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Abstract. Software systems evolve over time. From a component-based software engineering per-
spective, this means that either the components of the system need to change, or, if components are
connected using a coordination layer, then the way in which they are connected needs to change,
or both. In some situations, changes must be performed without stopping the running system. This
not only introduces a serious technological challenge, it also makes reasoning about the evolving
system difficult. One approach to this problem is to use component connectors to plug components
together. Reconfiguration of a system can then be reduced to reconfiguring the component connec-
tor, as changing component implementations can be implemented by changing which components
the connector connects together. The coordination language Reo offers operations to dynamically
reconfigure the topology of component connectors, but until now, no means for reasoning about re-
configuration in Reo has been developed. This issue is addressed in this paper. To enable reasoning
about connector behaviour, and hence behaviour of the composed system, we present a semantics of
Reo in the presence of reconfiguration, and a logic together with its model checking algorithm.1
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1. Introduction

Software systems evolve over time. From a component-based software engineering perspective, this
means that the components of a system need to be replaced by new versions which have had bugs fixed
or new features added. Sometimes such updates require changes to the interface of a component, and
this generally necessitates that other components in the system also change. In some situations, changes
must be performed without stopping the running system. Continuously running distributed systems, in
particular, require extensive support to facilitate evolution, deployment, upgrading, and reconfiguration.

1This paper expands an FSEN conference paper by the same author [18], adding more discussion and proofs of theorems.
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Such evolution not only introduces a serious technological challenge, it also makes reasoning about the
evolving system difficult.

Coordination languages [35] offer a technology to address this issue. Rather than just plugging com-
ponents directly together, a coordination language provides a layer for connecting software components.
The layer acts as a mediator which pumps data between the components, but it also offers the benefit
of reducing the dependency of components on each other. Using a coordination layer offers immediate
benefits in the presence of software evolution, as it can shift the focus of software evolution away from
components in the following ways. Firstly, some changes to the system can be localised to the coordina-
tion layer. Secondly, changing a component can be seen, in part, as an operation on the coordination layer
— the glue between components is changed to exclude the original component and incorporate the new
component. Lastly, the presence of a coordination layer can also buffer the bulk of the components in the
system from the changes required to one component, as, for example, the coordination layer can adapt
the interface of the replacement component to conform with the behaviour expected by the remainder of
the system. In the context of this paper, we deal with a coordination layer consisting of circuit-like con-
nectors. In this setting, changing the coordination layer is synonymous with reconfiguring the connector.
Hence to address the issue of software evolution, we concentrate on connector reconfiguration.

We focus on the channel-based coordination language Reo [2]. Reo provides circuit-like connectors
for connecting software components in such a way that the components are unaware of their role in the
composed software. Components and connectors are distinct entities. From our perspective, components
are black boxes which operate by writing data to or reading data from known ports (which we call
“ends”). Software components are connected at the boundary of the connector. A channel is a point to
point communication means between its two ends. Reo has a more liberal notion of channel than usual:
channels may buffer or may not buffer; the ends can either accept or produce data, in any combination,
thus a channel may have two input ends or two output ends; operations on the ends may be synchronised,
or be mutually exclusive; and the channel may even modify values passed through it. Reo enables
connectors to be composed from smaller connectors, by plugging two or more channel ends together to
form nodes.

The context we are working in assumes that reconfiguration of a connector occurs outside of the
connector, as described in Arbab’s article [2]. This implies that reconfiguration can affect the behaviour
of the connector, but not vice versa. This makes sense in that we typically do not know a priori how
a system will be reconfigured in the future, so reconfiguration need not be built into a connector. Our
perspective is that software evolution requires changing the behaviour of the connector that connects the
components in the software system. Changing the behaviour of a connector amounts to reconfiguring
the connector, that is, changing the way in which channels are plugged together. Reo offers operations
to dynamically reconfigure the topology of component connectors. The semantics of reconfiguration is
clear: behave like the initial connector, reconfigure, then behave like the new connector. Without the
proper precautions, however, reconfiguring running software is error-prone. Data sent to a component
may not be received by its intended recipient if reconfiguration is performed at the wrong time, or more
generally, the interleaving of reconfiguration steps and dataflow may violate a component’s expected
protocol. By guaranteeing the atomicity of certain operations, Reo’s architecture aims to avoid some of
this danger, but it cannot cover all possibilities, such as protocol faults.

Reasoning about system evolution requires formal models and logics. Until now, however, no means
for reasoning about reconfiguration in Reo has been developed. To this end, this paper makes the follow-
ing contributions. To enable reasoning about connector behaviour, and hence behaviour of the composed
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system, we present: a semantic model for Reo connectors in the presence of reconfiguration; a logic for
reasoning about reconfiguration of operating connectors; and a model checking algorithm for the logic.

Organisation: After reviewing Reo and giving some reconfiguration scenarios in this section, Sec-
tions 2 and 3 formalise Reo connectors and their reconfiguration. Section 4 reviews Reo semantics as
constraint automata. Sections 5 and 6 present ReCTL , a logic for reasoning in the presence of reconfigu-
ration, and its model checking algorithm. Section 7 revisits the reconfiguration scenarios, and Sections 8
and 9 discuss related work and conclude the paper.

1.1. Overview of Reo

In this section we present an overview of Reo’s component connectors. For a full account of Reo, see
Arbab’s articles [2, 3]. Reo is a channel-based coordination language based on circuit-like connectors
that coordinate software components. Reo imposes a notion of exogenous coordination to orchestrate the
components that are interconnected in a composed system. This means that coordination occurs outside
of the components, and components are unaware of their role in the composed software.

Components interact with a Reo connector using a simple interface. A component will have access
to a number of input and output ports, which will be the ends of channels. The only way a component
may interact with a connector is by issuing I/O operations (write and take) on these ends. A write or take
will succeed whenever the connector either accepts the data of the write or produces data for the take.
The ability to accept or delay these operations forms the basis of coordination.

Channels constitute the only primitive connectors in Reo, each of which is a point-to-point com-
munication medium with two distinct ends. Reo uses a generalized notion of channel. In addition to
the common channel types of synchronous and asynchronous, with bounded or unbounded buffers, and
with FIFO and other ordering schemes, Reo allows an open-ended set of channels, each with its own,
sometimes exotic, behaviour. For instance, channels in Reo need not have both an input end—accepting
input—and an output end—producing output; a channel can instead have two input ends or two output
ends.

