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Abstract—The constant increase in wireless handheld devices
and the prospect of billion of connected machines has brought the
cellular community to research many different technologies able
to deliver high datarate and quality of service to the mobile users.
One of the problems, usually overlooked by the community, is
that more devices means higher signalling necessary to coordinate
transmission and to allocate resources effectively. Particularly,
channel state information of the users’ channels is necessary in
order for the base station to assign frequency resources. On the
other hand, this feedback information comes at a cost of uplink
bandwidth which is traditionally not considered. In this work, we
analyse the impact that reduced user feedback information has on
an LTE network. A model, which considers the trade-off between
downlink performance and uplink overhead is presented. We
introduce different feedback allocation strategies, which follow
the same structure as the ones in the LTE standard, and study
their effects on the network for varying number of users and
different resource allocation strategies. We show that dynamically
allocating feedback resources can be beneficial for the network. In
order for the base station to determine which feedback allocation
strategy is the most beneficial, in specific network conditions,
we propose two reinforcement learning algorithms. The first
solution allows the base station to allocate one homogeneous
feedback strategy valid for all the users served, while, the second
more complex solution determines a different strategy for each
user based on its channel conditions. The reinforcement learning
methods show that, even in dynamic scenarios, each base station is
capable of determining an optimal operating point autonomously,
hence optimally balancing feedback overhead and benefits.

I. INTRODUCTION

THE proliferation of radio-capable hand-held devices in re-
cent years has impacted wireless communication markets

in an unprecedented way. The increase of these products is a
source of capitalization and challenges for the wireless com-
munity [1]. Technologies such as Long Term Evolution (LTE)
and its successors (LTE-A, LTE-B), strive to provide ubiqui-
tous and high speed cellular connectivity. In order to achieve
high throughput in a multi-user context, OFDMA has been
chosen as the downlink physical layer access technology. In
LTE, OFDMA divides the bandwidth into orthogonal blocks,
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called Physical Resource Blocks (PRBs) and a frequency
domain scheduler assigns such PRBs to the served users
based on their channel conditions [2]. Thanks to the Channel
State Information (CSI), an LTE base station, can obtain high
spectral efficiency by allocating different amounts of PRBs
to the users and adapting the transmission modulation and
coding schemes (MCS) accordingly. CSI information is hence
extremely important for the base station to be able to allocate
resources in an efficient way. Although this feedback signalling
information (FB) is necessary for the optimal operation of
the network, it is also infeasible in an uncompressed way:
a full feedback scenario, in which every user transmits CSI
to the base station on every PRB at every time instant, would
require more than the available LTE uplink bandwidth [3].
Different feedback reduction techniques have been proposed
for OFDMA systems, in [4] the authors discuss and compare
a number of feedback reduction methods; these can be divided
into two categories: threshold-based and Subband grouping
[4]. The first method allows a user to feedback CSI for a
PRB only when the channel quality exceeds a pre-determined
threshold. While this method reduces the amount of feedback
information sent by the users, it does so at the cost of reducing
the datarate. The second method allows the users to transmit
CSI only on groups of PRBs instead of single ones.

The LTE network also uses the Subband grouping feedback
reduction, of which 3 different variations are allowed: (1) a
wideband feedback, through which users report only one value
for the whole bandwidth; (2) a subband level feedback, through
which CSI information is reported only for k consecutive PRBs
(where k is bandwidth dependent) and (3) a user-selected
feedback (also called Best − M ) through which each user
selects the M PRBs which have the best channel and reports
CSI valid across the whole selected band [2]. The Best−M
policy has been proven to be efficient when paired with
opportunistic resource allocation [5] and to reach performance
close to the more demanding sub-band level feedback when
the number of served users is sufficiently high [6]. In [7]
the authors present a heterogeneous FB allocation strategy
where the number of FB resources are adapted to the user’s
channel quality with a maximum throughput scheduler. In
[3] the authors show that the number of served users and
different fairness strategies, imposed by the frequency resource
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allocation mechanisms, influence the impact of FB strategies
and that determining an optimal FB allocation is possible. The
impact of FB information is then a function of the number
of users served by the base station, their channel quality and
the scheduling algorithm used to assign the PRBs to the users.
Both works determine a minimal amount of FB information,
valid for all the served users, to obtain the same performances
as a full FB system. They do not consider either the practical
limitations present in an LTE network and that different FB
allocations among users could bring added benefits compared
with a single allocation. In this work we first study the impact
of FB information on an LTE network already using the pre-
compressed FB allocation schemes present in the standard.
We show that flexible solutions can provide considerable gain.
We propose two reinforcement learning solutions capable of
steering the the base station in a position of optimal FB
allocation. Both methods make use of Q-Learning [8] to
determine which FB allocation maximises the performance
and neither require prior training to converge to an optimal
solution. The first algorithm finds a single FB allocation valid
for all the users while the second, more complex solution,
determines a more heterogeneous solution in which the users
are allocated different FB amounts based on their channel
quality.

The following section describes the LTE system model,
it introduces the standard-compliant and newly proposed FB
allocation strategies and the scheduling algorithms. In Section
III the model used to describe the impact of FB onto the cell’s
performances is introduced, and Section IV presents the results
for various schedulers. Section V discusses the reinforcement
learning methods and introduces the concept of Q-Learning. In
Section V-B a Q-Learning method to determine the optimal FB
allocation across the cell is presented. Section V-C a different
Q-Learning method able to assign various FB allocations to
different categories of users is presented. In Section VI the
simulation results for the two algorithms are discussed. Finally,
Section VII draws the concluding remarks.

