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ABSTRACT
WebRTC is one of the latest additions to the ever growing
repository of Web browser technologies, which push the en-
velope of native Web application capabilities. WebRTC al-
lows real-time peer-to-peer audio and video chat, that runs
purely in the browser. Unlike existing video chat solutions,
such as Skype, that operate in a closed identity ecosystem,
WebRTC was designed to be highly flexible, especially in the
domains of signaling and identity federation. This flexibil-
ity, however, opens avenues for identity fraud. In this paper,
we explore the technical underpinnings of WebRTC’s iden-
tity management architecture. Based on this analysis, we
identify three novel attacks against endpoint authenticity.
To answer the identified threats, we propose and discuss de-
fensive strategies, including security improvements for the
WebRTC specifications and mitigation techniques for the
identity and service providers.

CCS Concepts
•Security and privacy → Web application security;
Browser security; Distributed systems security; Web protocol
security;

Keywords
Web Application Security; WebRTC; Real-time Communi-
cation; Peer-to-Peer Communication; Peer Authentication

1. INTRODUCTION
WebRTC is a new technology stack that enables real-time

communication on the Web. Without the need for additional
tools or applications, users can now make peer-to-peer con-
nections between each other and stream audio and video,
simply with the built-in functionality of their browsers. All
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this functionality is available to every website, and can be
fully controlled via JavaScript APIs.

WebRTC is a joint effort of W3C and IETF, and backed by
a large set of industry players. It is expected to be a hugely
disruptive technology in the telco sector, and it impacts the
whole client-server paradigm we are so used to in the Web.

The overall security mechanisms of WebRTC are well thought
out, especially at the network and transport layer [16, 14].
Several protocols and services are inherited from the VoIP
and SIP ecosystem, and have already earned their stripes.
Fully new however, is the fact that the technology all of a
sudden can be controlled from within the Webapplication.

This paper therefore investigates how a malicious appli-
cation (either due to a malicious Webserver, or due to mali-
cious code injection) can impact the security guarantees of
the peer-to-peer WebRTC connection. In particular, we re-
port on the impact of application-level code on the endpoint
authenticity guarantees that can be provided by the peer-to-
peer connection. In case the endpoint authenticity can get
compromised, malicious entities, able to execute JavaScript
in the website or malicious website owners, are able to eaves-
drop on the peer-to-peer connections between browsers.

Guided by the WebRTC specifications and the early brow-
ser implementations, we report in this paper on our security
assessment of the current state-of-practice on endpoint au-
thenticity in WebRTC (Section 3). In particular, we de-
scribe three novel attack types to compromise endpoint au-
thenticity in Section 4, which allows an attacker to intercept
the peer-to-peer connection. Moreover, we propose mitiga-
tion techniques and security advices to prevent those attacks
from happening in Section 5. These mitigations have been
grouped by actor in the WebRTC architecture: security im-
provements for the WebRTC specifications and the browser
implementations, and mitigation techniques for the Identity
Providers and website owners.

2. WEBRTC BACKGROUND
In this section we will give a brief overview of the WebRTC

technology, and in particular the signaling path and the me-
dia path. Next, we will dig into the identity provisioning, as
this is another crucial part for this paper. Finally, we will
cover the JavaScript APIs that can be used from within the
browser to initiate and control WebRTC sessions.

WebRTC stands for a complete stack of protocols and
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APIs to setup and participate in real-time communication
across networks from within a Web browser. Via a WebRTC-
enabled browser, it becomes possible to interact, via real-
time multi-party audio and video conferencing in a peer-
to-peer fashion, with other users. The complete WebRTC
technology stack is controllable via JavaScript from within
Web applications. Although still very new, most of the un-
derlying technology, including the network and transport
layer stack, are reused from existing multimedia- or telecom-
munication protocols (e.g, the Session Initiation Protocol
(SIP) [10] to support multimedia sessions).

2.1 Architecture of WebRTC
The high-level architecture of WebRTC can be split into

two different planes as shown in Figure 1. The distinction
is made based on the kind of data is sent over it. The green
layer, or the media plane delivers the peer-to-peer real-time
streams. The top red layer, or the signaling plane delivers
all control- and meta-data between the endpoints.

Figure 1: Simple architectural view of WebRTC: the signal-
ing plane via the Signaling Webserver (in red), and the me-
dia plane between the communication endpoints (in green).

