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Abstract
While susceptibility to hypersensitive reactions is a common problem amongst humans and

animals alike, the population structure of certain animal species and breeds provides a

more advantageous route to better understanding the biology underpinning these condi-

tions. The current study uses Exmoor ponies, a highly inbred breed of horse known to fre-

quently suffer from insect bite hypersensitivity, to identify genomic regions associated with

a type I and type IV hypersensitive reaction. A total of 110 cases and 170 controls were gen-

otyped on the 670K Axiom Equine Genotyping Array. Quality control resulted in 452,457

SNPs and 268 individuals being tested for association. Genome-wide association analyses

were performed using the GenABEL package in R and resulted in the identification of two

regions of interest on Chromosome 8. The first region contained the most significant SNP

identified, which was located in an intron of the DCC netrin 1 receptor gene. The second

region identified contained multiple top SNPs and encompassed the PIGN, KIAA1468,
TNFRSF11A, ZCCHC2, and PHLPP1 genes. Although additional studies will be needed to

validate the importance of these regions in horses and the relevance of these regions in

other species, the knowledge gained from the current study has the potential to be a step

forward in unraveling the complex nature of hypersensitive reactions.

Introduction
Often referred to as allergic eczema or allergic dermatitis, inflammation of the skin resulting
from a hypersensitive reaction that is atypical within a population occurs not only in humans,
but in a wide range of species from domestic dogs to hippopotamuses [1–3]. Although widely
accepted as a condition where susceptibility is determined by both genetic and environmental
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factors, there is still a considerable amount to learn regarding the complex roles genes play in
these hypersensitive reactions [2,4–6]. Major histocompatibility complex (MHC) genes as well
as genes affecting immune response, epithelial barriers, and tissue remodeling have all been
suggested as important. However, despite an increased awareness of the aetiology of these reac-
tions, the prevalence of allergic dermatitis and other hypersensitive reactions continues to rise
in many species [6–10]. Consequently, the need for additional research exploring the roles
genes play in these types of reactions is warranted as new research is likely to contribute to a
better understanding of both the genetic and environmental risk factors associated with these
conditions.

To date, most research investigating the genetic contribution to the manifestation of allergic
dermatitis has taken place in humans [3,5,8,9]. However, given the population structures and
higher levels of linkage disequilibrium (LD) in many domestic animal species, animal models
likely provide a more advantageous avenue for genetic research into hypersensitivity. Selection
for specific characteristics in most domestic animal species has resulted in low within breed
genetic variation, thus lessening the amount of genetic markers needed to achieve powerful
genome scans and reducing the number of variants as candidate mutations. Although less com-
monly used as an animal model, horses in particular provide a unique opportunity to further
increase our understanding of the genetic aetiology of hypersensitive reactions across species.

Insect bite hypersensitivity (IBH), an allergic recurrent seasonal dermatitis, is the most com-
mon allergic disease in horses with the worldwide prevalence in some breeds as high as 60%
[11–13]. Frequently referred to as summer eczema, IBH involves IgE-mediated, type I hyper-
sensitivity with release of histamine and other inflammatory mediators such as basophils and
mast cells. Cell-mediated, type IV hypersensitivity has also been suggested as a potential con-
tributor to the pathogenesis of the disease [11,14]. Resulting from the bites of insects predomi-
nantly from the genus Culicoides and characterized by pruritic dermatosis, IBH severely
reduces the welfare of affected horses [12,15,16]. Although a polygenetic mode of inheritance
has been shown for IBH, genomic research on the disease has thus far been limited to candidate
gene approaches and low density genotyping arrays [12,13,15,17–19]. While these studies have
undoubtedly provided valuable information regarding the genes likely to be involved in the
expression of IBH, there is still much about this hypersensitive reaction and its underlying biol-
ogy that is not fully understood. That being said, the recent development of the high density
Axiom Equine Genotyping Array provides the opportunity for a more comprehensive analysis
of the genetic contribution to IBH.

