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Abstract

This paper presents a verification of a joint input-state estimation algorithm using data obtained
from in situ experiments on a footbridge. The estimation of the input and the system states is
performed in a minimum-variance unbiased way, based on a limited number of response measure-
ments and a system model. A dynamic model of the footbridge is obtained using a detailed finite
element model that is updated using a set of experimental modal characteristics. The joint input-
state estimation algorithm is used for the identification of two impact, harmonic, and swept sine
forces applied to the bridge deck. In addition to these forces, unknown stochastic forces, such as
wind loads, are acting on the structure. These forces, as well as measurement errors, give rise to
uncertainty in the estimated forces and system states. Quantification of the uncertainty requires
determination of the power spectral density of the unknown stochastic excitation, which is identi-
fied from the structural response under ambient loading. The verification involves comparing the
estimated forces with the actual, measured forces. Although a good overall agreement is obtained
between the estimated and measured forces, modeling errors prohibit a proper distinction between
multiple forces applied to the structure for the case of harmonic and swept sine excitation.

Keywords: joint input-state estimation, force identification, data fusion, uncertainty
quantification, application

1. Introduction

Knowledge of the loads applied to structures and the corresponding system response is very
important for many engineering applications. However, in various cases, the dynamic forces acting
on a structure cannot be obtained by direct measurements. For example, this is the case for wind
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loads acting on a wind turbine. In addition, practical and economic considerations can prevent
the response of a structure being measured at all physical locations. System inversion techniques
address these problems by combining available vibration data from a limited number of sensors
with the information obtained from a dynamic model of the structure, hereby estimating the forces
acting on the structure and the response at unmeasured locations.

Many force identification algorithms have been proposed in the literature [1, 2, 3, 4, 5, 6,
7]. These methods can be distinguished by the way they tackle the ill-posedness of the force
identification problem [8]. Additionally, several state estimation algorithms have been proposed
for linear as well as non-linear systems [9, 10]. A common approach in state estimation consists of
modeling the system input as zero mean Gaussian white noise and applying a Bayesian framework
for state estimation [11, 12]. In cases where state estimation is performed for uncertain dynamic
systems, the system states are estimated together with the unknown system parameters, which
is referred to in the literature as joint state and parameter estimation. Well known algorithms
used for joint state and parameter estimation are the unscented Kalman filter (UKF) [13, 14], the
extended Kalman filter (EKF) [15], and the particle filter [14, 16]. A comprehensive overview of
the current state of the art can be found in [17].

In order to overcome the assumption of white noise system input, which is often violated in
practical applications, filtering methods in the presence of unknown inputs have been developed.
The algorithms are often referred to as joint input-state estimation algorithms and combine both
input and state estimation, e.g. [18, 19, 20, 21, 22, 23]. Recursive combined deterministic-stochastic
approaches allow online joint input-state estimation, thereby accounting for measurement errors,
modelling errors, and additional unknown vibration sources. Gillijns and De Moor [24] have pro-
posed an algorithm where the input estimation is performed prior to the state estimation step.
This algorithm was introduced to the field of structural dynamics by Lourens et al. [25], extend-
ing the use of the algorithm to reduced-order models. The algorithm is further extended in [26],
for cases where accelerations are measured in the presence of unknown stochastic excitation. A
similar approach was proposed by Niu et al. [27]. Alternatively, a classical Kalman filter can be
used to jointly estimate the dynamic forces and system states, thus including the unknown forces
in an augmented state vector [28]. It is noted that the aforementioned filtering approaches for
joint input-state estimation require displacement or strain measurements in addition to accelera-
tion measurements, in order to avoid erroneous low frequency components on the estimated input
and states [29]. Following Chatzi and Fuggini [30], Naets et al. [31] propose including artificial
white noise displacement measurements as observations, in addition to acceleration measurements,
to avoid low frequency drift of the estimated input.

Verification of the force identification techniques proposed in the literature is, to date, mostly
based on numerical simulations, where (idealized) measurement errors are incorporated by adding
white noise to the simulated response signals, or to laboratory experiments. This paper presents
a full-scale verification of the joint input-state estimation algorithm proposed in [26] using data
obtained from an in situ experiment on a footbridge. The algorithm is used to identify the impact,
harmonic, and swept sine excitations applied to the bridge deck. The estimated forces are verified
by comparing them to the actual, measured forces.

The outline of the paper is as follows: Section 2 gives the extension of the joint input-state
estimation algorithm; Section 3 discusses the setup of the experiments on the footbridge; Section 4
explains how a finite element model has been set up and updated, and shows the derivation of
a state-space model representing the dynamic behavior of the structure; Section 5 presents a
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selection of data that allows for force identification; Section 6 quantifies the uncertainty introduced
by measurement errors and unknown stochastic excitation of the structure, in addition to the forces
that are to be identified; Section 7 discusses the results of the force identification; and Section 8
presents conclusions.

2. Mathematical formulation

Section 2.1 first gives a brief summary of the joint input-state estimation algorithm introduced
in [26]. Next, Section 2.2 describes the approach for quantification of the estimation uncertainty
originating from measurement errors and unknown stochastic excitation presented in [26]. This
approach is applied in this paper to quantify the uncertainty in the estimated forces that results
from measurement noise and wind loads acting on the footbridge.

2.1. Joint input-state estimation algorithm

Assume the following discrete-time combined deterministic-stochastic state-space description
of a system:

x[k+1] = Ax[k] +Bp[k] +w[k] (1)

d[k] = Gx[k] + Jp[k] + v[k] (2)

where x[k] ∈ R
ns is the state vector, d[k] ∈ R

nd is the output vector, assumed to be measured,
and p[k] ∈ R

np is the unknown input vector, with ns the number of system states, nd the number
of outputs, and np the number of inputs. The system matrices A, B, G, and J are assumed
known. The expressions for the system matrices for modally reduced order models and full order
models, e.g. based on the mass, damping, and stiffness matrices obtained from a finite element
model, can be found in [25]. As an alternative to models based on first principles, models can
be directly identified from experimental vibration data using system identification techniques, see
for example [32, 33]. Throughout the derivation of the algorithm, it is assumed that the sensor
network meets the conditions for instantaneous system inversion derived in [29].