II. SYSTEM MODEL

A. Network model
A multi-cell LTE downlink OFDMA scenario is analysed.

The network is composed of B base stations (eNodeBs),
each serving an equal amount NU of mobile users (MU).
LTE makes use of time-frequency resource allocation: the
frequency bandwidth is split into subcarriers grouped into
subbands of Nsc subcarriers each. The time is slotted and a
time slot contains Nsymb OFDM symbols. Each subcarrier -
OFDM symbol pair is named a resource element (RE). The
smallest granularity the eNodeB can allocate is composed by
Nsc ·Nsymb REs and is called a physical resource block (PRB).

In order to allocate resources to the MUs, the base station
requests the user’s channel quality information on each PRB
in the frame. The users measure the signal-to-noise-plus-
interference ratio (SINR) for each PRB. The SINR is quantized
into a Channel Quality Indicator (CQI) value, indicative of the
highest modulation and code rate the base station may use on
that PRB while keeping a bit error rate (BER) below a target

10% as shown in table I [9] . Each user then feeds back these
CQI values to the base station.

SINR CQI modulation code rate efficiency
(x 1024)

-6.9360 1 QPSK 78 0.1523
-5.1470 2 QPSK 120 0.2344
-3.1800 3 QPSK 193 0.3770
-1.2530 4 QPSK 308 0.6016
0.7610 5 QPSK 449 0.8770
2.6990 6 QPSK 602 1.1758
4.6940 7 16QAM 378 1.4766
6.5250 8 16QAM 490 1.9141
8.5730 9 16QAM 616 2.4063

10.3660 10 64QAM 466 2.7305
12.2890 11 64QAM 567 3.3223
14.1730 12 64QAM 666 3.9023
15.8880 13 64QAM 772 4.5234
17.8140 14 64QAM 873 5.1152
19.8290 15 64QAM 948 5.5547

TABLE I. SINR AND CQI MAPPING TO MODULATION AND CODING
RATE

Once the CQIs for each PRB have been collected, the eN-
odeB is capable of scheduling resources to each user according
to the resource allocation function.

In a practical scenario, however, the CQI reporting is not
performed for each PRB, but is quantized in order to reduce
the control signalling overhead. The 3 reporting techniques
allowed in the LTE standard are presented in the following
sub-section [10].

B. LTE feedback schemes

• Wideband: each user transmits a single 4-bit CQI value
for all the PRBs in the bandwidth.

• Higher Layer configured or subband level: the bandwidth
is divided into q subbands of k consecutive PRBs and
each user feeds back to the base station one 4-bit
wideband CQI and a 2-bit differential CQI for each
subband. The value of k is bandwidth dependent and
is expressed in table II, where NDL

PRB is total number of
downlink PRBs in the bandwidth.(table 7.2.1-2 in [10]).

System Bandwidth Subband Size
NDLPRB (k)

6 - 7 NA
8 - 10 4

11 - 26 4
27 - 63 6
64 - 110 8

TABLE II. SUBBAND SIZE (K) VS. SYSTEM BANDWIDTH FOR
SUBBAND LEVEL FEEDBACK

• User-selected, or Best −M : each user selects M pre-
ferred subbands of equal size k and will transmit to the
base station one 4-bit wideband CQI and a single 2-bit
CQI value that reflects the channel quality only over the
selected M subbands. Additionally, the user also reports
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the position of the selected subbands using PFB bits,
where PFB , as given in [10], is:

PFB = dlog2
(
NDL
PRB

M

)
e. (1)

The value of M and the amount of PRBs in each
subband is given in table III (table 7.2.1-5 in [10]):

System Bandwidth Subband Size M
NDLPRB (k)

6 - 7 NA NA
8 - 10 2 1

11 - 26 2 3
27 - 63 3 5
64 - 110 4 6

TABLE III. SUBBAND SIZE (K) AND NUMBER OF SUBBANDS
(M) VS. SYSTEM BANDWIDTH FOR USER-SELECTED FEEDBACK

The three standard compliant feedback schemes do limit
the amount of overhead information transmitted by the users,
but they do not allow the base station to request a variable
amount of feedback to the MU. This could be particularity
interesting, firstly, to study the impact that control information
has on the data rate and, secondly, to enhance multi-user
diversity by allowing different quantities of CQI feedback
to users based on their channel conditions. On top of the
standard compliant feedback schemes, two extra FB allocation
mechanisms have been implemented in order to understand the
effects that feedback scarcity has on the downlink capacity;
• Full feedback scheme: each user transmits a 4-bit wide-

band CQI value and a 2-bit CQI for each PRB. This
scheme gives an indication of the maximum capacity
the network can achieve when full feedback resolution
is available.

• Variable Best-M: This scheme is a flexible implemen-
tation of the user-selected one above. The number of
subbands M is adapted as a function of the number of
users and the system’s conditions. Also, there will be
a 2-bit CQI value fed back for each subband instead
of a single one valid across all subbands. Varying the
number of subbands assigned to the users can allow the
base station to tailor the amount of FB dynamically, in
Section IV the criteria that influence M are analysed.

C. Resource Allocation Mechanisms
While the CQI information defines the rate obtainable on

each PRB, the overall cell rate is also function of the resource
allocation mechanism implemented in the base station. The
scheduling methods, used in this work to define the impact of
FB reduction on the cell rate, are described here.
• Best CQI (BCQI) is a greedy scheduler designed to

maximise cell throughput. In fact, for each PRB, only
the user with the highest channel quality is assigned.

• Proportional Fair (PF): this scheduler is designed to
maximise the fraction T

T
α where T is the instantaneous

throughput of the user on PRB, T is a moving average

of the user’s throughput over the previous time slots and
α is a fairness coefficient, usually set equal to 1. The PF
trades off throughput for fairness.

• Min Max (MM): this method has the objective to max-
imise fairness at the expenses of throughput.

III. FEEDBACK MODEL

In this section, we quantify the amount of resources required
for the feedback. This model will be complemented with
simulation results obtained by optimising feedback and ca-
pacity. Table IV includes the bit cost of the different feedback
allocation methods presented in section II, where NU is the
number of served users.

