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ABSTRACT 
1 

Coupled decompositions of multiple tensors are fundamental 
tools for multi-set data fusion. In this paper, we introduce a 
coupled version of the rank-(Lm, Ln, ·) block term 
decomposition (BTD), applicable to joint independent 
subspace analysis. We propose two algorithms for its 
computation based on a coupled block simultaneous 
generalized Schur decomposition scheme. Numerical results 
are given to show the performance of the proposed algorithms. 
 

Index Terms — Tensor, block term decomposition, 
coupled tensor decomposition, multi-set data fusion 
 

1. INTRODUCTION 
 
In the past decade, the block term decomposition (BTD) has 
attracted increased attention in various signal processing 
applications. In comparison to the well-known canonical 
polyadic decomposition (CPD) that writes a tensor as the 
sum of a minimal number of rank-1 terms, BTD 
decomposes a tensor into a set of terms of low multilinear 
rank, which is more flexible and better adapted to 
applications where the signals are multidimensional. 
Uniqueness and algorithms for various types of BTD were 
studied in [1-4] and applications in signal processing were 
reported in [5-10]. 
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Recently, coupled tensor decompositions have been 
studied in the context of multi-set data fusion, which 
assumes some links or shared factor matrices among target 
tensors. They are mainly extensions of CPD to multi-set 
cases, including the works in [11-20] and the references 
therein. In addition, the coupled rank-(Lr,n, Lr,n, 1) BTD was 
studied in [15, 16]. Structured data fusion (SDF) was 
presented in [21] as a flexible framework for coupled and/or 
structured decompositions. The above works have shown that 
the coupled decomposition is able to both improve the 
accuracy and relax the identifiability condition compared 
with the decomposition of a single tensor.  

In this paper, we combine the concepts of coupling and 
BTD, and introduce a particular coupled rank-(Lm, Ln, ·) 
BTD. We will show that the particular multi-set data fusion 
problem of joint independent subspace analysis (J-ISA) can 
be turned into a coupled rank-(Lm, Ln, ·) BTD. We present 
two algorithms for the coupled block version of so-called 
simultaneous generalized Schur decomposition scheme 
(SGSD, [22-24]). SGSD involves only unitary factors. It has 
found use in the analytical constant modulus algorithm [22], 
in the computation of CPD [23], in numerically stable 
representations of ill-posed CPD problems [24], etc. We here 
limit ourselves to the overdetermined case. The more 
challenging under-determined coupled rank-(Lm, Ln, ·) BTD 
will be addressed in the future. 

Notation and definitions: vectors, matrices and tensors 
are denoted by lowercase boldface, uppercase boldface and 
uppercase calligraphic letters, respectively. The rth column 
vector and the (i, j)th entry of A are denoted by ar and ai,j , 
respectively. Symbols ‘ ⊗ ’, ‘ ’, ‘ n× ’ and ‘ ’ denote the 
Kronecker product, block-wise Khatri-Rao product, mode-n 
product, and outer product, respectively, defined as: 
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In the above definitions, we assume 1[ , , ]RA A A  and 

1[ , , ]RB B B  for the block-wise Khatri-Rao product. For 
the mode-n product we assume that the nth dimension of   
is equal to the number of columns of G . We denote the 
identity matrix and the all-zero matrix as M M

M
×∈I  and 

, , M N
M N

×∈0   respectively. Transpose, conjugate, conjugated 
transpose, Moore-Penrose pseudo inverse, and Frobenius 
norm are denoted as ( )T⋅ , ( )∗⋅ , ( )H⋅ , ( )⋅ † ,

F
⋅ , respectively. 

Mathematical expectation is denoted as E{}.⋅ MATLAB 
notations will be used to denote submatrices of a tensor. For 
instance, we use (:,:, )k to denote the frontal slice of a tensor 
by fixing the third index to k. 