Signaling Plane
The signaling plane consists of one or more signaling servers

that mediate and route communication, typically over an
HTTPS connection, between two or more endpoints. The
second task of a signaling server is to serve the initial client-
side application-specific code that interacts with the Java-
Script API for WebRTC [4].

Media Plane
The media plane will take care of the peer-to-peer con-

nections between the endpoints, relying on the Datagram
Transport Layer Security (DTLS) protocol [17]. To support
real-time streams, the media plane relies on the SRTP trans-
port protocol on top of DTLS. Data channels require the use
of the Stream Control Transmission Protocol (SCTP) over
DTLS.

Complete Architectural Overview
Due to complex setups of today’s network infrastructure,

the architectural picture is often far more complex, as shown
in Figure 2. Services to obtain mapped public IP addresses
from within private networks (e.g., STUN and TURN servers,
shown in purple), and to provide identity management (shown
in blue), are all part of the complete architecture.

2.2 WebRTC Communication
Although simple on a high level, setting up a WebRTC

communication channel between two endpoints, involves a
strict sequence of actions and events, which we will briefly
cover in this section.

Figure 2: Full architectural view of WebRTC (based on [16]):
the HTTPS signaling plane (red), the DTLS/SRTP media
path (green), the interaction with STUN/TURN (purple),
and the interaction with Identity Providers (blue for the as-
sertion generation and yellow for the assertion verification).

Step 1: Setting up the endpoints
The communication providers in the WebRTC context are
called signaling servers. These servers are contacted by the
endpoints, typically over HTTPS, to download the application-
specific code and to authenticate to the Webapplication (if
any). The application-specific code has access to the WebRTC
JavaScript API, available in any modern browser, and will
take care of all end-user interactions and exchange of meta-
data via the signaling server.

Step 2: Communication request by endpoint
After a communication request by the end-user, the application-
specific code will ask, via a WebRTC API, to set up a
RTCPeerConnection object. The browser of the end-user
will collect all necessary meta-data (e.g., relevant network
data & media preferences) and exchange it with the remote
party, via the signaling server. The RTCPeerConnection is
used to manage the peer-to-peer connection during its entire
life cycle.

Step 3: Exchange of meta-data via signaling server
The meta-data is sent towards the signaling server via Ses-
sion Description Protocol (SDP) [18] messages and Inter-
active Connectivity Establishment candidates. The signal-
ing server relays this data to the necessary communicat-
ing parties, via an unspecified protocol (e.g., WebSockets or
socket.io).

The communicating party will send an SDP offer, combin-
ing both the meta-data and an identity assertion (see Sec-
tion 2.3), to the remote party via the signaling server. The
remote party will respond with an SDP answer, containing
the meta-data of the remote party, again via the signaling
server. At any point in time, meta-data updates can be send
via new SDP offer/answer messages.

Step 4: Peer-to-peer communication channel setup
After the endpoints agree on the media preferences, ICE
candidates are exchanged to effectively establish the peer-
to-peer communication channel. As part of the DTLS con-
nection set up, to secure the communication channel, the
certificate fingerprint, which is sent as part of the SDP mes-
sage, is used to prevent tampering with the communication
channel. It can be used to verify the authenticity of the
communicating endpoint (this is not the same as verifying
its identity).



Step 5: Peer-to-peer real-time communication
After establishing the peer-to-peer communication channel,
the SRTP/DTLS communication channel is used to route
both media streams and the data channel. Additional streams
can be added or removed during communication by both
endpoints by calling the appropriate WebRTC JavaScript
API.

Finally, Listing 1 briefly illustrate how the WebRTC Java-
Script APIs can be used to perform some of the steps men-
tioned before. In particular, the code fragment is part of
the client-side application code, set by the signaling server
in step 1. It creates a communication path towards the sig-
naling server, and sets up the RTCPeerConnection object
(step 2). Furthermore, the code adds handlers to make sure
that the SDP offers are being sent over to the remote party
via the signaling path (step 3), Finally, also media streams
(such as coming from the microphone and camera) are added
to the peer connection (step 5).

