.
initialization in the case of difficult problems. The SD method performed almost as
well as the ALS-10 method but at a much lower computational cost.

7. Conclusion. The coupled tensor decomposition framework is a natural and
important extension of the framework of tensor decompositions. We demonstrated
in [35] that improved uniqueness conditions can be obtained by taking the coupling
between the involved decompositions into account. This observation suggests that it
is also important to take the coupling into account in the actual computation.

So far, mainly iterative methods for coupled tensor decompositions have been
presented that may be sensitive w.r.t. local minima, slow convergence, or improper
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Fig. 1. Mean P (C) and time values over 500 trials for varying SNR, case 1.
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Fig. 2. Mean P (C) and time values over 500 trials for varying SNR, case 2.
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Fig. 3. Mean P (C) and time values over 500 trials for varying SNR, case 3.
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Fig. 4. Median P (C) and time values over 500 trials for varying SNR, case 4.
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Fig. 5. Mean and median P(C(red)) and time values over 500 trials for varying SNR, case 5.

D
ow

nl
oa

de
d 

07
/2

2/
15

 to
 1

34
.5

8.
25

3.
57

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COUPLED TENSOR DECOMPOSITIONS 1043

10 20 30 40
0

0.02

0.04

0.06

0.08

0.1

SNR [dB]

m
ed

ia
n 

P
(C

 (r
ed

) )

 

 

SD
ALS−10
NLS

(a) Median P (C).

10 20 30 40
0

1

2

3

4

SNR [dB]
m

ed
ia

n 
T

im
e 

[s
ec

]
 

 

SD
ALS−10
NLS

(b) Median time.

Fig. 6. Median P(C(red)) and time values over 500 trials for varying SNR, case 6.

initialization. To alleviate this problem we first explained how to compute a coupled
CPD via the algebraic SD framework [9] in cases where one of the individual CPDs is
unique or where the coupled CPD is unique and the common factor has full column
rank. By incorporating the results in [14] it is also possible to extend the SD method
to cases where none of the individual CPDs are unique and the common factor does
not have full column rank. These methods are guaranteed to find the exact solution
in the noise-free case and are expected to find a good approximation at high SNR.

In the second part of the paper we extended the SD framework to tensor de-
compositions into multilinear rank-(L,L, 1) terms and coupled decompositions into
multilinear rank-(L,L, 1) terms for the cases where the column reduced common fac-
tor matrix has full column rank. We also presented a uniqueness condition and an
algorithm for the decomposition of multilinear rank-(Lr, Lr, 1) terms in the case where
the common factor matrix is known.

Numerical experiments demonstrated that in the case of high SNR values, the
linear algebra based methods have a good performance at a relatively low computa-
tional cost. The numerical experiments also revealed that in the case of low SNR
values, linear algebra based methods such as SD can provide a good initialization for
an optimization method at a relatively low computational cost. Numerical experiment
Case 3 confirmed that in the presence of noise it is better to fully exploit the coupled
CPD/BTD structure in the actual computation.

REFERENCES

[1] E. Acar, T. G. Kolda, and D. M. Dunlavy, All-at-once optimization for coupled matrix and
tensor factorizations, in the 9th KDD Workshop on Mining and Learning with Graphs,
San Diego, CA, 2011.

[2] H. Becker, P. Comon, and L. Albera, Tensor-based preprocessing of combined EEG/MEG
data, in Proceedings of Eusipco 2012, Bucharest, Romania, 2012.

[3] R. Bro and C. A. Anderson, Improving the speed of multiway algorithms. Part II: Compres-
sion, Chemometrics Intelligent Laboratory Syst., 42 (1998), pp. 105–113.

[4] A. Cichocki, D. Mandic, C. Caifa, A.-H. Phan, G. Zhou, and L. De Lathauwer, Tensor
decompositions for signal processing applications: From two-way to multiway component
analysis, IEEE Signal Process. Mag., 32 (2015), pp. 145–163.

[5] P. Comon, X. Luciani, and A. L. F. De Almeida, Tensor decompositions, alternating least
squares and other tales, J. Chemometrics, 23 (2009), pp. 393–405.

D
ow

nl
oa

de
d 

07
/2

2/
15

 to
 1

34
.5

8.
25

3.
57

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1044 M. SØRENSEN, I. DOMANOV, AND L. DE LATHAUWER

[6] P. Comon, Tensors: A brief survey, IEEE Signal Process. Mag., 31 (2014), pp. 44–53.
[7] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and rank-

(R1, R2, . . . , RN ) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl.,
21 (2000), pp. 1324–1342.

[8] L. De Lathauwer and J. Vandewalle, Dimensionality reduction in higher-order signal pro-
cessing and rank-(R1, R2, . . . , RN ) reduction in multilinear algebra, Linear Algebra Appl.,
391 (2004), pp. 31–55.

[9] L. De Lathauwer, A link between the canonical decomposition in multilinear algebra and
simultaneous matrix diagonalization, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 642–666.

[10] L. De Lathauwer, Decomposition of a higher-order tensor in block terms—part II: Definitions
and uniqueness, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1033–1066.

[11] L. De Lathauwer, Blind separation of exponential polynomials and the decomposition of a
tensor in rank-(Lr , Lr , 1) terms, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1451–1474.

[12] L. De Lathauwer, Block component analysis, a new concept for blind source separation, in
Proceedings of LVA/ICA 2012, Tel-Aviv, Israel, 2012.

[13] I. Domanov and L. De Lathauwer, On the uniqueness of the canonical polyadic decompo-
sition of third-order tensors—part I: Basic results and uniqueness of one factor matrix,
SIAM J. Matrix Anal. Appl., 34 (2013), pp. 855–875.

[14] I. Domanov and L. De Lathauwer, Canonical polyadic decomposition of third-order tensors:
Reduction to generalized eigenvalue decomposition, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 636–660.

[15] P. Drineas and M. W. Mahoney, A randomized algorithm for a tensor-based generalization
of the singular value decomposition, Linear Algebra Appl., 420 (2007), pp. 553–571.

[16] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., John Hopkins University
Press, Baltimore, MD, 2013.

[17] X.-F. Gong, Y.-N. Hao, and Q.-H. Lin, Joint canonical polyadic decomposition of two tensors
with one shared loading matrix, in Proceedings of the 23rd IEEE International Workshop
on Machine Learning for Signal Processing (MLSP), Southampton, UK, 2013, pp. 1–6.

[18] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[19] R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an
explanatory multimodal factor analysis, UCLA Working Papers in Phonetics, 16 (1970),
pp. 1–84.

[20] R. A. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK,
1985.

[21] M. Ishteva, P.-A. Absil, S. Van Huffel, and L. De Lathauwer, Best low multilinear
rank approximation of higher-order tensors, based on the Riemannian trust-region scheme,
SIAM J. Matrix Anal. Appl., 32 (2011), pp. 115–135.

[22] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455–500.

[23] P. M. Kroonenberg, Applied Multiway Data Analysis, Wiley, Hoboken, NJ, 2008.
[24] S. E. Leurgans, R. T. Ross, and R. B. Abel, A decomposition for three-way arrays, SIAM

J. Matrix Anal. Appl., 14 (1993), pp. 1064–1083.
[25] D. Nion and L. De Lathauwer, A tensor-based blind DS-CDMA receiver using simultaneous

matrix diagonalization, in Proceedings of the 8th IEEE Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), Helsinki, Finland, 2007, pp. 1–5.

[26] D. Nion and L. De Lathauwer, A link between the decomposition of a third-order tensor
in rank-(L, L, 1) terms and joint block diagonalization, in Proceedings of CAMSAP 2009,
Aruba, Dutch Antilles, 2009.

[27] D. Nion and L. De Lathauwer, A Study of the Decomposition of a Third-Order Tensor in
Rank-(L, L, 1) Terms, Tech. Rep. 11-239, ESAT-STADIUS, KU Leuven, Leuven, Belgium,
2011.

[28] B. Savas and L.-H. Lim, Quasi-Newton methods on Grassmannians and multilinear approxi-
mations of tensors, SIAM J. Sci. Comput., 32 (2010), pp. 3352–3393.

