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Fibre-reinforced composites are rapidly increasing their market share in structural 
applications. Nevertheless, this increase would be much stronger if reliable failure predictions 
were available. These predictions are not only insufficiently reliable for complex loading of 
multidirectional composites, but even for longitudinal tensile failure of unidirectional (UD) 
composites. Since composite failure usually coincides with longitudinal failure of a 0° ply, the 
reliability often hinges on longitudinal failure predictions of UD composites. Despite great 
progress in the state-of-the-art models, significant obstacles remain in collecting the necessary 
input data and understanding the influence of the modelling assumptions. This review 
therefore surveys the mechanics, chemistry and physics involved in tensile failure of UD 
composites and highlights potential areas for improvement. Specific proposals are made to 
advance the state-of-the-art strength models, which could catalyse the use of composites in 
structural applications. 
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distribution; Fibre breaks 
 

1. Introduction 

Predictive models for mechanical properties are crucial for designing composite applications 
in an optimal manner. Even though some stiffness variations are unavoidable in real parts [1], 
predictions of composite stiffness are often used with confidence in industrial applications. 
Predictions of strength and damage development, however, remain highly challenging. The 
World Wide Failure Exercise I, II and III therefore attempted to predict failure of 
multidirectional composites under complex loading conditions [2-4]. A large spread on the 
modelling predictions was found, indicating the reason for the lack of confidence of industry 
in models. The large spread was attributed to the complex internal structure of fibre-
reinforced composites and complex interactions between fibre and matrix. 
 
The longitudinal tensile failure and damage development in 0° unidirectional (UD) 
composites is better understood. It is also crucial in the failure of multidirectional composites, 
as final failure usually coincides with failure of the 0° plies. A key concept in longitudinal 
tensile failure of UD composites is that the fibres in a bundle do not all possess exactly the 
same strength. Instead, the strength of these fibres typically follows a Weibull distribution [5]. 
This fibre strength variation is crucial in the longitudinal tensile failure development of UD 
composites. Upon increasing the applied strain, the weakest fibres fail first. Each broken fibre 
locally stops carrying load and sheds that load to the nearby fibres. The matrix surrounding 
the fibre break is loaded in shear and transfers stress back onto the broken fibre [6-10]. 
Therefore, the nearby fibres will locally carry stress concentrations, but the magnitude 
decreases with increasing distance from the fibre break [11-16]. 
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A vital consequence of these stress concentrations is that they increase the failure probability 
of the nearby fibres. Eventually, this increased failure probability will lead to the development 
of fibre break clusters [17-20], which further intensify the stress concentrations. One of these 
clusters will reach a certain critical size, after which this cluster propagate unstably. This 
unstable propagation will rapidly cover the entire cross-section of the composite and hence 
cause final composite failure. Apart from fibre strength, the stress redistribution around fibre 
breaks is also a crucial parameter in the failure development of UD composites. For a given 
fibre type, this redistribution is governed by properties of the matrix and the fibre-matrix 
interface. The magnitude of the stress concentrations and the length over which they are 
significant is crucial in determining failure of a UD composite. Correctly capturing the fibre 
strength statistics and stress redistribution around a broken fibre is therefore crucial to the 
success of strength models for UD composites. If this is combined with the appropriate input 
data, then a good correlation with experiments should be achievable. There are however 
significant experimental and theoretical difficulties in obtaining reliable input data for both 
aspects. This review aims to provide guidelines on how these input parameters should be 
measured and in which cases they are important. It will also propose strategies to overcome 
these difficulties in the future. 
 
Even in the ideal scenario that the fibre, matrix and interfacial properties are measured 
accurately, deviations from experimental measurements may still occur. Every state-of-the-art 
strength model inevitably requires a set of assumptions that limit its accuracy. The section “3. 
Modelling assumptions” hence provides an overview of the most important and common 
assumptions in strength models for UD composites. Guidelines are provided on the 
importance of the various assumptions whenever the literature offers sufficient information to 
do so. 
 
The focus of this review is on the input data and the modelling assumptions. The goal is to 
describe both aspects in a generic way that is largely independent of the chosen modelling 
approach. Describing the models themselves is therefore outside the scope of this review, as 
doing this in a comprehensive manner would be nearly impossible.  
 
Depending on the nature of the model, many different outputs can be obtained. The literature 
has focused mainly on the tensile strength of the composite. Recently however, the 
availability of synchrotron radiation computed tomography has sparked the interest in 
tracking individual fibre breaks and clusters of fibre breaks [17-25]. Whenever this review 
mentions the word predictions, it refers either to tensile strength predictions or to a 
combination of tensile strength and fibre break predictions. Specific references to fibre break 
predictions will always be explicitly indicated. 
 
The majority of the cited studies deal with carbon fibres in a thermoset matrix. This was not a 
deliberate choice, but occurred nonetheless for two reasons. Firstly, there is a large body of 
knowledge on carbon fibres and its composites. Secondly, the higher performance of 
thermoset carbon fibre composites has sparked a larger interest in predictive models than for 
thermoset composites with other fibres. Metal and ceramic matrix composites can also reach 
high performance levels, but they are not used in tensile loading as often as thermoset carbon 
fibre composites. Consequently, the majority of the literature on input data measurements and 
models focused on carbon fibre and its composites. Nevertheless, there are important aspects 
to be learned from other fibres as well as from other research fields. This review therefore 
also looks at studies on other fibre types and from other fields. This is especially true for 
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section “2.1. Fibre strength”, as there is a great body of knowledge on the strength of ceramic 
fibres such as SiC fibres. 
 

2. Input data 

Predictions of any model depend strongly on the input data. This is even more so in strength 
models for UD composites, which are often dominated by the fibre strength parameters. The 
matrix and interfacial properties also play an important role, as they will determine the 
magnitude and extent of the stress concentrations. Many different types of properties can be 
plugged into strength models, making it crucial to understand the importance of each of them. 
This section reviews the most recent insights into the two most crucial input data: fibre 
strength and the matrix/interfacial properties. 
 
2.1. Fibre strength 

As mentioned by Timoshenko [26], Leonardo da Vinci was the very first to study the strength 
of materials as a function of their size. Da Vinci’s ground-breaking experiments revealed that 
longer iron wires were weaker than shorter ones. These experiments were described at the end 
of the 15th century, long before the Griffith established the fracture mechanics of this problem. 
Griffith suggested that the size dependency of strength could be explained based on the 
presence of microscopic flaws [27]. 
 
The strength of a single fibre cannot be captured in one single average value. The most 
commonly used reinforcement fibres, such as carbon and glass, are brittle and hence exhibit 
weakest-link characteristics. This means they break as soon as the weakest link is overloaded. 
The failure probability is thus linked to the presence of weak links. One obvious conclusion is 
that a shorter fibre will have a lower probability of having a weak link or flaw and is hence 
more likely to have a higher strength. This reasoning also explains Da Vinci’s experiments. 
 
The statistical function that is generally believed to describe this weakest-link behaviour is the 
Weibull distribution. This is not always the case, as there are additional requirements apart 
from weakest-link behaviour to obtain such distribution [28,29]. Todinov [29] for example, 
proved that its mathematical formulation is only correct if the probability that a flaw becomes 
critical is a power law of the applied stress. The rest of this review will assume this is indeed 
the case. 
 
2.1.1. Standard Weibull distributions 

The standard Weibull probability distribution function P  for fibre strength is: 
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with L  being the characteristic gauge length, 0L  the reference gauge length, fσ  the fibre 

strength, 0σ  the scale parameter and m  the shape parameter or Weibull modulus [5]. The 

parameters 0σ  and L  are typically calculated from single fibre tests at gauge lengths 0L  

between 10 and 50 mm. The overwhelming majority of strength models uses this standard 
Weibull distribution. The scale parameter 0σ  is the strength at which 63.2% of the fibres will 

fail (see Figure 1). The Weibull modulus m  determines the scatter around the average value. 
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A large Weibull modulus indicates a narrow distribution, which corresponds to little scatter in 
the fibre strength (see Figure 1). 
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Figure 1. Example of a Weibull distribution with 0 4000MPaσ = , showing how the scatter in fibre 

strength increases when the Weibull modulus decreases. 

 
In the initial distribution proposed by Weibull himself [5], a lower limit u

σ  for the fibre 

strength was included: 
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This lower limit basically means that the strength of each fibre is at least equal to u
σ . It is 

extremely difficult to prove this point experimentally, as every test requires a minimum 
strength level to perform the test [30]. This distribution has been used by some authors 
[30,31], although most assume u

σ  equals zero. Its effect on the tensile strength predictions is 

unknown in the literature, as it is very difficult to reliably measure u
σ . The remainder of this 

review will therefore ignore this additional term. 
 
Most strength models require the Weibull distribution at gauge lengths L  that are 
significantly smaller than 10-50 mm [31]. The relevant lengths are often determined by the 
slip or ineffective length (see “2.2. Matrix and interfacial properties”), which is on the order 
of magnitude of a 100 µm [32-35]. Many models however require multiple partitions within 
this slip length, which can bring down the relevant length to just a few µm [20,22,23,36-39]. 
For this purpose, the Weibull distribution should be extrapolated to short gauge lengths. To 
get a better feeling for this extrapolation, the term 0L L  can be re-arranged underneath the 

exponent m as follows: 
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The extrapolation therefore essentially means that the characteristic strength *
0σ  at a gauge 

length L  equals: 
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Several authors have mentioned that this extrapolation breaks down at short gauge lengths, 
typically around a few mm [31,40-43]. This break-down was attributed to three causes: (1) 
fibre diameter variations [41,44-48], (2) variations of the Weibull distribution from fibre-to-
fibre within the same bundle [41,44,49,50], and (3) the presence of different strength-
determining flaw populations [40,43,51-53]. Explaining how the first two causes lead to 
underestimations at short gauge lengths requires an extensive mathematical treatment, which 
outside the scope of this review paper. Interested readers can refer to the corresponding 
literature [41,47-49]. The third cause leads to multimodal Weibull distributions, which will be 
described in section “2.1.2. Modified Weibull distributions”. 
 
The breakdown of equation (4) at short gauge lengths is the main reason why modified 
versions of the Weibull distribution were developed. The background of these distributions 
will be described in detail in the next subsection. 
 