1 /* the signaling channel is the application specific
protocol to send data via the signaling plane. */

2 var signalingChannel = new SignalingChannel ();
3 /* setup of the peer connection object */
4 var pc = new RTCPeerConnection ({});
5 navigator.getUserMedia (..., function(stream) {
6 /* Media streams are added to the PeerConnection */
7 pc.addStream(stream);
8 /* SDP offers are sent via the signaling path */
9 pc.createOffer(function(offer) {

10 pc.setLocalDescription(offer);
11 signalingChannel.send(offer.sdp);
12 });
13 });

Listing 1: This client-side code fragment illustrates some
of the basic WebRTC APIs to add streams to a peer-to-
peer connection and use handlers to send SDP offers via
the signaling plane.

2.3 Peer Authentication
The main idea about Web-based peer authentication is

to allow two end-users to verify each other identity, without
relying on a third party, in this case the signaling server. The
DTLS handshake between the two endpoints relies on self-
signed certificates. Therefore, the certificates themselves can
not be used to authenticate the endpoints as there is no
explicit chain of trust to verify.

The WebRTC architecture provides a mechanism to allow
applications to perform their own authentication and iden-
tity verification between endpoints. These interactions are
done via JavaScript APIs within the browser itself. Each
endpoint can specify an Identity Provider while generating
the SDP offer/answer (see Step 3 of Section 2.2). Based
on the content of a received SDP message, the endpoint can
check with the Identity Provider to verify the received cer-
tificate and thus to validate the identity.

This leaves the browsers of the end-users as the relying
party and the IdP as the assertion party for the identity
of each end-user. This whole process is discussed in much
more detail in its corresponding IETF document [16] and by
Bergkvist et al. [4].

2.3.1 Interacting with the Identity Provider
WebRTC provides a very loose coupling to the Identity

Provider, so that different Identity Providers with varying
protocols can be used.

Figure 3: WebRTC integration of the Identity Provider.

Figure 3 provides an architectural overview of the integra-
tion of an Identity Provider. In essence, the browser will load
a IdP-specific proxy (called IdP Proxy) to interact with the
Identity Provider, and this proxy implements a very generic
interface towards the browser for peer authentication.

Interacting with the Identity Provider happens in 4 steps,
as sketched in Figure 3:

1. The signaling server serves application-specific Java-
Script code that can set an Identity Provider.

2. Based on the Identity Provider, the browser downloads
the IdP proxy code.1

3. The IdP proxy code gets executed in an restricted,
well-isolated environment (e.g., a hidden iframe or a
realm [6]).

4. Communication between the application-specific code
and the IdP (proxy) happens over a secure message-
passing channel.

WebRTC supports two operations for peer authentica-
tion: identity assertion generation and identity assertion ver-
ification. In a first step, an endpoint must generate an
identity assertion. After receiving an identity assertion, the
other endpoint must verify its authenticity by contacting the
IdP. Both steps are explained in further detail in the next
sections.

2.3.2 Identity Generation
The identity generation process relies on a custom Iden-

tity Provider, often specified by the application-specific code
coming from the signaling server. The API for this process
is RTCPeerConnection.setIdentityProvider. It can be ex-
pected that the signaling server will take user preferences,
on the choice of Identity Provider, into account. In the case
no Identity Provider is set, the browser can fall back to a
default, browser-preferred Identity Provider.

It is clear that prior to the identity generation process,
the Identity Provider must have an identity of the end-user.
This could be the user having an account on a social network
associated with the Identity Provider or e.g., an OpenID
provider.

The identity assertion generation works as follows:
1. The IdP receives one or more DTLS-SRTP fingerprints

of the PeerConnection of the endpoint
2. The IdP generates an identity assertion, which includes

the initial fingerprint of the endpoint, based on the
available identity of the end-user

3. The identity assertion is attached as part of the SDP
offer or answer object before it is sent towards the re-

1The IdP proxy code can always be found on a fixed URL,
as specified in [16]: [[scheme]]+ ’://’ + [[idp domain
name]] + ’/.well-known/idp-proxy/’ + [[protocol]].



mote party
Listing 2 illustrates how the identity assertion can be ex-

plicitly generated via the WebRTC APIs, and how the client-
side JavaScript code can install handlers to be informed
about the result of the identity assertion generation. Note
that the explicit call to generate an assertion is not neces-
sary, as an identity assertion will automatically be generated
if an Identity Provider has been set up for the PeerConnec-
tion.

1 var pc = new PeerConnection ();
2 pc.setIdentityProvider("idp.com");
3 pc.onidentityresult = function(ev) {
4 /* fired when the identity assertion succeeded */
5 };
6 pc.onidpassertionerror = function(ev) {
7 /* fired when the identity assertion has failed */
8 };
9 pc.getIdentityAssertion ();

Listing 2: Example of the WebRTC APIs to generate an
identity assertion as well as to be informed about the result
of the identity assertion generation.