For a given matrix ,I J×∈T   1vec( ) [ , , ]T T T IJ
J ∈T t t    

denotes column-wise vectorization of T and unvec( )⋅  
performs the inverse. For a third-order tensor I J K× ×∈  , 
notations (1,2),3 (2,3),1 (1,3),2, ,IJ K JK I IK J× × ×∈ ∈ ∈T T T   denote 
three types of matricization, defined by: 

( ) ( ) ( )(1,2),3 (2,3),1 (1,3),2 , ,( 1) , ( 1) , ( 1) ,
.i j ki J j k j K k i i K k j

t
− + − + − +

= = =T T T  

The mode-n vectors of  are obtained by fixing all but 
the nth index of  . The mode-n rank of  is defined as the 
dimension of the subspace spanned by the mode-n vectors. 
It is easy to understand that the mode-1, mode-2, and mode-
3 rank of   is equal to the rank of (2,3),1 (1,3),2,T T and (1,2),3T , 
respectively. Third-order tensors with mode-1, mode-2, 
mode-3 rank equal to L1, L2, L3, respectively, are said to have 
multilinear rank-(L1, L2, L3). Third-order tensors with mode-1 
and mode-2 rank equal to L1 and L2, without rank constraint in 
the third mode, are said to have multilinear rank-(L1, L2, ·). 
Rank-(1,1,1) terms simply correspond to rank-1 terms. 
 

2. PROBLEM FORMULATION 
 
In this paper, we consider the following coupled rank-(Lm, 
Ln, ·) BTD of a set of tensors ( , ) m nI I Km n × ×∈  : 

( , ) ( , ) ( ) ( )
1 21 , , 1,..., ,Rm n m n m n

r r rr     m n M∗
== × × = A A    (1) 

where ( , ) m nm n L L K
r

× ×∈  has mode-1 rank equal to Lm and 
mode-2 rank equal to Ln , and ( ) m mm I L

r
×∈A   has full column 

rank. Eq. (1) suggests that each tensor ( , )m n admits by 
itself a rank-(Lm, Ln, ·) BTD [1] (see Fig. 1 for an illustration). 
In addition, each tensor ( , )m n is coupled with ( , )m n′ in the 
first mode by factor matrix ( )mA and at the same time 
coupled with ( , )m n′  in the second mode by ( )n ∗A , 

,m m′ ≠ n n′ ≠ . This double coupling structure is illustrated 
in Fig. 2. The matrix representation of (1) is given by:  

( , ) ( ) ( )* ( , )
(1,2),3 ( ) ,m n m n m n= ⋅T A A C                    (2) 

where ( , ) ( , ) ( , )
1 (1,2),3 (1,2),3[( ) ,..., ( ) ] m nRL L Km n m n T m n T T

R
×∈C     . In 

addition, the frontal slices of ( , )m n take the following form: 
( , ) ( ) ( , ) ( )

(:,:, ) ,m n m m n n H
k k= A Σ A                        (3) 

where ( , ) m nRL RLm n
k

×∈Σ  is a block-diagonal matrix with blocks 
of size m nL L× , containing the kth frontal slice of ( , )m n

r as 
the rth block on its main diagonal. 

Note that in (1) we can arbitrarily permute the terms if it 
is done consistently for all tensors involved. We can also 

post-multiply ( )mA and ( )n ∗A  by non-singular matrices 
( ) m mL Lm

r
×∈F   and ( ) n nL Ln

r
×∗ ∈F  provided that ( , )m n

r is 
replaced by ( , ) ( ) 1 ( ) 1

1 2
m n m n

r r r
− ∗−× ×F F for all values of m and 

n. The goal of coupled rank-(Lm, Ln, ·) BTD is then to solve 
(1) up to these trivial indeterminacies. 

= ...+ +
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( )
1
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( , )
1

m n
( )
1

n HA
( )m
RA

( , )m n
R

( )n H
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Fig. 1. The rank-(Lm, Ln, ·) BTD writes each target tensor ( , )m n as 
the sum of multiple block terms of low multilinear rank. 
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Fig. 2. The double coupling structure. The target tensors are placed 
at different nodes of a grid according to their indices. Each tensor 
is coupled with tensors along two modes by two factor matrices. 

Next we explain how the coupled rank-(Lm, Ln, ·) BTD 
(1) is related to the J-ISA problem [25]. The multi-set data 
model for J-ISA is formulated as:  

( ) ( ) ( ) ( ) ( )
1( ) ( ) ( ),     1,..., ,Rm m m m m

r rrt t t m M== = =x A s A s  (4) 

where ( ) ( ) mIm t ∈x  denotes the observed mixture, and 
( ) ( ) mRLm t ∈s  is the latent source vector at time instant t, and 

( ) m mI RLm ×∈A  denotes the mixing matrix of the mth dataset. 
We partition the source vector ( ) ( )m ts  into R sub-vectors 

( ) ( ) ( )
1[ ( ),..., ( )] ( ),m T m T T m

Rt t ts s s with each sub-vector ( ) ( )m
r ts  

representing a group of Lm sources. In addition we partition 
the mixing matrix ( ) ( ) ( )

1[ ,..., ]m m m
RA A A  where ( ) m mI Lm

r
×∈A   

is the sub-matrix of ( )mA associated with ( ) ( )m
r ts .  