Sync SyncDrain SyncSpout LossySync

AsyncDrain AsyncSpout FIFO FIFO
x

Figure 1. Some basic channel types in Reo

Figure 1 shows some example channels. Sync denotes a synchronous channel. Data flows through
this channel if and only if it is possible simultaneously accept data on one end and pass it out the other
end. SyncDrain denotes a synchronous drain. Data flows into both ends of this channel only if it possible
to simultaneously accept the data on both ends. SyncSpout denotes a synchronous spout. Data flows out
of both ends of this channel only if it possible to simultaneously take the data from both ends. The values
emitted from each end are chosen non-deterministically from the data domain, possibly constrained to
satisfy some predicate which may be associated with each end of the SyncSpout. LossySync denotes a
lossy synchronous channel. If a take is pending on the output end of this channel and a write is issued
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on the input end, then the channel behaves as a synchronous channel. However, if no take is pending,
the write can succeed, but the data is lost. Note that this kind of lossy synchronous channel does not
have a stochastic semantics, unlike other lossy channels appearing in the literature [38, 1]. AsyncDrain
denotes an asynchronous drain. Data can flow into only one end of this channel at the exclusion of data
flow at the other end. AsyncSpout denotes an asynchronous spout. Data can flow out of only one end of
this channel at the exclusion of data flow at the other end. FIFO denotes an empty FIFO buffer with
capacity for one data item. Data can flow into the input end of this buffer, but no flow is possible at the
output end. After data flows into the buffer, it becomes a full FIFO buffer. FIFO denotes a full FIFO
buffer containing datum . Data can flow out of the output end of this buffer, but no flow is possible at
the input end. After data flows out of the buffer, it becomes an empty FIFO buffer.

More complex connectors can be constructed out of channels and simple connectors by conjoining
channel ends to form nodes. A node may contain any number of channel ends. We classify nodes into
three different types depending on the types of their coincident ends: an input node contains only input
channel ends; an output node contains only output channel ends; and a mixed node contains both kinds
of channel end. Nodes route data through a connector. A node may have any number of channel ends
which push data into and accept data from it. Data flows at a node whenever both exactly one of the data
suppliers (a component or an output end of a channel) can succeed in sending some data and all acceptors
(a component or an input end of a channel) can synchronously accept that data. The synchronisation and
exclusion constraints imposed by nodes and channels propagate through the entire connector. This leads
to a powerful language of component connectors [2, 3].

It is natural to consider Reo connectors in isolation. A connector can be viewed as an open system, in
that, while it does not have any observable behaviour without plugging in components, its behaviour can
be viewed as a relationship between the possible actions on its boundary nodes. An example connector is
shown in Figure 2(a). The behaviour of the connector is to first allow and to succeed synchronously
with data flowing from to , then allows and to succeed synchonously, with data flowing from
to . Afterwards and may again succeed. The loop of two FIFO buffers sequences these two

events. The intuition is that when both and are ready, data flows synchronously from , through
node , and into . Data flow at causes data to flow into the synchronous drain - . For this to
occur, data must also flow at . This data is supplied by the FIFO buffer, which pumps data into
node . This data is also copied into channel end , thus filling the FIFO - . As a result of this step,
the buffer - becomes empty and - becomes full.

Although Reo connectors may look like electrical circuits and the synchronous channels may lead
the reader to think of Reo connectors as synchronous systems (as in Esterel [12]), it would be wrong to
equate Reo with either model. Although the precise implementation details are more involved, a Reo
connector is executed in essentially two steps: (1) based on pending write/take operations, solve the
synchronisation/exclusion constraints imposed by the channels of a connector to determine where data
can flow; and (2) send data in accordance with the solution in step (1). The second step may not occur
if no data flow is possible. In between step (2) and step (1) of the following round, new write/take
operations may be attempted on the channel ends, or existing ones may be retracted due to time-out. Not
all of the connector needs to be involved in step (1) at the same time: FIFO buffers, for example, serve
to divide connectors into synchronous slices which operate more or less independently.

Reo is designed so that connectors can be deployed in a distributed setting, with components and
Reo nodes assigned to various machines across the network. We do not require that channels are mapped
in a way that follows the connections of the network, though our implementation assumes that channels
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Figure 2. (a) Connector joining Bidder and Auction Components. The Bidder connects to nodes (bid) and
(response) and the Auction connects to and . (b) Reconfiguration disconnects nodes and and adds

connections to nodes and .

could be laid out in such a manner. This means that the underlying implementation must follow the
topology of a connector when performing communications, which in principle enables Reo to be used in
situations of limited connectivity, such as wireless sensor networks.

Reo also provides operations for constructing and reconfiguring connectors: operations for creating
new channels, joining two nodes together, splitting a node in two, hiding internal nodes and forgetting
boundary nodes. Before describing these operations in Section 3, we present a number of reconfiguration
scenarios to motivate the reasoning apparatus presented in this paper.

1.2. Reconfiguration Scenarios

Auction Consider a distributed system with two kinds of components: one managing an auction and
one issuing an individual bidder’s bids. Bids are routed via a Reo connector, see Figure 2(a), to an
auction component, which then issues a response indicating the outcome of the bid. The Reo connector
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Figure 3. Logging Component added at . All bids and responses are copied to .

guarantees that the simple protocol, alternating bids and responses, is preserved. This scenario has been
adapted from the application of Reo to auction protocols [46].

Beyond the initial phases of constructing a connector and connecting the components, a number of
reconfiguration scenarios are foreseeable:

new bidders join an auction and their components are connected;

bidders leave an auction and their components are disconnected;

an auction or bidder component is upgraded and replaced;

the underlying bid-response protocol, enforced by the Reo connector, is modified, for example, to
include an authentication phase; or

a monitoring or logging component is added to the system.

We focus on two particular scenarios: adding logging and changing bidders.
Adding Logging: We want to log all bids and their corresponding responses. This requires the

addition of the channels highlighted in reconfigured connector in Figure 3, with the Logging component
attached at node . Subsequently, we may remove the logging. We want to reason that: (1) adding
logging does not affect the bid-response protocol; (2) all subsequent bids and responses are logged; and
(3) removing the logging mechanism produces a connector with the same behaviour as the original.

Changing Bidder: Consider when a bidder (connected to channel ends and ) leaves an auction
and is replaced by another bidder (connected to channel ends and ). With the given bid-response
protocol, the following steps are foreseeable: A bid is issued at node ; the reconfiguration occurs to
produce the connector in Figure 2(b) with channels - and - disconnected; and finally, the response
corresponding to the original bid is received at node , which may not be expecting it, instead of at
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Figure 4. (a) Initial Stock Quote Handler. (b) Reconfigured to handle multiple Stocks.

node , where it was expected. This scenario could result in incorrect component behaviour including
deadlock. In this simple example it is clear that the reconfiguration should only be performed between a
response and the subsequent bid. If a party other than the bidder performs the reconfiguration, or if the
bidder is not trusted, machinery needs to be added to the connector to avoid a fault in the bid-response
protocol. As the bidder may cheat, adding some control may be necessary anyway, but this kind of
complication is orthogonal to the issue at hand.