[29] A. Smilde, R. Bro, and P. Geladi, Multi-Way Analysis: Applications in the Chemical Sci-
ences, Wiley, New York, 2004.

[30] L. Sorber, M. Van Barel, and L. De Lathauwer, Optimization-based algorithms for ten-
sor decompositions: Canonical polyadic decomposition, decomposition in rank-(Lr , Lr , 1)
terms, and a new generalization, SIAM J. Optim., 23 (2013), pp. 695–720.

[31] L. Sorber, M. Van Barel, and L. De Lathauwer, Tensorlab v. 2.0, http://www.tensorlab.
net, 2014.

D
ow

nl
oa

de
d 

07
/2

2/
15

 to
 1

34
.5

8.
25

3.
57

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COUPLED TENSOR DECOMPOSITIONS 1045

[32] L. Sorber, M. Van Barel, and L. De Lathauwer, Structured Data Fusion, Tech. Rep.
13-177, ESAT-STADIUS, KU Leuven, Leuven, Belgium, 2013.

[33] M. Sørensen and L. De Lathauwer, Coupled tensor decompositions for applications in array
signal processing, in Proceedings of CAMSAP 2013, Saint Martin, Dutch Antilles, 2013.

[34] M. Sørensen and L. De Lathauwer, New Uniqueness Conditions for the Canonical Polyadic
Decomposition of Third-Order Tensors, Internal Report 13-05, ESAT-STADIUS, KU Leu-
ven, Leuven, Belgium.

[35] M. Sørensen and L. De Lathauwer, Coupled canonical polyadic decompositions and (cou-
pled) decompositions in multilinear rank-(Lr,n, Lr,n, 1) terms—part I: Uniqueness, SIAM
J. Matrix Anal. Appl., 36 (2015), pp. 496–522.

[36] M. Sørensen and L. De Lathauwer, New simultaneous generalized Schur decomposition
methods for computing the canonical polyadic decomposition, in Proceedings of Asilomar
2010, Pacific Grove, CA, 2010.

[37] G. Tomasi and R. Bro, A comparison of algorithms for fitting the Parafac model, Comput.
Statist. Data Anal., 50 (2006), pp. 1700–1734.

[38] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[39] L. R. Tucker, Some mathematical notes on the three-mode factor analysis, Psychometrika,

31 (1966), pp. 279–311.

D
ow

nl
oa

de
d 

07
/2

2/
15

 to
 1

34
.5

8.
25

3.
57

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



COUPLED CANONICAL POLYADIC DECOMPOSITIONS AND
(COUPLED) DECOMPOSITIONS IN MULTILINEAR

RANK-(Lr,n, Lr,n, 1) TERMS — PART II: ALGORITHMS
SUPPLEMENTARY MATERIAL

MIKAEL SØRENSEN ∗† , IGNAT DOMANOV ∗† , AND LIEVEN DE LATHAUWER ∗†

S.1. An indirect SD method for coupled CPD suitable for large dimen-
sions {In, Jn}. Consider the R-term coupled PD of the tensors X (n) ∈ CIn×Jn×K ,
n ∈ {1, . . . , N} given by

X (n) =
R∑

r=1

a(n)r ◦ b(n)
r ◦ cr , n ∈ {1, . . . , N}, (S.1.1)

with factor matrices A(n) =
[
a(n)
1 , . . . , a(n)

R

]
∈ CIn×R, B(n) =

[
b(n)
1 , . . . ,b(n)

R

]
∈

CJn×R and C = [c1, . . . , cR] ∈ CK×R. The coupled PD of {X (n)} given by (S.1.1)
has the following matrix representation:

X = FCT ∈ C
(
∑N

n=1 InJn)×K , (S.1.2)

where

F =

[(
A(1) #B(1)

)T
, . . . ,

(
A(N) #B(N)

)T]T
. (S.1.3)

We concluded in [4, Subsection 4.2.2] that the complexity of the SD method for
coupled CPD is proportional to (

∑N
n=1 I

2
nJ

2
n)R

2 flops. In this section we will discuss
an indirect implementation of the SD procedure for coupled CPD with complexity

proportional to max
((∑N

n=1 InJ
2
n

)
,
(∑N

n=1 J
2
n

)
R2
)
R2 flops. This makes the indi-

rect SD method more suitable for the case of large dimensions {In, Jn}, in particular

if max
((∑N

n=1 InJ
2
n

)
,
(∑N

n=1 J
2
n

)
R2
)
is significantly smaller than (

∑N
n=1 I

2
nJ

2
n).

Subsection S.1.1 reviews the the SD procedure [1] and its extensions to coupled
CPD [5]. Based on the reviewed results we will in Subsection S.1.2 present an indirect
but more efficient version of the SD procedure for the case of large dimensions {In, Jn}.

S.1.1. Direct SD. Let the columns of U ∈ C(
∑N

n=1 InJn)×R constitute a basis
for range (X) obtained via for instance an SVD of X. Consider the bilinear mappings

Φ(n) : CIn×Jn × CIn×Jn → CI2
nJ

2
n defined by

(
Φ(n) (X,Y)

)

(i−1)InJ2
n+(j−1)J2

n+(k−1)Jn+l
= xikyjl + yikxjl − xilyjk − yilxjk.
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2

Note that the number of multiplications and additions required for the construction
of Φ(n) (X,Y) is 4I2nJ

2
n.

Partition U as follows

U =
[
U(1)T , . . . ,U(N)T

]T
, U(n) ∈ C

InJn×R. (S.1.4)

Define U(n,r) = Unvec
(
u(n)
r

)
∈ CIn×Jn and Φ(n)

r,s = Φ(n)
(
U(n,r),U(n,s)

)
. Construct

P(1,n) =
[
Φ(n)

1,1 ,Φ
(n)
2,2 , . . . ,Φ

(n)
R,R

]
∈ C

I2
nJ

2
n×R,

P(2,n) =
[
Φ(n)

1,2 ,Φ
(n)
1,3 ,Φ

(n)
2,3 , . . . ,Φ

(n)
R−1,R

]
∈ C

I2
nJ

2
n×C2

R ,

P(n) =
[
P(1,n), 2 ·P(2,n)

]
∈ C

I2
nJ

2
n×C2

R+1.

It can be verified that the SD problem boils down to finding the kernel of

Pm = 0(
∑

N
n=1 I2

nJ
2
n)

, (S.1.5)

where

P =




P(1)
...

P(N)



 =




P(1,1) 2 ·P(2,1)

...
...

P(1,N) 2 ·P(2,N)



 ∈ C
(
∑N

n=1 I2
nJ

2
n)×C2

R+1 , (S.1.6)

and

m = [m11,m22, . . . ,mRR,m12,m13, . . . ,mR−1R]
T .

Once the kernel of P has been determined, the coupled CPD of {X (n)} can be found
via a SD. The matrix P(n) ∈ CInJn×R contains identical row-vectors. After remov-

ing the redundant row-vectors of P(n) we obtain the matrix P̃
(n)
∈ C

C2
In

C2
Jn

×C2
R+1 ,

corresponding to the matrix R2(X̃ (1), . . . , X̃ (N))S in [4, Subsection 4.2.2].
From the kernel ofP in (S.1.5) we obtain R symmetric matrices {M(r)}, admitting

the factorizations (see [4, Subsection 4.2.2] for details):

M(r) = GΛ(r)GT , r ∈ {1, . . . , R}, (S.1.7)

where G = C−1 and Λ(r) ∈ CR×R are diagonal matrices. In other words, the coupled
CPD problem (S.1.1) has been reduced to a generalized eigenvalue problem. In the ex-
act case, the SD problem (S.1.7) can for instance be solved by means of a Generalized
Schur Decomposition (GSD) of a pair (M(r),M(s)).