As part of the identity generation, the identity of the end-
user will be validated by the Identity Provider. The result
of this operation depends on the authentication status of the
end-user. The browser can choose to ignore identity asser-
tion unless the function setIdentityProvider is explicitly
called by the webpage. The format of the identity assertion
is a base64 encoded JSON, and is Identity Provider specific.

Authenticated user. In case the end-user is already au-
thenticated to the Identity Provider prior to the WebRTC
connection setup, the IdP proxy within the browser
will be able to interact with the public server interface
of the IdP. For security reasons, the IdP proxy operates
from within an isolated context making it impossible
to to interact directly with the end-user. This makes
it impossible for the IdP to load e.g. an authentication
form and therefore has to rely on the pre-established
authentication mechanism of the authenticated user
(such as cookies, basic HTTP authentication or local-
storage).

Non-authenticated user. In case the end-user is not yet
authenticated to the Identity Provider at time of set-
ting up the WebRTC connection, the assertion gener-
ation will fail, as the IdP proxy is not able to interact
with the end-user.

However, by providing an URL (pointing to a authen-
tication form) as part of the failure message, the IdP
proxy can hint to the Webapplication to load this URL
in a separate window or iframe. By doing so, the user
is able to authenticate to the Identity Provider, and
after a successful authentication, the authentication
form will inform the Webapplication, via a LOGINDONE

message, that the assertion generation process can be
started over with an authenticated user.

2.3.3 Identity Verification
As part of the connection setup, the remote endpoint will

verify the provided identity assertion. To do so, the Iden-
tity Provider of the local endpoint will be loaded, and the
validateAssertion message will be sent to the IdP Proxy.

Listing 3 shows how the client-side code can also interact
with the WebRTC APIs to retrieve the identity of the remote

endpoint, and how handlers can be added to be informed
about the validity of the remote identity.

1 var pc = new RTCPeerConnection ();
2 var identity = pc.peerIdentity;
3 if (identity) {
4 alert("Identity of the peer: idp=’" + identity.idp

+ "’; assertion=’" + identity.name + "’");
5 }
6 else {
7 alert("Identity of the peer has not been verified"

);
8 }
9

10 pc.onidpvalidationerror = function (ev) {
11 /* fired when associated IdP encounters error

while validating an identity assertion */
12 };
13
14 pc.onpeeridentity = function(ev) {
15 /* fired when identity assertion from a peer has

been successfully validated */
16 };

Listing 3: Example of the WebRTC APIs to retrieve the
remote identity as well as handlers to be informed about
the validity of the endpoint.

3. SECURITY ANALYSIS

3.1 Scope of the analysis
As briefly sketched in Section 2, the communication secu-

rity at the network and transport layer (i.e. HTTPS for the
signaling plane and DTLS/SRTP for the media plane) have
been well thought out, and they provide a decent and suffi-
cient level of confidentiality and integrity to take the network
attacker out of scope. As long as the network attacker does
not have access to the TLS and DTLS certificates, the net-
work attacker can not eavesdrop or tamper with the data in
transit.

In this paper, we therefore focus on the application layer,
and in particularly how malicious JavaScript can undermine
the security properties of the peer-to-peer connection. More
precisely, the security question that will be answered in this
paper is:

Does WebRTC provide endpoint authenticity guar-
antees for the peer-to-peer connection? And if
not, what are the necessary prerequisites to achieve
assurance of the endpoint’s authenticity?

The security guarantees offered by the DTLS/SRTP con-
nection depend on the verification of the self-signed DTLS
certificates. In WebRTC, the fingerprints of these certifi-
cates are exchanged via the signaling plane as part of the
SDP offers and answers. Moreover, in case an Identity Provider
is used, the user identity and the fingerprint are securely
bound together as part of the identity assertion, and this
identity assertion is also attached to the SDP offers and an-
swers.

As such, to achieve authenticity of the endpoint’s brow-
ser, it is necessary that the private key used in the DTLS
connection is kept confidential in the browser, and that the
integrity of DTLS certificate fingerprint is preserved in the
transfer between the two browsers. Moreover, as self-signed
certificates are being used, it is necessary to bind the end-
user’s identity to the DTLS certificate fingerprint to be able
to authenticate the endpoint’s user of the peer-to-peer con-
nection.