Exmoor ponies, an old breed of horse native to the British Isles, are known to express IBH,
with the severity of the disease and number affected representing a significant problem within
the breed [7,20]. Considered threatened or endangered by many organizations, Exmoor ponies
are ideally suited for genome-wide association analyses exploring hypersensitive reactions such
as IBH [21–23]. Their small population likely corresponds with very low within breed genetic
variation allowing for a straightforward case-control design [24]. As a result, both the effects
and likelihood of multiple subgroups within the population differing in both allele frequency
and disease prevalence is minimal [12]. Thus, a more accurate assessment of the relationship
between genomic regions and IBH is achievable.

The aim of the current study was to capitalize on these advantages and identify genomic
regions associated with IBH in Exmoor ponies using the largest genome-wide association anal-
ysis for IBH in horses to date [12,13,19]. When one considers the prevalence of IBH in horse
breeds as well as the increasing occurrence of many forms of allergic dermatitis in humans and
other species, it is possible that common genetic components across breeds and potentially
even species may be identified [3,9]. An increased knowledge of the genes involved in the man-
ifestation of IBH in horses is expected to not only improve prevention, diagnosis, and
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treatment of IBH in horses, but may also broaden our understanding of the biology underlying
type I and type IV hypersensitive reactions across species.

Materials and Methods

Sample collection & phenotyping
Samples from 336 Exmoor ponies were collected between 2008 and 2011 through an open call
to owners via the Exmoor pony society and online postings. An owner questionnaire designed
to determine IBH status and severity, as well as detail the environmental conditions of each
horse, was used to phenotype each individual. Owners of the Exmoor ponies gave permission
for their animals to be used in the study and the study was approved by the Ethics Committee
for Animal Experiments in Uppsala, Sweden [Number: C 121/14]. A description of how IBH
severity scores were assigned is shown in Table 1. Pedigree information (4 generations) for
each horse was then obtained from the Exmoor Pony Society database. Based on this informa-
tion the average relatedness of each individual to the group was estimated using the genetic
software Contribution, Inbreeding, Coancestry (CFC) [25]. Any horse with missing pedigree
information and/or an unclear IBH phenotype was removed from the study (n = 26). Horses
were categorized as either IBH affected (cases) or IBH unaffected (controls) and assigned an
IBH severity score (Table 1). 280 horses were then selected for genotyping according to the
protocol detailed in Fig 1. Although older horses were more likely to have had longer exposure
times, samples from younger horses were prioritized. This prioritization directly resulted from
many of the older horses having died (natural causes) prior to the start of the study and the
potential need for additional samples of horses used in the study later in the analyses.

DNA isolation
Deoxyribonucleic acid was prepared from the hair roots using a standard hair-preparation pro-
cedure. Briefly, 186 μL Chelex 100 Resin (Bio-Rad Laboratories, Hercules, CA) and 14 μL of
proteinase K (20 mg/mL; Merck KgaA, Darmstadt, Germany) were added to the sample. The
mix was incubated at 56°C for 2 h and the proteinase K was inactivated for 10 min at 95°C. For
DNA preparation from blood samples, 200 μL of blood was used and isolated on the Qia-
symphony instrument using the Qiasymphony DSP DNAmini kit (Qiagen, Hilden, Germany).
Samples for two horses failed to meet the DNA quality requirements for genotyping and were
replaced (Fig 1). Descriptive statistics of the final horses selected for genotyping are shown in
Table 2. The final horses selected represented 107 sires and 226 dams.

Genotyping and quality control
Prior to quality control (QC) the SNP data set consisted of 280 individuals genotyped using the
670K Axiom Equine Genotyping Array. Average relatedness of the individuals genotyped was
0.23. Iterative QC was performed with the GenABEL package in R to remove poorly genotyped
and noisy data using the following thresholds: minor allele frequency (MAF) (<0.5%), missing

Table 1. Insect bite hypersensitivity severity scale.