Stock Price Watcher We now consider a slightly more elaborate reconfiguration scenario. Consider
the connector in Figure 4(a). This very simple system receives a stock price from a component and
an exchange rate from another component, converts the stock price to the desired currency, and passes
the resulting value to a display component. As our investment portfolio increases, we will add further
stock price components to the system, as in Figure 4(b). Extending the system further in this way will
eventually leads to a situation where either the data display shows the items too rapidly to be viewed
properly, or the components producing stock prices will need to be delayed, resulting in out-of-date
prices being shown. Reconfiguring the system to Figure 5(a), where the lossy syncs channels replace the
ordinary synchronous channels, produces a connector that simply discards data values which cannot be
displayed in time. Figure 5(b) shows a variant which ensures that stock prices are displayed in a round-
robin fashion. The connector uses a sequencer, defined by Arbab [2], which alternates data flow at its
four nodes. Each reconfiguration step enhances the application and must be performed dynamically, so
that no stock price fluctuation is missed. The kind of reasoning one would like to do in this situation
is, for example, to ensure that each source of stock prices does actually get to display, that is, that no
deadlocks have been introduced through reconfiguration.

It is a simple exercise for the reader to determine the reconfiguration steps required to get from
Figure 4(a) to Figure 4(b) to Figure 5(a) to Figure 5(b).

We revisit these scenarios in Section 7.
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Figure 5. (a) Stock Quote Handler adapted to avoid flooding of data. (b) Adapted further to Schedule Quotes in
Round-Robin Fashion.

2. Reo Connectors

This section formalises the “graph” corresponding to a Reo connector in order to precisely describe the
structural effect of a reconfiguration operation. A Reo connector is represented as a collection of its
constituent channels plus a description of how its ends are grouped to form visible nodes, which can be
observed and reconfigured, and hidden and forgotten nodes, which cannot.

Let be a denumerable set of channel ends, ranged over by . The function gives
the direction of an end: whether it accepts data (input end) or produces data (output end). 2 A channel is
denoted , where are the ends of the channel, with and distinct, and its type. Each
channel type dictates the directionality of each of its ends. For example, synchronous channel
requires that and .

Connectors are formed by grouping together channel ends into nodes. Thus we represent nodes as
sets of channel ends—and thus also consider a single channel end to be a node. Let range
over nodes. Let denote the joining of nodes and , defined as . Boundary nodes, through which
components interact with a connector, consist entirely of input ends or entirely of output ends (also
called, respectively, input nodes and output nodes). Internal or mixed nodes of a connector, indicated by
predicate , make it possible for data to flow within a connector without any external impetus
(see the next section for a description of their behaviour).

The set of nodes in a connector is called its node set. The set of visible nodes, those which are not
hidden or forgotten, is called its visible node set. Let range over node sets. will be reserved
for hidden node sets.

Definition 2.1. (Reo Connector)
A Reo connector consists of a set of channels and a set of visible nodes and
the hidden node set , where and have no channel ends in common. The node set of the
connector satisfies:

1. for all distinct , , , and are distinct; and
2This terminology differs from Arbab [2] who uses the phrases source for input and sink for output. Read input as accepting
input and output as producing output.
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2. is a partition of the set of channel ends of channels in .

Denote the collection of all Reo connectors by , ranged over by and .

Example 2.1. The connector in Figure 2(a) is represented by

3. Constructions on Reo Connectors

Reo has a control language for constructing and reconfiguring connectors [2]. It includes operations for
creating channels, for joining channel ends to form nodes, for splitting nodes, and for hiding nodes. This
control language is, in principle, embedded in a programming language and adopts certain convenient
abstractions, such as referring to a node using one if its constituent ends. We present a simplified and
clean core of Reo’s control language that takes a bird’s eye view of reconfiguration. In essence, our
language captures the steps performed by (or the trace of) a control language program performing some
reconfiguration of a connector. This makes sense, given the context we are working: reconfiguration is
performed outside of a connector under the assumption that the behaviour of the connector has no effect
on reconfiguration. The traces of the Reo control language are captured in the following language of
constructions:

Constructions ( ) are (partial) operations taking a Reo connector to another Reo connector (thus their
type is ). The action of constructions on Reo connectors is given in Definition 3.1. In the
prequel [17] to this paper, we explored when constructions are well-formed. The constraints ensured,
for example, that the and operations were performed on the appropriate kind of node and
channel construction avoided creating duplicate names. For this paper, we assume that all constructions
satisfy those constraints.

Definition 3.1. (Action of Constructions)
The action of construction on a connector , denoted , is defined as:

where

if
if

where is the set of ends underlying a node set .
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Figure 6. Joining, , groups nodes and together to form node . Splitting, ,
performs the inverse operation. All possible ways of splitting and joining are permitted. Both operations, however,
tend to drastically alter data flow.

The identity construction, , does not modify its argument. Sequential composition of followed
by , is denoted , following the mathematical convention. Construction corresponds to cre-
ating a new channel of type with distinct ends , and adding the channel ends as unconnected
nodes to a connector. Construction takes two nodes and of a connector and joins them to-
gether to form a new node , and takes a node and splits it into two nodes and (see
Figure 6).

Construction makes a mixed node act of its own accord, like a self-contained pumping sta-
tion performing a pull and push of data whenever it can, independently of behaviour at the boundary,
though still observing the constraints imposed by channels and nodes [2]. Hiding is analogous to the
standard technique of removing all -transitions from a non-deterministic finite automaton (or compress-
ing -transitions in a process in, say, the -calculus). The difference between a hidden internal node
and a non-hidden internal node is that hidden nodes are required to perform certain transitions before
allowing a transition observable to the non-hidden nodes to occur. It must be said, however, that precise
understanding of what this entails remains elusive.

Construction models a boundary node that is no longer in use and thus no longer contributes
to the functioning of a connector. No data flows through a forgotten node.

Both and have the structural side-effect of preventing a node from being reconfig-
ured, but this is the only behaviour they have in common. We distinguish between hiding and forgetting,
because with hiding all possible data flows at the node remain possible, whereas with forgetting all data
flow at the node is stopped. From the “real world” perspective, hiding is an operation which is performed
to make a connector act as a black box which has no observable internal transitions, whereas forgetting
is what happens when a node is simply ignored or dropped from the program and subsequently becomes
a candidate for garbage collection.

Example 3.1. The connector in Figure 2(a) is a result of the following construction applied to the empty
connector:

The second line creates all the channels; the first line joins ends to form nodes.