Feedback Scheme Bit cost
Wideband 2 · (4 ·NU )

Subband level 2 · (4 + 2 · q) ·NU
User-selected 2 · (4 + 2 + dlog2

(NDLPRB
M

)
e) ·NU

Full feedback 2 · (4 + 2 ·NDLPRB) ·NU
Variable Best-M 2 · (4 + 2 ·M + dlog2

(NDLPRB
M

)
e) ·NU

TABLE IV. SUBBAND SIZE (K) VS. SYSTEM BANDWIDTH

The equations expressed in table IV refer to a single
stream of data. If the system makes use of Multiple Input
Multiple Output (MIMO), the amount of feedback necessary
is multiplied by the number of streams. This does not affect
the relation to the network’s capacity if UL MIMO is also used
for transmitting the feedback information.

Figure 1 shows the amount of feedback required for the
different schemes as a function of the number of users with a
20MHz (100 PRBs) UL bandwidth using QPSK modulation.
The Figure shows that the full feedback scheme is practically
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Fig. 1. Portion of Uplink used by FB

unachievable but the standard compliant methods can use more
than 20% of the overall uplink bandwidth for 100 users.
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As the uplink and downlink PHY channels can carry only
a fixed number of modulation symbols but a variable number
of bits, in order to quantify the portion of resources that the
feedback requires, it is beneficial to redefine the number of
feedback bits into modulation symbols.

The uplink bandwidth of the LTE system, although using
SC-FDMA instead of OFDMA, also employs PRBs contain-
ing an identical number of modulation symbols per physical
resource block as the downlink: each PRB can carry 84
modulation symbols and has a duration of 0.5 ms. The symbol
rate is then S = Sul = Sdl = 168 · 103 · NDL

PRB , in both
downlink and uplink [11].

The relation between Baud rate S and the bit rate T is given
by:

S =
T

γ
, (2)

where γ is a coefficient which determines how many bits
are carried in a symbol; it depends on the modulation and
the code rate used. The modulations supported by uplink
LTE are QPSK, 16QAM and, only for a highest category of
mobile users, 64QAM [11]. Which means that each modulation
symbols can carry either 2, 4 or 6 bits for QPSK, 16QAM and
64QAM respectively.

The amount of feedback can then be expressed in modula-
tion symbols, and is here called Sfb.

The total amount of data transmitted per second is defined
as:

Ttot = Tdl + Tul = Tdl + Tul,data + Tul,fb, (3)

where Tdl and Tul represent the throughput in bits in the
downlink and the uplink. Tul,data is the amount of payload-
only throughput in the uplink and Tul,fb is the feedback
throughput obtained by multiplying the bit values expressed
in table IV by 103 as each frame is 1 ms long.

Using equation (2) it is possible to define (3) as:

Tp = γdl · Sdl + γul · Sul − γfb · Sul,fb, (4)

where Tp = Tdl + Tul,data is the throughput of the payload
data in both uplink and downlink. γul and γfb are considered,
generally, different as the system might request a more robust
modulation for signalling information over payload data. Since
S = Sul = Sdl, (4) can be written as:

Tp = (γdl + γul) · S − γfb · Sul,fb. (5)

One of the main problems in determining the uplink channel
parameters is that uplink and downlink are generally not sym-
metrical. In case of TDD LTE uplink and downlink bandwidth
could be exchanged if more traffic is demanded on one of
the two, making the trade-off very relevant. If FDD LTE is
used, on the other hand, the downlink and uplink frequency
bands are separate. Nevertheless, the feedback information is
still reducing the amount of uplink bandwidth available. In
order to model the impact of feedback signalling on the uplink
performance in a downlink simulator we impose γdl = 4γul,
as the LTE downlink spectral efficiency can be up to 4 times

higher than the LTE uplink spectral efficiency [11]. Equation
(5) becomes then

Tp =
5

4
γdl · S − γfb · Sul,fb. (6)

Finally, γdl is obtained directly from (2):

Tp =
5

4
Tdl − γfb · Sul,fb. (7)

Using equation (7) it is possible to determine whether adding
feedback to the system actually improves performance. More
feedback would reduce the amount of symbols available for the
payload (higher Sul,fb) but could also increase the downlink
throughput Tdl. In order to quantify the effect of each user on
the total useful throughput Tp, it is possible to redefine the
total throughput as the sum of the contribution of each user u:

Tp =

NU∑
u=1

Tup =

NU∑
u=1

(
5

4
Tudl − γufb · Suul,fb

)
. (8)

For the remainder of this paper a value of γfb = 2 has
been chosen; this is indicative of a 16QAM modulation with
a coding rate of 1/2.

IV. FEEDBACK IMPACT

In this section we present the impact of feedback compres-
sion on the total payload throughput. Specifically, we show
how the proposed variable Best-M method allows the base
station to request feedback signalling in a more flexible manner
and which variables influence the system in order to find the
optimal number of subbands M .

A. Simulation Parameters
The system has been simulated using the open source

VIENNA system level simulator [12]. An urban multicell
environment is considered to include the effects of multipath
propagation and interference. Adaptive modulation and coding
are used by the base station to allocate resources to the
users and there is no cooperation between cells regarding the
resource allocation. The simulations are carried out in full
buffer in order to account for full bandwidth occupancy and
allow for influence of the neighbouring interference on the
whole bandwidth. The simulation parameters are included in
table V.
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Parameters Values
Number of Macrocells 7
Sectors per Macrocell 3

Inter-cell distance 500 m
Macro antenna gain 15 dB

Macro Transmit Power 46 dBm
Macro users per sector 2 to 100

Frequency 2.1 GHz
System Bandwidth 20 MHz
Number of PRBs 100

Access technology OFDMA FDD
Number of antennae 1(Tx and Rx)

Channel model Winner Channel Model II [13]
Block fading mean 0 dB

Block fading deviation 10 dB
Fast fading 10 dB

Thermal noise density -174 dBm/Hz
Users speed 1 m/s

TABLE V. SYSTEM PARAMETERS

B. Impact of resource allocation on FB selection

The influence of the different FB allocation strategies for the
three schedulers is presented in figures 2 - 4. These figures
show the throughput Tp gain of the different strategies over
the subband-level allocation for a varying number of served
users. The values 1 − 7 on the horizontal axis of the figures
represent the FB strategy utilised, i.e, 7 indicates the subband-
level allocation; 6 represents the user-selected method; and
the other values refer to the proposed variable best-M with M
varying from 1 to 5.