IBH severity score assigned Questionnaire options

0 Healthy: unaffected; no signs of IBH

1 Mild: not affected if preventative measures are taken

2 Moderate: shows itching even when preventative measures are taken

3 Severe: shows wounds even when preventative measures are taken

doi:10.1371/journal.pone.0152966.t001
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genotypes per single nucleotide polymorphism (SNP) (>10%), missing SNPs per sample
(>10%), and Hardy-Weinberg equilibrium (HWE) (first QC p<1e-10; second QC FDR<0.2 in
IBH controls only) [26].

Genome-wide association analysis
Genome-wide association (GWA) analyses were performed using the GenABEL package in R
(R Development Core Team 2011). An autosomal genomic kinship matrix was computed and
standard K-means clustering was performed. To determine the number of clusters

Fig 1. Exmoor Pony Genotyping Exclusion and Inclusion Procedure. aAny horse that did not have complete pedigree information for 4 generations was
considered to have no known relationship to the group. bFor DNA quality reasons, blood samples were preferred over hair samples and younger horses were
selected over older horses. cSamples from two horses yielded insufficient concentrations of DNA for genotyping and were subsequently replaced

doi:10.1371/journal.pone.0152966.g001
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(subpopulations), K-means clustering with K = {1,2,. . .,10} were completed. For each iteration
the sum of within-cluster sums of squares (∑WCSS) was calculated and plotted vs. K. The num-
ber of clusters corresponding with the first inflection point (K = 3) was then chosen to define
the subpopulations [27]. No outliers were apparent on the multidimensional scaling (MDS)
plot. A visualization of the genomic-kinship matrix and subpopulations using MDS are shown
in Fig 2. To avoid spurious associations that may arise with unusual allele frequency differences
between sub-populations, multiple methods to correct for population stratification were
applied [28].

GWA analyses of IBH status classified as cases and controls were performed using both a
structured association approach (“qtscore” function in GenABEL) and a principal component
approach (“egscore” function). GWA analyses of IBH severity scores were performed using
both a mixed model-structured association approach (“mmscore” function) and an additional
principal component approach. Preliminary analyses did not indicate a significant effect of
gender on IBH thus it was not included as a co-variant in the final analyses. Information per-
taining to the environment of the horse was also excluded from all analyses as questionnaire
responses regarding environment descriptions were inconsistent across respondents. After
100,000 permutations, associations with individual SNPs were considered genome-wide signif-
icant for p-values below 0.05. Due to computational limitations, only 5,000 permutations were
performed for the mixed model-structured association analysis. However, the genome-wide
significance threshold remained at P<0.05. Regions of interest were defined as any 1MB region
that contained multiple SNPs below the suggested genome-wide significance threshold
(P< 1x10-5) for two or more of the GWA approaches performed on the dataset.

Results
Following QC, 452,457 SNPs and 268 individuals were tested for association. No single SNP
demonstrated genome-wide significance in any of the four GWA analyses performed. How-
ever, 2 regions of interest on Chromosome 8 (ECA8) were apparent with a single SNP, AX-
104130346, located at 71,065,803 bp resulting in the lowest p-value (Punadjusted) in 3 out of the
4 analyses and bordering on genome-wide significance (Pgenome-wide) in two (Table 3). This
SNP has alleles T and C, with a MAF (C) of 0.34 and does not deviate from HWE (exact HWE
test P-value = 0.174). The genotype frequencies of AX-104130346 in cases and controls are
shown in Table 4. The first region of interest (chr.8: 70,269,986–71,065,803) included a SNP
(AX-104130346) located in the DCC netrin 1 receptor gene (DCC) (Cunningham et al. 2015).
The second region of interest (chr.8: 78,377,554–78,880,555) consisted of 4 SNPs and con-
tained 5 genes: PIGN, KIAA1468, TNFRSF11A, ZCCHC2, and PHLPP1 (Table 3; Table 5).
Manhattan Plots and QQ plots resulting from each of the analyses for these regions are shown
in Fig 3, Fig 4 and Fig 5.