The prerequisites for endpoint authenticity are:
1. The confidentiality of the DTLS private keys

2. The integrity of the DTLS certificate fingerprint

3. The integrity of the identity assertion, and its binding
to the certificate’s fingerprint

The first prerequisite is achieved by default, as none of
the WebRTC APIs is exposing the DTLS private keys to
the JavaScript context. Under what conditions the other
two prerequisites can be achieved will be discussed in more
detail in the following sections.

3.2 Threat model
To enable the exchange of the certificate fingerprints and

identity assertions between the browsers, the SDP informa-
tion is exposed to the JavaScript context as a JSON object.
Typically, this JSON object is marshalled in the JavaScript
context of the sending browser, transmitted via the signal-
ing server and unmarshalled at the JavaScript context of the
receiving browser.

As a result, any malicious party operating along the sig-
naling path is able to observe and tamper with the SDP
information. In particular, we take into account two poten-
tial attacker models: the malicious signaling server, and the
malicious third-party JavaScript provider.

Malicious Signaling Server. The signaling server medi-
ates the SDP description and ICE candidates between
the endpoints. Malicious server-side code can easily
tamper with the JSON objects or their string repre-
sentations.

In addition, the signaling server deploys the client-side
JavaScript code which contains the event handlers to
create and process SDP descriptions and ICE candi-
dates. Each of these handlers can be coded to tamper
with the fingerprints and/or identity assertions before
passing on.

Note that this attacker model also include a special
case, in which the signaling server operates benign,
but is vulnerable to injection attacks, i.e., Cross-site
Scripting (XSS). In such cases, the injected JavaScript
code will operate as if it is originating from the signal-
ing server and will have the same permissions.

Malicious 3rd Party JavaScript Provider. Third-party
JavaScript that is included on the WebRTC webpage
runs in the same security context as the client-side
JavaScript code of the signaling server, and therefore
has the same permissions.

Malicious third-party JavaScript can wrap or replace
the WebRTC APIs as well as functions in the client-
side JavaScript code, and by doing so tamper with
all parameters that are passed to these functions, or
trigger new calls to the underlying WebRTC APIs.

Given the threat model above, we will report in Section 4
how an attacker can violate the prerequisites for endpoint
authenticity, and as a consequence can route the real-time
streams via an intermediate node under the control of the
attacker.

In Section 5, we will propose and discuss mitigation strate-
gies in order to preserve endpoint authenticity. This includes

security improvements for the WebRTC specifications (and
the browser implementations), and mitigation techniques for
the Identity Providers as well as the website owners, offering
WebRTC services.

4. OVERVIEW OF ATTACKS AGAINST END-
POINT AUTHENTICITY

In this section, we discuss the various ways in which the
prerequisites for endpoint authenticity can be broken by
a malicious signaling server or malicious third-party Java-
Script. To remain concise, we will illustrate the attacks with
malicious client-side code of the signaling server, but bear
in mind that this can equally be substituted by malicious
third party JavaScript.

This section covers three different, novel attacks against
endpoint authenticity. In Section 4.1, the integrity of the
DTLS certificate is compromised in WebRTC setups where
no Identity Provider is present. This first scenario is very
plausible as at the time of writing (most) browsers do not
yet provide wide support for IdP integration.

In a second attack scenario, the Identity Provider is tricked
is linking the user’s identity with a certificate fingerprint un-
der the control of the attacker Section 4.2.

Finally, in Section 4.3, the identity of the user is replaced
by an identity under the control of the attacker without the
end-users noticing, due to the lack of UI controls.

4.1 Compromising the integrity of the finger-
print (in the absence of an Identity Provider)

The WebRTC specification does not require the use an
Identity Provider within a WebRTC setup. Actually, the
default operation of WebRTC instances at this moment is
without the involvement of an Identity Provider, as the sup-
port for IdP integration in browsers is unfortunately not yet
mainstream.

In the absence of an Identity Provider, the endpoint au-
thenticity is boils down to the integrity of the DTLS cer-
tificate fingerprint within the SDP object. Concretely, this
means that in the absence of an Identity Provider the end-
point authenticity can easily be compromised. Every party
on the signaling path is able to manipulate the SDP objects
and mangle with fingerprints present in the SDP description.