When the BCQI scheduler is employed, the eNodeB max-
imises the downlink capacity; the best FB allocation strategy
allows the users with best channel quality to obtain the highest
throughput. As the cell users increase the impact of FB
information becomes increasingly relevant and with 100 con-
current users, the highest number of concurrent transmissions
in an LTE cell, choosing the Variable Best-M with M = 1
FB allocation brings about a 6% gain in total throughput.
This limited effect can be ascribed to the BCQI scheduler
exploiting multi-user diversity and selecting few users which
might contribute to most of the downlink throughput.

The results for the PF scheduler are presented in Figure 3.
In this case a much larger gain can be achieved –20% with
100 users– this gain can be attributed to the inherent trade-off
between throughput and fairness of the PF scheduler. As the
users increase, each individual one gets allocated less PRBs,
thus less knowledge of the complete bandwidth is necessary.
Furthermore, if a limited amount of PRBs are assigned, the
Variable Best-M FB allocation allows the base station to have
a better information of the users’ channel quality only in the
portion of bandwidth most likely to be assigned.: i.e. if only 3
PRBs are going to be assigned a Variable Best-M with M = 1
strategy averages the CQIs over 4 PRBs instead than over 8
like a subband level strategy.

Finally, Figure 4 presents the results for the MM scheduler.
This scheduler tries to maximise the fairness by improving
each user’s worst-PRB throughput. Even though this algorithm
is the opposite of the BCQI, the impact of FB allocation on the
throughput is similar. This is due to the fact that, even though
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more reliable information is available in the M best subbands
fed back by the users, the scheduler is designed to maximise
the worst rate and thereby to increase the likelihood that the
users are scheduled on a portion of the bandwidth that only
reports the wideband CQI. Thus there isn’t a real improvement
in the downlink rate but the gain comes from not having a loss
while reducing FB overhead.

The Variable Best-M feedback strategy allows a base station
to vary the amount of feedback necessary to maximise payload
throughput according the number of served users and schedul-
ing algorithm used by the base station. Table VI presents a
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compact representation of which homogeneous FB allocation
strategy is best to use based on the number of users for each
scheduling method.

Users Schedulers
Best CQI Proportional Fair Max Min

2 UE-select UE-select UE-select
8 UE-select Var. Best M, M = 4 UE-select

30 Var. Best M, M = 1 Var. Best M, M = 3 Var. Best M, M = 4
50 Var. Best M, M = 1 Var. Best M, M = 2 Var. Best M, M = 1
70 Var. Best M, M = 1 Var. Best M, M = 1 Var. Best M, M = 1
80 Var. Best M, M = 1 Var. Best M, M = 1 Var. Best M, M = 1
100 Var. Best M, M = 1 Var. Best M, M = 1 Var. Best M, M = 1

TABLE VI. BEST FB ALLOCATION STRATEGY PER SCHEDULER
BASD ON THE NUMBER OF SERVED USERS

If the base station were to allocate the FB dynamically to
each user differently, the multi-user diversity could be better
exploited. Figure 5 presents a comparison between a homoge-
neous and a dynamic multi-user FB allocation. The curves in
the continuous line represent the best gains for the different
number of users of Figures 2 - 4. The curves with dotted
line represent the improvement obtainable by performing a
dynamic multi-user resource allocation. In order to obtain the
results for a dynamic multi-user FB allocation, the simulations
have been run at full feedback and the resource allocation
decisions of the base stations have been recorded. Afterwards,
the simulations have been re-run and only the appropriate
amount of FB, computed with the previously obtained results,
has been allocated.

As the BCQI is the scheduler that better makes use of multi-
user diversity, it is also the one that benefits the most from a
dynamic FB allocation. Since the MM scheduler maximises
fairness, the amount of PRBs allocated to each user tends
to be equal; this way the benefit of a dynamic FB resource

allocation is lost. The PF scheduler makes use, albeit in a less
extent than the BCQI, of multi-user diversity, and thus sees
an improvement with dynamic FB allocation. The gains of the

Fig. 5. Gain of dynamic FB VS static FB allocation

dynamic FB allocation over the static one, in percentage, are
presented in table VII. The results for the Max Min scheduler
are omitted as the performance improvement was within 0.5%
for all users configuration.

Users Schedulers
Best CQI Proportional Fair

2 0.25 0
8 1 1.2
30 1.6 2
50 2.2 2.2
70 3 2.7
80 3.8 3
100 5 3.3

TABLE VII. PERCENTAGE GAIN OF DYNAMIC FB ALLOCATION
OVER STATIC ONE FOR BCQI AND PF SCHEDULERS

V. REINFORCEMENT LEARNING SOLUTIONS

A dynamic controller, capable of positioning the eNodeB in
an optimal operating point with respect to the FB allocation,
is a desirable device. In the previous section, the proposed
variable best-M FB strategy has been proven effective but the
system is not able to adjust the number of subbands necessary
dynamically with an unknown resource allocation strategy.