Table 2. Descriptive statistics for the genotyped horses.

Controls Cases Total

IBH severitya 0 1 2 3

Males 52 7 18 17 94

Females 118 18 22 28 186

Total 170 25 40 45 280

aIBH severity scores: 0 = healthy, unaffected; 1 = mildly affected, not affected if preventative measures are

taken; 2 = moderately affected, shows itching even when preventative measures are taken; 3 = severely

affected, shows wounds even when preventative measures are taken

doi:10.1371/journal.pone.0152966.t002
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Fig 2. Visualization of population stratification and distribution of cases and controls across the 3 subpopulations

doi:10.1371/journal.pone.0152966.g002
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Table 3. Unadjusted and genome-wide p-values for the four GWA analyses performed.

SNP ECA Position Punadjusted Pgenome-wide

SA (case/
control)

PC (case/
control)

PC
(severity)

MMSA
(severity)

SA (case/
control)

PC (case/
control)

PC
(severity)

MMSA
(severity)

AX-
103266754

1 100460873 8.546e-6 0.512

AX-
104707726

1 100649241 6.652e-6 0.438

AX-
103372605

2 116550518 1.438e-5 0.956

AX-
103869604

4 546104 4.119e-6 0.314

AX-
103676516

4 16228799 2.908e-6 0.414

AX-
102955701

6 55403540 8.494e-6 0.887

AX-
103802842

7 36418118 8.370e-6 0.883

AX-
104843731

8 62711228 5.348e-6 0.788

AX-
104531882

8 70269986 3.924e-6 4.205e-6 0.303 0.515

AX-
104130346

8 71065803 8.982e-7 5.674e-6 2.499e-7 2.313e-6 0.086 0.431 0.060 0.560

AX-
103982426

8 78377554 4.722e-6 9.260e-6 0.346 0.581

AX-
103716604

8 78430916 4.289e-6 0.354

AX-
103206537

8 78456162 6.088e-6 0.451

AX-
104330407

8 78880555 3.001e-6 4.139e-6 0.246 0.345

AX-
102952650

8 79249465 5.090e-6 0.401

AX-
104594806

8 79249580 4.836e-6 0.387

AX-
104273278

9 9674307 1.061e-5 0.920

AX-
103496042

9 26970670 1.393e-5 0.954

AX-
103054421

16 58688991 7.360e-6 0.679

AX-
103679698

16 59338023 7.745e-6 0.693

AX-
104503315

16 59962819 7.156e-6 0.670

AX-
104922413

16 62458479 1.998e-6 0.176

AX-
104674779

16 63068497 5.509e-6 0.593

AX-
104295622

16 65267154 2.285e-6 0.197

AX-
104129425

16 79101000 8.224e-6 0.880

(Continued)
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Discussion
Much like autoimmune diseases, incidences of type I hypersensitive reactions have drastically
increased over the past few decades [6]. Despite multiple attempts to unravel the genetic contri-
butions both within and across species, the genetic etiology of many of these allergy related dis-
eases remains unresolved. Using horses as a model organism, the current study explored the
genetic background of a hypersensitive reaction to insect bites in Exmoor ponies and ultimately
identified two regions of potential importance on Chromosome 8 (ECA8).