2.1.2. Modified Weibull distributions 

The unimodal Weibull distribution in equation (1) is the simplest way to capture weakest link 
behaviour. The unimodal distribution inherently assumes there is only one flaw population 
present. This may not necessarily be true, as experimental evidence of different flaw types 
exists in the literature [53-55]. The flaws should also be randomly distributed over the fibres. 
This may not be entirely the case due to variations in fibre production and handling. One can 
imagine that the outer fibres in a bundle may have been subjected to more friction as well as 
slightly different processing temperature than the inner fibres. 
 
Many authors have suggested that multiple strength-determining flaw populations exist 
[40,43,51,52,56-61]. This leads to multimodal Weibull distributions, of which the bimodal is 
the most popular one. This leads to two terms inside the exponential function: 
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,     (5) 

where 0,1σ  and 0,2σ  are the scale parameters, and 1m  and 2m  are the Weibull moduli for the 

first and second flaw population, respectively. Thomason indicated that this bimodal 
distribution may also be caused by an inherent assumption in the Weibull distribution [30]. 
The Weibull distribution in equation (1) assumes that there is no threshold stress below which 
the failure probability is zero. This is a common assumption in brittle materials. If however, 
such a threshold stress does exist, then it can be proven that a bimodal distribution 
automatically arises in measurements. 
 
The second mode of the Weibull distribution will determine the strength at short gauge 
lengths. The Weibull modulus 2m  of this mode is larger than 1m , and hence has a narrower 

strength distribution. Harlow and Phoenix [62] claimed that a bimodal distribution essentially 
puts an upper limit to the fibre strength at short gauge lengths. Harlow and Phoenix reached 
this conclusion by using a Weibull modulus of 50 for 2m . Recent measurements for two 

dissimilar carbon fibres, however, have indicated much smaller values: 12 for T700S [51] and 
13 for T800S [63]. With these smaller values, the rate at which the strength at short gauge 
lengths levels off is significantly slower. While the strength distribution still levels off, the 
claim of Harlow and Phoenix is perhaps too strong. 
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Another type of distribution adds an exponent α  to equation (2) to capture the gauge length 
dependence of the Weibull distribution [41,42,64]: 
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This distribution is often referred to as the power law-accelerated Weibull distribution. 
Equation (6) reduces to equation (1) if α  equals 1. Values for α  of 0.6 [42], 0.7 [64] and 0.9 
[41] have been reported. A crucial consequence of this type of distribution is that the strength 
distribution shifts to lower strengths if L  is smaller than 0L , and vice versa. Modelling 

results will hence depend on the chosen length L . 
 
It should be noted that an α -value below 1 may also be caused by some of the reasons that 
will be mentioned in section “2.1.3. Experimental and statistical issues with single fibre 
testing”. At short gauge lengths, clamping effects are more pronounced and fibre alignment is 
more difficult, which could contribute to the underestimation of fibre strength at short gauge 
lengths. The statistical variation in the Weibull distribution would also require a large number 
of tests to be performed. Finally, it is unclear whether the power law-accelerated distribution 
holds true at short gauge lengths. 
 
One of the initial problems with the power law-accelerated distribution was that it was mainly 
based on curve fitting rather than a solid theoretical background. Curtin [49] partially resolved 
this by proving that equation (6) may also arise due to processing and handling of the fibres. 
Curtin therefore proposed the “Weibull of Weibulls” distribution. This distribution assumes 
that the strength distribution along a fibre follows the standard Weibull distribution (see 
equation (1)). Based on this Weibull distribution, a characteristic strength at a certain length 
L  can be calculated for each fibre. Curtin then assumed that the characteristic strengths of 
each fibre are different and also follow a Weibull distribution. Such differences can be 
attributed to processing and handling of the fibres. With these assumptions, the distribution 
essentially reverts to the power law-accelerated Weibull distribution in equation (6), but with 
a more sound physical background. The disadvantage of the “Weibull of Weibulls” 
distribution is that it is challenging to implement in strength models. For the details of this 
distribution, the reader is referred to Curtin’s work [49]. 
 
Other distributions have also been proposed, but they have been used in only a few cases. The 
reader can refer to Padgett et al. [65], Gurvich et al. [66], Phani [67], and Ibnabdeljalil and 
Phoenix [68] for some examples. There are several reasons why these more complicated 
distributions have not become widely used. Firstly, some of the distributions are 
mathematically complex and difficult to use in practice. Secondly, not all these distributions 
have a sound mechanical basis, and some are purely based on curve fitting. Thirdly, these 
distributions all require additional parameters that need to be fitted to the experimental data. 
This necessitates the need for more experiments to maintain the same level of confidence in 
the fitted parameters. Finally, some analytical models can only deal with a standard unimodal 
Weibull distribution. 
 
2.1.3. Experimental and statistical issues with single fibre testing 

Experimentally determining the Weibull distribution is a challenging task. The single fibre 
test is by far the most common technique (see Figure 2a), and is described in several 
standards, such as BS ISO 11566 and ASTM C1557. The test starts by extracting a single 
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fibre from a bundle and gluing it onto a paper frame. This frame is then gripped in a tensile 
machine, after which both legs of the paper frame are cut and the test is started (see Figure 2a). 
By testing a sufficient number of fibres and recording the strength, the Weibull distribution 
can be fitted through the data. This is typically done through a maximum likelihood 
estimation, which is deemed to be more accurate than least squares regression [30,69,70]. 
 

Stress

(a) (b)

Glue droplet

Loading grip

Paper frame

Fibre

 
Figure 2. (a) Schematic illustration of a single fibre test with a paper frame that is cut prior to the test and 

two droplets of glue to transfer stress onto the fibre; (b) the stress profile this results in. 

As will be shown later in this subsection, there are significant experimental and statistical 
issues in the determination of the Weibull parameters. As they are vital in strength models, 
this could also affect the reliability of strength models. Understanding the reasons behind the 
large variations in Weibull data is therefore crucial in advancing the state of the art. The next 
subsections describe various aspects that could contribute to these errors or that could help to 
resolve them in the future. 
 
Fibre preselection 

Most reinforcement fibres have a diameter on the order of 10 µm. Such small fibres lead to 
low breaking forces. A typical breaking force for a high strength carbon fibre is 0.15 N. It is 
therefore not unlikely that some fibres break during the extraction from the bundle or during 
the cutting of the frame [30,46,71]. The elimination of the weakest fibres causes deviations 
from linearity in Weibull plots [47]. Such a deviation has been reported by many authors 
[42,64,72,73] and an example is plotted in Figure 3. One can easily imagine that a distribution 
with more fitting parameters than the unimodal Weibull distribution would lead to a better fit. 
That fact of course does not imply that the basic assumptions, such as multiple flaw 
populations, are correct. 
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Figure 3. Weibull plot for T800H carbon fibre revealing the deviation from linearity at low strength. The 

data points indicate the experimental measurements from single fibre tests (Adapted from [64] with 

permission from Elsevier). 

Clamping effects in single fibre tests 

An ideal single fibre test would have a uniform tensile stress over the entire gauge length, and 
zero tensile stress outside of the gauge length. Clamping effects, which are defined here as 
deviations from this ideal scenario, always occur in single fibre testing (see Figure 2b) 
[40,60,71,74]. These effects are particularly pronounced at small gauge lengths for several 
reasons [74]. Firstly, fibre misalignment increases significantly at short gauge lengths. 
Misalignment introduces shear and bending near the adhesive, which increases the probability 
of failure in the clamps [71]. 
 
Secondly, the fibre stress needs to be built up through shear stresses between the glue and the 
fibre surface. The length of this build-up region 

build up
L

−
 can be estimated using perfect 

alignment and shear-lag assumptions, similar to the Kelly-Tyson model [75]. The equation for 
the stress build-up length becomes: 

,max .

4.
f s

build upL
D

σ τ
−

= ,         (7) 

with ,maxf
σ  the fibre strength, s

τ  the shear yield strength of the glue and D  the fibre diameter. 

For carbon fibre and realistic matrix shear yield strengths, the length L  amounts to a few 
hundred micrometres. While this effect can be neglected for gauge lengths above 10 mm, it 
may play an important role at shorter gauge lengths. At those lengths, the probability of fibre 
fracture in the stress build-up region needs to be accounted for. Phoenix and Sexsmith [74] 
have proposed such a theory. Yao and Yu [71] mentioned that the error introduced by 
ignoring the stress build-up region was around 5% in their experiments. This means that their 
gauge length of 40 mm should be increased to 42 mm, and that their tensile modulus and 
failure strain would be underestimated by 5%. 
 
One way to avoid clamping effects would be to disregard specimens that failed in the tabs. 
This approach has two vital drawbacks. Firstly, it is not always possible to determine where 
fracture initiated, as multiple fragments may be produced. It may be possible to apply grease 
to the fibre to dampen the energy release upon failure, but this approach is not widely used. 
Secondly, the weak fibres are less likely to be disregarded than the strong fibres [50]. A weak 
fibre has a relatively large flaw, which makes that fibre more likely to fail within the gauge 
length instead of in the tabs. This would introduce systematic errors into the Weibull 
distribution. 
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Number of tests 

The number of tests to extract Weibull parameters typically ranges from 20 to 50 [46,52,76-
79], while only in a few studies sample sizes of 100 or more were used [44,45,51]. Thomason 
illustrated that a low number of tests may falsely lead to the conclusion of more than one flaw 
population [30].  
 
Similarly, Berger and Jeulin [47] reported issues with the number of required tests. They 
proved that 30 tests are insufficient to accurately determine Weibull modulus and scale 
parameter [47]. Swolfs et al. [20] investigated the influence of Weibull parameters on the 
composite strength. Based on a Weibull modulus of 6 and a scale parameter of 3500 MPa, a 
certain number of strengths were virtually generated. The Weibull parameters were fitted to 
these virtual strength values using the maximum likelihood estimators. Figure 4 plots the 
result of the fitted parameters depending on how many virtual tests were performed. This 
reveals that a large number of tests are required to accurately determine the Weibull 
parameters. The determination of the Weibull modulus was found to be particularly 
troublesome, especially when taking into account that experimental errors were ignored.  
 

4
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m(-)
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Figure 4. The estimates of the Weibull parameters based on 25, 100, 400 and 1600 virtual single fibre tests. 

These virtual tests were generated from the real data set with 6m =  and 0 3500MPaσ =
 (Adapted from 

[20] with permission from Elsevier). 