S.1.2. Indirect SD. In cases where the dimensions {In, Jn} are large such that

(
∑N

n=1 J
2
n)R

2 is significantly smaller than (
∑N

n=1 I
2
nJ

2
n), we may determine the kernel

of P via the Hermitian matrix

PHP =
N∑

n=1

P(n)HP(n)

=
N∑

n=1

[
P(1,n)HP(1,n) 2 ·P(1,n)HP(2,n)

2 ·P(2,n)HP(1,n) 4 ·P(2,n)HP(2,n)

]
∈ C

C2
R+1×C2

R+1, (S.1.8)
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where P(1,n)HP(1,n) ∈ CR×R, P(1,n)HP(2,n) ∈ CR×C2
R and P(2,n)HP(2,n) ∈ CC2

R×C2
R

are given by

P(1,n)HP(1,n) =





Φ(n)H
1,1 Φ(n)

1,1 Φ(n)H
1,1 Φ(n)

2,2 . . . Φ(n)H
1,1 Φ(n)

R,R

Φ(n)H
2,2 Φ(n)

1,1 Φ(n)H
2,2 Φ(n)

2,2 . . . Φ(n)H
2,2 Φ(n)

R,R
...

...
. . .

...

Φ(n)H
R,R Φ(n)

1,1 Φ(n)H
R,R Φ(n)

2,2 . . . Φ(n)H
R,R Φ(n)

R,R




,

P(1,n)HP(2,n) =





Φ(n)H
1,1 Φ(n)

1,2 Φ(n)H
1,1 Φ(n)

1,3 Φ(n)H
1,1 Φ(n)

2,3 . . . Φ(n)H
1,1 Φ(n)

R−1,R

Φ(n)H
2,2 Φ(n)

1,2 Φ(n)H
2,2 Φ(n)

1,3 Φ(n)H
2,2 Φ(n)

2,3 . . . Φ(n)H
2,2 Φ(n)

R−1,R
...

...
...

. . .
...

Φ(n)H
R,R Φ(n)

1,2 Φ(n)H
R,R Φ(n)

1,3 Φ(n)H
R,R Φ(n)

2,3 . . . Φ(n)H
R,R Φ(n)

R−1,R




,

P(2,n)HP(2,n) =






Φ(n)H
1,2 Φ(n)

1,2 Φ(n)H
1,2 Φ(n)

1,3 Φ(n)H
1,2 Φ(n)

2,3 . . . Φ(n)H
1,2 Φ(n)

R−1,R

Φ(n)H
1,3 Φ(n)

1,2 Φ(n)H
1,3 Φ(n)

1,3 Φ(n)H
1,3 Φ(n)

2,3 . . . Φ(n)H
1,3 Φ(n)

R−1,R

Φ(n)H
2,3 Φ(n)

1,2 Φ(n)H
2,3 Φ(n)

1,3 Φ(n)H
2,3 Φ(n)

2,3 . . . Φ(n)H
2,3 Φ(n)

R−1,R
...

...
...

. . .
...

Φ(n)H
R−1,RΦ

(n)
1,2 Φ(n)H

R−1,RΦ
(n)
1,3 Φ(n)H

R−1,RΦ
(n)
2,3 . . . Φ(n)H

R−1,RΦ
(n)
R−1,R






.

Note that the submatrices P(1,n)HP(1,n) and P(2,n)HP(2,n) of PHP are Hermitian.
Consequently, only the upper C2

R+1 entries of P(1,n)HP(1,n), the upper C2
R(R−1)/2

entries ofP(2,n)HP(2,n) and all the R·C2
R entries ofP(1,n)HP(2,n) need to be computed.

In the following subsection we will explain how to efficiently computePHP by cap-

italizing on the structure of the vector products Φ(n)H
r1,r2Φ

(n)
s1,s2 . This will be particularly

useful in the case of large dimensions {In, Jn}. The complexity of the construction of
PHP will measured in terms of flops. An addition, subtraction or multiplication will
be counted as one flop and we do not distinguish between real and complex data. As
an example, if a,b ∈ CI , then the vector product aHb requires 2I − 1 flops (I mul-
tiplications and I − 1 additions). Likewise, if A,B ∈ CI×J , then the matrix product
AHB requires J2(2I − 1) flops.

S.1.2.1. Computation of Φ(n)H
r1,r2Φ

(n)
s1,s2 . The entries of P(n)HP(n) are given by

Φ(n)H
r1,r2Φ

(n)
s1,s2 =

In∑

i1,i2=1

Jn∑

j1,j2=1

(
u(n,r1)
i1j1

u(n,r2)
i2j2

+ u(n,r2)
i1j1

u(n,r1)
i2j2

− u(n,r1)
i1j2

u(n,r2)
i2j1

− u(n,r2)
i1j2

u(n,r1)
i2j1

)∗

·
(
u(n,s1)
i1j1

u(n,s2)
i2j2

+ u(n,s2)
i1j1

u(n,s1)
i2j2

− u(n,s1)
i1j2

u(n,s2)
i2j1

− u(n,s2)
i1j2

u(n,s1)
i2j1

)
. (S.1.9)
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Note that

In∑

i1,i2=1

Jn∑

j1,j2=1

u(n,r1)∗
i1j1

u(n,r2)∗
i2j2

(
u(n,s1)
i1j1

u(n,s2)
i2j2

+ u(n,s2)
i1j1

u(n,s1)
i2j2

− u(n,s1)
i1j2

u(n,s2)
i2j1

− u(n,s2)
i1j2

u(n,s1)
i2j1

)

= Vec
(
U(n,r1)

)H
Vec

(
U(n,s1)

)
· Vec

(
U(n,r2)

)H
Vec

(
U(n,s2)

)

+ Vec
(
U(n,r1)

)H
Vec

(
U(n,s2)

)
· Vec

(
U(n,r2)

)H
Vec

(
U(n,s1)

)

− Vec
(
U(n,s1)HU(n,r1)

)H
· Vec

(
U(n,r2)HU(n,s2)

)

− Vec
(
U(n,s2)HU(n,r1)

)H
· Vec

(
U(n,r2)HU(n,s1)

)
, (S.1.10)

In∑

i1,i2=1

Jn∑

j1,j2=1

u(n,r2)∗
i1j1

u(n,r1)∗
i2j2

(
u(n,s1)
i1j1

u(n,s2)
i2j2

+ u(n,s2)
i1j1

u(n,s1)
i2j2

− u(n,s1)
i1j2

u(n,s2)
i2j1

− u(n,s2)
i1j2

u(n,s1)
i2j1

)

= Vec
(
U(n,r2)

)H
Vec

(
U(n,s1)

)
· Vec

(
U(n,r1)

)H
Vec

(
U(n,s2)

)

+ Vec
(
U(n,r2)

)H
Vec

(
U(n,s2)

)
· Vec

(
U(n,r1)

)H
Vec

(
U(n,s1)

)

− Vec
(
U(n,s1)HU(n,r2)

)H
· Vec

(
U(n,r1)HU(n,s2)

)

− Vec
(
U(n,s2)HU(n,r2)

)H
· Vec

(
U(n,r1)HU(n,s1)

)
, (S.1.11)

In∑

i1,i2=1

Jn∑

j1,j2=1

−u(n,r1)∗
i1j2

u(n,r2)∗
i2j1

(
u(n,s1)
i1j1

u(n,s2)
i2j2

+ u(n,s2)
i1j1

u(n,s1)
i2j2

− u(n,s1)
i1j2

u(n,s2)
i2j1

− u(n,s2)
i1j2

u(n,s1)
i2j1

)

= Vec
(
U(n,r1)

)H
Vec

(
U(n,s1)

)
· Vec

(
U(n,r2)

)H
Vec

(
U(n,s2)

)

+ Vec
(
U(n,r1)

)H
Vec

(
U(n,s2)

)
· Vec

(
U(n,r2)

)H
Vec

(
U(n,s1)

)

− Vec
(
U(n,s1)HU(n,r1)

)H
· Vec

(
U(n,r2)HU(n,s2)

)

− Vec
(
U(n,s2)HU(n,r1)

)H
· Vec

(
U(n,r2)HU(n,s1)

)
, (S.1.12)

In∑

i1,i2=1

Jn∑

j1,j2=1

−u(n,r2)∗
i1j2

u(n,r1)∗
i2j1

(
u(n,s1)
i1j1

u(n,s2)
i2j2

+ u(n,s2)
i1j1

u(n,s1)
i2j2

− u(n,s1)
i1j2

u(n,s2)
i2j1

− u(n,s2)
i1j2

u(n,s1)
i2j1

)

= Vec
(
U(n,r2)

)H
Vec

(
U(n,s1)

)
· Vec

(
U(n,r1)

)H
Vec

(
U(n,s2)

)

+ Vec
(
U(n,r2)

)H
Vec

(
U(n,s2)

)
· Vec

(
U(n,r1)

)H
Vec

(
U(n,s1)

)

− Vec
(
U(n,s1)HU(n,r2)

)H
· Vec

(
U(n,r1)HU(n,s2)

)

− Vec
(
U(n,s2)HU(n,r2)

)H
· Vec

(
U(n,r1)HU(n,s1)

)
. (S.1.13)
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Since Vec
(
U(n,s1)HU(n,r1)

)H
· Vec

(
U(n,r2)HU(n,s2)

)
= Vec

(
U(n,s2)HU(n,r2)

)H
·

Vec
(
U(n,r1)HU(n,s1)

)
the expressions (S.1.10)–(S.1.13) are identical.