Of particular interest is the region containing the SNP that resulted in the lowest p-value in
3 out of the 4 analyses performed (Table 3). The SNP, AX-104130346, occurs in an intron of
the DCC gene, a gene whose corresponding protein has been associated with apoptosis and
functions as a tumor suppressor [29]. In humans, the resulting protein has also been observed
as mutated or down-regulated in certain types of cancers [29]. This is particularly of note when
one considers that hypersensitivity is, by definition, a harmful immune response against usu-
ally harmless antigens [6]. Cancers are invasive growths; therefore, it is logical that the body’s
immune response would need to be suppressed in order for a cancer to metastasize, hence the

Table 3. (Continued)

SNP ECA Position Punadjusted Pgenome-wide

SA (case/
control)

PC (case/
control)

PC
(severity)

MMSA
(severity)

SA (case/
control)

PC (case/
control)

PC
(severity)

MMSA
(severity)

AX-
103533051

20 29990169 1.345e-5 0.950

AX-
103683812

20 33325386 6.223e-6 0.457

AX-
104146721

20 33542125 8.377e-6 0.549

AX-
103554518

20 49561945 8.964e-6 0.527

AX-
104347157

24 30622320 2.442e-6 0.369

AX-
104881761

24 30624192 5.083e-7 0.111

AX-
102975270

24 30626293 6.686e-6 0.651

AX-
104585909

26 14984244 2.006e-5 0.982

AX-
103795343

34 1727788 5.090e-6 0.401

SA = structured association; PC = principal component; MM = mixed model

SNPs present in the top 10 in multiple GWA analyses are listed in bold

doi:10.1371/journal.pone.0152966.t003

Table 4. Genotype frequencies, stratified by IBH affected status, for SNP AX-104130346 following
quality control.

Genotype frequency N

T/T T/C C/C

Controls 0.59 0.31 0.10 163

Cases 0.25 0.56 0.19 105

doi:10.1371/journal.pone.0152966.t004
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down-regulation of a tumor suppressing protein [30]. It is possible that the reverse occurs in
horses with IBH, ultimately culminating in a hypersensitive reaction resulting from the up-reg-
ulation of a protein associated with the body’s overactive immune response.

In addition to the genomic region described above we found a region of interest with 4
SNPs on ECA8 that encompassed a genomic region approximately 503kb in length. Within
this region was SNP AX-104330407, a SNP that resulted in the lowest p-value in one of the
GWA analyses and was in the top 10 results of another. While the region consists of five genes,
TNFRSF11A stands out as a potential candidate gene. Not only is TNFRSF11A the closest gene

Table 5. Descriptive statistics for the top SNPs located within each region of interest.

SNP Chr Position Minor allele Minor allele frequency Effect of minor allelea

AX-104531882 8 70269986 T 0.44 0.630–2.215

AX-104130346 8 71065803 C 0.34 0.035–2.281

AX-103982426 8 78377554 C 0.25 0.045–2.415

AX-103716604 8 78430916 A 0.21 0.0534

AX-103206537 8 78456162 C 0.21 0.0525

AX-104330407 8 78880555 A 0.21 0.053–2.572

aThe range of the minor allele effect (difference from the mean) is provided for top SNPs in multiple analyses

doi:10.1371/journal.pone.0152966.t005

Fig 3. Manhattan plots for Chromosome 8 (ECA8). aManhattan plot based on the results of the cases and controls structured association analysis.
bManhattan plot based on the results of the cases and controls principal component analysis. cManhattan plot based on the results of the principal
component analysis of IBH severity. dManhattan plot based on the results of the mixed model-structured association analysis of IBH severity. eThe red line
indicates the Bonferroni-corrected significance threshold; the black line indicates the threshold for suggestive SNPs (P < 1x10-5).

doi:10.1371/journal.pone.0152966.g003
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to SNP AX-104330407, but screening for TNFRSF11A has already been suggested as a potential
diagnostic test for autoinflammatory disorders in humans [31]. Given that autoinflammatory
diseases and hypersensitive reactions are both caused by dysfunction of the immune system,
genetic similarities between the two are highly probable and make further exploration of this
region and gene warranted [6].