We make the following assumptions: 1) each sub-
vector ( ) ( )m

r ts  contains Lm dependent sources; 2) 1

1

( ) ( )m
r ts and 

2

2

( ) ( )m
r ts are independent for 1 2r r≠  and dependent for 1 2r r=  

regardless of the values of 1m  and 2;m 3) the sources are 
temporally non-stationary with zero mean and unit variance. 

We calculate the cross-covariance tensor as follows: 
( , ) ( ) ( ) ( ) ( , ) ( )

(:,:, ) E{ ( )[ ( )] } ,m n m n H m m n n H
k kk k= =x x A Σ A      (5) 

where ( , ) ,m nI I Km n × ×∈  1 , ,m n M≤ ≤ K denotes the number 
of time-frames for which such a cross-covariance is 
computed. The matrix ( , ) ( ) ( )E{ ( )[ ( )] }m n m n H

k k kΣ s s is block-
diagonal with blocks of size m nL L× under the above 
assumptions. Comparing (5) and (3), we can see that the J-
ISA data model has been converted to a coupled rank-(Lm, 
Ln, ·) BTD formulation by using second-order statistics. 
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3. ALGORITHMS 
 
We limit ourselves to the overdetermined case where ( )mA  
and ( , )m nC in (2) are assumed to have full column rank for 
all the values of ,m n , and propose two algorithms for the 
computation of coupled rank-(Lm, Ln, .) BTD, which extend 
the SGSD scheme to the coupled block case. 
 
3.1. Coupled Block SGSD 
 

The goal of coupled rank-(Lm, Ln, ·) BTD is to find 
( )mA , ( )nA and ( , )m n

kΣ that minimize the following function:  

( ) 2( , ) ( ) ( , ) ( )
(:,:, ), 1 1 ,M K m n m m n n H

k km n k F
η = =Ω = −  A Σ A       (6) 

where ( ) ( , ){ , , , 1,..., , 1,..., }m m n
k m n M k KΩ = =A Σ denotes 

the set containing all the arguments. We let ( )mA   
( ) ( )m H mQ R be a block QR decomposition of ( )mA and ( )nA   
( ) ( )n nZ L be a block ZL decomposition of ( )nA , where 
( ) m mI Im ×∈Q  , ( ) n nI In ×∈Z   are unitary matrices, and ( )m ∈R  

m mI RL× , ( ) n nI RLn ×∈L   are defined as:  
( ) ( )

( ) ( )

( ), ( ),

, ,
m m m n n n

m n
m n

I RL RL I RL RL− −

   
   
   

R L
R L

0 0
            (7) 

where ( ) m mRL RLm ×∈R  is an block upper-triangular matrix 
and ( ) n nRL RLn ×∈L  is a block lower-triangular matrix. We 
denote ( , ) ( ) ( , ) ( ) m nI Im n m m n n H

k k
×∈Γ R Σ L  , of which the top-left 

m nRL RL× submatrix is block upper-triangular. By substitu-
tion of these expressions into (6) we obtain a coupled block 
SGSD where the goal is to minimize the following function: 

( ) 2( ) ( , ) ( ) ( , )
(:,:, ), 1 1 .M K m m n n m n

k km n k F
η = =Ω = −  Q Z Γ        (8) 

Minimizing (8) is equivalent to minimizing the following:  

( ) 2(1) ( ) (1) ( ) ( ) ( , ) ( )
(:,:, )

, 1 1

,..., , ,..., ,
M K

M M m m n n
k SBLFm n k

ξ
= =
 Q Q Z Z Q Z  (9) 

where || ||SBLF⋅ denotes the Frobenius norm of the strictly 
block lower-triangular part. Note that (9) involves only 
unitary factor matrices, which are optimally conditioned. 
This has been achieved by relaxing the block-diagonal 
structure of ( , )m n

kΣ in (6) to the block upper-triangular 
structure of ( , )m n

kΓ in (8). 
When the coupled block SGSD is solved (algorithms will 

be presented later in subsections 3.2 and 3.3), we obtain the 
block upper-triangular matrices ( , )m n

kΓ .We recall that ( , )m n
kΓ   

( ) ( , ) ( )m m n n H
kR Σ L where ( ) ( ),m nR L are given in (7), and we have:  