S.1.2.2. Computation of U(n,s)HU(n,r). The computation of U(n,r)HU(n,s)

with U(n,r),U(n,s) ∈ CIn×Jn requires J2
n(2In−1) flops. For each n ∈ {1, . . . , N} there

are C2
R+1 distinct matrix products of the formU(n,r)HU(n,s). Hence, the computation

of the matrices {U(n,r)HU(n,s)} requires

C2
R+1

N∑

n=1

J2
n(2In − 1) flops. (S.1.14)

In the following subsections we assume that the matrix products {U(n,s)HU(n,r)}
have been computed.

S.1.2.3. Computation of Vec
(
U(n,r)

)H
Vec

(
U(n,s)

)
. Assuming that the ma-

trix product U(n,r)HU(n,s) is known, then since

U(n,r)HU(n,s) =





u(n,r)H
1 u(n,s)

1 u(n,r)H
1 u(n,s)

2 · · · u(n,r)H
1 u(n,s)

Jn

u(n,r)H
2 u(n,s)

1 u(n,r)H
2 u(n,s)

2 · · · u(n,r)H
2 u(n,s)

Jn

...
...

. . .
...

u(n,r)H
Jn

u(n,s)
1 u(n,r)H

Jn
u(n,s)
2 · · · u(n,r)H

Jn
u(n,s)
Jn




,

Vec
(
U(n,r)

)
=
[
u(n,r)
1 u(n,r)

2 . . . u(n,r)
Jn

]T
,

Vec
(
U(n,s)

)
=
[
u(n,s)
1 u(n,s)

2 . . . u(n,s)
Jn

]T
,

it is clear that the vector product Vec
(
U(n,r)

)H
Vec

(
U(n,s)

)
=
∑Jn

j=1 u
(n,r)H
j u(n,s)

j =
∑Jn

j=1(U
(n,r)HU(n,s))jj = Tr

(
U(n,r)HU(n,s)

)
only requires Jn − 1 flops, where Tr (·)

denotes the trace of a matrix.

S.1.2.4. Computation of P(1,n)HP(1,n). From (S.1.10)–(S.1.13) we observe
that the entries of P(1,n)HP(1,n) are given by

Φ(n)H
r,r Φ(n)

s,s = 8
((

Vec
(
U(n,r)

)H
Vec

(
U(n,s)

))2

− Vec
(
U(n,s)HU(n,r)

)H
Vec

(
U(n,r)HU(n,s)

))
. (S.1.15)

As explained in Subsection S.1.2.3 the computation of Vec
(
U(n,r)

)H
Vec

(
U(n,s)

)

requires Jn− 1 flops. Assuming that the matrices {U(n,r)HU(n,s)} have already been

computed, the computation of Vec
(
U(n,s)HU(n,r)

)H
Vec

(
U(n,r)HU(n,s)

)
addition-

ally requires 2J2
n − 1 flops. The subtraction of the terms in (S.1.15) costs one flop,

the multiplications with 8 in (S.1.15) costs one flop and the squaring (·)2 in (S.1.15)
costs one flop (i.e., 3 additional flops). Hence, the computation of (S.1.15) requires

(Jn − 1) + (2J2
n − 1) + 3 flops.
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Recall also that P(1,n)HP(1,n) has C2
R+1 distinct entries of the form (S.1.15).

Hence, the computation of the N matrices {P(1,n)HP(1,n)} requires

C2
R+1

N∑

n=1

((Jn − 1) + (2J2
n − 1) + 3) = C2

R+1

N∑

n=1

(Jn(Jn + 1) + J2
n) +N · C2

R+1

= C2
R+1

N∑

n=1

Jn(Jn + 1) + C2
R+1

N∑

n=1

J2
n +N · C2

R+1 flops. (S.1.16)

S.1.2.5. Computation of P(1,n)HP(2,n). From (S.1.10)–(S.1.13) we observe
that the entries of P(1,n)HP(2,n) are given by

Φ(n)H
r,r Φ(n)

s1,s2 = 8
(
Vec

(
U(n,r)

)H
Vec

(
U(n,s1)

)
·Vec

(
U(n,r)

)H
Vec

(
U(n,s2)

)

− Vec
(
U(n,s1)HU(n,r)

)H
Vec

(
U(n,r)HU(n,s2)

))
. (S.1.17)

Comparing (S.1.15) with (S.1.17), the latter expression Φ(n)H
r,r Φ(n)

s1,s2 requires the ad-

ditional vector-vector product Vec
(
U(n,r)

)H
Vec

(
U(n,s2)

)
compared to the former

expression Φ(n)H
r,r Φ(n)

s,s . Recall that the vector product Vec
(
U(n,r)

)H
Vec

(
U(n,s2)

)

costs Jn − 1 flops. Thus, the computation of (S.1.17) requires

2(Jn − 1) + (2J2
n − 1) + 3 flops.

Recall also that the matrix P(1,n)HP(2,n) has R · C2
R distinct entries. Thus, the

computation of the N matrices {P(1,n)HP(2,n)} requires

R · C2
R

N∑

n=1

(2 · (Jn − 1) + (2J2
n − 1) + 3) = R · C2

R

N∑

n=1

2Jn(Jn + 1) flops. (S.1.18)

S.1.2.6. Computation of P(2,n)HP(2,n). From (S.1.10)–(S.1.13) we observe
that the entries of P(2,n)HP(2,n) are given by

Φ(n)H
r1,r2Φ

(n)
s1,s2 = 4

(
Vec

(
U(n,r1)

)H
Vec

(
U(n,s1)

)
·Vec

(
U(n,r2)

)H
Vec

(
U(n,s2)

)

+ Vec
(
U(n,r2)

)H
Vec

(
U(n,s1)

)
· Vec

(
U(n,r1)

)H
Vec

(
U(n,s2)

)

− Vec
(
U(n,s1)HU(n,r1)

)H
Vec

(
U(n,r2)HU(n,s2)

)

− Vec
(
U(n,s1)HU(n,r2)

)H
Vec

(
U(n,r1)HU(n,s2)

))
. (S.1.19)

Observe that (S.1.19) involves 4 vector products of the form

Vec
(
U(n,r1)

)H
Vec

(
U(n,s1)

)

each requiring (Jn − 1) flops, 2 vector products of the form

Vec
(
U(n,s1)HU(n,r1)

)H
Vec

(
U(n,r2)HU(n,s2)

)
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each requiring (2J2
n − 1) flops, three scalar multiplications (3 flops) and three scalar

additions/subtractions (3 flops). Overall, the computation of (S.1.19) requires

4(Jn − 1) + 2(2J2
n − 1) + 6 flops.