Although previous studies exploring IBH have shown fluctuating levels of significance for
regions on Chromosomes 3, 9, 11, 20, and 27, no genes on ECA8 have previously been identi-
fied as important for susceptibility to IBH [12,13,19]. Despite the fact that both MHC genes
and non-MHC genes are likely to be involved in the manifestation of IBH, the current study
was unable to decisively support previously identified MHC class II regions as significantly
associated with IBH [7,18]. While the exact reasons for this are presently unknown, it has been
suggested that MHC genes may not necessarily affect the overall risk of developing a hypersen-
sitive reaction, but may in fact influence what an individual becomes allergic to. This is demon-
strated by the genetic differences between a rye grass allergy (associated with HLA-DR3) and a
birch pollen allergy (associated with HLA-DR5) in humans [6]. However, four SNPs on Chro-
mosome 20 did appear in the list of SNPs with the lowest p-values, likely warranting further
exploration of Chromosome 20. No other previously reported regions were among the list of
SNPs with the lowest p-values.

Lack of correspondence with previous GWA studies for the regions on ECA8 may also have
resulted from use of the 50K and 70K genotyping arrays in earlier studies [12,13,19]. Past

Fig 4. QQ plots for Chromosome 8 (ECA8). aCorrected QQ plot for the cases and controls structured association analysis; uncorrected λ = 1.3659.
bCorrected QQ plot for the cases and controls principal component analysis; uncorrected λ = 1.2599. cCorrected QQ plot for the principal component analysis
of IBH severity; uncorrected λ = 1.2657. dCorrected QQ plot for the mixed model-structured association analysis of IBH severity; uncorrected λ = 1.0222.

doi:10.1371/journal.pone.0152966.g004
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studies would likely have been predominantly focused on relatively common variants across
breeds, while the current study was able to explore significantly more variants across the
genome. A substantial advantage when one considers that most of the heritability for IBH has
been unexplained by the low density array GWAS [12,13,15,19]. Although no single SNP dem-
onstrated genome-wide significance (GWS) in the current study, it is important to note that
insect bite hypersensitivity is widely accepted as a highly complex, multi-factorial disease that
can be difficult to diagnose when manifestation is not severe. Though not considered to be a
significant factor in the current study, the power of studies exploring complex diseases can
potentially be weakened when individuals reported as controls exhibit a mild, often unnoticed

Fig 5. Linkage disequilibrium patterns relative to markers AX-104130346 and AX-104330407. aLinkage disequilibrium pattern relative to marker AX-
104330407 on a Manhattan plot based on the results of the cases and controls principal component analysis. bLinkage disequilibrium pattern relative to
marker AX-104130346 on a Manhattan plot based on the results of the principal component analysis of IBH severity

doi:10.1371/journal.pone.0152966.g005
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form of the disease. This in-turn negatively affects the likelihood of a SNP significantly associ-
ated with the disease demonstrating GWS. However, it is critical to keep in mind that associa-
tions with borderline GWS have been shown to be successfully replicated 73% of the time with
many of them achieving substantially lower p-values when additional data are obtained [32].

As such, it is important to put the results of the current study in context. Taking the position
that if a genomic region or SNP was truly important in the expression of IBH, it would remain
as one of the top regions or SNPs regardless of the methodology chosen, the current study
reports the results of 4 different approaches [28]. While a SNP may not reach GWS or even
remain as the top potential marker in all approaches, any potentially important SNPs or
regions would feasibly appear in all analyses whereas spurious associations would be less likely
to endure across each analysis. Although this does not necessary exclude other SNPs or regions
as potentially significant in the expression of IBH, it goes a long way in strengthening the confi-
dence in any potential candidate genes and genomic regions identified in the study.

While the results of the current study will still require validation in a large independent data
set, they potentially provide further insight into the genetic etiology of IBH in horses. By capi-
talizing on the newly available high density equine genotyping array and a highly inbreed
breed of horse with a well-documented susceptibility to hypersensitive reactions, the current
study identifies at least one candidate gene that has previously not even been suggested as
important in the manifestation of IBH. The supplementary knowledge gained from this study
together with other IBH studies in horses will conceivably bring researchers closer to fully
understanding the biology underlying type I and type IV hypersensitive reactions in not only
horses, but other species as well.
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