Example 3.2. The reconfiguration producing the connector in Figure 3 from the one in Figure 2(a) is:
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Example 3.3. A construction which takes the connector in Figure 3 and reproduces the connector in
Figure 2(a), with some garbage, is:

4. Constraint Automata: A Semantics for Reo

Constraint automata [7] are an automata-based model where transitions are annotated with (1) a set of
names indicating the nodes at which data flows, and (2) a constraint describing the data that flows at
the selected nodes. Constraint automata can be used to describe the data flow through nodes and the
synchronisation and exclusion constraints on nodes in a Reo connector, where the set of nodes on a
transition represents the nodes that are synchronised, and the nodes not present are the excluded nodes.
A constraint automaton over visible nodes has transition labels of the form , where is the
exact, non-empty, set of nodes at which data flows in a step, and is a data constraint over describing
the data that flows. Data constraints are defined by the following grammar, where , the data
domain:

The data flowing through node is denoted , thus says that the data flowing through node
is , and says the data flowing through node is the same as at node . The formula
existentially quantifies over the data flowing at node in constraint . Let denote the set of
all data constraints over visible nodes , and the data constraints over . The precise
meaning of data constraints is given by the following definition.

Definition 4.1. (Data Constraint Satisfaction)
Satisfaction of a data constraint by a data assignment Node Data, that is, a finite map from
the node names into the data set, is denoted and defined:

always
and

s.t.

We now define constraint automata [7]:

Definition 4.2. (Constraint Automata)
A constraint automaton is a triple , where is a set of states, is a set of nodes,

and is a subset of , called the transition relation of . We write
instead of . For every non-trivial transition, , we require that (1) , and
(2) . In addition, includes all trivial loops for all .

Note that a constraint automaton does not give the direction of dataflow, just constraints on the data
that flows. The original definition of constraint automata [7] also included the set of initial states. Our
presentation has slightly different requirements, so we have removed them and introduced a function
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p q

{B,D},dB=dD

{A,C},dA=dC

p q
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Figure 7. Example Constraint Automata. (Trivial loops omitted.) We have also abstracted away events on internal
nodes of the connector. Whenever data flows through A and C, it flows also through nodes ace and gfi. Similarly,
whenever data flows through B and D, it flows also through nodes bdl and hjk.

which gives the initial states of a channel of type . This gives sufficient information to
recover the set of initial states, using the constructions detailed in Section 5. We have also added the
notion of trivial loop which simplifies the definition of product. Trivial loops play a similar role to -
transitions, also known as stuttering steps, in the definition of synchronous products of labelled transition
systems [6].

Arbab et al [7] describe how to calculate the constraint automaton for a Reo connector. For connector
, denote the automaton resulting from this construction as .

Example 4.1. The constraint automaton in Figure 7(a) models the connector in Figure 2(a). It captures
the alternating behaviour between synchronous data flow between and and between and .
This matches the expected behaviour of the bid-response protocol. Figure 7(b) is a constraint automaton
modelling the behaviour resulting from adding logging at node (cf. Figure 3). The transitions indicate
that logging occurs synchronously with both bids and responses, copying the data in both cases.

4.1. Operations on Constraint Automata

Constraint automata are equipped with the operations product and hide which are used to give the be-
haviour of connectors in terms of their constituents, and, respectively, of hidden nodes. In addition, we
introduce an operation to model the forgetting of nodes.

The product of two constraint automata with possibly overlapping visible node sets is an automaton
which includes the combined behaviour of the constituents such that they agree on the data flowing at
the common nodes. Product models, for example, the plugging of an output end in one connector to the
input end in another connector.

Definition 4.3. (Product Automata [7])
Given constraint automata and , the product automaton

is , where is defined as follows: if , ,
and , then .

Hiding a node of a constraint automaton produces an automaton in which the behaviour at the node
can be performed independently of behaviour at the visible nodes. Let denote a (possibly
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empty) sequence of state transitions of starting from state , ending in state , involving just node .
That is, if and only if there exists a finite path in :

where each is satisfiable. denotes a sequence of purely internal and non-observable transitions.

Definition 4.4. (Hiding [7])
Given constraint automaton , the automaton is , where

is defined as follows: if , , , and , then .

The compression of internal data flow that hiding performs (via ) does not permit any additional
synchronisation beyond what was possible before hiding. For example, data that needs to pass through
-FIFO1 buffers will take step, rather than . If hiding were to allow this transfer to be instantaneous,
then the whole notion of synchrony in Reo would be drastically changed, leading to connectors which
would be impossible to realise in practice.

Consult Arbab et al [7] for full details of these operations, including examples and correctness proofs.
We now add forgetting to the arsenal of operations on constraint automata. The construction

is applied to boundary nodes at which no further interaction will occur. The forget operation on constraint
automata models this by removing all behaviour involving the forgotten node.

Definition 4.5. (Forgetting)
Let be a constraint automaton. The constraint automaton is

, where transition relation is given by: if and , then

Example 4.2. If is applied to the constraint automaton in Figure 7(a), the result is an automa-
ton with a single non-trivial transition . This captures the fact that no behaviour is
possible at node , and hence also at node , even though is still visible.

A note on garbage. In the prequel [17] we determined when certain parts of a circuit corresponded to
garbage and we claimed, but did not prove, that removing the garbage caused no problem behaviourally.
We state and prove this result here as Theorem 4.1. Consider the graph of a Reo connector. If a con-
nected subgraph of the connector consists entirely of hidden and forgotten nodes, then that subgraph is
considered to be garbage, since it can neither produce observable behaviour nor be reconfigured. Let

denote that Reo connectors and are equivalent modulo garbage.

Theorem 4.1. If , then .

Proof:
A connector is garbage if . It is easy to show that , where is the constraint
automaton with one state and no non-trivial transitions, and is bisimulation as defined by Arbab et
al [7]. Furthermore, . Now for two pairs of automata and , where the s
are defined over a disjoint node set from the s, it is easy to show that . Without
loss of generality, assume that , where is garbage. Then

.
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This result also enables the reduction of the size of a constraint automaton, which we expect will
make model checking ( 6) more efficient.

5. Reconfiguration Logic — ReCTL

This section presents the logic ReCTL for reasoning about reconfiguration. ReCTL combines the
well-known CTL logic [21] with TSDSL (timed scheduled-data-stream logic) [4]3 for reasoning about
Reo connectors (without reconfiguration), and adds a reconfiguration modality to express changes in a
connector. The time aspect of TSDSL is dropped for simplicity of presentation. Before giving the logic,
we introduce the notion of schedule expression.

A schedule expression, , is a regular expression of “events”:

Primitive events, , correspond to data flowing synchronously through the nodes in non-empty set
, where data constraint describes the dataflow. The language of a schedule expression
, denoted , is defined as [4]:

where , , , and .