Recall that P(2,n)HP(2,n) has C2
R(R−1)/2 distinct entries. We conclude that the com-

putation of the N matrices {P(2,n)HP(2,n)} requires

C2
R(R−1)/2

N∑

n=1

(4(Jn−1)+2(2J2
n−1)+6) = C2

R(R−1)/2

N∑

n=1

4Jn(Jn+1) flops. (S.1.20)

S.1.2.7. Overall computation of PHP. From (S.1.14), (S.1.16), (S.1.18) and
(S.1.20) it is clear that the construction of the matrices {P(1,n)HP(1,n)}, {P(1,n)HP(2,n)}
and {P(2,n)HP(2,n)} requires

C2
R+1

N∑

n=1

J2
n(2In − 1) + (C2

R+1 + 2R · C2
R + 4 · C2

R(R−1)/2)
N∑

n=1

Jn(Jn + 1) +

C2
R+1

N∑

n=1

J2
n +N · C2

R+1 flops. (S.1.21)

Finally, in order to construct PHP we need to compute
∑N

n=1 P
(1,n)HP(1,n), 2 ·∑N

n=1 P
(1,n)HP(2,n) and 4·

∑N
n=1 P

(2,n)HP(2,n). Taking the symmetries ofP(1,n)HP(1,n)

and P(2,n)HP(2,n) into account, this requires

(N − 1)(C2
R+1 +RC2

R + C2
R(R−1)/2) + (RC2

R + C2
R(R−1)/2) flops, (S.1.22)

where the two terms in (S.1.22) correspond to the number of additions and multipli-
cations, respectively. We conclude that the flops needed for the overall computation
of PHP are equal to the sum of (S.1.21) and (S.1.22). For large dimensions {In, Jn}
the complexity of the computation of PHP is proportional to

max

((
N∑

n=1

InJ
2
n

)

,

(
N∑

n=1

J2
n

)

R2

)

R2. (S.1.23)

The max(·) operator in (S.1.23) says that if R is small compared to the dimen-

sions {In, Jn} such that R2 ≤ (
∑N

n=1 InJ
2
n)/(

∑N
n=1 J

2
n), then the computational cost

is dominated by the construction of matrices the {U(n,r)HU(n,s)} with complexity
(S.1.14). On the other hand, if R is large compared to the dimensions {In, Jn}, i.e.,
R2 > (

∑N
n=1 InJ

2
n)/(

∑N
n=1 J

2
n), then the computational cost is dominated by the

computation of the scalars {Φ(n)H
r1,r2Φ

(n)
s1,s2} with complexity (S.1.20).

We also conclude that if (
∑N

n=1 J
2
n)R

2 <
∑N

n=1 I
2
nJ

2
n, then this approach requires

fewer flops than the SD procedure described in [4] that explicitly constructs P with

a complexity proportional to (
∑N

n=1 I
2
nJ

2
n)R

2.

S.2. Extension of the SD method to tensors of arbitrary order. In this
section we explain how to extend the SD method for coupled CPD of third-order
tensors to tensors of arbitrary order. More precisely, the goal of this section is to
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explain how to transform the coupled CPD problem of tensors of arbitrary order into
a coupled CPD problem of a set of third-order tensors.

Consider the coupled PD of the second-order (matrix), third-order and higher-
order tensor factorizations

C
Hm×K ( Y(m) =

R∑

r=1

d(m)
r ◦ cr , m ∈ {1, . . . ,M}, (S.2.1)

C
I1,n×I2,n×K ( V(n) =

R∑

r=1

a(n)r ◦ b(n)
r ◦ cr , n ∈ {1, . . . , N}, (S.2.2)

C
J1,p×···×JQp,p×K (W(p) =

R∑

r=1

a(1,p)r ◦ · · · ◦ a(Qp,p)
r ◦ cr , p ∈ {1, . . . , P}, (S.2.3)

in which Qp > 3, ∀p ∈ {1, . . . , P}. The PD of the third-order tensors {V(n)} and
higher-order tensors {W(p)} admit the following matrix representations

C
I1,nI2,n×K ( V(n) = (A(n) #B(n))CT , n ∈ {1, . . . , N}, (S.2.4)

C
J1,p×···×JQp,p×K (W(p) = (A(1,p) # · · ·#A(Qp,p))CT , p ∈ {1, . . . , P}. (S.2.5)

Step 1: Coupled CPD via structured matrix decomposition. The first
step is to formulate the coupled CPD problem as a low-rank constrained matrix
decomposition problem. Similar to (S.1.2) this is achieved by collecting the matrices
(S.2.1), (S.2.5) and (S.2.5) into the matrix

X =




Y
V
W



 = FCT , Y =






Y(1)

...
Y(M)




 , V =






V(1)

...
V(N)




 , W =






W(1)

...
W(P )




 ,

(S.2.6)
where F in (S.1.3) now takes the form

F =




F(1)

F(2)

F(3)



 ,

in which

F(1) =





D(1)

...
D(M)



 , F(2) =





A(1) #B(1)

...
A(N) #B(N)



 , F(3) =





A(1,1) # · · ·#A(Q1,1)

...
A(1,P ) # · · ·#A(QP ,P )



 .

(S.2.7)

Step 2: Find a basis for range (X) and apply dimensionality reduction.
In the second step we first find a basis for range (X). The matrix Y in (S.2.6) will
only be used when finding a basis for range (X). Let X = UΣVH denote the compact
SVD of X, then the columns of UΣ will be used as a basis for range (X). In order
to reduce the complexity of the SD procedure we reduce the dimension of the “third-
mode” matrix C. Overall, the SVD of X yields

UΣ = XV and C̃ = VTC ∈ C
R×R. (S.2.8)
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Partition UΣ as follows

UΣ =




U(1)

U(2)

U(3)



 , (S.2.9)

whereU(1) ∈ C(
∑M

m=1 Hm)×R,U(2) ∈ C(
∑N

n=1 I1,nI2,n)×R andU(3) ∈ C
(
∑P

p=1

∏Qp
q=1 Jq,p)×R.

Since the submatrix Y of X is only used to help find a basis for range (X) = range (U)

and range
(
CT
)
= range

(
VT
)
, the associated submatrix U(1) of U will not be con-

sidered in the development of the following SD procedure. More precisely, the matrix
U(1) will not be used in the SD procedure since the columns of U(1) are not subject
to a low-rank constraint. We further partition U(2) and U(3) as follows

U(2) =





U(1,2)

...
U(N,2)



 , U(n,2) ∈ C
(I1,nI2,n)×R, (S.2.10)

U(3) =





U(1,3)

...
U(P,3)



 , U(p,3) ∈ C
(
∏Qp

q=1 Jq,p)×R, (S.2.11)

with properties U(n,2) = (A(n) #B(n))C̃
T
and U(p,3) = (A(1,p) # · · ·#A(Qp,p))C̃

T
.

Note that the matrix decompositions U(n,2) = (A(n) #B(n))C̃
T
, n ∈ {1, . . . , N},

in (S.2.10) already constitute matrix representations of third-order CPDs. In the next
step we will further transform the decompositions of {U(p,3)} in (S.2.11) into a set of
coupled third-order CPD problems. In other words, we reduce (S.2.6) to a standard
coupled CPD problem that can be solved by via the SD procedure for coupled CPD
of third-order tensors.

Step 3: From coupled CPD of tensors of arbitrary order to coupled

CPD of third-order tensors. Let P(p,q,3) ∈ C
(
∏Qp

q=1 Jq,p)×(
∏Qp

q=1 Jq,p) denote the row-

permutation matrix with property U(q,p,3) := P(q,p,3)U(p,3) = (A(q,p) #B(q,p))C̃
T
in

which B(q,p) := A(q+1,p) # · · · # A(Qp,p) # A(1,p) # · · · # A(q−1,p). From U(p,3) we
extract Qp matrices with joint matrix factorization





U(1,p,3)

...
U(Qp,p,3)



 =





U(1,p,3)

...
U(Qp,p,3)



 =





A(1,p) #B(1,p)

...
A(Qp,p) #B(Qp,p)



 C̃
T
. (S.2.12)



10

Overall, from (S.2.10) and (S.2.12) we obtain





U(1,2)

...
U(N,2)

U(1,1,3)

...
U(Q1,1,3)

...

U(1,P,3)

...
U(QP ,P,3)





=





A(1) #B(1)

...
A(N) #B(N)

A(1,1) #B(1,1)

...
A(Q1,1) #B(Q1,1)

...