Plugging the results of Figure 4 into a strength model revealed that several hundreds of single 
fibre tests were required to reduce the scatter in strength model predictions to less than 10%. 
This means that even more tests are required when experimental errors are taken into account. 
 
The studies described above all relied on the assumption of perfect measurements. Bermejo et 
al. [80] however, performed a similar statistical study, but included measurement errors. 
Bermejo et al. found that these measurement errors also lead to a statistical bias for smaller 
Weibull moduli. This makes sense, as the measurement errors introduce additional scatter, 
which widens the measured strength distribution and thereby decreases the estimated Weibull 
modulus (see Figure 1). For measurement errors of 5-10%, this effect was strong, especially 
for Weibull moduli above 10. Luckily, the Weibull moduli for carbon fibres are typically in 
the range of 5 to 8 [77,81,82]. 
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It is impossible to set up a generally applicable number of tests that should be performed. This 
depends strongly on the Weibull modulus of the fibre [83]. If the Weibull modulus can be 
estimated, then a simple statistical calculation such as the one in [20] can determine the 
maximum accuracy resulting from a given number of tests.  
 
Gauge length 

The gauge length is a crucial parameter in the Weibull distribution. The nature of the Weibull 
distribution permits an extrapolation towards other gauge lengths, using equation (4). There 
are however several reports in the literature claiming that this extrapolation is not accurate. 
Some of this work led to modified distributions, which were described in more detail in “2.1.2. 
Modified Weibull distributions”. 
 
Berger and Jeulin [47] performed an average of 30 single fibre tests on ceramic oxide fibres at 
six different gauge lengths (5, 10, 25, 50, 100 and 250 mm). They found Weibull moduli 
ranging from 3.75 to 6.75. They were able to explain these varying values based on statistical 
variation due to the limited number of tests. One can easily imagine that this may lead some 
researchers to wrongfully conclude that the Weibull distribution does not properly capture 
gauge length dependency. 
 
Another key issue related to gauge length is the optimal gauge length for single fibre tests. As 
mentioned in “2.1.3. Experimental and statistical issues with single fibre testing”, tests at 
gauge length below 10 mm may be affected by clamping and misalignment effects. Tests at 
large gauge lengths on the other hand, may increase the probability of preselecting the 
strongest fibres. From an experimental point of view, there may hence be an optimal gauge 
length. Even though this may be difficult to pinpoint, a 10-25 mm gauge length seems 
reasonable for most fibre types. 
 
There may also be an optimal gauge length from a statistical point of view. This was recently 
investigated by Swolfs et al. [20]. The gauge length had no influence on the accuracy of the 
Weibull modulus estimate, whereas it did affect the accuracy of Weibull shape parameter 
estimate. To compare results at different gauge lengths, the results should be extrapolated to 
the same gauge length using equation (4). Since the exact Weibull modulus is not known, the 
estimated value has to be used, which introduces additional scatter in the data. The conclusion 
therefore was that the Weibull parameters should be measured at the gauge length that will be 
used. In the case of most strength models, this would imply that tests should be performed at 
gauge lengths well below 1 mm. In this length regime, single fibre tests would not be reliable 
anymore due to the previously described clamping effects. 
 
The importance of measuring at the relevant gauge length can be further illustrated with an 
example. Swolfs et al. [20] showed that the Weibull modulus of 6 could be determined with 
an accuracy of +1 if about 100 tests were performed (see Figure 4). If these tests were 
performed at a gauge length of 10 mm, then most models will require extrapolation down to 
much shorter gauge lengths. For a unimodal Weibull distribution, this extrapolation can be 
performed using equation (4). The results are plotted in Figure 5, revealing that the error in 
the Weibull scale parameter becomes very large for gauge lengths below 100 µm. Since 
Figure 5 does not even include experimental errors, it proves the importance of measuring the 
Weibull distribution at short gauge lengths. 



Composite Structures (2016) 
10.1016/j.compstruct.2016.05.002 

11 
 

0

22080

0.001 0.01 0.1 1 10 100

σ0(MPa)

Gauge length L (mm)

4000

m=5

m=7

m=616246

13047

 
Figure 5. Variations in the Weibull modulus of +1 lead to large errors at short gauge lengths. Results were 

calculated using a unimodal Weibull distribution with σ0 = 4000 MPa and extrapolated using equation 4. 

Another crucial implication is that performing single fibre tests at multiple gauge lengths 
without testing more fibres does not yield the benefit that is claimed by several authors 
[40,60,84]. Instead, it forces an extrapolation of at least part of the data, which introduces 
additional errors. 
 
Fibre cross-sectional variation 

Single fibre strength is often measured by determining the load at failure, and dividing this 
value by the average fibre diameter. Many authors have mentioned that this may not be a 
valid assumption [41,44-49,83]. Yu and Yao [45] for example found carbon fibre diameters 
ranging from 6.6 till 7.7 µm, while the nominal diameter was 7 µm. The average strength of 
the 6.6 µm fibres was 3750 MPa, whereas that of the 7.7 µm fibres was 2750 MPa. Yu and 
Yao noted that the size effect on fibre strength is actually much larger in the radial direction 
than in the length direction. This is seemingly in contrast with the results of Lara-Curzio and 
Russ [85], who proved that there was no correlation between diameter and strength. The 
reason for this apparent contradiction may be that Yu and Yao studied carbon fibres, whereas 
Lara-Curzio and Russ studied silicon carbide fibres. The failure micromechanisms and flaws 
may be different in both fibre types, although it is unclear how they would differ exactly. 
 
Several standards for single fibre testing are in use, such as ASTM D3379-75, ASTM C1557-
03 and BS ISO 11566-1996. It should be noted ASTM D3379-75 recommended using the 
average fibre cross-sectional area for converting failure load into strength. For the reasons 
mentioned above, this standard was withdrawn in 1998. The newer ASTM standard C1557-03 
explicitly recommends using the individual fibre diameter instead of the average value. The 
BS ISO 11566-1996 standard does not require measuring the diameter of each individual fibre, 
but only recommends it if “the cross-sectional area of the fibres is known to vary widely”. 
Unfortunately, variations of less than 10% in diameter can already cause large deviations 
[45,86]. 
 
Most Weibull data in the literature has been measured using either the average or the nominal 
cross-sectional area. Measuring the diameter of each fibre is a tedious procedure, and is 
typically performed using either optical microscopy, scanning electron microscopy or laser 
diffraction. For optical microscopy, it should be noted that the wave length of the light limits 
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the resolution to about 500 nm. This is not accurate enough for most reinforcement fibres in 
composite applications. 
 
Lara-Curzio and Russ [86] revealed that using the average diameter instead of the actual one 
leads to significant underestimations on the Weibull modulus. For a 1 µm standard deviation 
on a mean diameter of 12 µm, a Weibull modulus of 4 would be measured if the actual 
Weibull modulus was 5. Taking into account the results in Figure 4 and 5, such an error 
would lead to major errors in strength models.  
 
2.1.4. Other testing techniques 

Other testing techniques have been developed to remediate the problems with single fibre 
tests described in the previous subsections. These subsections revealed that the focus should 
be on measuring a large number of fibres at short gauge lengths. The requirement for testing a 
large number of fibres also necessitates the need for a technique that is either fast or allows 
multiple measurements in a single test. Here, three techniques are proposed that incorporate 
these ideas as much as possible. Other techniques have been proposed in the literature, but are 
not as promising in light of the three requirements for an ideal testing technique. For example, 
the fibre bundle test [46,50] was left out in the current review, as it cannot capture effects of 
fibre cross-sectional variation and is limited to relatively large gauge lengths. 
 
Fragmentation test 

The fragmentation test was originally developed for studying stress recovery in a broken fibre. 
This led to useful insights into the interfacial properties, which is required as input data for 
certain models [87-91]. Essentially, this test loads a single fibre composite, and monitors the 
number of fibre breaks as a function of the applied load. The fibre breaks are typically 
recorded through the use of polarised microscopy, as they cause gaps in the polarised light 
patterns (see Figure 6).  
 

 
Figure 6. Typical fragmentation patterns of a T300 carbon fibre with 2 fibre breaks, revealing 

birefringence around the fibre breaks (Adapted from [92] with permission from Elsevier). 

The test has also been used to determine the Weibull distribution for fibre strength 
[50,51,63,87,92,93]. Andersons et al. [50], Lachman et al. [92] and Shioya and Takaku [87] 
used a simple linear regression technique for calculating the Weibull distribution from the 
observed number of breaks as a function of applied strain. This approach is straightforward to 
apply, but can only be used when the number of fibre breaks is small compared to the length 
of the model. This means that the data at higher load levels cannot be used. 
 
Both Hui et al. [94] and Zhao et al. [93] mitigated this drawback by applying the global load 
sharing theory (see “3.2. Load sharing rules” for further details on the different load sharing 
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rules). This allowed them to incorporate the influence of the interactions between the fibre 
breaks. Watanabe et al. [51,63] recently improved upon this by using the shear-lag model of 
Okabe and Takeda [95]. The advantage of the approach of Watanabe et al., Hui et al. and 
Zhao et al. is that they can use all the observed fibre breaks, while the linear regression 
technique can only use the initial fibre breaks. For the same number of fragmentation tests, 
they can use more data points for fitting the Weibull parameters.  
 
This approach has several key advantages over single fibre tests. Firstly, the test allows many 
data points to be gathered in a single test. On one hand, Watanabe et al. incorporated five 
fibres at a sufficient distance from each other. On the other hand, each sample breaks multiple 
times along its length. This led to about 50 data points for each test. Secondly, the nature of 
the fragmentation test allows measuring the Weibull distribution at gauge lengths that are not 
accessible by single fibre tests. Finally, the nature of this test permits testing of fibres inside a 
resin. If this resin has any influence on the Weibull distribution, then this test takes it into 
account. It should be noted however that such influence is highly speculative and has not been 
proven yet [22,92]. 
 