The process noise vector w[k] ∈ R
ns and measurement noise vector v[k] ∈ R

nd both account for
unknown excitation sources and modeling errors. The measurement noise vector v[k] also accounts
for measurement errors. The noise processes w[k] and v[k] are assumed to be zero mean and white,
with known covariance matrices Q, R, and S, defined by:

E

[(

w[k]

v[k]

)

(

wT
[l] vT

[l]

)

]

=

[

Q S

ST R

]

δ[k−l] (3)

with R > 0,

[

Q S

ST R

]

≥ 0, and δ[k] = 1 for k = 0 and 0 otherwise.

Joint input-state estimation consists of estimating the forces p[k] and system states x[k] from
a set of response measurements d[k]. A state estimate x̂[k|l] is defined as an estimate of x[k], given
the output sequence d[n], with n = 0, 1, . . . , l. The corresponding error covariance matrix, denoted
by Px[k|l], is defined as:

Px[k|l] ≡ E

{

(x[k] − x̂[k|l])(x
T
[k] − x̂T

[k|l])
}

(4)
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where E{·} indicates the expectation operator. An input estimate p̂[k|l] and its error covariance
matrix Pp[k|l] are defined similarly. The cross covariance matrices Pxp[k|l] and Ppx[k|l] are defined as:

Pxp[k|l] = PT
px[k|l] ≡ E

{

(x[k] − x̂[k|l])(p
T
[k] − p̂T

[k|l])
}

(5)

The filtering algorithm is initialized using an initial state estimate vector x̂[0|−1] and its error
covariance matrix Px[0|−1]. The estimate x̂[0|−1] is assumed unbiased and independent of the noise
processes w[k] and v[k] for all time steps k. The algorithm proceeds by computing the force and
state estimates recursively in three steps: the input estimation step; the measurement update; and
the time update. This is shown below.

Input estimation

R̃[k] = GPx[k|k−1]G
T +R (6)

M[k] =
(

JTR̃−1
[k]

J
)−1

JTR̃−1
[k]

(7)

p̂[k|k] = M[k]

(

d[k] −Gx̂[k|k−1]

)

(8)

Pp[k|k] =
(

JTR̃−1
[k] J

)−1
(9)

Measurement update

K[k] = Px[k|k−1]G
TR̃−1

[k] (10)

x̂[k|k] = x̂[k|k−1] +K[k]

(

d[k] −Gx̂[k|k−1] − Jp̂[k|k]

)

(11)

Px[k|k] = Px[k|k−1] −K[k]

(

R̃[k] − JPp[k|k]J
T
)

KT
[k] (12)

Pxp[k|k] = PT
px[k|k] = −K[k]JPp[k|k] (13)

Time update

x̂[k+1|k] = Ax̂[k|k] +Bp̂[k|k] (14)

N[k] = AK[k]

(

Ind
− JM[k]

)

+BM[k] (15)

Px[k+1|k] =
[

A B
]

[

Px[k|k] Pxp[k|k]

Ppx[k|k] Pp[k|k]

] [

AT

BT

]

+Q−N[k]S
T − SNT

[k] (16)

The gain matrices M[k] and K[k] are determined such that the input estimates p̂[k|k] and state
estimates x̂[k|k] are minimum variance and unbiased [24, 26]. In the equations above, the system
is assumed to be time-invariant. The algorithm can, however, be readily extended to time-variant
systems by replacing the system matrices A, B, G, and J, with the system matrices A[k], B[k],
G[k], and J[k], that depend on the time step k.

2.2. Quantification of estimation uncertainty

Estimation errors are due to the process noise w[k] and measurement noise v[k], which account
for measurement errors, modeling errors, and unknown stochastic excitation. The noise processes
w[k] and v[k] assumed for joint input-state estimation are zero mean, white, and stationary. The
actual noise processes, however, do not generally meet the white noise assumption, such as in the
case of wind loading. In this situation, the errors on the force and state estimates obtained from
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joint input-state estimation are no longer minimum variance and depend on the noise covariance
matricesQ, R, and S, that act as tuning parameters (see also [26]). In addition, the error covariance
matrices Pp[k|k] and Px[k|k−m] do not give the actual covariance of the error on the estimated
quantities. This section briefly describes the method presented in [26] for quantification of the
estimation uncertainty originating from measurement errors and unknown stochastic excitation.
This approach is based on the steady-state transfer functions of the joint input-state estimation
algorithm and the power spectral density functions of the measurement noise and the unknown
stochastic forces, which are assumed stationary.

If the conditions for instantaneous system inversion presented in [29] are satisfied, the joint
input-state estimation algorithm presented in Section 2.1 is stable and the gain matrices M[k] and
K[k], as well as the error covariance matrices Pp[k|k], Px[k|k], Px[k|k−1], Pxp[k|k], and Ppx[k|k] evolve
towards a steady-state value as the joint input-state estimation algorithm proceeds in time. The
steady-state value of these matrices depends on the noise covariance matrices Q, R, and S, and
on the state-space system. When steady state is reached, the Fourier transform of the estimated
force vector p̂[k|k], denoted by p̂(ω), and the Fourier transform of the estimated state vectors x̂[k|k]

and x̂[k|k−1], denoted by x̂0(ω) and x̂1(ω), respectively, are related to the Fourier transform of the
output vector d[k], denoted by d(ω), through the following transfer functions:





p̂(ω)
x̂0(ω)
x̂1(ω)



 =





Hp̂d(ω)
Hx̂0d(ω)
Hx̂1d(ω)



d(ω) (17)

where




Hp̂d(ω)
Hx̂0d(ω)
Hx̂1d(ω)