A(1,P ) #B(1,P )

...
A(QP ,P ) #B(QP ,P )





C̃
T
. (S.2.13)

From (S.2.13) it is now clear that the discussed SD procedures developed for third-
order tensors can also be used to compute the coupled CPD of tensors of arbitrary
order.

S.3. Supplementary material related to Section 5. In this section we prove
the following lemma.

Lemma S.3.1. Assume that the matrix

E =





CL+1

(
A

(1)
)
# CL+1

(
B

(1)
)

...

CL+1

(
A

(N)
)
# CL+1

(
B

(N)
)




P ∈ C(

∑N
n=1 CL+1

In
CL+1

Jn
)×(CL+1

R+L−R),

has full column rank, where A
(n) = [A(1,n) · · · A

(R,n)] ∈ CIn×RL and B
(n) =

[B(1,n) · · · B
(R,n)] ∈ CJn×RL, and P is defined by [4, eq. (5.16)]. Then

(i) max
1≤n≤N

r(A(r,n)
B

(r,n)T ) = L for all r ∈ {1, . . . , R};

(ii) the matrix F(red) given by [4, eq. (3.8)] has full column rank.
Proof. (i) We use the following properties of compound matrices [2, p. 19–22]: if

k is a positive integer and X and Y are matrices such that XY, Ck(X), and Ck(Y)
are defined, then

Ck(XY) = Ck(X)Ck(Y), (S.3.1)

r(XY) ≤ k − 1 if and only if Ck(XY) = O. (S.3.2)

The first property is known as “Binet-Cauchy formula” and the second property
follows from the fact that the entries of Ck(XY) are all possible k× k minors of XY.

We prove statement (i) for r = 1. The general case can be proved in the same
way. Assume to the contrary that (i) does not hold for r = 1, that is

r(A(1,n)B(1,n)T ) ≤ L− 1 for all n ∈ {1, . . . , N}. (S.3.3)

We will arrive at a contradiction by showing that the first column of the matrix E is
zero. By construction of P, the first column of P is enumerated by the (L+ 1)-tuple
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(1, . . . , 1, 2) of Ω defined by [4, eq. (5.15)], and the entries of the first column (or the
rows) of P can be enumerated by means of the elements of Σ := {(i1, . . . , iL+1) : 1 ≤
i1, . . . , iL+1 ≤ LR}. Hence, by [4, eq. (5.16)], the nonzero entries of the first column
of P are enumerated by means of the (L + 1)-tuples {(1, 2, . . . , L, k)}2Lk=L+1. This in
turn means that the first (or the (1, . . . , 1, 2)nd) column of the matrix E equals

E(1,...,1,2) =
2L∑

k=L+1





CL+1

(
A(1)

)
# CL+1

(
B(1)

)

...

CL+1

(
A(N)

)
# CL+1

(
B(N)

)





(1,2,...,L,k)

=
2L∑

k=L+1





CL+1

(
A(1)

)

(1,2,...,L,k)
⊗ CL+1

(
B(1)

)

(1,2,...,L,k)
...

CL+1

(
A(N)

)

(1,2,...,L,k)
⊗ CL+1

(
B(N)

)

(1,2,...,L,k)





=
L∑

k=1





CL+1

(
[A(1,1) a(2,1)k ]

)
⊗ CL+1

(
[B(1,1) b(2,1)

k ]
)

...

CL+1

(
[A(1,N) a(2,N)

k ]
)
⊗ CL+1

(
[B(1,N) b(2,N)

k ]
)




,

(S.3.4)

in which [·](1,2,...,L,k) denotes the (1, 2, . . . , L, k)th column of matrix [·]. From proper-
ties of Vec operation and (S.3.1) it follows that for all n ∈ {1, . . . , N}

CL+1

(
[A(1,n) a(2,n)k ]

)
⊗ CL+1

(
[B(1,n) b(2,n)

k ]
)
=

Vec

(
CL+1

(
[B(1,n) b(2,n)

k ]
)T

CL+1

(
[A(1,n) a(2,n)k ]

))
=

Vec
(
CL+1

(
[B(1,n) b(2,n)

k ]T [A(1,n) a(2,n)k ]
))

. (S.3.5)

Since by assumption (S.3.3), r
(
[B(1,n) b(2,n)

k ]T [A(1,n) a(2,n)k ]
)
≤ L, from (S.3.2) and

(S.3.5) it follows that CL+1

(
[A(1,n) a(2,n)k ]

)
⊗ CL+1

(
[B(1,n) b(2,n)

k ]
)
= 0 for all n ∈

{1, . . . , N}. Hence, by (S.3.4), the first column of the matrix E is equal to zero.
(ii) Assume that F(red)f = 0 for some f ∈ CR. Then, by [4, eq. (3.7)], the identity

0 = F(red)f can be considered as the matrix representation of a coupled BTD [4, eq.
(3.2)] in which the tensors X (1), . . . ,X (N) are zero and C(red) = fT or, equivalently,
C = [f1, . . . , f1, . . . , fR, . . . , fR] (each coordinate is repeated L times). Hence, by [4,
eq. (5.17)],

E · R(dis)
L+1(C)T =






RL+1(X (1))
...

RL+1(X (N))




 = O. (S.3.6)

By [4, eq. (5.14)], gT := R(dis)
L+1(C) is an 1-by-(CL+1

R+L − R) vector with coordinates
fj1 · · · fjL+1 , (j1, . . . , jL+1) ∈ Ω. Since, by assumption, the matrix E has full column
rank, it follows from (S.3.6) that g is equal to the zero vector. Hence, fj1 · · · fjL+1 = 0
for all (j1, . . . , jL+1) ∈ Ω. In particular, fifL

j = 0 for all 1 ≤ i < j ≤ L + 1, implying
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that the vector f has at most one nonzero coordinate. If such a coordinate exists, then
the equation F(red)f = 0 implies that F(red) has a zero column which will contradict
statement (i). Hence, f = 0.

S.4. ALS method for coupled CPD. We consider coupled Polyadic Decom-
positions (PDs) of a given set of tensors X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N}, of the
following form:

X (n) =
R∑

r=1

a(n)r ◦ b(n)
r ◦ cr , n ∈ {1, . . . , N}.

In addition toX(n)
(1) =

[
X(1··,n)T , . . . ,X(In··,n)T

]T
=
(
A(n) #B(n)

)
CT andX(n)

(3) =
[
X(··1,n)T , . . . ,X(··K,n)T

]T
=
(
C#A(n)

)
B(n)T defined in [4], the ALS method will

also make use of the following matrix representation. Let the matrices X(·j·,n) ∈

CK×In be such that
(
X(·j·,n)

)

ki
= x(n)

ijk , then X(·j·,n) = CDj

(
B(n)

)
A(n)T and

C
JnK×In ( X(n)

(2) :=
[
X(·1·,n)T , . . . ,X(·Jn·,n)T

]T
=
(
B(n) #C

)
A(n)T . (S.4.1)

Recall that we have the following overall matrix representation of the coupled PD
of {X (n)}:

X =





X(1)
(1)
...

X(N)
(1)



 =





A(1) #B(1)

...
A(N) #B(N)



CT = FCT ∈ C
(
∑N

n=1 InJn)×K , (S.4.2)

where

F =





A(1) #B(1)

...
A(N) #B(N)



 ∈ C
(
∑N

n=1 InJn)×R.

It is well-known that
(
A(n) #B(n)

)†
=
((

A(n)HA(n)
)
∗
(
B(n)HB(n)

))−1 (
A(n) #B(n)

)H
.

Hence, the conditional least squares update of C while {A(n)} and {B(n)} are fixed
is

CT = (F)†X =

(
N∑

n=1

(
A(n)HA(n)

)
∗
(
B(n)HB(n)

))−1

FHX . (S.4.3)

Using

(
A(n) #B(n)

)H
X(n)

(1) (:, k) = Vecd
(
B(n)HX(··k,n)TA(n)∗

)
=





b(n)H
1 X(··k,n)Ta(n)∗

1
...

b(n)H
R X(··k,n)Ta(n)∗

R




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relation (S.4.3) can be expressed in a way that avoids the explicit construction of the
tall matrix F, as follows:

CT = (F)† X =

(
N∑

n=1

(
A(n)HA(n)

)
∗
(
B(n)HB(n)

))−1

·
N∑

n=1





b(n)H
1 X(··1,n)Ta(n)∗1 · · · b(n)H

1 X(··K,n)Ta(n)∗1
...

. . .
...

b(n)H
R X(··1,n)Ta(n)∗R · · · b(n)H

R X(··K,n)Ta(n)∗R



 .