The fragmentation test for measuring Weibull distributions also has three drawbacks. Firstly, 
when the samples are cured, a compressive stress is exerted onto the fibre(s) [96]. This stress 
can be taken into account in the calculations, but care should be taken that it does not cause 
undulations in the fibre. Secondly, the data reduction scheme of Watanabe et al. [51,63] 
requires a model to fit the Weibull distribution. Requiring a model to measure modelling 
input data may not be the most robust method. Nevertheless, Watanabe et al. [63] found that 
the agreement with single fibre test data was excellent at long gauge lengths. Finally, there is 
a lower limit to the gauge lengths for which information can be obtained. A strong 
fibre/matrix interface is required to favor fibre failure over fibre/matrix failure [97]. This 
approach is hence not suitable for all possible fibre/matrix combinations. 
 
Loop test 

The second test is the loop test. This was originally developed in 1950 by Sinclair [98] to 
measure both the modulus and strength of glass fibres (see Figure 7). A loop is made in a 
single fibre, and this loop is confined in a single plane by two glass plates. A lubricant is 
added between the glass plates to minimise friction. The two ends are then pulled apart, which 
reduces the radius of curvature of the loop. Microscopy is typically used to measure the radius 
of curvature at the top of the loop. Fukuda et al. [99] later developed mechanics equations to 
calculate this radius of curvature based on the displacement of the loop ends. Combining the 
radius of curvature with the elastic modulus and fibre diameter is sufficient to calculate the 
stresses in the fibre. The last radius of curvature prior to final failure can hence be used to 
calculate the fibre strength. 
 

 

Figure 7. Illustration of the loop test, where the two fibre ends are pulled apart to increase the stress at the 

loop tip. 



Composite Structures (2016) 
10.1016/j.compstruct.2016.05.002 

14 
 

Sinclair noted that the measured strengths were two to three times higher than in conventional 
tests. This was attributed to a lower probability of finding a flaw at the loop tip, where the 
stress is at its maximum. While this may seem like a logical conclusion now, it should be 
noted that Sinclair published his findings in 1950, which is one year before Weibull published 
his seminal work describing the Weibull distribution [5]. 
 
As mentioned by Williams et al. [100], the equations for a loop of an anisotropic material 
differ from those for an isotropic material. The low shear modulus of carbon fibre can 
influence the shape of the loop. Furthermore, the equations of Fukuda et al. [99] were derived 
assuming linear elasticity. This may introduce errors, as carbon fibre and several other fibres 
are not linear elastic. In the case of carbon fibre for example, an increase of 20% in stiffness is 
expected for every 1% of applied strain [101,102]. 
 
An important drawback of the loop test is that the stress is not uniform. The varying stress 
along the fibre length hampers the assignment of a gauge length to the measured fibre 
strength [103]. This stress variation over the cross-section makes the loop test more sensitive 
to surface flaws than a single fibre test. This may imply that a one-to-one correlation with 
single fibre test results does not exist. This inherent assumption in the loop test may be 
difficult to verify. 
 
While the loop test can be useful to measure fibre strength at short gauge lengths, it does not 
address the issue of the number of tests. This is a relatively slow and tedious tests requiring 
careful sample preparation. Testing more than a 100 fibres will be extremely time-consuming.  
 
Synchrotron radiation computed tomography on UD composites 

The third test is synchrotron computed tomography (CT) on UD composites. By combining 
many projections, a 3D visualisation of the composite can be generated. Several thousands of 
fibres can be loaded in single specimen and individual fibre breaks can be visualised as a 
function of the applied load. Using suitable fibre break detection algorithms, this leads to a 
plethora of data on fibre breaks as a function of the applied load. To avoid the drawback of 
requiring a model for data reduction, the CT measurements should focus on low load levels to 
ensure a negligible number of fibre break clusters. This condition is required to allow a direct 
fit of the Weibull distribution and to avoid the use of a model for data reduction. It should be 
noted though that CT measurements on UD composites so far focused on high load levels 
[17,18,22]. Using an advanced strength model, it may even be possible to fit the Weibull 
parameters in such a way that the fibre break predictions match the experimentally found fibre 
breaks. First attempts have however shown that this is very challenging [22]. 
 
The advantage of synchrotron CT lies in its capacity to perform a huge number of 
simultaneous measurements at relatively short gauge lengths. The disadvantage is its limited 
availability, which is why it cannot be used for routine measurements. Nevertheless, it could 
have great value in the initial developments and as comparison for data coming from other 
testing techniques. 
 
2.1.5. Conclusion 

The Weibull distribution for fibre strength is the most important input parameter for strength 
models. Despite many detailed investigations by different researchers, measuring the Weibull 
distributions remains particularly difficult. The literature has not yet agreed on the most 
suitable distribution, nor on the best testing technique. This may also depend on the fibre type 
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or on the purpose for which the data are used. Clearly, more research is needed in this area, as 
these input data are crucial for any strength model for UD composites. 
 
Some authors believe that the Weibull parameters differ from one batch or bobbin to another. 
Given all the experimental and statistical issues described in this section, it seems highly 
unlikely that this has ever been proven with statistical significance. 
 
2.2. Matrix and interfacial properties 

The second key aspect in any strength model is the stress redistribution around fibre breaks. 
When a fibre breaks, the surrounding matrix is loaded in shear and helps to recover the stress 
in the broken fibre. This leads to a reduced stress over part of the length of the broken fibre, 
and an increased stress in the nearby fibres. These stresses are often described relative to the 
nominal stress level, in which case they are called stress concentration factors (SCFs). The 
magnitude of the stress concentrations and the length over which they are significant is 
controlled by the matrix and fibre-matrix interfacial properties. The fibre stiffness also plays a 
role, but this is often investigated using the ratio of fibre over matrix stiffness. This review 
will thus not deal separately with fibre stiffness. There is a long list of parameters that may 
affect the stress redistribution, but most models only use a few of them. The relevant 
parameters will be described in this subsection. 
 
Most matrix systems are not linearly elastic, but visco-plastic materials. This results in 
additional complexity in most strength models, causing most researchers to simplify this 
behaviour, for example by treating the matrix as linear elastic or perfectly plastic. The 
question therefore rises in which cases these simplifications are justified. On top of that, 
recent experimental evidence revealed that the microscale resin properties can differ 
significantly from the macroscale properties that are commonly used. Finally, the fibre-matrix 
interface may also debond, introducing additional complexity. These aspects will be described 
in the next subsections.  
 
The influence of thermal residual stresses will not be covered in the following sections. When 
thermoset resins are cured, the matrix shrinks and puts a compressive stress on the fibres. In 
polymer matrix composites, these effects are generally considered to be negligible 
[92,104,105]. As pointed out by Xia et al. [106], the residual stresses can be significant in 
metal matrix composites. 
 
2.2.1. Elasto-plastic materials 

If viscous contributions are ignored, then the matrix can often be considered as an elasto-
plastic material. Many authors have however used linearly elastic or perfectly plastic 
assumptions. The early works in this area focused on a single fibre, and analysed the stress 
redistribution using the shear-lag theory. The original model of Cox [107] assumed that the 
matrix cannot carry axial loads and that the interface does not debond. Extensions to multi-
fibre composites were pioneered by Hedgepeth and Van Dyke [6,7], but these were still 
limited to linearly elastic materials. Later, shear-lag models were developed that included 
viscous [108,109] and plastic effects [95,110-112]. In the nineties, the improvements in 
computational power allowed finite element models to become a prominent tool for analysing 
stress redistributions [12,104,105,113-115]. 
 
Landis and McMeeking [110] created an excellent overview of the parameters influencing 
stress recovery of a broken fibre in a composite. Figure 8 displays the influence of various 
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parameters in dimensionless terms, assuming that the fibre/matrix interface was well bonded. 
The stress was normalised by dividing by the applied strain and longitudinal fibre stiffness. 
The distance from the fibre break was normalised by dividing by the ineffective or slip length. 
The term slip length is often used when its value can be directly defined from the stress 
recovery profile. This is for example the case in the perfect plastic case (indicated by the 
dashed line in Figure 8). The other cases in Figure 8 however do not allow a straightforward 
measure for the stress recovery length. In that case, the term ineffective length seems to be 
more common. This length is typically defined as the length over which the stress is lower 
than 90% of its nominal value. It should be noted however that this definition is arbitrary, and 
is, just like the slip length, simply a measure for the length over which stress recovery occurs. 
This measure is crucial however, as it is closely linked to the extent over which the stress 
concentrations are of significant magnitude. 
 

 
Figure 8. Overview of the influence of different parameters on the axial stress recovery in a broken fibre 

of a UD composite (Adapted from [110] with permission from Elsevier). 

The model of Landis and McMeeking assumes linear elastic/perfect-plastic behaviour of the 
matrix. The reference case in this scenario is the solution for a perfectly plastic matrix, which 
leads to a bilinear stress recovery profile (see dashed line in Figure 8). A decrease in the ratio 
of fibre-to-matrix stiffness 

f m
E E  causes a closer approximation of the perfect-plastic 

behaviour. The normalisation removes the influence of any changes in the shear yield strength. 
The observed effect is thus attributed to an increase in the amount of plastic yielding, as the 
higher 

m
E  for a given 

f
E  causes the yielding onset to be reached earlier in strain terms. An 

increased fibre volume fraction 
f

V  and increased applied strain ε  have the same influence, as 

they also enlarge the plastic yielding region. 
 
Other authors confirmed the trends that were described by Landis and McMeeking. The 
elastic FE model of Swolfs et al. [11] confirmed that a smaller fibre-to-matrix stiffness ratio 

f m
E E  reduced the ineffective length. Similarly, a decrease in the ineffective length was 

found with increased fibre volume fraction. This decrease essentially follows the same trend 
as the arrow in Figure 8, thereby confirming the results of Landis and McMeeking. An 
additional contributing factor was however suggested based on shear stress transfer in the 
intact fibres. The intact fibres increase the homogenised shear stiffness of the material around 
the broken fibre, thereby reducing the ineffective length. This effect is more pronounced at 
higher fibre volume fraction, as the homogenised shear stiffness would be higher. Such 
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effects cannot be captured by most shear-lag models, as they normally ignore the shear 
stresses in the fibre. 
 
In general, the yielding of the matrix reduces the efficiency of the load transfer, thereby 
smearing out the stress concentrations over more fibres and a larger length 
[13,32,114,116,117]. The smearing out decreases the probability for cluster development, 
whereas the larger length increases it. These counteracting effects make the influence on the 
strength difficult to assess. Behzadi et al. [32] predicted that a yielding matrix increased the 
composite strength by about 10% compared to an elastic matrix. The authors only modeled a 
single layer, and then extrapolated the results. This single layer supposedly had a thickness 
equal to the ineffective length, which was 149 µm. Despite the authors themselves showing 
that the ineffective length changed depending on the matrix behaviour, the layer thickness did 
not depend on the matrix properties. This may have affected the results.  
 