( , ) ( ) ( , ) ( )
,( , ) ( , ) :,:, ( , )( ) ,m n m m n n H

k r r r r r k r r=Γ R L                  (10) 

where ( , )
,( , )

m nL Lm n
k r r

×∈Γ  , ( )
( , )

m mL Lm
r r

×∈R  , ( )
( , )

n nL Ln
r r

×∈L  , and 
( , )

:,:,( )m n
r k are the rth block on the main diagonal of ( , )m n

kΓ , 
( )mR , ( )nL , and ( , )m n

kΣ , respectively. Note that ( )
( , )

m
r rR  and 

( )nL are invertible, and (10) implies that ( , )
,( , )
m n

k r rΓ  is an estimate 
of ( , )

:,:,( )m n
r k up to trivial indeterminacies. We arrange 

( , )
,( , )
m n

k r rΓ into a matrix denoted as ( , ) m nRL L Km n
est

×∈C   in the same 
way that ( , )m nC in (2) is obtained from ( , )

:,:,( )m n
r k . According 

to (10) we have the following: 

( ) ( )
(1,1) (1,1)

( , ) ( , )

( ) ( )
( , ) ( , )

.

m n

m n m n
est

m n
R R R R

∗

∗

 ⊗
 =  

⊗  

R L
C C

R L
    (11) 

By (2) and (11), and recall that ( , )m nC is assumed to 
have full column rank, we have the following: 

( , ) ( , ) ( , ) ( ) ( ) ( ) ( )
(1,2),3 1 1[ , , ],m n m n m n m n m n

est R R
∗ ∗′ ′ ′ ′= ⊗ ⊗V T C A B A B † (12) 

where ( ) ( ) ( ) 1
( , )

m m m
r r r r

−′A A R and ( ) ( ) ( ) 1
( , )

n n n
r r r r

−′B A L can be taken 
as estimates of ( )m

rA and ( )n
rA  up to trivial indeterminacies. 

Now the problem is how to calculate ( )m
r′A and ( )n

r′B  
from ( , )m nV . We partition ( , )m nV as ( , ) ( , )

1[ ,..., ]m n m n
RV V where 

( , ) ( ) ( ) m n m nI I L Lm n m n
r r r

×∗′ ′= ⊗ ∈V A B  , and reshape ( , )m n
rV  into a 

matrix ( , ) m m n nI L I Lm n
r

×′ ∈V  as follows: 
( , ) ( , )

( 1) ,( 1) ( 1) ,( 1)[ ] [ ] .
m n n n

m n m n
r i L j k L l r j I l i L k− + − + − + − +′V V      (13) 

By definition we have ( , ) ( ) ( )vec( )[vec( )]m n m n H
r r r′ ′ ′=V A B . 

Moreover, we stack the matrices ( , )m n
r′V for all the values of 

m and n into a larger rank-1 matrix rM  as follows: 

1 1

(1,1) (1, )

( ,1) ( , )

,
M M

m m n nm n

M
r r

I L I LH
r r r

M M M
r r

= =
×

′ ′ 
   ′= = ∈ 

′ ′  

V V
M v v

V V


  


 (14) 

where (1) ( )[vec( ) , ,vec( ) ]H M H H
r r r′ ′v A A  , and r′v   

(1) ( )[vec( ) , ,vec( ) ]H M H H
r r′ ′B B . 

We can estimate rv and r′v as the left and right 
dominant singular vector of rM , respectively, from which 
we can calculate ( )m

r′A and ( )m
r′B for fixed r and different m. 

Two algorithms for the coupled block SGSD are given 
in the next subsections. 
 
3.2. Extended QZ Iteration 
 

Here we introduce a block variant of the algorithm in 
[22], which alternates between updates of ( )mQ and ( )nZ  to 
optimize the cost function in (9). In each iteration, we 
update ( )mQ  as ( ) ( ) ( )m m m←Q Q Q with ( )nZ  fixed (vice-versa 
for the update of ( )nZ ). Here ( ) m mI Im ×∈Q   is a unitary 
matrix constructed as the product of R unitary matrices: 

( 1)( ) ( )
1( ) ( )

2

,m mR L Lm m
m m

R

−   =    
   

I I
Q H

H H
       (15) 

where ( ( 1) ) ( ( 1) )( ) .m m m mI r L I r Lm
r

− − × − −∈H  We calculate ( )
1

mH such 
that it minimizes the norm of the matrix formed by stacking 
the parts strictly below the block diagonal of the first Ln 
columns of ( , )

(:,:, )
m n

k for all values of n and k. More precisely, 
we concatenate ( , )

(:,1: , )n

m n
L k (i.e. the submatrix of ( , )

(:,:, )
m n

k  consist-
ing of its first Ln columns for fixed m) for varying n and k as: 

1 1

( ) ( ,1) ( ,1) ( , ) ( , )
,1 (:,1: ,1) (:,1: , ) (:,1: ,1) (:,1: , )[ , , , , , , ].