The conditional least squares updates of A(n) and B(n) are the same as in the ALS
method for ordinary CPD. We summarize the ALS method for computing a coupled
CPD in Algorithm 1. Observe that D = CHC appears in both DA(n) and DB(n) .
The normalization in steps 3 and 7 fixes the scaling ambiguity. The extension to
coupled CPD of Mnth-order tensors in which Mn ≥ 4 for one or more n ∈ {1, . . . , N}
is straightforward.

The ALS method can also be used to compute coupled matrix-tensor factoriza-

tions by taking the following into account. Assuming X(n)
(1) = A(n)CT , the updates of

B(n) in steps 8 and 9 in Algorithm 1 can be omitted. More precisely, we fix B(n) = 1T
R,

and drop normalization step 7 so that A(n) is updated as A(n) = X(n)
(1)

(
CT
)†

.

Algorithm 1 ALS method for coupled CPD.

Initialize: {A(n)}, {B(n)} and C
Repeat until convergence

1. DC =
N∑

n=1





b(n)H
1 X(··1,n)Ta(n)∗1 · · · b(n)H

1 X(··K,n)Ta(n)∗
1

...
. . .

...

b(n)H
R X(··1,n)Ta(n)∗R · · · b(n)H

R X(··K,n)Ta(n)∗
R



 .

2. CT =
(∑N

n=1

(
A(n)HA(n)

)
∗
(
B(n)HB(n)

))−1
DC .

3. cr ←
cr

‖cr‖F
, r ∈ {1, . . . , R} .

4. D = CHC.

5. DA(n) =





cH1 X(1··,n)Tb(n)∗
1 · · · cH1 X(In··,n)Tb(n)∗

1
...

. . .
...

cHRX(1··,n)Tb(n)∗
R · · · cHRX(In··,n)Tb(n)∗

R



 , n ∈ {1, . . . , N}.

6. A(n)T =
((

B(n)HB(n)
)
∗D

)−1
DA(n) , n ∈ {1, . . . , N} .

7. a(n)
r ← a

(n)
r

‖a(n)
r ‖F

, r ∈ {1, . . . , R} , n ∈ {1, . . . , N} .

8. DB(n) =





a(n)H
1 X(·1·,n)Tc∗1 · · · a(n)H1 X(·Jn·,n)Tc∗1

...
. . .

...

a(n)H
R X(·1·,n)Tc∗R · · · a(n)HR X(·Jn·,n)T c∗R



 , n ∈ {1, . . . , N}.

9. B(n)T =
(
D ∗

(
A(n)HA(n)

))−1
DB(n) , n ∈ {1, . . . , N} .
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S.5. ALS method for coupled BTD. Consider

X (n) =
R∑

r=1

Lr,n∑

l=1

a(r,n)
l ◦ b(r,n)

l ◦ c(r) =
R∑

r=1

(
A(r,n)B(r,n)T

)
◦ c(r), (S.5.1)

where X (n) ∈ CIn×Jn×K and n ∈ {1, . . . , N}.

In addition to X(n)
(1) =

[
X(1··,n)T , . . . ,X(In··,n)T

]T
=
(
A(n) #B(n)

)
C(n)T and

X(n)
(3) =

[
X(··1,n)T , . . . ,X(··K,n)T

]T
=
(
C(n) #A(n)

)
B(n)T defined in [4] we have the

following analogue of (S.4.1):

C
JnK×In ( X(n)

(2) =
[
X(·1·,n)T , . . . ,X(·Jn·,n)T

]T
=
(
B(n) #C(n)

)
A(n)T .

Expression (S.4.2) can be extended as follows:

X =
[
X(1)T

(1) , . . . ,X(N)T
(1)

]T
= F(red)C(red)T ∈ C

(
∑N

n=1 InJn)×K , (S.5.2)

where F(red) ∈ C(
∑N

n=1 InJn)×R is given by

F(red) =





Vec
(
B(1,1)A(1,1)T

)
· · · Vec

(
B(R,1)A(R,1)T

)

...
. . .

...

Vec
(
B(1,N)A(1,N)T

)
· · · Vec

(
B(R,N)A(R,N)T

)




, (S.5.3)

C(red) =
[
c(1), . . . , c(R)

]
∈ C

K×R, (S.5.4)

The conditional least squares update of C(red) while {A(n)} and {B(n)} are fixed is

C(red)T =
(
F(red)

)†
X ,

where F(red) is given by (S.5.3) We normalize the column vectors of C(red):

c(red)r ←
c(red)r

‖c(red)r ‖F
, ∀r ∈ {1, . . . , R} .

Note that

DA(n) =
(
B(n) #C(n)

)H
X(n)

(2)

=






c(1)HX(1··,n)Tb(1,n)∗
1 · · · c(1)HX(In··,n)Tb(r,n)∗

1
...

. . .
...

c(1)HX(1··,n)Tb(1,n)∗
L1,n

· · · c(1)HX(In··,n)Tb(1,n)∗
L1,n

...

c(R)HX(1··,n)Tb(R,n)∗
1 · · · c(R)HX(In··,n)Tb(R,n)∗

1
...

. . .
...

c(R)HX(1··,n)Tb(R,n)∗
LR,n

· · · c(R)HX(In··,n)Tb(R,n)∗
LR,n






=





B(1,n)∗ · d(1,1,n) · · · B(1,n)∗ · d(1,In,n)

...
. . .

...

B(R,n)∗ · d(R,1,n) · · · B(R,n)∗ · d(R,In,n)



 , (S.5.5)
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where d(r,i,n) = X(i··,n)c(r)∗. The conditional least squares updates of {A(n)} while
{C(n)} and {B(n)} are fixed are given by

A(n)T =
((

B(n)HB(n)
)
∗D(n)

)−1
DA(n) , n ∈ {1, . . . , N} ,

where D(n) = C(n)HC(n). We normalize the matrix blocks {A(r,n)} of A(n). Let
A(r,n) = Q(r,n)R(r,n) denote the QR-factorization of A(r,n), where Q(r,n) ∈ CIn×Lr,n

is a columnwise orthonormal matrix and R(r,n) ∈ CLr,n×Lr,n is an upper triangular
matrix. We set

A(r,n) ← Q(r,n) , ∀r ∈ {1, . . . , R}, ∀n ∈ {1, . . . , N} .

The conditional least squares updates of {B(n)} while {C(n)} and {A(n)} are fixed
are given by

B(n)T =
(
D(n) ∗

(
A(n)HA(n)

))−1
DB(n) , n ∈ {1, . . . , N} ,

where again D(n) = C(n)HC(n) and

DB(n) =
(
C(n) #A(n)

)H
X(n)

(3)

=





A(1,n)∗ · d(1,1,n) · · · A(1,n)∗ · d(1,Jn,n)

...
. . .

...

A(R,n)∗ · d(R,1,n) · · · A(R,n)∗ · d(R,Jn,n)



 , (S.5.6)

in which d(r,j,n) = X(·j·,n)T c(r)∗. Observe that D(n) = C(n)HC(n) appears in both
DA(n) and DB(n) . The ALS method is summarized as Algorithm 2. The normal-
ization steps 3 and 7 fix the scaling and transformation ambiguities. The extension
to coupled Mnth-order tensors in which Mn ≥ 4 for one or more n ∈ {1, . . . , N} is
straightforward.

Algorithm 2 ALS method for coupled BTD

Initialize: {A(n)}, {B(n)} and C(red)

Repeat until convergence
1. Build F(red) in (S.5.3).

2. C(red)T =
(
F(red)

)†
X.

3. c(red)r ← c
(red)
r

‖c
(red)
r ‖F

, r ∈ {1, . . . , R} .