De Morais [118] found that increasing the shear yield strength from 40 MPa to 100 MPa 
increased the tensile strength by about 25%. This correlates well with the results of Pimenta 
and Pinho [34]. At first sight, this seems to contradict with the results of Behzadi et al., 
although it is difficult to make a direct comparison. Behzadi et al. compared a full elasto-
plastic matrix to an elastic matrix, whereas De Morais as well as Pimenta and Pinho changed 
the shear yield strength in a perfect plastic matrix. An additional difficulty in this comparison 
is that size effects may differ depending on the matrix behaviour. Okabe et al. [39] for 
example found that including the strain hardening in the plastic region significantly changed 
the size scaling of their predictions. Behzadi et al. [32] revealed a similar influence of size 
scaling. 
 
Measuring the elasto-plastic response of a matrix material is not as straightforward as it may 
seem. In tension, thermoset resins may fracture at relatively low strains due to the presence of 
voids or other types of defects. Inside a composite, the presence of the fibres prevents these 
large defects from forming. This essentially means that a tensile test does not allow capturing 
the entire stress-strain diagram that is relevant for strength models. A common way to resolve 
this issue is to test the resin in compression [13,119,120]. This allows to reach much higher 
failure strains, thereby capturing the entire stress-strain diagram relevant for strength models. 
The main contribution of the matrix in the composite is however through shear stresses. 
Measuring the shear response is challenging, as it is difficult to achieve pure shear. The linear 
elastic shear response may be predicted from the tensile response if the matrix is linearly 
elastic. However, this assumption is only valid in some rare cases. 
 
A potential problem when incorporating the full elasto-plastic matrix behaviour is that the 
stress redistribution will depend on the applied strain. This means that the stress redistribution 
around a single fibre break will change when the applied strain is increased. Implementing 
this continuous change is easy in some models [34,37,38], but computationally expensive in 
others [23,32]. This issue has been partially resolved by calculating the stress redistribution at 
a strain close to the failure strain of the composite [23,32]. This will reduce the accuracy of 
the predictions at lower strains, but the results should still be sufficiently accurate for most 
purposes. 
 
2.2.2. Microscale properties 

The literature has described in detail how the fibre strength depends on the length (see “2.1. 
Fibre strength”). The logical next question is whether the matrix properties also depend on the 
specimen size. Just like most reinforcement fibres, most thermoset resins are brittle. Resin 
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failure is hence controlled by the presence of flaws, which inevitably leads to size effects 
[121,122]. The typical size of a resin pocket in fibre-reinforced composite depends on the 
fibre diameter, and ranges from hundreds of nanometres up to tens of micrometres [123]. 
Additionally, the large surface area of the fibres may also affect the nucleation of the resin 
curing. This could influence the degree of cross-linking. Nevertheless, the matrix properties 
used as input data for strength models are always measured on macroscale specimens. 
 
Odom and Adams [124] tested neat epoxy dog-bone specimens in tension. They varied the 
cross-sectional area, but kept the gauge length constant. The tensile strength increased from 
41 MPa to 94 MPa when the gauge volume decreased from 5 to 0.06 cm³. This strong 
increase was attributed to a decrease in flaw size from about 250 µm to 100 µm. Odom and 
Adams correctly note that the presence of the fibres prevent such large flaw sizes from 
forming in a real composite. Other studies later confirmed these findings [122,125]. 
 
Hobbiebrunken et al. [126] went one step further. They devised a new manufacturing method 
to produce microscale epoxy fibres with diameters down to 22 µm. The fibres were drawn 
from the bulk polymer when the resin is vitrifying. Their tensile strengths were determined 
using the single fibre test described earlier (“2.1.3. Experimental and statistical issues”). Their 
results revealed a strong size scaling effect, with epoxy fibres of smaller diameters being 
significantly stronger (see Figure 9). The highest reported value was 166 MPa, which starts to 
approach the 275 MPa theoretical strength of the epoxy used in their study. 
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Figure 9. Tensile strength as a function of gauge volume. Some data on dogbone samples from Odom and 

Adams [124] are also included (Adapted from [126] with permission from Elsevier). 

The drawback of the data of Hobbiebrunken et al. is that they focused solely on the tensile 
strength. Recently, new and more detailed results on microscale properties have become 
available. Misumi et al. [127] used an approach similar to Hobbiebrunken et al. to 
manufacture epoxy fibres. In contrast to their macroscale specimens showing brittle 
behaviour, their microscale specimens showed ductile yielding behaviour with failure strains 
ranging from 20% to 42%. 
 
The results of Misumi et al. [127] are thought-provoking and could have major implications 
on strength models. Nevertheless, three aspects would require further investigation. Firstly, 
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Misumi et al. did not investigate how their manufacturing process affected the molecular 
alignment of the epoxy. Their epoxy fibres were drawn close to the point of vitrification. At 
this point, some but not all of the cross-links have been formed. It is therefore possible that 
some degree of orientation of the oligomers was frozen in during vitrification, and that this 
also had an influence on the cross-link density. If correct, then the high strength values may 
be attributed to molecular alignment and the yielding to a lower crosslinking density. 
Secondly, their epoxy fibres are mainly curing while hanging freely in air, whereas the 
presence of fibres would create nuclei for curing of the resin. This is likely to affect the 
crosslinking density, but there is no data in the literature to estimate the importance of this 
effect. Finally, to investigate the importance of microscale properties of the matrix for 
strength models, information on the tensile properties alone is insufficient. Shear properties 
on the microscale would be even more useful for strength models. Unfortunately, these data 
are not yet available in the literature. 
 
2.2.3. Time-dependent aspects 

Many matrix systems used in polymer and metal matrix composites are viscoelastic at their 
use temperature. This means that the constituent properties are time-dependent, which has 
three major consequences: 

• A matrix that is under constant load will creep, thereby gradually reducing its stress 
and increasing the stress on the fibres [108,128]. 

• The stress recovery length of a broken fibre increases as a function of time, thereby 
causing the stress concentrations to extend over a larger length [108,129-133]. 

• The stress concentrations in the nearest neighboring fibres reduce, but increase on the 
fibres that are further away [130,131,134]. Essentially, this is equivalent to a matrix 
that becomes more ductile with time. As described in “2.2.1. Elasto-plastic materials”, 
a more ductile matrix smears out the stress concentrations over more fibres. 

 
This has several implications on strength models. Firstly, fibre-reinforced composites may 
creep at constant load [108,109,132,135]. Secondly, fibre breaks can continue to develop 
when a composite specimen is held at constant load [136]. This may be important for 
computed tomography studies where specimens are typically held at constant load during 
each measurement [18,22]. Finally, the strength of a composite is rate-dependent [137,138]. 
This may not be relevant in standardised tensile testing, but could be important for practical 
applications. 
 
A landmark study of creep in fibre-reinforced composites was performed by Lifshitz and 
Rotem [132]. They tested UD glass-fibre reinforced composites, where one had a brittle, high 
modulus epoxy matrix and the other one a ductile, low modulus polyester matrix. The lowest 
constant load that was sufficient to cause creep failure in the brittle matrix composite was 
0.72 times the strength in a quasi-static tensile test. For the ductile matrix composite, this 
reduced to 0.5 times the strength. These tests took 44000 and 33000 min respectively, which 
corresponds to about a month. 
 
Du and McMeeking [108] developed a global load sharing analysis (see “3.2. Load sharing 
rules”) for creep of metal matrix composites. Just like McLean’s earlier work [139], this 
included creep of the matrix, which occurs even in the absence of fibre breaks. Especially in 
metal matrix composites, this can significantly increase the stress on the fibres. Du and 
McMeeking [108] however extended McLean’s model to incorporate the increase of the 
ineffective length with time. They found that this increase had a strong effect on the creep 
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rupture time at low stress levels. At high stress levels however, the ineffective length increase 
had a negligible influence on the predictions. 
 
Chou et al. [136] found that the occurrence of large fibre break clusters was much more 
common under sustained loading than under monotonic loading. This finding is in line with 
Beyerlein et al. [134], who proved that the effect of creep is sped up when multiple fibre 
breaks interact. 
 
Foreman et al. [137] proved that increased strain rates lead to slightly shorter ineffective 
lengths, but slightly larger stress concentrations. At higher strain rates, the polymer matrix 
behaves stiffer, causing a localisation of the stresses both in the fibre break plane and along 
the fibres. This led to slightly lower strengths at high strain rates, with the difference 
becoming larger for longer specimens. 
 
For most applications, neglecting the time-dependent aspects is likely to be a reasonable 
assumption. In some specific cases however, these aspects should be taken into account. Care 
should be taken whenever samples are held at constant load or at elevated temperatures. One 
of the key difficulties seems to be to obtain reliable data of the time-dependent properties of 
the matrix. Most models have used a power law creep of the matrix 
[108,109,129,130,134,135,139], although some used more advanced laws [137]. The time-
dependent issues described here are mainly relevant for metal matrix composites, as they are 
often used at high temperature that allow the metal matrix to creep. 
 
2.2.4. Interfacial properties 

When a fibre breaks, large shear stresses arise in the matrix and at the fibre-matrix interface. 
This can cause the interface to debond, thereby increasing the ineffective length. This is often 
observed in single fibre composite fragmentation tests [140-143]. The debonding is controlled 
by parameters such as the interfacial shear strength, the strain energy release rate, the fibre-
matrix friction, the matrix yield strength and the fibre stiffness. Depending on the nature of 
the model, some of these parameters may not be needed. Many strength models in the 
literature even ignore debonding altogether. 
 
To the best of our knowledge, in situ observations of interfacial debonding do not exist for 
composites with thousands or millions of fibres. Even in detailed synchrotron radiation 
computed tomography experiments, the resolution is insufficient to see fibre/matrix 
debonding [17,18,21,22]. The two debonded surfaces stay in close contact, making it 
impossible to detect them with computed tomography. Most other techniques such as micro-
Raman spectroscopy or polarised light are limited to surface measurements. It is therefore 
unknown whether the knowledge from micro-composites with only a few fibres can be 
reliably transferred to macro-composites with millions of fibres. 
 