Example 5.1. The schedule expression describes that
and exchange data, then and exchange data, zero or more times.

ReCTL formulæ consist of state formulæ and and path formulæ, and , given by the following
grammar, where are propositional variables, and is any valid construction defined in Section 3:

Modalities and are standard from CTL [21], stating, respectively, that there is some
sequence of transitions (a run) in the automaton which will result in a state satisfying , and, for a
given run of the automaton, holds up to some point, after which holds. The modality states
that a path has a prefix contained in whose subsequent behaviour satisfies . This modality has
been adapted from TSDSL [4]. Its dual, , states that the subsequent behaviour for
all prefixes of the path matching satisfies . obviates the need for CTL ’s modality, as

does the trick, where is the visible node set of the connector in question.
For each construction , the modality states that holds in some state of the connector resulting
from the reconfiguration . The dual states that holds in all such states.
3As pointed out by an anonymous referee, RCTL [9] may have been a better starting point for our logic, as it resembles the
time-free fragment of TSDSL in a CTL setting rather than an LTL setting.
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The logic (excluding the reconfiguration modality) can be seen as extending CTL , as TSDSL ex-
tended LTL, with replacing to reason about transition labels. The above collection of oper-
ators was selected for a number of reasons. Firstly, the CTL operators are well-known for reasoning
about branching behaviour, and their inclusion should not be contentious. In addition, CTL ’s model
proved easier to add the reconfiguration modality to than an LTL-like model. In fact, CTL proved to be
more suitable as a base than TSDSL to add the reconfiguration modality to, and the semantics and model
checking of the resulting logic are quite natural. Secondly, TSDSL’s modality enables reasoning about
details of the data flow, compared to of CTL , which permits reasoning only about the fact that a
step has occurred, without expressing anything about the details. This change makes the logic similar
to ACTL [34], except that permits reasoning about whole languages of actions, rather than just a
single action. Lastly, the reconfiguration modality naturally models reconfigurations which are initiated
from outside the connector being reconfigured. It directly captures the change in connector, and remains
non-deterministic with regard to the exact state the new connector is in.

Example 5.2. Here are some formulæ and their interpretations:

1. The sequence expression , denoted by , where is the nodes of the
automaton in question, denotes an arbitrary (finite) sequence of events. We will use this often in
formulæ.

2. states that is true in all states of a connector/constraint automaton.

3. states that reconfiguration preserves the property .

4. states that reconfiguration may preserve the property .

5. states that after any number of steps of the initial connector, reconfiguration still
preserves .

6. states that reconfiguration never leads to deadlock.

7. states that observations and alternate, start-
ing with .

8. states that it is always the case that,
after any number of steps, reconfiguration will result in a connector in which and alternate,
starting with .

More examples, involving time but not reconfiguration, can be found in Arbab et al. [4].

We expect that the logic will be useful for at least the following applications: specifying that data
flows observing some protocol, and then continues to follow the same protocol, perhaps in a larger con-
nector; specifying that data flows observing some protocol, and then follows some alternative protocol
after reconfiguration; specifying that reconfiguration does not lead to deadlock; specifying that some
states are safe to perform reconfiguration in, whereas others are not; specifying the changed routing of
data due to reconfiguration; and so forth.

On the other hand, the logic is not expressive enough to deal with situations that require quantification
over a collection of connectors, such as asking questions like “for any connector satisfying , it is
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the case that holds” and “if a connector enforces , then the reconfigured connector enforces ”, or
for quantifying over the reconfiguration operation. The main difficulty here is that reconfiguration can
typically distinguish different connectors that have identical behaviour. In any case, such questions are
beyond the scope of our paper, as our primary aim is to develop a logic for reasoning about a particular
connector under specific reconfiguration scenario(s).

Given that connectors can become arbitrarily complex, certainly more so than our simple examples,
model checking is the only feasible approach to determining the correctness of formulæ describing the
expected behaviour of a given connector in a given reconfiguration scenario.

5.1. Semantics of ReCTL

We now present the semantics of ReCTL formulæ in terms of runs of a constraint automaton and transi-
tions between automata. This can also be seen as the semantics of Reo in the presence of reconfiguration.
Two kinds of behaviour are possible: firstly, input and output can be performed within a given connector
— this is modelled as a state transition within the appropriate constraint automaton (Definition 5.1); and
secondly, a reconfiguration step can be performed — this is modelled as a reconfiguration transition be-
tween automata (Definition 5.4). The semantics can thus be seen as a graph of constraint automata, with
constraint automata at the vertices and reconfiguration operations labelling the edges.

The semantics are based on the notion of a run, which is a sequence of state transitions.

Definition 5.1. (State Transition)
A state transition for a constraint automaton is given by , where is a data assignment from

some non-empty set to for which there is a transition satisfying .
Let denote the set of state transitions for constraint automaton .

Observe that a state transition is labelled with a solution to the constraints of some transition in the
constraint automaton, thus the two kinds of transition are different notions.

Definition 5.2. (Run)
A -run of a constraint automaton is a finite or infinite sequence: , where
and each is a state transition.

The first state of a -run is, by definition, . Let denote the suffix of starting at :

Let be the sequence of labels of the prefix of preceding the th element, defined as:

Whenever reconfiguration occurs, a new connector results. The state of the original connector, such
as the contents of FIFO buffers, is preserved by the reconfiguration, as reconfiguration affects only the
connections between channels, not the channels themselves. To capture this formally, we define the
function which maps each state of the automaton for connector to the set of states to which
it corresponds after performing reconfiguration step . There is one caveat to this description: when a
node is hidden, it may initiate behaviour of its own accord. The definition of state transfer for
takes this behaviour into account.
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Definition 5.3. (State Transfer)
The state transfer function for applying construction to connector , State State ,
is defined:

where State denotes the states of the constraint automaton underlying connector and
contains the initial states of a channel of type .

Note that the first clause of this definition produces ordered pairs of states, which is in line with the
definition of product on constraint automata.

This definition can be lifted to sets of states to obtain:

State State

State transfer functions are sensible in at least the following sense:

Lemma 5.1. .

Proof:
Apart from product, each operation on constraint automata preserves the state set of an automaton, so
the corresponding clause of does too. The product operation on constraint automata is used to
model the addition of a new channel to a connector. The state set of a product automaton is the cartesian
product of the state set of its two argument automata. So, given that is a subset of the first
argument automaton’s state set and that is a subset of the second argument automaton’s states, it is
clear that is a subset of the product automaton’s state set.