 =





Inp 0 MssG

KssJ Ins −Ins +KssG

B A −exp(iω∆t)Ins





−1 



Mss

Kss

0



 (18)

with Mss and Kss representing the steady-state gain matrices obtained from Eqs. (7) and (10),
respectively (see also [34]). The sampling time step is ∆t and Ins ∈ R

ns×ns and Inp ∈ R
np×np are

identity matrices.
When unknown stochastic forces are acting on the structure, in addition to the forces p[k],

and measurement errors are present, the process noise w[k] and measurement noise v[k] in Eqs. (1)
and (2), respectively, are given by the following expressions:

w[k] = B′pS[k] (19)

v[k] = J′pS[k] + vM[k] (20)

where pS[k] ∈ R
npS is the vector representing the additional stochastic excitation, and the matrices

B′ ∈ R
ns×npS and J′ ∈ R

nd×npS relate the state vector x[k+1] and the output vector d[k] to the vector
of stochastic forces pS[k], respectively. The measurement noise due to measurement errors is vM[k].
Under the assumption of stationary noise processes, the stochastic forces pS[k] are characterized
by the autocorrelation (AC) function Rp

S
p
S
(τ) and corresponding Power Spectral Density (PSD)

function Sp
S
p
S
(ω), that form the Wiener-Khinchin transformation pair:

Rp
S
p
S
(τ) ≡ E{pS(t+ τ)pT

S (t)} =
1

2π

∫ +∞

−∞
Sp

S
p
S
(ω)exp(iωτ)dω (21)

SpSpS
(ω) =

∫ +∞

−∞
RpSpS

(τ)exp(−iωτ)dτ (22)
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where i =
√
−1. The discrete autocorrelation Rp

S
p
S
[l] is obtained as Rp

S
p
S
(l∆t), with l the time

lag. In case the stochastic forces can be modeled as finite bandwidth white noise, the autocorrela-
tion Rp

S
p
S
[l] and PSD Sp

S
p
S
(ωn) are given by:

Rp
S
p
S
[l] = Cpδ[l] (23)

SpSpS
(ωn) = Cp/F (24)

where Cp ∈ R
npS

×npS is the covariance matrix of the stochastic forces. For example, σ2
p
S
InpS

rep-
resents the covariance matrix for npS independent stochastic forces with equal standard deviation
σp

S
. The sampling frequency used in the discretization process is F , ωn = 2π(n − 1)/(N∆t), and

δ[l] = 1 for l = 0 and 0 otherwise.
The measurement errors vM[k] are defined similarly by the autocorrelation Rv

M
v
M
[l] and cor-

responding PSD SvMvM
(ωn), which, in case the measurement errors for all output signals can be

modeled as finite bandwidth white noise, are given by:

Rv
M
v
M
[l] = RMδ[l] (25)

Sv
M
v
M
(ωn) = RM/F (26)

where RM ∈ R
nd×nd is the measurement error covariance matrix.

In absence of modeling errors, and assuming the stochastic forces pS[k] and the measurement

errors vM[k] to be stationary and mutually uncorrelated (i.e. E{pS[k]v
T
M[l]} = 0), the PSD function

of the error on the estimated force vector p̃[k|k] (≡ p[k] − p̂[k|k]) is found as [26]:

Sp̃p̃(ω) = Hp̂d(ω)Hdp
S
(ω)Sp

S
p
S
(ω)H∗

dp
S
(ω)H∗

p̂d(ω) +Hp̂d(ω)Sv
M
v
M
(ω)H∗

p̂d(ω) (27)

where �∗ denotes the Hermitian transpose of a matrix. The steady-state filter transfer function is
Hp̂d(ω), defined in Eq. (18), and Hdp

S
(ω) is the transfer function matrix that relates the Fourier

transform of the output vector d[k] to the Fourier transform of the vector of stochastic forces pS[k]:

Hdp
S
(ω) = G(exp(iω∆t)Ins −A)−1B′ + J′ (28)

The autocorrelation function of the error is obtained as the inverse Fourier transform of the PSD
function (Eq. (21)). The PSD function and autocorrelation function of the error on the estimated
state vector x̃[k|k−m] (≡ x[k] − x̂[k|k−m]) are similarly obtained. The PSD function of the error is
given by the following expression:

Sx̃mx̃m(ω) = (HxpS
(ω)−Hx̂md(ω)Hdp

S
(ω))SpSpS

(ω)(H∗
xp

S
(ω)−H∗

dp
S
(ω)H∗

x̂md(ω))

+Hx̂md(ω)Sv
M
v
M
(ω)H∗

x̂md(ω) (29)

where Hx̂md(ω) is the steady-state filter transfer function, defined in Eq. (18), and Hxp
S
(ω) is the

transfer function matrix that relates the Fourier transform of the state vector x[k], to the Fourier
transform of the vector of stochastic forces pS[k]:

Hxp
S
(ω) = (exp(iω∆t)Ins −A)−1B′ (30)

Eqs. (27) and (29) yield the PSD function of the actual error on the estimated quantities for
every possible choice of the noise covariance matrices Q, R, and S.
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3. Measurement setup

The structure under consideration in this paper is a footbridge, located in Ninove (Belgium).
The two-span cable-stayed steel bridge, shown in Fig. 1, has a main and secondary span of 36 m
and 22.5 m, respectively [35].

Fig. 1: The footbridge in Ninove, Belgium.

Three different types of excitation have been considered in the experiments: (1) ambient ex-
citation, mainly consisting of wind loads, (2) excitation by hammer impacts, and (3) excitation
by pneumatic actuators developed by the Acoustics and Vibration Research Group of the Vrije
Universiteit Brussel [36]. During the experiments, the acceleration response of the footbridge has
been recorded in three orthogonal directions at 12 locations on the bridge deck. In addition, the
vertical displacement of the bridge deck has been recorded at two locations, as displacement data
are needed to ensure the stability of the joint input-state estimation algorithm and the uniqueness
of the force estimates obtained [29].