The interfacial shear strength is an important parameter for the strength of UD composites. A 
low interfacial shear strength results in longer ineffective or slip lengths, which means the 
stress concentrations are significant over a larger region. This results in poor composite 
tensile properties. A strong adhesion however can also be detrimental, as it tends to localise 
the fractures in the same plane. Therefore, the general belief is that an intermediate interfacial 
strength leads to the best tensile properties [143-145]. 
 
Various methods can be used to reliably measure the interfacial shear strength. Several 
excellent reviews of these methods have been published in the past [146-148]. The single 
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fibre fragmentation test [143,149], microdroplet/microbond test [150,151], single fibre pull-
out test [152,153] and push-out test [154,155] are the most common ones. These four methods 
are schematically depicted in Figure 10. The advantage of the push-out and pull-out test over 
the fragmentation test is that they can also yield a value for the friction coefficient. This 
parameter is also important, as it is required for modelling stress redistributions with 
interfacial debonding. However, as mentioned by Zhandarov and Mäder, the fragmentation 
test is more relevant for composites with brittle fibres and ductile matrices. In all techniques, 
the data reduction should be done with care, as there are many different reduction schemes. A 
detailed list of the advantages and disadvantages of the various methods can be found in the 
review of Herrera-Franco and Drzal [147]. 
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Figure 10. Schematic illustration of the four most common techniques for measuring interfacial shear 

strength: (a) single fibre fragmentation test; (b) microdroplet/microbond test; (c) single fibre pull-out test; 

(d) push-out test. Black indicates the fibre, light gray the matrix and dark gray the supports or auxiliary 

materials. The arrows indicate the direction of the applied force F. 

Zhao and Takeda [156] developed a strength model that takes into account interfacial 
debonding. In general, they found good agreement with experimental data, but not when the 
interfacial shear strength was high. For the high interfacial shear strength case, it was 
hypothesised that the interface did not debond, but the matrix cracked instead. Recent 
modelling evidence has however revealed that local matrix cracking around fibre breaks has a 
negligible influence on the longitudinal strength of UD polymer matrix composites [23]. Its 
influence in metal or ceramic matrix composites is likely to be higher due to their higher 
matrix stiffness. 
 
Xia et al. [106] proved that low friction causes a large ineffective length, and hence that the 
stress concentrations are of a significant magnitude over larger distance from the fibre break. 
Xia et al. also noted that low friction reduces the stress concentration, and attributed to the 
increasing contribution of the matrix in the load transfer. This was the case in a metal matrix 
composite, so the lower matrix modulus in a polymer composite is likely to reduce this effect. 
Increasing the friction coefficient from 0.25 to 0.9 increased the tensile strength by only 3% 
[106]. Van den heuvel et al. [105] reported that a friction coefficient in the range of 0.1 to 0.4 
is realistic for carbon fibre/epoxy composites. This conclusion was based on a comparison of 
Raman spectroscopy with a finite element model. The friction coefficient is therefore unlikely 
to have a major effect on the tensile strength of polymer matrix composites. 
 
An important remark with respect to friction is that none of the published works using a 
frictional coefficient relied on direct experimental measurements. Friction was taken into 
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account either by trying out different values for the frictional coefficient [104-106] or by 
using an indirect and constant value for the interfacial sliding stress [156]. None of the 
existing works deals with the energy release rate for interfacial debonding or with variations 
in the interfacial bonding. Obtaining reliable measurements of the relevant parameters is 
clearly a challenging task. 
 
2.2.5. Conclusion 

While often considered less important than fibre strength, the matrix and interfacial properties 
can also have a major influence on the outcome of strength models. Measuring the required 
matrix and interfacial properties is often not trivial, and has received significantly less 
attention than fibre strength. Depending on the modelling assumptions, many different 
parameters may be needed and others may be obsolete. Table 1 summarises which models 
have used which type of properties. It should be noted that two of these parameters, the 
microscale properties and the strain energy release rate for debonding, have never been used 
in strength models. It is therefore impossible to judge their importance. 
 

Table 1: Overview the matrix and interfacial properties that are relevant for strength models for UD 

composites, and where they have been used in the literature. References were only included if they 

provided modeling predictions. 

Property Used in references 
Elastic matrix only [6,7,11,12,16,20,22,36,107,113-115,157-159] 

Elastic/perfectly plastic matrix [104,110,112,114,118,160] 
Perfectly plastic matrix [6,34,75] 

Elastic/linearly plastic matrix [95] 
Entire tensile diagram of matrix [23,104-106,111] 

Entire compression diagram of matrix [13,32,104,105] 
Entire shear diagram of matrix [33,137] 

Residual stresses [104-106] 
Microscale properties Nowhere 
Viscoelastic properties [33,108,109,128,129,133,137] 

Constant interfacial shear strength [145,156,158] 
Strain energy release rate for debonding Nowhere 

Constant friction coefficient [104-106,156] 
 
 
2.3. Conclusion 

The input data of any model are crucial for the outcome of the predictions. This is particularly 
relevant for strength models for UD composites, where the input data are often difficult to 
measure experimentally. The reliability of strength models can be greatly increased by 
improved test procedures for measuring fibre, matrix and interfacial properties. The above 
review of these parameters has pointed out which parameters have a large influence and 
which ones do not. This needs to be approached carefully though, as every fibre/matrix 
system is different.  
 

3. Modelling assumptions 

Apart from the input data, every strength model is based on a set of assumptions. This section 
will highlight four key assumptions in detail. These are related to fibre packings, load sharing 
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rules, dynamic stress concentrations and multiple fibre breaks. Finally, section “3.5. Other 
assumptions” highlights a few smaller assumptions that have received little or no attention in 
the literature. This also implies that it will be more difficult to judge their importance. 
 
3.1. Fibre packings 

Many models in the sixties, seventies and eighties used 1D packings (see Figure 11a and b) to 
calculate the stress concentration factors (SCFs) on the intact fibres near fibre breaks 
[7,10,157-160] These SCFs were calculated as the relative increase in stress compared to the 
nominal stress level in the fibres. Assuming a single row of fibres greatly simplified the 
analytical equations, which led to the successful prediction of some of the basic effects 
present in UD composites. Nevertheless, a packing that has just two nearest neighbors for 
each fibre cannot be expected to yield accurate results for real composites. Hedgepeth and 
Van Dyke [6] for example predicted a static stress concentration factor (SCF) of 33% for a 1D 
packing (see Figure 11a) compared to 10.4% for a 2D hexagonal packing (see Figure 11c). 
Similar conclusions were reached by Van den Heuvel et al. by comparing the FE results for a 
1D [105] and 2D packing [104]. Therefore, the focus in the past decades shifted towards 2D 
packings, as they are more representative of real UD composites. The literature has used 
either hexagonal (see Figure 11c) [6,8,9,12,32,33,37,39,95,110,112,113,118,161,162], square 
(see Figure 11d) [6,13,38,163,164] or random 2D (see Figure 11e) packings 
[11,16,20,22,23,36,163,165,166]. 
 

(a) Regular 1D (b) Random 1D

(c) Hexagonal 2D (d) Square 2D (e) Random 2D

 
Figure 11. Illustration of the five different fibre packing types: (a) regular 1D; (b) random 1D; (c) 

hexagonal 2D; (d) square 2D; (e) random 2D. 

Some comparative studies between the different 2D packing types have been performed. 
Landis and McMeeking [163] for example started off with a square packing, and distorted the 
packing by slightly moving one or more fibres. Moving all eight nearest neighbors closer to 
the broken fibre had only a minor effect on the SCFs. Moving just one fibre closer to the 
broken fibre increased the SCF on that broken fibre from 8% to 41%. Curtin and Takeda 
[167] compared the strength predictions of a hexagonal packing to that of a square packing. 
Their simulations with a hexagonal packing lead to 1% higher strength than those with a 
square packing. 
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An extensive finite element study of the influence of fibre packing was performed by Swolfs 
et al. [11,20]. Random packings were shown to lead to potentially much higher SCF values 
than regular packings [11]. This confirmed the findings of the shear-lag based predictions of 
Landis and McMeeking [163]. The observed SCF increases were however balanced out by 
other fibres having lower SCF values than in regular packings. A random fibre packing did 
seem to lead to shorter ineffective lengths than in regular packings. This effect alone would 
reduce the predicted strength, but may be counteracted by the higher SCFs. A strength model 
was therefore used to prove that the packing type results in variations of 3-4% in the predicted 
failure strain [20]. These variations are smaller than the expected accuracy of strength models. 
In many cases, the use of 2D regular packings (see Figure 11c and d) is therefore justified. 
 
Despite having little influence on longitudinal strength predictions for UD composites, 
random fibre packings should not be ignored completely. Firstly, random fibre packings are 
crucial for transverse strength predictions [168,169], but this is outside the scope of this 
review. Secondly, regular packings face issues when not all fibres have the same diameter. 
This would severely limit the maximum fibre volume fraction that can be achieved. Carbon 
fibres typically have limited diameter variations, and therefore do not face this issue. Natural 
fibre composites [170] and hybrid composites [36,171,172] would require random packings 
due to the large variations in fibre diameter. 
 
3.2. Load sharing rules 

Load sharing rules define how the stresses are redistributed when a fibre breaks. Many 
different rules have been implemented in the past, and can roughly be split up into four 
categories: equal, global, very local and local load sharing. Local load sharing means that the 
stress concentrations are spread not only over the nearest neighbors, but also over the fibres 
that are further away. The stress concentrations however decrease significantly when the 
fibres are further away. 
  
Very local load sharing assumes that all stress concentrations are concentrated on the nearest 
neighbors only. This load sharing rule is often used in combination with regular packings, as 
the definition of nearest neighbors in a random fibre packing would be arbitrary. The very 
local load sharing rule was introduced by Harlow and Phoenix [62,173-175], and further 
developed by other authors [36,176-178]. Very local load sharing overestimates the 
localisation of the stress redistribution [179], but is nevertheless considered to be a reasonable 
approximation [177]. 
 