The model underlying the semantics of ReCTL has two forms (one for each kind of formula). The
first form is , where is a Reo connector, is the constraint automaton
of the connector , is a valuation mapping propositional variables into subsets of the state
set , and is a state of the constraint automaton. The second form is , where is a run
of the constraint automaton. Note that the Reo connector is required in the model, as reconfiguration
drastically changes the behaviour of connectors in a manner which cannot be computed compositionally
using just constraint automaton — the automaton needs to be recomputed.

We can now introduce a transition relation between models which describes the changes resulting
from reconfiguration. We reiterate: given that a constraint automaton captures the semantics of a Reo
connector, the reconfiguration transition provides the semantics of reconfiguration.

Definition 5.4. (Reconfiguration Transition)
A reconfiguration transition between two models for reconfiguration operation , denoted

is defined iff (i) is defined, (ii) , (iii) ,
and (iv) , where is extended to transfer valuations across models as follows
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always

and

s.t.
and

there is a -run in s.t.
is the first state of and

and

there exists s.t. and
there exists s.t. and

for all

Figure 8. Semantics of ReCTL .

Reconfiguration results in (i) a new connector, (ii) a recomputed constraint automaton, and (iii)
one of the possible states in which this automaton could be. Finally, (iv) maps the valuation into the
states of the new automaton, required for the semantics of the logic.

Finally, we give the semantics of ReCTL in Figure 8. The semantics is based on two relations
, where is a state formula, and , where is a path formula.

6. Model Checking

ReCTL is used to describe desired properties of connectors in the presence of zero or more reconfig-
uration operations. The goal of model checking, therefore, is to check whether the property holds for
a given connector (in a given state). The model checking algorithm computes the following: Given a
connector , which states of its underlying automaton satisfy state formula ? Namely,

where is the set of states of the constraint automaton . Thus the model checking algorithm
gives all states in which the property holds. Typically, we want to ensure that the initial states of the
connector belong to this set.

The model checking algorithm for ReCTL derives from those of CTL [21] and TSDSL [4]. The
major novelty is the checking of . First we assume that the data domain, Data, is finite and, hence,
that all quantifiers in data constraints are replaced by finite disjunctions or conjunctions over Data.
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6.1. Model Checking time-free TSDSL

The model checking algorithm for ReCTL relies on a model checking algorithm for the following
fragment of ReCTL , just as model checking CTL can depend on model checking LTL [21]. This
fragment is the and free fragment of ReCTL , which corresponds to the time-free fragment of
TSDSL [4]:

The model checking algorithm for TSDSL [4] can be adapted to compute the following:

, a -run of ,

This algorithm clearly satisfies the following property:

Lemma 6.1. ([4])
if and only if .

6.2. Model Checking ReCTL

Figure 9 presents an algorithm for computing . It recurses the structure of in a
straightforward manner. This approach enables a simpler proof of correctness than for more imperative
algorithms, but, as is, it does not serve as a good basis for an implementation. Note that
appears not to use ; it is, however, probed in the subroutine described in the previous
subsection.

Checking proceeds as follows. Firstly, a jump is made into the state space of the new connector
using the state transition function defined above (Definition 5.3). The connector, constraint automaton
and valuation are updated accordingly. The change to the valuation reflects which states of the new
automaton correspond to true states for each atomic proposition in the initial valuation. Next, is
model checked to determine the states of the reconfigured connector in which it holds. The function

is then applied to the resulting state set to map it back into the state set of the original connector. This
function is an inverse of the state transfer function appropriate for checking a “possibility” style modality.
The intuition is as follows: if corresponds to the states at which holds in the reconfigured model,
then is the set of states of the original model which possibly map into via the action of
the reconfiguration . (This function gives a quite natural treatment of the possibility modality. It
corresponds to rough sets’ upper representation operation when applied between two separate models,
rather than a single model [42]. Work by Yao and Lin [44] connects the upper representation with
possibility modalities in the context of a single model. So our function is the natural generalisation to
separate models.)

The standard technique for checking formulæ of the form is used [21]. The idea is to reduce
to a TSDSL formula by replacing each and, additionally each , by a fresh atom, and extending
the valuation to map this atom to the states in which the replaced formula ( or ) holds. The
function performs the desired operation, mapping an ReCTL formula to a TSDSL formula and
valuation, which are then fed into .
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where

where is fresh
where is fresh

Figure 9. Model Checking ReCTL . is the complement of state set with respect to
automaton , determined from context.

6.3. Properties

The graph of constraint automata that forms the basis of our model is infinite, as reconfiguration oper-
ations can be applied to construct any possible connector. This is not problematic for model checking,
because only a finite number of reconfiguration steps can appear in a formula, and thus only a finite
number of constraint automata needs to be explored. On-the-fly model checking deals with infinite state
models in a similar manner as we do [32]. Model checking within a given constraint automaton is
bounded (though Arbab et al [4] present no complexity results we can draw from), and thus our model
checking algorithm is also bounded. We estimate that the complexity is roughly the number of recon-
figuration operations the cost of constructing a constraint automata from a Reo connector the cost
of CTL model checking. The cost of constructing a constraint automaton is bounded by the product of
the number of transitions in the constraint automata for its constituent channels [28], which is at worst
exponential in the size of a connector.

In any case, we have argued that the the following property holds:

Lemma 6.2. The model checking problem for ReCTL is decidable.

The model checking algorithm satisfies the following properties, the second of which is correctness.
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Lemma 6.3. If and , then , for all
.

Lemma 6.4. 1. if and only if .

2. if and only if , where .

Proof:
Proof is by mutual induction. Part 1 proceeds by case analysis on .

1. Cases and : immediate.

2. Case : if and only if and .
By induction hypothesis, this is equivalent to and

, and hence to ,
and finally to .

3. Case : if and only if . By induction hypothesis, this is
equivalent to , which is equivalent to .

4. Case : if and only if there is a -run such that . This holds
by part 2 of this lemma, if and only if , where . Thus the
initial premise is equivalent to . Observing that is both and
free, this is, by Lemma 6.1, equivalent to , which is equivalent to

, which is in turn equivalent to .

5. Case : if and only if, by Definition 5.4, there is a such that
, where , and . By induction hypoth-

esis, this is equivalent to . Setting ,
we have shown that and , which is equivalent to

. By definition, we obtain that this is equivalent to ,
and hence that .

Proof of part 2, by case analysis on . Note that a state formula can also be a path formula, so induction
is also over :

1. Cases and : immediate.

2. Case , : if and only if and .
By induction hypothesis, this is equivalent to and ,
where and . By two applications of Lemma 6.3, this is
equivalent to and , as the domain of and
are disjoint due to the freshness assumptions. This is now equivalent to

, where .

3. Case , : straightforward application of induction hypothesis.
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4. Case : if and only if , where is the first state of run
. By part 1 of this lemma, this is equivalent to .4 Now given

, where is fresh, if and only if
, as is a -run. Recalling that , we are done.