The vibration measurements have been performed using 12 wireless GeoSIG GMS-18 units and
a National Instruments (NI) data acquisition system. The GMS-18 units include a high-sensitivity
three-axial accelerometer for vibration monitoring. The NI system consists of a PXI-1050 chassis
with four PXI-4472B modules and has been used to record data from four PCB 393B04 uniaxial
accelerometers (sensitivity ±1000 mV/g), two PCB 086D50 instrumented hammers (mass 5.5 kg),
a PCB 222B load cell and a BD 5 load cell to measure the tension forces applied by the pneumatic
actuators, and two AWLG 008M optical displacement sensors to measure the vertical displacements
of the footbridge.

Fig. 2 gives an overview of the measurement locations. The GMS-18 units are positioned
at the bridge deck surface. Each unit is tied to the bridge deck by a tension belt (Fig. 3a), thus
avoiding loss of contact between the GMS-18 unit and the bridge deck. The uniaxial accelerometers
at nodes 27 and 48 are mounted to a cross-beam at the lower side of the bridge deck using a
magnet (Fig. 3b). The displacement of the footbridge is measured at nodes 27 and 40 in the
vertical direction (i.e. the z-direction). The optical displacement sensors are mounted on top of
a tripod support that is installed on firm ground underneath the bridge (Fig. 3c). Two uniaxial
accelerometers are mounted orthogonally in the horizontal plane at the top of the tripod support
at node 27, in order to verify the assumption of a fixed point as reference for the displacement
measurements. The hammer and muscle forces are applied at nodes 27 and 48 in the vertical
direction.

A sampling frequency of 200 Hz and 1000 Hz is used for the GMS-18 units and the NI system,
respectively. The GMS-18 units use an intelligent “Real Time Clock” (RTC) with a self-learning
temperature compensation. For one of the units, hereafter referred to as the master unit, the RTC
is synchronized with GPS. For the remaining units, the RTC is synchronized with the master unit
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Fig. 2: Sensor configuration (white circle: GMS-18 unit, black circle: uniaxial accelerometer, gray circle: optical
displacement sensor, white square: instrumented hammer, gray square: load cell).

(a) (b) (c)

Fig. 3: Overview (a) GMS-units and connection to the bridge deck, (b) connection uniaxial accelerometer at node
48 to the cross-beam, and (c) tripod support for optical displacement sensor at node 40.

on a wireless network connected through 433 MHz time synchronisation modules. The GMS-18
acceleration data and the measurement data obtained from the NI system are synchronized by
maximizing the correlation between the acceleration obtained from the GMS-18 unit at node 48
and the acceleration at node 48 obtained from the cabled uniaxial accelerometer.

The measured response and force signals used in the analyses are all digitally lowpass filtered by
means of an eighth-order Chebyshev type I lowpass filter with a cut-off frequency of 16 Hz, in both
the forward and the reverse direction to remove all phase distortion, and then re-sampled at 40 Hz.
Next, the acceleration signals obtained from the NI system and the GMS-18 units are additionally
digitally highpass filtered by means of a fifth-order Butterworth filter with cut-off frequencies of
0.5 Hz and 0.1 Hz, respectively, in both the forward and the reverse direction. The aim of this filter
is to remove the low frequency components from the signals that are contaminated by measurement
noise. Finally, a detrend operation is applied to all acceleration signals to remove the (physically
meaningless) DC component. The measured displacement signals for each experiment are relative
to the displacement at the start of the experiment.

4. System model

The force identification is based on a state-space description of the system, given by Eqs. (1)
and (2). The system model used in the present analysis is built from a detailed finite element
model of the structure. Using a model based on first principles in the joint input state estimation
procedure allows for reconstruction of the forces and the response at any location in the structure.
In the case where models are directly identified from experimental vibration data [32, 33], the
reconstruction of the forces and the response is restricted to those locations used in the experi-
ments performed for the system identification. Models based on first principles are therefore more
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generally applicable, and can be used for a wide range of applications, such as the identification of
distributed wind loads on wind turbines or moving traffic loads on bridges.

A modally reduced order model is used in this case, containing a limited number of structural
modes. The composition of the system matrices A, B, G, and J is outlined next.

4.1. Finite element model

A detailed finite element (FE) model of the footbridge has been developed using the FE program
ANSYS [37]. The model is based on blueprints of the structure. The bridge deck is supported
by a truss with a height of 1 meter (Fig. 1), composed of elements with a circular hollow section
that are modeled using the ANSYS beam element BEAM4. The deck surface consists of wooden
planks, modeled as added masses, and is supported by transverse beams that are welded to the
truss. The latter are modeled using the BEAM4 element. The ANSYS shell element SHELL63 is
used to model the pylons that have a rectangular section and a height of 16.5 meters. The pylon
is assumed clamped at its support. The cables are modeled using the ANSYS 3D truss element
LINK10, taking into account the effective stiffness of the cable based on the tensile force in the
cable. At the abutments, the bridge deck is supported by neoprene bearings that are modeled as
translational springs, using the ANSYS spring elements COMBIN14. The model has a total of
2421 nodes and 2508 elements. Fig. 4 shows a three-dimensional view of the ANSYS model.

X Y

Z

Fig. 4: 3D view of the ANSYS model.

The FE model of the footbridge is updated using a set of experimental modal parameters
that have been obtained through a combination of output-only operational modal analysis (OMA)
and input-output OMA with known exogenous inputs (OMAX), using hammer excitation and
swept sine excitation by two pneumatic actuators. The response signals obtained from the OMA
experiments are processed using the reference-based covariance-driven stochastic subspace identi-
fication (SSI-cov/ref) algorithm [38]. The response and force signals obtained from the OMAX
experiments are processed using the reference-based data-driven combined deterministic-stochastic
subspace identification (CSI-data/ref) algorithm [33]. In total, 18 modes of the bridge deck have
been identified in the frequency range from 0 Hz to 20 Hz. Table 1 gives the corresponding natural
frequencies, the modal damping ratios, and a description of the mode shapes.