Such system has to learn from the cell’s current and previous
behaviours and makes an informed and intelligent decision
on the amount of FB to be allocated to the users. Learning
methods have been used successfully in wireless networks
and reinforcement learning (RL) is a family of techniques
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which seems to work particularly well in the context of self-
organization and resource allocation problems in LTE [14]–
[17].

A great advantage of RL over other learning techniques
is its model-free nature. It does not require an extensive
representation of the environment and it learns incrementally,
without a teacher, until enough information is obtained by the
agent. More information on general RL methods is presented
in Appendix 1. The following sections will discuss the Q-
Learning variant used in this work and the proposed solutions.

A. Q-Learning Structure

Q-learning is one method of the reinforcement learning
family designed to find an optimal action-selection policy by
acting upon the environment and determining the impact the
action has caused on the current state. By taking and action
in a given state, the QL agent learns an action-value function,
from which an optimal policy is constructed. Specifically, the
QL agent finds a function Q(s(t), a(t)) which converges to an
optimal value qπ

∗
(s(t), a(t)) independently of which policy is

followed [18].
The system consists in agent and its environment. Each

agent can be in any state s ∈ S, can perform any action a ∈ A
to pass from the current state to the next one. Once the action is
performed and the new state acquired, a reward r is obtained.
The objective of the agent is to maximise the total expected
reward and the optimal action, for each state, is the one that
presents the highest long term reward. The learned action-
value function Q(s(t), a(t)), also called Q-value, is defined
as:

Q(s(t), a(t))←
Q(s(t), a(t)) + β [r(t+ 1) + γ(t)maxaQ(s(t+ 1), a)−Q(s(t), a(t))] , (9)

where the learning factor β ∈ [0, 1] weights the influence of
previous experiences. The smaller the value, the higher is the
effect of previous Q-values. γ ∈ [0, 1] is the discount factor
which limits the influences of future rewards. A high value of γ
weights greatly the influence that the best action taken for the
state s(t+1) has in taking the current action a(t). The system
builds, thus, a Q-Table of size S ·A and updates the Q-values
at each time interval t. All that is required for the convergence
of the function is that all state-action pairs are visited [8]; this
requirement forces the design of an exploration-exploitation
policy so that the Q-Table can be completed. In the most
common strategy, named ε − greedy, the agent chooses an
action a(t+ 1) such as:

a(t+1) =

{
argmaxaQ(s(t+ 1), a), with probability (1− ε)
random, with probability ε

(10)
This method allows for continuous exploration with a non-zero
ε. The value has to be carefully selected so that the systems
has enough randomness to visit every action-state pair but is
able to exploit the Q-Table so to converge to the optimum.
Alternatively, an other frequently used solution assigns high

exploration at the beginning of the learning process and grad-
ually diminishes the value, increasing exploitation. A common
example of such strategy is given by

Pr(a(t+ 1)) =
e
Q(s(t+1),a(t+1))

τ∑
a e

Q(s(t+1),a)
τ

, (11)

where τ is a temperature function which decays with time
[19]. At the beginning the actions are all equally probable and,
as time progresses and the Q-Table is built, the actions with
highest Q-values will be selected more often. In this work, the
problem of determining the correct FB allocation in an LTE
network is approached. Since the base station has to decide
on the next allocation based on the information fed back by
the users, without loss of generality, instead of the transition
between times t and t+1, the transition t−1 to t is evaluated
and the action analysed is a(t− 1) instead of a(t).

B. Q-Learning homogeneous FB allocation

For this implementation the learning agent is placed in the
eNodeB and has to select a single FB allocation strategy based
on the number of served users.

In order to determine the reward for each action, the value
of Tp, determined in eq (7), is chosen. Tpdepends on the
users’ channel quality and on the resource and FB allocation
strategies. This means that different channel qualities can give
very different results even though the FB allocation strategy
remains unchanged. For these reasons the payload throughput
is not used as an input state but win the reward function. The
state, actions and rewards of the algorithm are here defined.

1) States: The state of the base station at time t is defined
as

S(t) = {CQIavg(t), NUE(t)} . (12)

Where CQIavg(t) is the average CQI of all the users; this
is used in order for the base station to account for channel
fluctuations normally occurring in a wireless scenarios and
for other effects such as user mobility and interference. A
finite number SCQI of quantized CQI states is available for
CQIavg(t). NUE is the number of users served by the eNodeB.

2) Actions: The set of actions A the agent can take are the
different FB methods described in section III; There are then
7 possible actions as shown in table VIII.

action a FB allocation
1 Var. Best M with M = 1
2 Var. Best M with M = 2
3 Var. Best M with M = 3
4 Var. Best M with M = 4
5 Var. Best M with M = 5
6 User-select
7 Subband-select

TABLE VIII. POSSIBLE ACTIONS AND THEIR RELATIVE FB
ALLOCATION STRATEGIES
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Algorithm 1 QL implementation for homogeneous FB alloca-
tion

1: Initialization
2: t = 0
3: QT ← ∅
4: I ← ∅
5: choose random action a(0)
6: for t do
7: (1) Receive feedback from the users;
8: Evaluate input state:

S(t) = {CQIavg(t), NUE(t)}

9: (2) eNodeB performs resource allocation with one of
the schedulers described in Section II-C .