Example attack. Consider for instance the attack sce-
nario, presented in Listing 4. This is a fragment of the client-
side JavaScript code, pushed by a malicious signaling server.
In this code example, the createOffer function gets replaced
by a wrapper function, which replaces the SDP offer by a
fake SDP object, retrieved from the attacker website via
XHR.

1 // pc is an RTCPeerConnection object
2 pc.createOfferOriginal = pc.createOffer;
3 pc.createOffer = function(callback , error){
4 pc.orgCallback = callback;
5 pc.malCallback = function(offer){
6 var newOffer = getAttackerSDPViaXHR ();
7 pc.orgCallback(newOffer);
8 };
9 pc.createOfferOriginal(pc.malCallback , error);

10 };

Listing 4: Example attack to compromise the certificate
fingerprint by replacing the SDP offer with an attacker-
controlled version.



The SDP offer is represented via a string, and the fake
SDP offer will include a new attacker-controlled fingerprint,
as well as other vital parameters (e.g. network configura-
tion) to connect to an attacker-controlled endpoint.

As this first class of attacks compromises the integrity of
the DTLS certificate fingerprint, the endpoint authenticity
can not be guaranteed in the absence of an Identity Provider,
given the presence of a malicious actor on the signaling path.

4.2 Tricking the Identity Provider in compro-
mising the integrity of the identity asser-
tion

In case an Identity Provider is being used, the DTLS cer-
tificate fingerprint and the user identity are bound together
by the identity assertion, and the validity of this pair can be
verified by the remote endpoint. In order to compromise the
endpoint’s authenticity, it is therefore necessary to present
a valid identity assertion, which includes the fingerprint of
a DTLS certificate under the control of the attacker.

In this subsection, we try to trick the Identity Provider in
generating a valid identity assertion, based on fake input (i.e.
a certificate fingerprint under the control of the attacker).

Because of the loose coupling, the identity provisioning
in WebRTC is realised by loading a IdP Proxy in a realm
(or hidden iframe), and use Web Messaging to communicate
with the IdP Proxy. Both mechanisms are readily available
for any JavaScript running in the browser, and as such, the
loading and interacting with an Identity Provider can also
be reproduced outside the context of a WebRTC connection
setup.

In order to work, this attack assumes that the Identity
Provider does not sufficiently verifies the origin of the Web
Messages that trigger assertion generations. As stated in the
WebRTC specifications, the origin of Web Messages used in
the context of WebRTC is bound to rtcweb://, and it is the
responsibility of the IdP Proxy to restrict its API access to
this origin.

Although this attack can easily be mitigated by Identity
Providers complying to this requirement, we expect a large
quantity of Identity Providers to oversee the impact of this
verification, and hence be vulnerable for this attack. Similar
vulnerabilities, affecting Webmessaging, have been identified
frequently in the past [20, 7]. Unfortunately, at the moment
of writing, no Identity Providers are yet available, so we can
not assess to what extend this attack is applicable in the
wild.

Example attack. Listing 5 illustrates the basic concept
of the attack. In a first step, the IdP Proxy is loaded. Next,
Web Messaging is used to send a sign request to the IdP
Proxy, and to receive back the identity assertion.

1 window.addEventListener("message",
myFakeSignatureReceiverHandler);

2 var ifr = document.createElement("iframe");
3 ifr.src = "https ://vuln -idp.com/.well -known/idp -proxy

/oauth";
4 ifr.style.visibility = "hidden";
5 ifr.style.display = "none";
6 ifr.id = "frame1";
7 ifr.onload = function (){
8 var ifr = document.getElementById("frame1");
9 ifr.contentWindow.postMessage ({"type":"SIGN", "id"

:1, "message":"
MY_FAKE_FINGERPRINT_AND_OTHER_INFO_TO_SIGN"});

10 };

Listing 5: Example attack showing how to lure an IdP to
sign a fake SDP.

4.3 Compromising the integrity of the iden-
tity assertion (due to lack of UI controls)

The WebRTC security model stipulates strict requirements
about the consent that is required from end-user from giving
an origin access to media devices, such as the camera and
the microphone. However, this is also the only user consent
that is required to use WebRTC. No UI requirements are
stipulated for the browsers to inform the end-user about the
fact that a WebRTC connection is being set up, or that local
network information is pulled via ICE candidates, or that an
Identity assertion is generated or verified by the JavaScript
code.