5. Case : essentially the same argument as for .

6. Case : if and only if there exists such that and
. By the induction hypothesis, this is equivalent to , where
. Hence the original supposition is equivalent to .

7. Case if and only if there exists such that
and for all . By the induction hypothesis and Lemma 6.3, as used in
the case for , this is equivalent to and
for all , where and . Finally, this is

equivalent to the desired result , where
.

Note on Counterexample Generation For model checking to be more useful, rather than simply giv-
ing the states of the connector which satisfy the formula, the algorithm ought to also return some kind
of counterexample for the states that do not satisfy the formula. It is beyond the scope of this paper to
give a detailed account of counterexample generation. Standard approaches for CTL and variants can
be adapted to give counterexample for the cases without reconfiguration [20]. Such a counterexample
will begin with a particular state of the connector resulting from the reconfiguration. Using the function

on such a state would enable the construction of the counterexample to continue in the context
of the initial connector.

7. Reconfiguration Scenarios, Revisited

Auction ReCTL can be used to describe the behaviour of a fixed connector as in Arbab et al [4]. For
Figure 2(a), let denote the event data flowing synchronously from to ,
and denote the synchronous flow from to . Similarly, for Figure 2(b)
(changing bidders), let and denote analogous events in the reconfigured connector. For Figure 3
(adding logging), let and denote analogous events which also include logging at node , for
example, . Finally, recall that denotes any sequence of events,

.
The following formula describes the alternation between events and :

In words, states that it is always possible to do an after a series of s, and that it is always
possible to do a after a series of s followed by an . It can be shown that the connectors 2(a),
2(b) and 3 satisfy properties , , and , respectively.
4This is a valid step because it uses the present theorem inductively on which is a smaller formula than .
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Adding Logging: Let be the construction corresponding to adding logging (Example 3.2) and
corresponding to removing logging (Example 3.3). Firstly, we’d like to reason that adding logging has
no effect on the original operation of the connector. A formula stating part of this requirement is

as the events and encompass events and . (The logic requires that we name all nodes which
appear synchronously in a transition. Another approach would be to project the behaviour represented in
the constraint automata onto some set of nodes that we are interested in [19].)

Secondly, the formula

states that in any state of the connector, that is, after any number of steps, reconfiguration puts the
connector into a state where every bid and response is logged.

Finally, we’d like to reason that the construction returns the circuit to its original behaviour.
Note that produces garbage in the circuit, so in part we are reasoning that the garbage has no effect.
A formula capturing part of the desired property is

(Or more generally, ) Note that behavioural equivalence would probably be a
more appropriate technique for reasoning about this sort of property.

Changing Bidder: Let denote the reconfiguration taking connector Figure 2(a) to Figure 2(b).
When reasoning about reconfiguration, we use formulæ which describe the state of a system before the
reconfiguration, and then describe the expected behaviour after reconfiguration. In the simplest of cases,
we would like to say that reconfiguration in any state results in a certain behaviour. For example,

(1)

denotes that it is possible to perform reconfiguration step in any state and then begin the protocol
represented by . We may also want to state that reconfiguration enables the components con-
nected to the initial connector to finish their protocol. Following the bid-response protocol, we require
every to have a matching . A formula capturing part of this property is

(2)

Both Formulæ (1) and (2) are invalid in the model given by the automata in Figure 2(a). Rehashing
Section 1.2, performing the action and then reconfiguring results in a state where performing is not
possible, because node is no longer connected. Furthermore, performing is also impossible, as the
connector is in a state only enabling .

The following formula specifies when it is possible to reconfigure in a way that preserves both pro-
tocols:

This means that states in which it is safe to perform the reconfiguration are those which occur after
a response has been received. Thus if the - bidder is in control of reconfiguration, it must ensure
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Bidder Auction

A C

B D

Restart Stop

Figure 10. Connector facilitating safe external reconfiguration. Reconfiguration can occur between a stop and
a restart action. A stop can never occur between an and a action. denotes an exclusive router [2] which
chooses which of the two loops of FIFO1 buffers receives the token. Each loop enforces part of the protocol.

that reconfiguration occurs after a . If however, the reconfiguration is done independently of the -
bidder, the connector must be changed to give the reconfigurer a means for stopping the connector

only after a response, in order to perform the reconfiguration, and then to restart the connector after
reconfiguration. Figure 10 shows the required modification. This technique applies in many situations,
but it could become a source of inefficiency if too much of a connector is stopped for too long in order
to perform the reconfiguration.

Stock Price Watcher Consider the stock price watcher systems described in Figures 4 and 5. Let ,
, , and represent the events corresponding to data emerging from the four stock price sources

( is the original one). Similarly, let , , , and represent that the respective stock prices are
passed to the display component. Finally, let denote the event corresponding to the publishing of an
exchange rate. For simplicity, we ignore all other events apart from these.

We will assume that the convert component works asynchronously, meaning that its behaviour can
be described by the schedule expression , where the events price,
rate, and result correspond to some price or exchange rate being passed to the convert component, and
to some result being produced, respectively.

The behaviour of the system in Figure 4(a) can be captured in part by the following formula:

Now let , and be the reconfiguration operations taking the initial connector (Figure 4(a)) to the
second (Figure 4(b)), and the second to the third (Figure 5(a)), and the third to the fourth (Figure 5(b)),
respectively.

We have, for instance, that each reconfiguration step never leads to a deadlocked connector, regard-
less of the state in which the reconfiguration occurs:
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We can be more specific in that after any of these reconfigurations, it is possible within two steps to
display one of the converted prices. Let denote a single step not involving a display , that is

. The formula representing this property for reconfiguration operation
is:

Similar properties hold for the other reconfiguration operations, even when arbitrary steps occur between
reconfiguration. Other similar properties can easily be expressed.

8. Related Work

Technology and techniques for reconfigurable systems come in different guises: mobile agents [33],
dynamic rebinding of libraries [5], component-hot swapping, and via a coordination layer, whether it
be a tuple space [25], a tool bus [11], or component connector [2, 36, 31]. Formalisms for reasoning
about mobility in effect reason about reconfiguration, in the setting where the behaviour of the entitiy
can depend upon its location. Examples include the ambient calculus and its logics [16], Klaim [13], the
lambda calculus of dynamic rebinding [14], high-level Petri nets [40], and so on. The present work is the
first we are aware of for reasoning about the reconfiguration of Reo software connectors.

Bruni et al. [15] provide a complete axiomatization of a simple language of connectors. Their ax-
iomatization accounts for a single step of a Reo connector which does not consider the details of data,
that is, it considers just synchronisation and exclusion. Issues such as data, buffers, and hence state, and
reconfiguration are beyond the scope of their formalism.