10: (3) Measure the payload throughput Tp(t).
11: (4) Update impact matrix I as in (13):

I(CQIavg(t), a(t− 1), NUE(t)) ={
Tp(t), if Tp(t) > I(CQIavg(t), a(t− 1), NUE(t))

I(CQIavg(t), a(t− 1), NUE(t)), otherwise

12: (5) Compute reward r(t) based on (14)

r(t) =
I(CQIavg(t), a(t− 1), NUE(t))

max I(CQIavg(t), :, NUE(t))
;

13: (6) Update the Q-Table QT as in (9):

Q(S(t− 1), a(t− 1))← Q(S(t− 1), a(t− 1))+

β

[
r(t) + γmax

a
Q(S(t), :)−Q(S(t− 1), a(t− 1))

]
,

14: (7) Choose action a(t) which determines which FB
strategy will be used in the next iteration (11):

Pr(a(t)) =
e
Q(S(t),a(t))

τ∑
a e

Q(S(t),a)
τ

,

15: end for

3) Reward: The throughput Tp(t) determines if the action
taken in the previous interval a(t − 1) has been beneficial or
not. An impact matrix I which puts in relation the system’s
state, the actions and the throughput Tp(t), is used. This matrix
has size SCQI ·A ·NUE and each entry has value:

I(CQIavg(t), a(t− 1), NUE(t)) ={
Tp(t), if Tp(t) > I(CQIavg(t), a(t− 1), NUE(t))

I(CQIavg(t), a(t− 1), NUE(t)), otherwise
(13)

The condition that the current value has to be greater than the
previous one, in order for the matrix to be updated, is taken
from [20], where the authors have shown a greater convergence
when this condition is enforced in reinforcement learning.

The reward r(t) is then assigned based on the entries in I:

r(t) =
I(CQIavg(t), a(t− 1), NUE(t))

max I(CQIavg(t), :, NUE(t))
, (14)

4) Learning: The Q-Table QT has then the same dimensions
as the impact matrix I and is updated at every time step t
following equation (9). Once QT has been updated a new

action is selected at instant t based on equation (11) for t+1.
The algorithmic representation of this implementation is shown
in Algorithm 1.

C. Q-Learning multi-user FB allocation
In case of a dynamic multi-user FB allocation, different

users will be able to use different FB methods based on
how much they contribute to the system’s throughput and
how their channel qualities are distributed within the cell.
This implementation is build directly from the static one, the
structure remains almost unchanged, the major difference is
given by the input states which have now to consider, on top
of the absolute channel qualities, the data rates of each user
and their distribution with respect to each other.

The design of the QL system is explained in the following
subsection:

1) States: The purpose of the agent is to assign a specific
FB allocation method to a user given its channel quality. A
new, relative channel quality value CQIurel, is then introduced
to compare the users to each other:

CQIurel = CQIu(t)− CQIavg(t),∀user u (15)

The users are then divided into NQ = 5 categories using the
thresholds in table IX.

Channel Very Low Low Average High Very High
Quality (VL) (L) (M) (H) (VH)
CQIurel -5 -2 0 +2 +5

TABLE IX. CHANNEL QUALITY CATEGORIES AND CQI
THRESHOLDS

The state of the base station at time t is then defined as

S(t) = {CQIavg(t), Qchannel(t)} . (16)

Where CQIavg(t) is the average CQI of all the users and
Qchannel(t) indicates whether users of each category are
present (e.g. if there are users with channel qualities ”Average”
and ”Very High” then Qchannel(t) = [0 0 1 0 1]).

2) Actions: The set of available actions is the same as
defined in section V-B2. The only difference with the previous
implementation is that now NQ actions are chosen at each time
t instead of 1.

3) Rewards: Differently than in the single FB allocation
algorithm, here the throughput contribution of each user cate-
gory, TQ(t) is considered. The value is obtained from Tup (t),
defined as:

TQ(t) =
1

NUQ

NUQ∑
u∗

Tu
∗

p (t),∀Q = 1 · · ·NQ (17)

where NUQ is the number of users belonging to the category
Q. TQ(t) represents the throughput contribution of the users
in the different quality categories, normalized for one user.
The range of these values can vary considerably since it
is dependent on the absolute channel quality; it is further
impossible to infer if users in a specific category are served
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Algorithm 2 QL implementation for dynamic multi-user FB
allocation

Initialization
t = 0
QT ← ∅
I ← ∅
choose random actions aQ(0) ∀Q = 1 : NQ
for t do

(1) Receive feedback from the users and divide them into
different channel quality categories; evaluate input state

S(t) = {CQIavg(t), Qchannel(t)}

(2) eNodeB performs resource allocation with one of the
schedulers described in Section II-C .
(3) Measure the payload throughput for each category
TQ(t) (17):

TQ(t) =
1

NUQ

NUQ∑
u∗

Tu∗ (t), ∀Q = 1 · · ·NQ

(4) Create categories in which to divide the different
channel quality categories based on their throughput con-
tribution (18):

RRQ(t) =
TQ(t)∑NQ
q=1 TQ(t)

;

(5) Update impact matrix I for each category as in (19):

I(CQIavg(t), Q, aQ,t−1)(t) =

{
RR(t)(TQ(t)), if QQchannel(t) 6= 0

0, otherwise

(6) Compute each category’s reward R(t):
rQ(t) = I(CQIavg(t), Q, aQ(t− 1), ∀Q = 1 · · ·NQ

(7) Update each category’s Q-Table QT as in (9):

Q(S(t− 1), a(t− 1))← Q(S(t− 1), a(t− 1))+

β

[
r(t) + γmax

a
Q(S(t), :)−Q(S(t− 1), a(t− 1))

]
,

(8) Choose action a(t) which fixes which FB strategy will
be used in the next iteration for each category Q (11):

Pr(a(t)) =
e
Q(S(t),a(t))

τ∑
a e

Q(S(t),a)
τ

,

end for

consistently more than users in other categories. For example,
a user with CQIu(t) equal to 10 might be in a ”Very Good”
channel quality group if the average cell CQI CQIavg(t) is
4, but the very same user would have ”Low” channel quality
if CQIavg(t) were 13. For this reason the contribution of the
different channel quality categories to the rate is expressed in
relative form:

RRQ(t) =
TQ(t)∑NQ
q=1 TQ(t)

; (18)

At each time t, the agent can then build an impact matrix
I , of size SCQI · NQ · A, which relates the input states
(average cell CQI and relative user channel quality) with the
rate contribution of each category of users and the actions

taken. Each entry of I has value:

I(t)(CQIavg(t), Q, aQ(t−1)) =

{
RRQ̂(t), if QQchannel(t) 6= 0

0, otherwise
(19)

Similarly, the reward associated with each action (for every
channel quality) rQ(t) is equal to the same entries of the
impact matrix I . This way, if users in a specific category are
contributing highly (poorly) to the throughput, that category
will receive a high (low) reward or will receive no reward if
not scheduled.