Comparison of the experimental modal parameters with the modal parameters obtained from
the initial FE model shows some discrepancies. A model updating procedure is therefore performed.
The updating parameters used in this analysis have been chosen based on a sensitivity analysis
and include (1) the stiffnesses of the neoprene bearings, (2) the Young’s modulus of the bridge
deck, (3) the Young’s modulus of the pylons, and (4) the effective Young’s modulus of the cables.
The natural frequencies and mode shapes corresponding to 14 identified modes are used as the
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observed quantities in the updating procedure, i.e. modes 1 – 5, 7 – 9, 11 – 13, and 15 – 17, listed
in Table 1. The remaining modes, i.e. modes 6, 10, 14, and 18, are used for cross validation of
the model after updating. The updating is performed by minimizing the (weighted) least squares
difference between the modal characteristics obtained from the FE model and the observed modal
characteristics (natural frequencies and mode shapes). The optimization problem is solved using
the non-linear least squares optimization routine (lsqnonlin) contained in MATLAB [39], where
the FE analysis software ANSYS is applied (in batch mode) to compute the natural frequencies
and mode shapes for a given set of parameter values.

Fig. 5 shows modes 1, 3, and 7 obtained from the updated FE model. Table 1 shows the modal
characteristics obtained from the FE model after updating and comparison with the corresponding
observed quantities. The relative error on the natural frequency εj for mode j is defined as
εj = (fj − f̃j)/f̃j, where fj is the undamped natural frequency corresponding to mode j, obtained
from the FE model, and f̃j is the corresponding value obtained from the system identification. In
general, very high MAC-values (MAC ≥ 0.89) are obtained, both for the modes included in the
model updating and the modes used for cross validation. This indicates a good overall agreement
between the identified dynamic behavior of the footbridge and the behavior predicted by the model.
Modeling errors cannot entirely be eliminated, however, as evidenced by the relatively large errors
found for some of the natural frequencies obtained from the FE model.

MN

MX

Fig. 5: Mode shape mode 1 (left), mode 3 (middle), and mode 7 (right) obtained from the updated FE model (top:
side view, bottom: top view). The measurement locations are indicated by red dots.

4.2. State-space description

Next, a reduced-order discrete-time state-space model is constructed. When applying a zero-
order hold assumption on the input vector p[k], the expressions for the state-feedback matrix A

and the state-input matrix B in Eq. (1) are given by:

A =exp

([

0 Inm

−Ω2 −Γ

]

∆t

)

(31)

B =(A− Ins)

[

0 Inm

−Ω2 −Γ

]−1 [
0

ΦTSp

]

(32)

where Inm ∈ R
nm×nm and Ins ∈ R

ns×ns are identity matrices, with nm the number of modes included
in the system model and ns the number of system states (= 2nm). Sp ∈ R

ndof×np is a selection
matrix specifying the force locations, with np the number of forces and ndof the number of degrees
of freedom in the FE model. Γ ∈ R

nm×nm is a diagonal matrix containing the terms 2ξjωj on its
diagonal, where ωj and ξj are the natural frequency and modal damping ratio corresponding to
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j f̃j [Hz] ξ̃j [%] jfem fj [Hz] εj [%] MAC [-] Description

1 2.93 1.16 2 3.07 4.70 1.00 1st lateral bending main span
2 2.97 0.39 1 2.87 -3.64 1.00 1st vertical bending main span
3 3.81 0.77 3 3.73 -2.11 0.99 1st combined lateral bending
4 5.79 1.04 4 5.50 -4.98 0.89 1st lateral bending secondary span
5 6.00 0.52 5 5.81 -3.09 0.98 1st vertical bending secondary span
6† 7.06 0.20 7 7.07 0.08 0.94 1st torsional main span
7 7.27 1.26 6 6.84 -5.95 0.96 2nd lateral bending main span
8 8.02 0.56 8 7.62 -5.00 0.99 2nd vertical bending main span
9 9.83 0.73 11 9.97 1.38 0.94 2nd combined lateral bending
10† 11.06 1.28 12 10.80 -2.39 0.96 1st torsional secondary span
11 11.44 2.09 13 11.60 1.38 0.94 2nd torsional main span
12 12.57 1.40 14 12.92 2.72 0.97 3rd combined lateral bending
13 13.59 0.41 15 13.07 -3.85 0.98 3rd vertical bending main span
14† 14.08 0.47 16 14.07 -0.12 0.93 3rd lateral bending main span
15 14.72 0.34 17 14.18 -3.68 0.98 2nd vertical bending secondary span
16 16.20 0.94 19 16.84 3.98 0.97 4th lateral bending main span
17 17.55 1.33 21 18.71 6.61 0.90 2nd torsional secondary span
18† 18.63 0.68 20 17.86 -4.17 0.93 4th vertical bending main span

Table 1: Comparison of the experimentally identified modal characteristics and the modal characteristics calculated
from the updated FE model (j: No. identified mode, f̃j : identified undamped natural frequency, ξ̃j : identified modal
damping ratio, jfem: No. corresponding mode updated FE model, fj : undamped natural frequency FE model, εj :
relative error fj w.r.t f̃j , MAC: MAC-value). The identified modes indicated with a dagger were not included in the
updating but were rather used for cross validation.

mode j, respectively. Ω ∈ R
nm×nm is a diagonal matrix as well, containing the natural frequencies

ωj on its diagonal, and Φ ∈ R
ndof×nm is a matrix containing the mass normalized mode shapes

φj as columns. The model includes all bending modes of the bridge deck with natural frequencies
that fall within the frequency range 0 Hz to 20 Hz, i.e. the 18 modes listed in Table 1 (nm = 18).
For each mode, the mass normalized mode shape of the FE model is used. The natural frequency
and modal damping ratio are taken as the experimentally identified values.

In general, the expressions for the state-output matrix G and the direct transmission matrix J

in Eq. (2) do not depend on the time discretization scheme, and are given by:

G =
[

Sd,dΦ− Sd,aΦΩ2 Sd,vΦ− Sd,aΦΓ
]

(33)

J =
[

Sd,aΦΦTSp

]

(34)

where Sd,a, Sd,v, and Sd,d ∈ R
nd×ndof are selection matrices indicating the degrees of freedom

corresponding to the acceleration, velocity, and displacement or strain measurements, respectively,
with nd the number of outputs. The output vector d[k] is composed of nd,d displacement or
strain measurements, nd,v velocity measurements, and nd,a acceleration measurements, where nd

represents the sum of nd,d, nd,v, and nd,a.