M M

m m m m M m M
sub L L K L L KT           (16) 

A reliable choice for minimizing ( )
,1 1: ,:|| ( ) ||

m m

m
sub L I F+T  is to 

take ( )
1

m HH  equal to the matrix of the left singular vectors of 
of ( )

,1
m

subT . When ( )
1

mH is computed and applied to ( , )
(:,:, )

m n
k  

through (8) and (15), we obtain a set of new tensors denoted 
as ( , )m n′  for fixed m and varying n. Then ( )

2
mH is designed 
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to minimize the strictly below block-diagonal norms of the 
second Ln columns of ( , )

(:,:, )
m n
k′ without affecting the first Ln 

columns. This can be done by looking at a reduced problem 
where the same reasoning as in the calculation of ( )

1
mH is 

followed for ( , )
(:,:, )

m n
k′ with the first Ln columns removed. 

After ( )
2

mH is computed, the matrices ( ) ( )
3 ,...,m m

RH H follow 
sequentially. The update of ( )nZ is similar to ( )mQ . 
 
3.3. Jacobi Iteration 
 

Here we alternate between updates of ( )mQ and ( )nZ , 
each computed as the product of a sequence of elementary 
Givens matrices. For the update of ( ) ,mQ  in each step the 
matrices ( )mQ and ( , )m n

kΓ are updated by a Givens matrix 
( )
,

m mI Im
u v

×∈G  as ( ) ( ) ( ) ( , ) ( ) ( , )
, ,, ,m m H m m n m H m n

u v k u v k← ←Q G Q GΓ Γ
1 ,mu v I≤ < ≤ where ( )

,
m

u vG is equal to the identity matrix 
except ( ) ( )

, , ,( )m m
u v u u u vc=G , ( ) ( )

, , ,( )m m
u v u v u vs ∗= −G , ( ) ( )

, , ,( )m m
u v v u u vs=G ,

( ) ( )
, , ,( )m m

u v v v u vc=G , with ( ) ( )
, ,cosm m

u v u vc θ  and 
( )

,( ) ( )
, ,sin .

m
u vim m

u v u vs eα θ  
Denoting ( ) ( , ) 2

1 1 ,|| ||m H m nM K
n km u v k SLBFξ = =  G Γ , the cost 

function (9) can be written as m mξ ξ=  . Then for fixed m, 
an iteration step (u,v) consists of finding ( )

,
m

u vc  and ( )
,
m

u vs  that 
minimize mξ . Note that ( )

,
m

u vG  only affects the uth and vth 
rows of ( , ) ,m n

kΓ  and that the minimization of mξ amounts to 
minimizing the strictly lower-block-triangular parts of the 
uth and rth columns of ( ) ( , )

,
m H m n

u v kG Γ for all values of n and k.  
With some technical derivations we obtain the following:  

( ) ( ) ( )
, , ,
m T m m

m u v u v u vξ =w M w ,                          (17) 

where ( ) ( , ) ( , ) ( , ) ( , )
1 1, , , , , , , , ,( )m m n m n H m n m n HM K

n ku v k u v k u v k u v k u v= = ′ ′+ M M M M M , and 
( ) ( ) ( ) ( ) 3
, , , ,[ , Re( ), Im( )] ,m m m m T

u v u v u v u vc s s ∈w   and 3( , )
, , ,u nr Lm n

k u v
×∈M   

3( , )
, ,

v nr Lm n
k u v

×′ ∈M   are defined as: 
( , ) ( , )

,1: ,1:
( , ) ( , ) ( , ) ( , )
, , ,1: , , ,1:

( , ) ( , )
,1: ,1:

( ) ( )

( ) ,  ( )

( ) ( )

u n v n

u n v n

u n v n

m n m n
k u r L k v r L

m n m n m n m n
k u v k v r L k u v k u r L

m n m n
k v r L k u r Li i

   
   ′ −   
   − −   

M M 
Γ Γ
Γ Γ
Γ Γ

.(18) 

with ( 1) / , ( 1) /u m v mr u L r v L= − = −       . Then ( )
,
m

u vw  is taken 
equal to the least significant eigenvector of ( )

,
m

u vM . In each 
iteration for the update of ( )mQ , we find the optimal rotation 
angles ( ) ( )

, ,,m m
u v u vc s  from an EVD. The update of ( )mZ  can be 

addressed similarly, and is not further discussed. 
 