4) Learning: The Q-Table QT has then the same dimensions
as the impact matrix I and is initialized to zero at t = 0 QT is
updated at every time step t following equation (9). After the
update the actions for the following time slot aQ(t + 1) are
chosen using equation (11). The algorithmic representation of
this implementation is shown in Algorithm 2.

VI. QL RESULTS

In this section the simulation results for the two proposed al-
gorithms as first presented. The computational complexity and
memory requirements of the two methods are then discussed.

A. Simulation Results

Static solution Dynamic solution
State space 30 · 100 30 · 5

Action space 7 7
Learning Factor 0.8 0.8
Discount Factor 0.9 0.9

Initial exploration temperature 200 200

TABLE X. LEARNING PARAMETERS OF THE QL ALGORITHMS

In this section convergence results for the two proposed Q-
Learning algorithms are presented. Simulation settings for the
methods are contained in Table X In Figures 6 (a) - (d) the
actions taken, at each time interval for a base station using a PF
scheduler for samples of 2, 30, 50 and 100 users respectively
are shown. This sample of users has been chosen because they
require different homogeneous FB allocation actions as shown
in Figure 3;

The effective actions taken by the agent are presented in
blue, they are selected randomly at the beginning of the
simulations. After the initial exploratory phase, each base
station converges to the optimal FB allocation determined
experimentally in Section IV. This convergence is visible if the
action function is smoothed with a moving average filter as the
red curve in the figures shows. To further show the convergence
and stability of the proposed method to the optimal solutions
determined in Section IV-B, the root mean square (RMSE)
of the actions taken, with respect to the optimal solutions, is
presented in Figure 7. For all the studied user configurations,
the proposed solution converges to the optimal static solution
and maintains it stably. In case of multi-user FB allocation
strategies, without any loss of generalization, only the results
for the BCQI scheduler are presented. The agent has to select
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Fig. 6. Action taken and smoothed action with PF scheduling for 2 (a), 30 (b), 50 (c) and 100 (d) users
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Fig. 8. Action taken and smoothed action with a BSQI scheduler for users with for ”very low”, ”low” and ”average” channel quality (a),
”high” channel quality (b) and ”very high” channel quality (c)
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the best FB allocation based on the channel quality of the
users. Figure 8 (a) - (c) shows the action taken, and thus the
FB allocation chosen, for users with different channel qualities.
Since the BCQI only allocates resources to the users with the
best channel quality, the agent learns to allocate only minimal
feedback to the users in categories ”very low”, ”low” and
”average”, while the others get more depending on how good
their channel is and how much they contribute to the cell’s

payload throughput. Users with ”very high” channel quality
obtain the most feedback. Like in the previous case, the RMSE
has been used to verify the convergence and stability of the
proposed dynamic solution. Figure 9 shows that the RMSE
decreases with each QL iteration and that the final results
are very close to the optimal actions. The small oscillations
present in the RMSE after convergence is reached are due
to the discrete nature of the action-state space. In fact, the
proposed method might oscillate between two equally good
actions or equally distant from the actual optimal solution.
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Fig. 9. RMSE convergence for the proposed dynamic QL solution
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Finally, in Figure 10 the average results for the QL multi-
user FB allocation in case of a BCQI scheduler are compared
with the homogeneous allocation of Section IV and the ideal
dynamic FB allocation of Figure 5. The proposed multi-user
method outperforms the homogeneous allocation and follows
asymptotically the ideal solution. The dynamic nature of the
multipath propagation environment with mobility users make
perfect and reliable allocation very difficult and thus the ideal
value is never reached, nonetheless, the proposed solution
provides a close to optimal gain (80% of the ideal solution).

Fig. 10. Comparison for QL dynamic FB allocation with static and
ideal dynamic FB allocation

B. Notes on Complexity
In this section, the complexity of the proposed methods is

compared to other operations normally carried out within an
LTE base station. It is interesting to note that the proposed
solutions make use of information already necessary for the
AMC and dynamic frequency scheduling, such as the downlink
throughput and the CQI values. This information comes, then,
at no extra cost for the eNodeB. In this work, to show the
implementation cost of the reinforcement learning methods the
memory requirements and the computational complexity are
analysed [21]–[23].

1) Memory Requirements: The amount of memory of the
static and multi-user QL algorithms is directly correlated with
the amount of states and actions. The data required is, in fact,
contained within the Q-Table and the Impact Matrix, both of
dimensions S ·A, where S represents the number of states and
A represents the number of actions. The memory size is then
linear in both the number of states and the number of actions:
O(SA). Specifically, for the static QL algorithm, the number
of states is S = SCQI ·NUE , and the Q-Table has dimensions
S ·A. Given the worst case scenario of NUE = 100 and where
each entry of the Q-Table is bound to 1 Byte, the total size
of the Q-Table is then (30 · 100 · 7)8 = 168kb. Thus the total
memory space requested by the Q-Table and Impact matrix
is 336kb. Considering instead the dynamic QL algorithm, the
Q-Table size is not function of the number of served users but
only of the channel quality categories. The number of states is

is then S = SCQI ·NQ. If the same conditions as above are
considered, The Q-Table size becomes (30 · 5 · 7)8 = 8.4kb.
The total memory requirement is then 16.8kb.