4.3. Forward calculations

The quality of the system model presented in Section 4.2 is assessed by comparing the predicted
response to the actual measured response of the footbridge obtained during one of the experiments.
The measured hammer impacts at nodes 27 and 48, shown in Fig. 6, are applied as inputs to the
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system model described by Eqs. (1) and (2), disregarding the process noise w[k] and measurement
noise v[k]. Although these hammer impacts are considered as the only inputs in the calculations,
the measured response also contains the influence of wind excitation. This should be kept in mind
when comparing the measured and simulated response signals. The low frequency content from
the measured displacement signals, which is mainly attributed to the wind loads, is removed by
applying a fifth-order Butterworth highpass filter with a cut-off frequency of 0.2 Hz in both the
forward and the reverse direction, hereafter performing a detrend operation.

Fig. 7 compares the measured and simulated vertical displacements at nodes 27 and 40, and
the vertical and lateral accelerations at node 19. A window length of 1024 samples and an overlap
of 66% are used for the calculation of the averaged amplitude of the frequency spectrum. Hammer
impacts excite the entire frequency range of interest. After the impact, the response is dominated
by free vibration at the natural frequencies of the structure. From the figures, very good overall
agreement between the measured and simulated response signals is seen. The differences occurring
between the measured and simulated response are mostly due to incomplete removal of the response
due to ambient excitation, modeling errors, and, to a minor extent, sensor noise. The discrepancy
between the measured and the simulated displacements observed in Figs. 7c and 7f at frequencies
below the lowest natural frequency of the footbridge is most probably due to the quasi-static
response to wind loads. Wind loads are also believed to be the cause of the discrepancy between
the measured and simulated lateral acceleration at node 19 at frequencies below 4 Hz (Fig. 7l). The
small peak in the frequency spectrum of the measured displacement at node 27 in Fig. 7c, occurring
at a frequency of about 2.65 Hz, is due to spurious horizontal motion of the tripod supporting the
displacement sensor. Since the displacements are measured relative to the position of the support,
motion of the support is recorded, whereas a fixed support is assumed in the simulations. The same
holds for the displacement sensor at node 40, where the horizontal motion of the short tripod gives
rise to the peak in the frequency spectrum of the measured displacement (Fig. 7f), at a frequency
of about 7 Hz.
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Fig. 6: (a) Time history, (b) detail of the time history, and (c) averaged amplitude of the narrow band frequency
spectrum of the hammer forces applied at node 27 (black) and node 48 (gray).

5. Selection of data for force identification

Determination of the sensor configuration for force identification requires the meeting of the
conditions for instantaneous system inversion [29]. The invertibility of a linear system model in
general depends on three conditions. Firstly, the dynamic forces and/or corresponding states must
be identifiable from the data. Secondly, the system inversion algorithm must be stable, such that
small perturbations in the data do not give rise to unbounded errors on the identified forces and
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Fig. 7: Time history (left), detail of the time history (middle), and averaged amplitude of the narrow band frequency
spectrum (right) of the vertical displacements at node 27 ((a) – (c)) and node 40 ((d) – (e)), and the vertical ((g) –
(i)) and lateral ((j) – (l)) accelerations at node 19. The measured response is shown in black, the simulated response
is shown in gray.

the system states. Thirdly, the estimates must be uniquely defined by the data. The general
conditions for system inversion were recently translated into a number of requirements on the
sensor network, i.e., sensor types, sensor locations, and number of sensors, for the specific case of
linear modally reduced order models [29]. The invertibility conditions, derived assuming no noise,
are necessary but not sufficient for guaranteeing that the forces and system states can be identified
in the presence of noise.

In this study, the aim is to estimate vertical forces at nodes 27 and 48 (see Fig. 2), denoted
by p27z and p48z. A selection of data is made from the complete data set, including all response
measurements on the bridge deck as listed in Section 3. The displacements are denoted by d27z
and d40z, the accelerations obtained from the NI system by a27ni and a48ni. The accelerations
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obtained from the GMS-18 units are denoted by ajζ, where j refers to the node number in the
measurement grid, and ζ denotes the measurement direction (y or z).

Using the techniques proposed in [29], a minimum subset of output data is determined, which
allows for the estimation of the forces. Since force identification is aimed at, the system states as
such are not of interest, and system observability, which requires that all system states are observed
from the data, is not implemented. In addition, the force locations and directions are known. This
means that system controllability, which requires that all system states can be controlled by the
input, is not relevant. In this case, at least two (np) accelerations and two (np) displacements
are required to ensure a coupling between the estimated forces and the measured acceleration
and displacement data, respectively, through two (np) modes. The two displacements, d27z and
d40z, have to be included in the data vector in order to obtain a stable system inverse with a
unique solution. Additional accelerations are required for instantaneous system inversion. In the
following, the data used for joint input-state estimation consists of two collocated acceleration
measurements a27ni and a48ni and two displacement measurements d27z and d40z. For this data
set, all invertibility conditions are met, and these will still hold when more measurements are
added. The reader is referred to [29] for detailed information on the design of the sensor network.

6. Quantification of uncertainty in the estimated forces

The forward calculations in Section 4.3 have shown good agreement between the true dynamic
behavior of the structure and the behavior predicted by the system model. The differences between
the measured and simulated response are mostly due to ambient excitation. In this case, the noise
processes w[k] and v[k] in Eqs. (1) and (2) will, therefore, primarily cover ambient excitation. Since
the ambient excitation includes wind loading, which does not generally correspond to white noise,
the uncertainty in the estimated forces is calculated from Eq. (27) (see Section 2.2). This calculation
requires the PSD Sp

S
p
S
(ω) of the ambient forces. The estimation of this PSD is described below.