Especially the lack of chrome UI to select a preferred iden-
tity or Identity Provider, and the lack of granting access to
a specific identity to set up a remote WebRTC connection
undermines the integrity of the identity assertion used in
WebRTC.

Even in case an Identity Provider is used to set up the
peer-to-peer connection, and the fingerprint is correctly bound
to an identity in the identity assertion, this could still com-
promise the endpoint’s authenticity.

For instance, if the attacker provides a valid identity asser-
tion for an identity and a DTLS certificate fingerprint (both
under the control of the attacker), the only way this can
currently be detected is by additional custom-made checks
in the client-side JavaScript code. After all, the browser will
receive a valid identity assertion from the signaling server,
and happily verify the assertion with the Identity Provider,
used by the attacker.

Since we consider the signaling server (or the third-party
JavaScript provider) to be malicious, we can not expect the
client-side JavaScript code to perform the additional checks.

Example attack. The JavaScript context can simply
change the identity string with any string of its choice. This
could be a fake identity signed by a malicious/compromised
IdP or a legitimate identity under the control of the attacker.
Listing 6 illustrates how the current identity assertions can
easily be replaced by identity assertions generated for arti-
facts under the control of the attacker.

1 // pc is a RTCPeerConnection object
2 // hjMc is a MessageChannel object
3 hjMc.port1.onmessage = function(e) {
4 newOffer.sdp = changeAllIdentities(e.data ,hjMc.

offer.sdp);
5 pc.trueCallback(newOffer);
6 };
7 function changeAllIdentities(newIdentity ,sdp){
8 identityExtraction = base64(newIdentity);
9 return sdp.replace (/ identity :[A-Z0 -9]*\n/g, ‘

identity:’+identityExtraction);
10 };

Listing 6: Example attack showing how to modify the
identity string to a fake identity.

5. MITIGATION STRATEGIES
In this section we will describe mitigation techniques and

security advises for real-life deployments to counter each of
the attacks described in Section 4.



Although on a network architecture everything seems prop-
erly encrypted, the fact that the meta-data and control mes-
sages are exposed to the signaling servers as well as to Java-
Script code running in the origin of the signaling website
(independent if coming from the signaling server or from
any third-party), a malicious signaling server or untrusted
third-party JavaScript code can compromise the endpoint
authenticity in WebRTC peer-to-peer connections.

In such a security model, only the browser implementa-
tion is considered trusted, and the JavaScript code on top is
treated as untrusted. In particular, the endpoint authentic-
ity can only be guaranteed if all the the security guarantees
about the authenticity of the endpoint are based only on
decisions within the browser implementation, irrespective
of the JavaScript that triggered the API calls or handled
WebRTC events.

This aligns with the following properties:

• Under no circumstances, keying material for the DTLS
should be allowed to be added to the browser or ex-
tracted from the browser run-time via the JavaScript
execution context.

• At all times, the DTLS certificate fingerprint (needed
to set up the DTLS connection) needs to be used in
combination with the identity assertion to guarantee
that actors outside the browser implementations can
alter the certificate fingerprint. [Attack 1]

• It must be impossible to trigger the IdP to sign custom-
crafted data. The IdP proxy can only generate identity
assertions based on artifacts, trusted by the browser
implementation. [Attack 2]

• The end-user must be involved in granting access to a
specific identity in setting up a WebRTC connection.
[Attack 3]

If we can realize these properties, we can use the untrusted
signaling path and still achieve endpoint authenticity. In the
rest of this section we give, for each stakeholder, an overview
of its responsibilities to preserve this property.

5.1 Browser Vendors & Specifications
Firstly, the WebRTC specifications should reconsider the

optional use of an Identity Provider. A possible scenario
could be derived where the signaling server also operates an
Identity Provider, as this would prevent third-party Java-
Script from compromising the integrity of the DTLS cer-
tificate fingerprint. This would directly counter the attacks
described in Section 4.1.

Secondly, the browser should prevent that the IdP Proxy
can be loaded as part of a Webapplication. By making
the loading exclusive to the WebRTC identity provision-
ing mechanism, Identity Providers can not be tricked by
application-level code to generate identity assertions for the
end-user under attack, as was done in Section 4.2.

Thirdly, the specifications should state the browser should
provide the necessary UI chrome to enable users to select an
appropriate identity of their favorite Identity Providers, and,
even more important, enable them to only grant access to
remote identities of their choice to set up a peer connection.