4. D(n) = C(n)HC(n) , n ∈ {1, . . . , N}.
5. Build DA(n) in (S.5.5) for every n ∈ {1, . . . , N}.

6. A(r,n) = Q(r,n)R(r,n) , r ∈ {1, . . . , R}, n ∈ {1, . . . , N} .
7. A(r,n) ← Q(r,n) , r ∈ {1, . . . , R}, n ∈ {1, . . . , N} .
8. Build DB(n) in (S.5.6) for every n ∈ {1, . . . , N}.

9. B(n)T =
(
D(n) ∗

(
A(n)HA(n)

))−1
DB(n) , n ∈ {1, . . . , N}.
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S.5.1. Proof of Proposition 5.2. Consider the PD

C
I×J×K ( X =

R∑

r=1

Lr∑

l=1

a(r)l ◦ b
(r)
l ◦ c

(r) =
R∑

r=1

(
A(r)B(r)T

)
◦ c(r) . (S.5.7)

Assume that C(red) =
[
c(1), . . . , c(R)

]
∈ CK×R is known. Let S denote a subset

of {1, . . . , R} and let Sc = {1, . . . , R} \ S denote the complementary set. Stack the
columns ofC(red) with index in S inC(S) ∈ CK×card(S) and stack the columns ofC(red)

with index in Sc in C(Sc) ∈ CK×(R−card(S)). Let the elements of S be indexed by
σ(1), . . . ,σ(card (S)) and let the elements of Sc be indexed by µ(1), . . . , µ(card (Sc)).
The corresponding partitions of A(n) and B(n) are then given by

A(S) =
[
A(σ(1)), . . . ,A(σ(card(S)))

]
∈ C

I×(
∑

p∈S Lp),

A(Sc) =
[
A(µ(1)), . . . ,A(µ(card(Sc)))

]
∈ C

I×(
∑

p∈Sc Lp),

B(S) =
[
B(σ(1)), . . . ,B(σ(card(S)))

]
∈ C

J×(
∑

p∈S Lp),

B(Sc) =
[
B(µ(1)), . . . ,B(µ(card(Sc)))

]
∈ C

J×(
∑

p∈Sc Lp).

If there exists a subset S ⊆ {1, . . . , R} with 0 ≤ card (S) ≤ rC(red) such that1






C(S) has full column rank (i.e., rC(S) = S) ,

B(Sc) has full column rank
(
i.e., rB(Sc) =

∑
p∈Sc Lp

)
,

r

([(
PC(S)C̃

(Sc)
)
#A(Sc),

(
PC(S)c

(Sc)
µ(r)

)
⊗ II

])
= I +

∑
p∈Sc Lp − Lr , ∀r ∈ Sc,

(S.5.8)

where C̃
(Sc)

=
[
1T
Lµ(1)

⊗ c(S
c)

µ(1), . . . ,1
T
Lµ(card(Sc))

⊗ c(S
c)

µ(card(Sc))

]
,then the decomposition

of X in (S.5.7) is unique.
Proof. The result is a variant of [3, Theorem 4.8] to the case where C contains

collinear columns. W.l.o.g. we assume that C(red)(1 : card (S) , 1 : card (S)) is non-
singular, i.e., we set C(S) = C(red)(:, 1 : card (S)). Observe that

PC(S)C(red) = PC(S)

[
C(S),C(Sc)

]
=
[
0K,card(S),PC(S)C(Sc)

]
.

We work in two steps. First we compute A(Sc) and B(Sc), later we also compute A(S)

and B(S).
Step 1. Compute Y(1) = X(1)P

T
C(S) , then

Y(1) =
[
Vec

(
B(µ(1))A(µ(1))T

)
, . . . ,Vec

(
B(µ(card(Sc)))A(µ(card(Sc)))T

)]
C(Sc)TPT

C(S) .

Denote D̃
(Sc)

= PC(S)C̃
(Sc)

. The tensor Y also has matrix representation

Y(3) =

(
D̃

(Sc)
#A(Sc)

)
B(Sc)T .

1The last condition means that Mr =

[(
P

C(S)C̃
(Sc)

)
!A(Sc),

(
P

C(S)c
(Sc)
µ(r)

)
⊗ II

]
has an

Lr-dimensional kernel for every r ∈ Sc, which is minimal since for every p ∈ {1, . . . , Lr} the vector

[nT
r , a

(µ(r))T
p ]T ∈ ker (Mr) for some nr ∈ Ccard(Sc).
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By assumption, r

([
D̃

(Sc)
#A(Sc),

(
PC(S)c

(Sc)
µ(r)

)
⊗ II

])
= I +

∑
p∈Sc Lp − Lr, ∀r ∈

Sc. Note that
(
PC(S)c

(Sc)
µ(r)

)
⊗a(µ(r))p ∈ range

((
PC(S)c

(Sc)
µ(r)

)
⊗ II

)
, ∀p ∈ {1, . . . , Lµ(r)}.

This implies that r

(
D̃

(Sc)
#A(Sc)

)
=
∑

p∈Sc Lp, i.e., D̃
(Sc)
#A(Sc) has full column

rank. By assumption, B(Sc) also has full column rank. Let Y(3) = UΣVH denote the

compact SVD of Y(3) in which U ∈ C
KI×(

∑
p∈Sc Lp), then there exists a nonsingular

matrix M ∈ C
(
∑

p∈Sc Lp)×(
∑

p∈Sc Lp) such that

UM = D̃
(Sc)
#A(Sc). (S.5.9)

Partition M as follows

M =
[
M(µ(1)), . . . ,M(µ(Sc))

]
, M(µ(r)) ∈ C

(
∑

p∈Sc Lp)×Lr , r ∈ Sc,

then (S.5.9) is equivalent to

G(µ(r),Sc)

[
M(µ(r))

A(µ(r))

]
= 0KI,Lr , r ∈ Sc, (S.5.10)

in which G(µ(r),Sc) ∈ C
KI×(I+

∑
p∈Sc Lp) is given by

G(µ(r),Sc) =
[
U,−

(
PC(S)c

(Sc)
µ(r)

)
⊗ II

]
, r ∈ Sc. (S.5.11)

The assumption that G(µ(r),Sc) has rank I +
∑

p∈Sc Lp − Lr, ∀r ∈ Sc, implies that

the matrices M(µ(r)) and A(µ(r)) follow from the kernel of (S.5.10), ∀r ∈ Sc. The
solution is known up to right multiplication by a nonsingular (Lr×Lr) matrix, which
is an intrinsic BTD indeterminacy. Next we find B(Sc) from

B(Sc)T =

(
D̃

(Sc)
#A(Sc)

)†

Y(3)

=

((
C̃

(Sc)H
D̃

(Sc)
)
∗
(
A(Sc)HA(Sc)

))−1(
D̃

(Sc)
#A(Sc)

)H

Y(3).

Step 2. Now that A(Sc) and B(Sc) are known, we compute

Q(1) = Y(1) −
[
Vec

(
B(µ(1))A(µ(1))T

)
, . . . ,Vec

(
B(µ(card(Sc)))A(µ(card(Sc)))T

)]
C(Sc)T

=
[
Vec

(
B(σ(1))A(σ(1))T

)
, . . . ,Vec

(
B(σ(card(S)))A(σ(card(S)))T

)]
C(S)T .

Recall that the matrix C(S) is assumed to have full column rank. Hence, we can
compute

H = Q(1)

(
C(S)T

)†
.

The remaining unknowns A(S) and B(S) now follow from the rank-Lr approximation
problems

min
A(σ(r)) ,B(σ(r))

∥∥∥hσ(r) −Vec
(
B(σ(r))A(σ(r))T

)∥∥∥
2

F
, r ∈ S .
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W.r.t. (5.3) in [4] we also note that, similarly to (S.5.6),

DB(Sc) =

(
D̃

(Sc)
#A(Sc)

)H

Y(3)

=





A(µ(1))∗ · f(1,1) · · · A(µ(1))∗ · f(1,J)

...
. . .

...

A(µ(card(Sc)))∗ · f(card(S
c),1) · · · A(µ(card(Sc)))∗ · f(card(S

c),J)



 ,

where f(r,j) = Y(·j·)TPC(S)c
(Sc)∗
µ(r) .
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