The PSD of the ambient forces acting on the structure Sp
S
p
S
(ω) is estimated from the measured

response due to wind loadings. The response d[k] assumed for estimating the PSD consists of the
vertical and lateral accelerations obtained from the twelve GMS-18 units (Fig. 8) that have been
measured for a period of 27 minutes. The cross-PSD of the output signals, Sdd(ω), is estimated
using the average periodogram method [40], by subdividing the data series in blocks of 40 seconds.
As an illustration, the auto-PSD and cross-PSD of the measured vertical and lateral acceleration
at node 27 are shown in Fig. 9.

Fig. 8: Sensor configuration and force locations assumed for the uncertainty quantification procedure. A circle
corresponds to a measured vertical (z) and lateral (y) acceleration obtained from a GMS-18 unit. A gray square
corresponds to a vertical (z) and a lateral (y) nodal (stochastic) force.

Ten stochastic forces are assumed in the form of concentrated point loads at nodes 13, 20, 27,
39, and 48, acting in the vertical and lateral directions (see Fig. 8). These forces are equivalent
forces representing additional unknown excitations. The ten forces pS[k] are able to jointly excite all
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Fig. 9: Auto-PSD of (a) the vertical acceleration and (b) the lateral acceleration at node 27, and (c) amplitude of
the cross-PSD of the vertical acceleration and the lateral acceleration at node 27.

modes included in the system model. Both vertical and lateral forces are assumed, since wind loads
act in both the vertical and lateral directions on the bridge deck. The PSD of the stochastic forces,
SpSpS

(ω), is obtained from the cross-PSD of the output signals, Sdd(ω), using the Moore-Penrose

pseudo-inverse (denoted by †) of the FRF matrix Hdp
S
(ω):

Sp
S
p
S
(ω) = H

†
dp

S
(ω)Sdd(ω)H

∗†
dp

S
(ω) (35)

Fig. 10 shows the auto-PSD and cross-PSD of the estimated vertical and lateral forces at
node 39. The equivalent stochastic forces are dominated by low frequency components. This is
expected, since the ambient excitation primarily consists of wind loads. The estimated force PSD is
not flat, confirming that the assumption of white noise is not valid. It is also observed from Fig. 10
that the auto-PSD of the lateral force at node 39 is generally more than one order of magnitude
larger than the auto-PSD of the vertical force at node 39. This is expected, since the wind loads
mainly act in a horizontal direction on the bridge deck (see also ENV 1991-2-4:1995 [41]).
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Fig. 10: Amplitude of the estimated PSD of the stochastic forces acting at node 39 (black solid line: auto-PSD
vertical force, gray solid line: auto-PSD lateral force, black dashed line: cross-PSD vertical and lateral forces).

Due to ill-conditioning, it is not always possible to estimate the PSD of npS forces independently
from Eq. (35). At a given frequency ω, the number of structural modes significantly contributing
to the response can become less than the number of forces to be determined. If this is the case,
the rank of the FRF matrix Hdp

S
(ω) becomes less than np and small errors on the estimated

PSD of the measured response Sdd(ω) may lead to large errors on the estimated force PSD. This
is, for example, seen in Fig. 10, where the peak at a frequency of about 3 Hz is attributed to
ill-conditioning near resonance. Other sources of uncertainty in the estimation of the force PSD
include: errors on the estimated output PSD, the limited duration of the measurements, modeling
errors, and discretization errors introduced by assuming a limited number of nodal forces.
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At this point, it is crucial to distinguish between (a) the noise statistics assumed for joint
input-state estimation as characterized by the noise covariance matrices Q, R, and S, and (b) the
statistics of the actual noise processes, quantified by the PSD functions Sp

S
p
S
(ω) and Sv

M
v
M
(ω)

(see Eq. (27)). Both these sets correspond to the same physical quantities – unknown stochastic
excitation and measurement errors. The noise statistics Q, R, and S act as tuning parameters
and determine the weighing of the data by the joint input-state estimation filtering algorithm
(see also [34]). This weighing affects the uncertainty introduced by the (actual) noise processes.
Although any choice is possible, the noise covariance matrices Q, R, and S are here estimated
based on the following equation:

[

Q S

ST R

]

=

[

B′

J′

]

Cp

[

B′T J′T
]

+

[

0 0

0 RM

]

(36)

where Cp is the covariance matrix of the identified stochastic forces pS[k] and is calculated as:

Cp =

∫ ωmax

ωmin

Sp
S
p
S
(ω)dω +

∫ −ωmin

−ωmax

Sp
S
p
S
(ω)dω = 2 Re

(
∫ ωmax

ωmin

Sp
S
p
S
(ω)dω

)

(37)

The frequencies ωmin and ωmax define the frequency interval over which the covariance matrix Cp

is calculated. By using Eq. (36), the noise covariance matrices relate to the actual noise processes,
i.e. ambient excitation and measurement noise. The boundaries of the frequency interval, ωmin

and ωmax, are chosen here as ωmin = 1 × 2π rad/s and ωmax = 16 × 2π rad/s. The calculation of
Cp from Eq. (37) is performed by numerical integration.

For calculation of the measurement error covariance matrix RM, a standard deviation of 7 ×
10−5 m/s2, 3×10−5 m/s2, and 6×10−6 m is assumed for the error on the acceleration measurements
obtained from the GMS-18 units, the uniaxial acceleration measurements, and the displacement
measurements, respectively. The standard deviation for the error on the acceleration measurements
is based on the resolution of the sensors as specified by the manufacturer. The standard deviation
for the error on the displacement measurements exceeds the actual error standard deviation of
the sensors (i.e. ±1 × 10−6 m), thus accounting for inaccuracies due to horizontal motion of the
tripod supports (see section 4.3). The measurement errors are assumed uncorrelated (i.e. RM is a
diagonal matrix).