Reo connectors have a prima facie resemblance to Petri nets [37], though the differences between
the two are quite significant. Petri nets offer synchronisation only at each ‘transition’ of a net, whereas
synchronisation can be more global in a Reo connector, dictated by the kinds of channels connected
together. A number of attempts have been made to link Reo and Petri nets. The first attempt encoded
MoCha, a predecessor to Reo, into Petri nets [30]. MoCha has the same primitive channels as Reo, but
lacks the compositional synchronisation and exclusion of Reo, and is thus much simpler. At attempt to
encode this aspect of Reo into a low-level Petri net proved to be too difficult, due to the more global
synchronisation in Reo, though encoding the same Petri net model into Reo was trivial.5 Choosing a
more expressive kind of Petri net may lead to better results.

Some forms of Petri nets offer reconfiguration. Object nets, for example, deal with reconfiguration of
systems by having, in essence, Petri nets as the tokens of other Petri nets [40]. These models have been
used for modelling dynamic reconfiguration [26]. The result is a powerful, yet difficult to understand,
model. Reconfiguration in Reo is, at least, simpler to understand. One significant difference is that these
models perform reconfiguration within the Petri net, not from outside as in our model. Work is afoot to
change this in the setting of Reo, though, to a large extent, reconfiguration must at least be initiated from
outside of a connector, since all reconfiguration scenarios cannot be known at the time a connector is
deployed.

There are a number of approaches to reasoning about Petri nets, some of which are applicable to re-
configuration. The first approach involves using CTL , much as we have done here, though the step from
a Petri net to a model for the logic is simpler than our path through constraint automata, for simple Petri
5This work is due to Juan Guillen-Scholten, though he never wrote it up.
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net models, though significantly more complicated for various coloured Petri nets [29]. As reconfigura-
tion is integrated into the advanced Petri nets models themselves, an additional reconfiguration modality
is not needed to reason about them, though on-the-fly model checking techniques are. Another approach
is to use an algebraic semantics of Petri nets in terms of rewriting logic [39]. Formulæ in this formal-
ism can the be verified using Maude’s toolset [22]. This approach is very general and may be fruitfully
adapted to reasoning about Reo, though we would first need to perform various encodings and argue for
their correctness. The approach presented in this paper avoids this by building heavily on existing work.
Approaches based on process algebra exist and can use the variety of tools available for reasoning about
them [29]. Again the difficulty here is the effort required to develop a process algebraic model of Reo
connectors that has more than simply local synchronisation, and then to adapt all the logical tools to the
resulting process algebra. A final alternative converts Petri nets into linear logic formulæ and reasons
about using tools for linear logic [27]. The problem is that such tools are not so well-developed as tools
for model checking CTL .

A number of approaches to reasoning about and model checking pointer programs with dynamically
changing heaps exist [24, 43]. These differ from the work presented here in that they focus on the
underlying intensional structure of the heap, whereas our focus is on connector behaviour. The result is
that our logic need not keep track of particularly complicated structures such as heaps.

Interestingly, logics such as the Logic of Public Announcements [8] and Sabotage Logic [10] also
include modalities for jumping between models. Neither logic is based on CTL , so they are not readily
comparable to ReCTL . Further afield, Verbaan et al. [41] model evolving systems in terms of lineages
of automata in order to study non-uniform complexity theory. A jump between automata in their model is
spontaneous, whereas ours result from a specific construction. No logical tools are provided for reasoning
about their automata.

9. Conclusion and Future Work

We presented the semantics of Reo connectors in the presence of reconfiguration, a logic for reasoning
about the reconfiguration of running connectors, and a model checking algorithm for the logic. We also
indicated problems that may occur when reconfiguring a connector which enforces a software protocol,
and gave one way of overcoming such problems.

As an anonymous referee correctly observed, the reconfiguration operations require that the seman-
tics of a connector be recomputed from scratch. This can be optimised by caching, which would reduce
the complexity of model checking, trading time for space. However, this fact suggests that a better
choice of reconfiguration operations is required. Admittedly, the reconfiguration operations are rather
low level, but they are universal in that any other reconfiguration operations can be defined in terms of
them. We think that the problem is not with the reconfiguration operations, per se, but due to the fact
that in automata-based models performing reconfiguration on an automata generally requires that a new
automata be totally computed before model checking can occur. Thus, we need to bear the cost, as we
are working with an automata-based model. Reconfiguration occurs seamlessly in process algebra or
labelled transition systems, because semantics in such set-ups are computed on demand. Recasting our
semantics in this direction, or performing on-the-fly model checking [9], might reduce the costs due to
reconfiguration.

Directions for future work include adding components and Reo’s connect and disconnect opera-
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tions [2] to the model. Adding components may seem strange, given that we are working in an exogenous
coordination setting which has the advantage of being able to abstract from components. There are two
reasons why this would be fruitful. Firstly, in order to establish the correctness of the entire system, one
needs to consider both the components (or an appropriate abstraction of them, perhaps in terms of con-
straint automata) and the connector connecting them. Secondly, it would be interesting to investigate the
degree to which Reo can perform software adaptation [45]. Being able to exogenously adapt components
would reduce the need for replacing components when performing reconfiguration. We would also like
to find more convenient and automatic ways for reasoning about the interaction between protocols and
reconfiguration and for repairing problems that may arise. Finally, exploring counterexample generation
will make our model checking algorithm more useful in this respect. A good starting point is the article
of Clarke et al. [20].

The model of reconfiguration in Reo presented in this paper was stratified in that reconfiguration
could modify the connector, but could not depend upon the connector’s behaviour. This stratification
justified our approach to dealing only with reconfigurations which were essentially straight-line pro-
grams. However, work is presently being done to determine the semantics of Reo when data flow can
influence reconfiguration. Indeed, the idea has been posited to embed reconfiguration operations into
the connectors themselves, but, as yet, no conclusive results have been obtained, due to the unsatisfying
interaction between synchronisation and reconfiguration. Should this idea come to fruition, the logic pre-
sented in this paper would need a significant overhaul. Nevertheless, the approach taken here is adequate
for the existing Reo semantics.

We leave open the question of whether the reconfigurationmodality can be encoded in a logic without
it. One possible attack is to delve into the model checker dSPIN [23], which is an extension of the SPIN
model checker that can deal with dynamic object structures and object creation. Finally, we also would
like to explore meta-theoretic properties of our logic. For example, what is the equivalence induced
by ReCTL ? We suspect that the result will be rather disappointing, as reconfiguration can arbitrarily
change any visible part of a connector, and thus can be used to reveal the differences between two
different connectors that may be behaviourally equivalent before reconfiguration.
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