4. NUMERICAL RESULTS 
 
The target tensors are constructed as: 

( , ) ( , ) ( , ) ( , ) ( , )/ || || / || || ,m n m n m n m n m n
s F n Fσ σ= +     (19) 

where ( , )m n is generated by (1) with the entries of ( )m
r ∈A  

,m mI L× ( , ) m nL Lm n
r

×∈  and ( , ) m nI I Km n × ×∈ randomly drawn  
from complex normal distributions, m, n = 1,…,M. We set 

1 2 32, 200, 2, 2,M  K  R  L L L L= = = = = = = 1 2 3I I I I= = = =
6. The signal-to-noise ratio (SNR) is defined with the signal 
level sσ  and noise level nσ  as 1020log ( / ).s nSNR σ σ=  

The proposed coupled rank-(Lm, Ln, ·) BTD algorithms 
based on the extended QZ and Jacobi iteration are denoted 
as CLLD-EQZ and CLLD-Jacobi, respectively. For 

comparison, we implement coupled rank-(Lm, Ln, ·) BTD 
with structured data fusion (CLLD-SDF) [21]. We also 
include in the comparison the computation of rank-(Lm, Ln, ·) 
BTD by alternating least squares (LLD-ALS, [2]) for each 
tensor separately. For CLLD-EQZ and CLLD-Jacobi we 
initialize with identity matrices. For CLLD-SDF, we 
initialize with the results from CLLD-EQZ. For LLD-ALS, 
we initialize with randomly generated factor matrices. With 
the obtained estimates we can reconstruct a set of tensors by 
(1). The average relative fitting error ε used to evaluate the 
performance is defined as: 

( )2 2( , ) ( , ) ( , ) 2
, 1 ,M m n m n m n

m n FF
Mε == −         (20) 

where ( , )m n is the reconstructed tensor. For CLLD-EQZ, 
CLLD-Jacobi and LLD-ALS, we terminate the iteration 
when 8| | / 10 ,cur prev prevε ε ε −− ≤ where curε and prevε denote 
the relative fitting errors in the current and previous 
iteration, respectively. For CLLD-SDF, we set the tolerance 
parameters TolFun and TolX in the ‘SDF_NLS’ function of 
Tensorlab [26] to 0.001 and 0.03, respectively. For each 
SNR value, we perform 200 independent runs of all the 
algorithms. The results of mean ε  and CPU time versus 
SNR are drawn in Fig. 3. We can see that the proposed 
algorithms provide more accurate estimates and higher 
computational efficiency than LLD-ALS for moderate to 
high SNR. CLLD-SDF gives the most accurate results, at a 
higher computational cost. This illustrates the interest of 
taking the coupling into account. It also shows that CLLD-
EQZ and CLLD-Jacobi (i) provide good estimates for 
sufficiently high SNR and (ii) may be used as a low-cost 
initialization of the more expensive CLLD-SDF.  

0 10 20 30 40 50
10

-4

10
-3

10
-2

10
-1

SNR(dB)

M
ea

n 
ε

 

 

CLLD-EQZ
CLLD-JACOBI
LLD-ALS
CLLD-SDF

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

SNR(dB)

C
PU

 ti
m

e 
(s

ec
on

d)

 

 
CLLD-EQZ
CLLD-JACOBI
LLD-ALS
CLLD-SDF

  
(a) Mean ε                             (b) CPU time 

Fig. 3. Comparison of CLLD-EQZ, CLLD-JACOBI, CLLD-SDF, 
and LLD-ALS for SNR varying from 0dB to 50dB.  
 

5. CONCLUSION 
 
We have proposed two algorithms for the computation of a 
new coupled rank-(Lm, Ln, ·) BTD problem. The proposed 
algorithms are based on a coupled block version of the 
SGSD scheme, and can be used for the particular multi-set 
data fusion problem of J-ISA. Numerical results have shown 
that the proposed algorithms have fast computation and 
good accuracy, which makes them useful tools as such. 
When high accuracy is desired, they may be used to 
initialize algorithms that minimize the block-diagonal 
criterion (6) instead of the block-triangular criterion (8). 
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