2) Computational Complexity: The computational complex-
ity of the QL algorithms is limited by the amount of operations
necessary to update the Q-Table. Since at any given moment
the agent can be in only one state, the complexity increases
linearly with the amount of actions available to the agent [24].
For the problem at hand, the QL agent needs then to determine
the current state, update the impact matrix, compute the
reward, update the Q-table and finally choose the appropriate
action. In a form similar to [23], [25], Tables XI and XII
present the total number of operations required by each steps
of the static and dynamic solutions respectively. The static
method requires only 97 overall instructions per iteration. The
dynamic method requires considerably more, 3797 instructions
if the absolutely worst case scenario of all 5 categories are
present while serving 100 users.

Steps Instructions
Identification of current 2 read
and previous states 30 comparisons
Update of impact matrix 1 read

1 comparison
1 write

Compute reward 6 read
7 comparisons
1 division

Update Q-Table 10 read
6 comparisons
5 MAC
1 write

Choose next action 8 read
3 divisions
7 MAC
8 exponentiation

Total 97

TABLE XI. COMPUTATIONAL REQUIREMENTS FOR THE STATIC
QL METHOD

Steps Instructions
Identification of current 2 read
and previous states 100 · 30 comparisons
Measure payload for each category 5 · 100 MAC

5 divisions
Create categories 5 MAC

5 division
Update of impact matrix 5 read

5 comparisons
5 write

Compute reward 5 read
Update Q-Table 50 read

50 comparisons
25 MAC
5 write

Choose next action 40 read
15 divisions
35 MAC
40 exponentiation

Total 3797

TABLE XII. COMPUTATIONAL REQUIREMENTS FOR THE
DYNAMIC QL METHOD
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The complexity of the proposed methods is actually neg-
ligible if compared with other operations normally carried
out in an eNodeB base band processor. In fact, at every
transmission interval, the base station computes one iteration
of the FB reduction methods proposed. At the same time, the
base stations has to compute 1 FFT for each of the 14 OFDM
symbols present in the frame. For each FFT 2 · Nlog2(N)
MAC operations need to be carried out, where N = 2048 if
the bandwidth is 20 MHz [11]. The total amount of operations
is thus 630784. Given the computational requirements of such
a necessary operation as the FFT, the impact of the proposed
solutions on the processing power of an LTE base station is
negligible.

VII. CONCLUSION

In this work we show that the feedback overhead cannot
be overlooked as the number of connected devices keeps in-
creasing. By using the overall cell throughput model presented
in this work, it is possible to identify a trade-off between
downlink performance and uplink overhead. Such trade-off
is determined by the downlink resource allocation strategy,
the number of users served within a cell and their channel
quality with respect to the average cell channel quality. It
has been shown that, for best CQI, max-min and proportional
fair scheduling methods, gains of 11%, 16% and 23% can
be expected. The implementation of reinforcement learning
solutions can reach almost optimal results in a dynamic en-
vironment. The two QL methods presented, one for a static
feedback allocation strategy valid for all the users in a cell
and the other with dynamic per-user FB allocation, provide
very good performance with negligible complexity.

APPENDIX
REINFORCEMENT LEARNING

Reinforcement learning allows an agent to learn from its
environment by acting upon it and observing the effects of
such actions. The general structure of RL is depicted in Figure
11.

Fig. 11. RL structure

In order for RL to be applied, the system has to be described
as a Markov Decision Process (MPD). An MPD is a discrete
time stochastic control process useful for systems where the
outcome of a decision is partly in control of the agent and
partly random. Such process is defined by:

• A discrete number NS of states S: at each time t the
agent monitors the environment via a set of states S(t) =
s1(t), s2(t), s3(t)...sNS (t).

• A discrete set of actions A: once the condition of the
environment is known, the agent performs a different
action according to the values of the input states.

• A reward function R: after the actions have been taken,
the environment has changed and the states have now
shifted from S(t) to S(t+1). Associated with this state
changes is then a reward r(t+1) indicative of the benefit
of such change.

• A state transition function P iS(t),S(t+1)(a) which maps
the probability that environment’s state will shift from
S(t) to S(t+1) given that action a(t) is taken at step t.

The purpose of RL is to find the optimal policy π∗s that
maximises the reward for each state s. In the case of infinite
horizon model, where the lifetime of the agent is unknown
a priori, the value function that determines which π∗s is the
optimal policy is defined as:

V ∗S(t) = max
π

E

( ∞∑
t=1

γ(t) · r(t)

)
, (20)

where π is the complete decision policy and γ(t) ∈ [0, 1]
is a discount factor between zero and one which limits the
influences of future rewards. V ∗S(t) is then the maximum infinite
sum of the discounted rewards that the agent would obtain
if it started from state S(t) and followed policy π∗S(t). Using
Bellman’s analysis [19] it is possible to determine that such
policy exists and that the solution to the value function is
unique and given by:

V ∗S(t) = max
a

r(t+ 1) + γ(t)
∑

S(t+1)

PS(t),S(t+1)(a(t)) · V ∗S(t+1)

 ,

(21)
The value of the current state S(t) is then equal to the reward
for taking action a(t) summed to the discounted value of the
following state when the best action is taken. The optimal
policy is then the argument that maximises (21):

π∗S(t) = argmax
a

r(t+ 1) + γ(t)
∑

S(t+1)

PS(t),S(t+1)(a(t)) · V ∗S(t+1)

 .

(22)
For each policy, the value of taking action a(t) in state
S(t) following policy πs can be determined. The action-value
function qπ∗(S(t), a(t)) obtained with the optimal policy π∗S(t),
is then defined as:

qπ
∗
(S(t), a(t)) =

r(t+ 1) + γ(t)
∑

S(t+1)

PS(t),S(t+1)(a(t)) · V ∗S(t+1)

 .

(23)
Generally, it is rarely possible to generate optimal policies.
The computational and memory costs create the need for
approximate solutions such as Q-Learning.
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