In case one wants to free the end-user from being involved
in giving user consent, the end-user should at least be in-
formed by the browser about the identity of the peer-to-
peer connection. This would at least make attacks as shown
in Section 4.3 detectable by end-users.

5.2 Identity Providers
To prevent attacks as presented in Section 4.2, the Iden-

tity Provider must make sure that the IdP Proxy can only
be invoked directly from the browser implementation, and
not from the application-level JavaScript code. To do so,
the Web Messaging code in the IdP Proxy needs to ver-
ify that all incoming messages originate from origins with
the rtcweb:// scheme, a scheme that is exclusively used for
WebRTC purposes.

This is in line with the more general recommendations
for the use of Web Messaging, for which the API specifica-
tion states that the developers “SHOULD check the origin
attribute to ensure that messages are only accepted from do-
mains that they expect to receive messages from” [8].

5.3 Website Owners
In this subsection, we consider a benign website owner

(also known as the signaling server) that wants to protects
its users against the attacks illustrated in Section 4, carried
out by third-party script providers or via script injection.

Firstly, the website owner needs to ensure that in all cases
an Identity Provider is used. If no external Identity Provider
is needed, the website owner can deploy his own IdP Proxy,
that for instance piggy backs on the session mechanism for
the website. By enabling an Identity Provider in all scenar-
ios, the attack from Section 4.1 can be mitigated.

Secondly, the website owner needs to protect its applica-
tion against all forms of code injection (either via XSS or
via untrusted third party JavaScript). Even if the website
is operated by a benign stakeholder, code injection attacks
can trigger all three attacks.

As stated in [16], there should be no third-party Java-
Script allowed on the same page that hosts the application-
specific code. This can be achieved by running the WebRTC
application in a separate origin or subdomain. Moreover,
techniques such as the Content Security Policy (CSP) [21]
can be used to prevent third-party resources from being
loaded in the website. In cases where third-party scripts are
required, one can strictly limit the loaded scripts with CSP,
and deploy JavaScript encapsulation, freezing and sandbox-
ing techniques to protect the application code and WebRTC
APIs, which might not be trivial [13, 12, 1, 9].

Thirdly, the website owner could take advantage of the
fact that all meta-data and control messages are routed via
the signaling server. The website owner should verify that
the fingerprints/identies passing by exactly match the fin-
gerprints/identities expected to be used in the application.
This can help to detect and mitigate attacks from Section 4.2
and Section 4.3.

6. RELATED WORK
In [16] and [15], Rescorla describes WebRTC’s underlying

security architecture and discusses in depth relevant aspects
in the areas of network security and identity management.
In [2], Barnes et al. state that the calling site might not
(always) be trusted, and they identify a crucial role for the
browser as trusted element.

Several researchers on WebRTC security specifically fo-
cuses on the complex problem of identity provisioning in
WebRTC based applications [5, 3, 11]. Beltran et al. study
a variety of trust models for two-party communication, and
investigate the use of existing Identity Provider solutions



such as BrowserID, OAuth 2.0 and OpenID Connect in the
context of WebRTC [3]. Li et al. investigate identity pro-
visioning in more complex deployments, in which multiple
calling sites and Identity Providers are involved, and sug-
gests the use of a Web-of-Trust identity model to overcome
the limitations of hierarchical identity systems [11].

Finally, the Tin Can project at Mozilla uses Persona to
authenticate [19]. As part of the prototype, end-users are in-
formed about the identities of remote parties, and can grant
access to individual remote identities to set up a call. This
solution overcomes the UI security challenges, described in Sec-
tion 4.3.

7. CONCLUSION
Unlike closed identity ecosystems, as provided by commer-

cial video chat offerings, open systems such as WebRTC are
potentially prone to identity fraud, due to WebRTC’s em-
phasis on identity federation. In this paper, we explored the
technical underpinnings of WebRTC’s identity management
mechanism. Based on our analysis, we identified three novel
attacks against endpoint authenticity. Each of our attacks
allows a malicious party, which is able to execute JavaScript
in the context of the hosting Webapplication, to fully manip-
ulate the identity assertions that are attached to a WebRTC
data channel, thus, enabling the spoofing of the communi-
cation endpoint. We proposed a set of mitigation strategies,
spread over several target groups including Webapplication
providers, browser vendors, and the specification commit-
tees.
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