Global and equal load sharing spread the stress concentrations equally over all fibres present 
in the composite [162,180-185]. The difference between both lies in what happens away from 
the fibre break plane. In equal load sharing, the broken fibre is assumed to completely lose its 
load transfer capacity [180]. Essentially, this is equivalent to the situation in a dry fibre 
bundle. In global load sharing however, the broken fibre gradually recovers its stress as a 
function of the distance to the fibre break. This approach was initially developed by Curtin 
[186,187], and later extended by Neumeister [182,183] and Hui et al. [184]. In global load 
sharing, the influence of the other fibres is taken into account through their homogenised 
response. This leads to analytical solutions for the composite strength. Global load sharing 
rules can often provide a first indication of the importance of certain effects [188-190], after 
which a more refined study can be performed with more advanced load sharing rules. The 
global load sharing model has been particularly useful in ceramic and metal matrix 
composites [191,192]. 
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There is no doubt in the literature that local load sharing is the most accurate rule for 
impregnated fibre-reinforced composites. The key question is however in which situations the 
other rules can be justified. The global load sharing approach has the advantage that it allows 
an analytical solution and hence a rapid scanning of the parameter space to find optimal 
performance [188,189]. Similarly, very local load sharing rules can be significantly easier to 
implement and more computationally efficient than local load sharing. Zhou and Curtin [193] 
proved that a more localised load sharing reduces the predictions of tensile strength. This 
means that equal/global load sharing leads to overpredictions of tensile strength, whereas very 
local load sharing leads to underpredictions compared to local load sharing. Another key 
implication of the load sharing rule is that local and very local load sharing can capture size 
scaling effects, whereas they are absent in global/equal load sharing analyses [193]. These 
effects should be considered when deciding which load sharing rule to use. 
 
3.3. Dynamic stress concentrations 

Intrinsically, fibre fracture is a dynamic process, resulting in a change in the stress level over 
time. This dynamic variation in stress is not that important for the broken fibre itself, but may 
be crucial for the nearby fibres. Prior to the fibre break, the stress in the nearby, intact fibres 
equals the nominal level (see Figure 12). When the fibre breaks however, the stress in the 
nearby fibres increases to the dynamic stress level, after which it gradually dampens out to the 
static stress level. The reason for these dynamic effects is that a broken fibre releases its 
stored elastic energy and converts it into kinetic energy. This causes dynamic stress 
concentrations on the neighboring fibres that exceed the static ones. Nevertheless, all state-of-
the-art strength models ignore the resulting dynamic instead of the static stress concentrations. 
 

Time

Stress

Static stress

Dynamic stress

Nominal stress

 
Figure 12. The stress evolution in a nearby, intact fibre as a function of time when a fibre breaks in a 

regular 1D packing. The dynamic stress level is significantly higher than the static stress level. 

Experimental evidence indicated the importance of these dynamic effects. Van den Heuvel et 
al. [194] and Jones and DiBenedetto [195] both found that micro-composites tended to 
display coplanar fibre breaks. Such observation are unlikely to be explained based on 
statistical fibre strength and the static stress redistribution around a fibre break. Synchrotron 
radiation computed tomography measurements recently provided further indications that 
dynamic effects may be crucial in the development of clusters of fibre breaks [22]. These 
measurements revealed that fibre break clusters tended to develop in one load step, after 
which they did not seem to grow any further. This implies that further increasing the load was 
insufficient to break more fibres around the clusters. While direct evidence was absent, these 
observations may potentially be explained by large dynamic stress concentrations, happening 
at the moment of the first fracture. Additionally, a significantly higher ratio of coplanar to 
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diffuse fibre breaks was found in experiments (see Figure 13) than in model predictions. 
Dynamic effects are the most reasonable explanation for such observations. 
 

 
Figure 13. (a) Diffuse and (b) coplanar fibre breaks as measured by synchrotron radiation computed 

tomography (Adapted from [22] with permission from Elsevier). 

The very first paper on stress concentrations in multi-fibre composites already included 
dynamic effects. Hedgepeth [7] modeled a regular 1D packing (see Figure 11a). For a single 
fibre break, Hedgepeth predicted a static SCF of 33% on the two nearest neighbors, whereas 
the dynamic one was 53%. Hedgepeth reported this in terms of the dynamic response factor, 
which was the ratio of the maximum stress over the static stress. For a single fibre break, the 
dynamic response factor was 1.53/1.33 = 1.15. This value looks rather low when calculated in 
this manner. In relative terms however, an SCF of 53% is 60% higher than an SCF of 33%. 
For predicting how much this increased the failure probability of the nearby fibres, the 60% is 
more relevant than the dynamic response factor. 
 
Hedgepeth [7] also illustrated that the dynamic response factor increased from 1.15 to 1.19 
and 1.20 for two and three simultaneous fibre breaks, respectively. This proves that dynamic 
effects could potentially be crucial to capture fibre break and cluster development in UD 
composites. The analysis of Hedgepeth however included several assumptions that may have 
increased the dynamic effects. Hedgepeth for example assumed a linear elastic matrix without 
axial load carrying capacity and ignored any viscous contributions. Furthermore, it is unclear 
how the dynamic effects in a 2D packing would differ from those in the 1D packing used by 
Hedgepeth. 
 
Following the footsteps of Hedgepeth, some progress was made in the eighties. Ji et al. [196] 
used a similar approach, but also inspected the dynamic response factor along the fibre 
instead of just in the fibre break plane. This factor was ranged from 1.1 to 1.15 along the fibre, 
and slowly decreased with increasing distance from the fibre break plane. This decrease with 
distance would help to explain why coplanar fibre breaks are more common than diffuse fibre 
breaks (see Figure 13). 
 
Sakharova and Ovchinskii published a series of three papers on dynamic effects in composites 
[197-199]. As evidenced from having no citations even after 30 years, these papers have 
remained relatively obscure to most researchers. Nevertheless, their model is relatively 
advanced, as it includes non-linear matrix behaviour and a 2D hexagonal packing. Sakharova 
and Ovchinskii [197,198] predicted dynamic SCFs that were about twice as high as the static 
SCFs, which is more than the 60% found by Hedgepeth [7]. They also found that the dynamic 
SCFs are the largest when the fibre volume fraction is 60-70% [197,198]. This range is 
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typical for an impregnated UD fibre bundle. Despite having the intrinsic capacity to study the 
influence of matrix non-linearities, Sakharova and Ovchinskii did not present any results on 
this matter. 
 
Accorsi et al. [115] developed the first finite element model for dynamic stress concentrations. 
Their main motivation was to explain the strong “co-ordination of fibre breaks”. This refers to 
works of Jones and Dibenedetto [195] and Van den heuvel et al. [194], who found that fibre 
breaks in micro-composites tend to occur within the same plane. This observation could not 
be explained based on static stress concentrations. Their finite element model was two-
dimensional and assumed plane strain conditions. Their dynamic calculations revealed that 
dynamic effects lead to an increased probability for these coordinated fibre breaks. They 
however did not calculate the influence of dynamic SCFs on the strength predictions. 
 
There has also been some work on dynamic effects in hybrid composites. Xing et al. [200] 
modeled a composite consisting of a carbon and a glass layer. They revealed that the stress 
waves propagating through such a hybrid composite are always smaller than in the 
corresponding low elongation composite. This was true irrespective of the fibre stiffnesses or 
diameters, as any difference would tend to cause out-of-phase stress waves that reduce each 
other. This could be a potential contributor to the hybrid effect, which is a synergetic effect 
that increases the failure strain of the low elongation fibre in hybrid composites [201]. 
 
The presence of dynamic effects is widely accepted, but, to the best of our knowledge, they 
have never been implemented in strength models. Some information on the magnitude of 
dynamic stress concentrations is present in the literature, but all these models used relatively 
simple assumptions. The importance of these dynamic effects is therefore unknown in the 
literature. If the dynamic response factor is as large as predicted by these models, then 
significantly lower strength predictions are inevitable. 
 
3.4. Multiple fibre breaks 

Most models for stress redistribution deal with the situation of a single fibre break. Many of 
the analytical models can easily be extended to multiple fibre breaks [6,7,34,160,202-204]. 
This is more difficult for models that use FE analysis. Since modelling all possible cluster 
configurations is impossible, there was a need for superposition rules. These rules will predict 
the stress redistribution around multiple fibre breaks based on the solutions for single fibre 
breaks [23,205-207]. 
 
Sastry, Beyerlein and Phoenix [205,206] were the first to develop a superposition rule for 
multiple, non-coplanar fibre breaks. They extended Kachanov’s fracture mechanics approach 
[208,209] for the interaction of multiple cracks in a homogeneous solid to fibre breaks in 
composites. Their initial “break influence superposition” [206] extended Hedgepeth’s model 
on 1D packings with coplanar fibre breaks to non-coplanar fibre breaks. This rule was later 
extended to the “quadratic influence superposition” rule [205], which was both faster and 
more accurate than the break influence superposition rule. It is an elegant approach, which 
works well in combination with shear-lag models. 
 
Zhou and Curtin [193] developed a lattice Green’s function model. This function is basically 
a response function capturing the displacement due to an applied load. If the Green’s function 
for a single fibre break is known, then calculating all fibre stresses around multiple fibre 
breaks is relatively straightforward. The initial ideas of Zhou and Curtin later evolved into the 
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spring element model, which consists of a set of axial and transverse springs (see Figure 14) 
[37,38]. The axial springs represent fibres, whereas the transverse springs represent the shear 
stress transfer of the matrix. The stress redistribution around multiple fibre breaks is 
calculated automatically as the algorithm searches for the equilibrium state of the system of 
springs. This is a very elegant solution to calculate the stress redistribution around multiple 
fibre breaks. 
 

Periodic boundary conditions

Axial fibre spring

Transverse shear spring

Fibre

direction

(a) (b)
 

Figure 14. Schematic overview of the spring element model, where (a) the unit cell consists of axial fibre 

springs and transverse shear springs. The unit cells are assembled into (b) the full scale composite model 

(Adapted from [37] with permission from Elsevier). 

Behzadi et al. [32] used a more ad-hoc approach by calculating the FE stress redistribution 
around clusters of two and three coplanar fibre breaks. The number of possible configurations 
is still manageable for these small clusters, but this number rapidly explodes for larger 
clusters. Unfortunately, it is not clear how Behzadi et al. dealt with larger clusters in their 
model. Dealing properly with those clusters is crucial for accurately predicting final failure of 
UD composites. 
 
Swolfs et al. [23] proposed an approximate, but easy-to-implement method. The stress 
redistribution around multiple fibre breaks was approximated by a modified linear 
superposition of the single fibre break solutions. Linearly superposing these solutions would 
lead to underestimations of the stress concentrations, as this approach neglects the stress 
concentrations that broken fibres exert onto each other. A simple correction was proposed to 
resolve this, and its accuracy was validated using finite element models with three coplanar 
fibre breaks. The disadvantage of this approach is that it currently still ignores the increase in 
ineffective length with increasing cluster size. The literature currently does not reveal the 
importance of this effect. 
 
3.5. Other assumptions 

This section will review several less common assumptions that may influence the outcome of 
the models. Since they have received little attention in the literature, it is difficult to judge 
their importance. 
 
3.5.1. Stress variation of cross-section 

The stress redistribution around a fibre break does not cause a constant stress in the nearby 
fibres. Instead, the longitudinal stress in these fibres varies significantly over their cross-
section, and is highest close to the fibre break [11-13,32,114]. An example is shown in Figure 
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15 for a carbon fibre/epoxy composite with 70% fibre volume fraction. The nearby fibre was 
only 0.15 µm away from the broken fibre, which caused stresses that were seven times higher 
than the nominal stress level.  
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Figure 15. Local stress concentrations in the nearby fibres can be very high if they are close to the broken 

fibre. The maximum stress here is more than 7 high times higher than the nominal stress level, which was 

2300 MPa. This calculation was performed for a carbon fibre composite with 70% fibre volume fraction 

and the shown fibre being 0.15 µm from the broken fibre. 

The stress variation of the cross-section has four implications. Firstly, the extraction of SCF 
values from FE models typically requires averaging the stress over the cross-section. Some 
authors have however analysed the stress at the surface or the stress in the centre line of the 
fibres [12,13,32,113]. Shear-lag models often assume that fibres are one-dimensional 
elements, and hence do not face this issue. Secondly, using the average stress will lead to 
different failure probabilities than integrating the local failure probabilities over the cross-
section. This is because the Weibull distribution is not a linear function. Thirdly, since failure 
of carbon fibres is often dominated by surface flaws [53-55], the stress variation may increase 
the failure probability more than expected from the SCF averaged over the cross-section. This 
effect is currently ignored by all state-of-the-art strength models, as there is no Weibull 
strength distribution available at this scale. Finally, the stress concentrations may be so high 
locally that the theoretical strength of carbon fibre is exceeded. This strength is often assumed 
to be one tenth of the stiffness. In the case of carbon fibre, it is unclear which stiffness should 
be used in this calculation. It can either be the stiffness of the graphite planes (about 1000 
GPa) or the stiffness of the carbon fibre (typically 230-400 GPa).  
 
The literature has given little to no attention to these implications. Their importance thus 
remains unknown. 
 
3.5.2. Planarity of fibre breaks 

Some models assume that fibre breaks occur in the same plane [32], even though the 
experimental evidence revealed that this is a simplification. Experimentally, about 50% of the 
fibre break clusters were found to be coplanar, whereas the others were diffuse (see Figure 
13) [22]. Unfortunately, the literature does not offer any direct comparison to directly gauge 
the importance of this assumption. Based on the existing knowledge however, it is likely that 
this assumption has a major effect on the predicted strength. Existing models that do not 
require this assumption could be used to assess its importance.  
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3.5.3. Reduced defect sensitivity 

As mentioned in “2.1. Fibre strength”, most Weibull distributions are measured using the 
single fibre test. In a composite however, the fibre is surrounded by matrix. The presence of 
the matrix might reduce the defect sensitivity of the fibre [22,92]. This hypothesis remains 
highly speculative, as direct evidence is completely absent. If a surface flaw is considered to 
be a tiny notch in the fibre, then this notch can be filled by matrix. This could potentially 
reduce the stress intensity at the notch tip, thereby increasing the strength of the fibre. If this 
hypothesis would be confirmed however, it would have major implications on the way fibre 
strength should be measured. Unfortunately, no one has investigated this problem yet. 
 
3.5.4 Critical cluster criterion 

Most strength models in the literature define final failure as the unstable propagation of a 
large cluster of fibre breaks. This unstable propagation is based on a stress analysis, whereas 
such a large “crack” may be controlled by strain energy release rate instead of stress 
considerations. Properly capturing this last part of the failure of UD composites may therefore 
require a fracture mechanics approach instead of a stress-based approach. Whether this is 
actually required depends on the size of the critical cluster, but relatively little is known on 
this size. The largest cluster that was observed experimentally consisted of 14 fibre breaks 
[18]. This was however observed at 94% of the failure load, and models have indicated the 
clusters rapidly grow in size in the last 5% of applied load [20]. 
 
Models that are fully based on fracture mechanics exist in the literature [210-213], but they 
often ignore many of the aspects described in this review. Models that combine the best of 
both worlds have not been developed yet. 
 
3.5.5 Fibre alignment 

Nearly all strength models for UD composites assume perfect fibre alignment. In real life, the 
fibres in UD composites are never perfectly aligned, and misalignment angles of a few 
degrees are unavoidable [214,215]. Although some models that incorporate fibre 
misalignment have been developed [166,216], they are scarce and have not been used to 
quantify the effect of the misalignments on strength predictions. It is therefore currently 
impossible to judge the effect of the fibre misalignment on the performance of UD composites. 
 
3.5.6 Non-linear elastic fibres 

The overwhelming majority of the models assume that the fibres are linearly elastic. While 
this is a good approximation for many fibre types, it is not generally true. It would cause 
major errors for oriented polymer fibres, which often show highly non-linear behaviour. 
Carbon fibres are also known to be non-linear elastic, with its stiffness increasing by about 
20% for every 1% of applied strain [101,102]. This is ignored in nearly all models, although 
many models are intrinsically capable of incorporating it. In Swolfs et al. [22] for example, 
the predicted average failure strain for a carbon fibre composite was 2.17%, whereas it would 
have been 2.42% if the non-linear elasticity was ignored. It should be noted though that this 
non-linearity does not affect the predicted strength.  
 
3.6. Conclusion 

Even if all the input data are accurate, then every model still requires assumptions that may 
affect the predictions. The influence of fibre packings was found to be negligible, but the 
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choice of load sharing rule is an important one. There has been a strong trend to use local load 
sharing instead of the simplified rules.  
 
The incorporation of dynamic stress concentrations could be a vital step forward. With both 
experimental and modelling evidence indicating its importance, it is surprising that this has 
not received more attention. A partial explanation is that modelling dynamic stress 
redistributions is significantly more challenging than static stress redistributions. It would also 
require significant adaptations to the strength models and for some of them the adaptations 
may even be impossible. 
 
The stress redistribution around multiple fibre breaks is receiving more and more attention. 
Capturing this correctly is crucial for reliable strength models, and good approaches have 
therefore been developed by several groups. Accurate validations of the superposition rules 
would be required for cluster sizes close to the critical cluster size. 
 

4. Concluding remarks 

4.1. Prediction accuracy 

As explained in “2.1.3. Experimental and statistical issues”, several hundreds of tests are 
required to achieve strength predictions within 10% of the actual value. Most studies test 25-
100 fibres, so the expected error is likely to be larger. This is purely based on statistical 
arguments. Taking into account experimental errors as well, the prediction accuracy cannot be 
expected to be lower than 20%. This is reasonable, especially in comparison with the 
prediction accuracy for multidirectional composites under complex loading [2-4]. 
 
Nevertheless, many authors have consistently found much better correlations than this 20% 
[23,34,39,118,161,217,218]. As in many other fields, it is common to continue to improve 
models and/or input data until they yield a reasonable agreement with experimental results. 
This human behaviour has been extensively described in the psychology literature, and is 
termed the “confirmation bias” [219]. It is a natural tendency to look for supporting 
information and disregard information that contradicts existing data. This is why blind 
benchmarking studies, such as the World Wide Failure Exercise, are so important in 
improving model predictions. This type of studies are the best and perhaps the only way to 
avoid the confirmation bias. 
 
Luckily, the state-of-the-art strength models capture the majority of the mechanisms. These 
models are therefore powerful tools for carrying out parametric studies and finding optimal 
combinations. This review has identified areas where the models and their input data can be 
improved to increase their prediction accuracy. In our opinion, the key areas are:  

• More accurate Weibull distributions for fibre strength. 
• Reliable measurements of microscale resin properties. 
• Incorporation of dynamic stress concentrations. 

Improvements in these three areas will be vital for the models to be successful in blind 
predictions. This type of predictions are much more challenging than predictions where the 
outcome is known on beforehand. 
4.2. Future trends 

Strength models for UD composites have significantly advanced in the past few decades. 
They have now reached a point where they can start being useful in real-life applications. 
Some models have already been built with this specific goal in mind [19,131,220-223], and 
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have been applied to composite pressure vessels [136]. This trend is expected to gain 
significant importance. 
 
Given the increased importance of modelling predictions in composite design, there is also a 
tendency to incorporate strength models for UD composites into other models. This was for 
example done by Pimenta and Pinho [224], who used their strength model for UD composites 
in a model for translaminar fracture toughness. Another example is found in Scott et al. [18], 
where the effect of transverse ply cracks was taken into account in their strength model for 
UD composites. This yielded more reliable predictions for a 0/90 laminate.  
 
In the past decades, testing techniques have greatly advanced, and this will also strongly 
influence the development of strength models for UD composites. Computed tomography can 
yield new insights into the damage mechanisms [17,21], and provide a useful tool for detailed 
model validations [18,22]. Further improvements in synchrotron radiation computed 
tomography will eventually lead to a deeper understanding of the physical mechanisms 
occurring in UD composites. Specific areas for improvement are: 

• Scans at low load levels to measure the Weibull distribution (see “2.1.4. Other testing 
techniques”). 

• Shorter hold at loads or continuous data acquisition to minimise time-dependent 
artifacts (see “2.2.3. Time-dependent aspects”). 

• Improved algorithms for processing the data, detecting fibre breaks and classifying 
clusters. 

 
In the nineties, the first FE models for stress redistribution started appearing. Nowadays, the 
computational power has increased to a point that it becomes possible to build an entire 
strength model using the FE method [165,166,216]. This approach has several advantages, 
such as the possibility to include fibre misalignment. The drawback at this moment is that it is 
limited to about 100 fibres, depending on the mesh size. 
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