The force error PSD function Sp̃p̃(ω) is now calculated from Eq. (27). The PSD function
Sp

S
p
S
(ω) used in the calculation was previously obtained from the experiment considering only

ambient forces (Fig. 10). The PSD function of the measurement noise Sv
M
v
M
(ω) is obtained from

Eq. (26), i.e. white measurement noise is assumed. As an alternative to calculating the force
error PSD from Eq. (27), the actual force errors are calculated by applying the joint input-state
estimation algorithm for the ambient vibration data considered before (p[k] = 0). Fig. 11 compares
the PSD Sp̃p̃(ω) of the error on the vertical forces at nodes 27 and 48 obtained using the two
methods for calculating the error PSD; (1) from Eq. (27), and (2) by directly applying the joint
input-state estimation algorithm for the ambient vibration data. The measured data is assumed
to consist of the two accelerations and the two displacements introduced in Section 5 (i.e. a27ni,
a48ni, d27z and d40z). The good agreement between the estimated error PSDs in Fig. 11 confirms
the validity of the steady-state assumption that was made in the derivation of the underlying
Eq. (27), as is also observed in [26].

The covariance of the force errors p̃[k|k] is a measure for the overall uncertainty in the estimated
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Fig. 11: PSD of the error on the identified vertical forces at (a) node 27 and (b) node 48, obtained using joint
input-state estimation. The errors originate from unknown stochastic excitation, and measurement errors. The error
obtained from the uncertainty quantification method is shown by a black solid line. The error obtained by applying
the joint input-state estimation algorithm for a set of ambient measurement data is shown by a gray dashed line.

forces and is immediately obtained from the estimated force error PSD Sp̃p̃(ω):

cov(p̃[k|k]) = 2 Re

(
∫ ωmax

ωmin

Sp̃p̃(ω)dω

)

(38)

where ωmin and ωmax are the lower and upper bound, respectively, of a predefined frequency interval
in which the uncertainty on the estimated forces has been quantified. These bounds are chosen
as ωmin = 0.2 × 2π rad/s and ωmax = 16 × 2π rad/s, and correspond to the cut-off frequencies
of the filters applied in the data processing: a digital lowpass filter with a cut-off frequency of
16 Hz is applied to all measured signals before down-sampling (see also Section 3), and a digital
highpass filter with a cut-off frequency of 0.2 Hz is applied to the estimated force signals in order to
remove the low frequency force components that compensate for wind loads. Table 2 compares the
estimated force error variance for two data sets: set 1 is the minimum set including two collocated
accelerations and two displacements (4 sensors) that was introduced in Section 5; set 2 includes all
response measurements on the bridge deck (40 sensors). The error variance for data set 2 is only
slightly lower than the error variance for the minimum data set 1. In this case, using an extensive
data set only produces minor benefits.

set 1 set 2

Sensors d27z, d40z, a27ni, a48ni d27z, d40z, a27ni, a48ni, ajζ
Var(p̃27[k|k]) [N

2] 4.39 2.89
Var(p̃48[k|k]) [N

2] 6.86 6.58
Total variance [N2] 11.25 9.47

Table 2: Estimate of the steady-state force error variance (frequency range 0.2 to 16 Hz) for two different sets of
sensors. p̃i[k|k] represents the error on the time history of the vertical force at node i.

7. Results force identification

This section presents the results of the joint input-state estimation for the identification of
impact, harmonic, and swept sine excitation applied to the bridge deck. The forces are estimated
using the minimum data set consisting of two displacements and two accelerations introduced in
Section 5. The noise covariance matrices Q, R, and S used in the force identification are identical
to those computed in Section 6. The initial state estimate vector x[0|−1] and its error covariance
matrix P[0|−1] are both assumed zero.
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Fig. 12 shows the results of the identification for a sequence of hammer impacts applied at nodes
27 and 48. A fairly good estimate of both forces is seen from both the time history and the frequency
content. Three time intervals can be distinguished in Figs. 12b and 12e for a single hammer impact
applied to the bridge deck; (1) the impact, (2) free vibration, and (3) ambient vibration. During
the impact, the broadband hammer force excites the entire frequency range considered. The errors
introduced by ambient forces (i.e. unknown stochastic forces) are small, since the hammer impact
is far more important than the ambient loading. During the free vibration phase, the structure
vibrates at its natural frequencies and modeling errors manifest in errors on the estimated force
time history that generally decay exponentially over time. It is seen from Figs. 12a and 12d that
this free vibration phase, characterized by force amplitudes that clearly decay exponentially over
time, takes 30 to 40 seconds, depending on the amplitude of the hammer impact applied. After the
free vibration phase, the measured response is predominantly due to ambient loads. The ambient
vibration phase is, for example, seen in Figs. 12b and 12e for t < 104 s. During this phase, the
uncertainty on the estimated forces stems from ambient excitation and measurement errors. As
expected, the force levels observed during this phase (i.e. the force error levels) are small and in
line with the estimated error statistics obtained from the uncertainty quantification approach in
Section 6 (see Table 2: σp̃27 =

√
4.39 N2 = 2.10 N, σp̃48 =

√
6.86 N2 = 2.62 N). It is concluded that

the errors introduced by the ambient excitation and the measurement errors are small compared
to the peak values generated by the impact forces. From the time history of the forces in Figs. 12b
and 12e, it is also seen that, in this case of broadband excitation, the algorithm is able to properly
distinguish between the two forces. By comparing the frequency spectrum of the measured and
estimated forces, e.g. in Fig. 12c, it is seen that the error in the estimated force is generally small
in those frequency ranges where the forward simulations are in good agreement with the measured
response of the footbridge (see also Fig. 7).

Fig. 13 shows the results for the identification procedure for two harmonic forces, applied at
nodes 27 and 48. The dominant excitation frequency of the force applied at node 27 is 8 Hz,
whereas the dominant excitation frequency of the force applied at node 48 is 6 Hz. In this case
where the excitation is dominated by a limited number of frequencies, modeling errors occurring at
the excitation frequencies prohibit a proper distinction between the two independent forces. The
identified force at node 48 clearly contains an important harmonic component at 8 Hz, which is
less pronounced in the measured force signal.

Fig. 14 shows the results of the identification procedure for two swept sine forces, applied at
nodes 27 and 48. The excitation frequency of the force applied at node 27 rises from 0.5 Hz to 10 Hz
in 285 s, whereas for node 48, the excitation frequency rises from 0.375 Hz to 7.5 Hz in the same
time period. The excitation frequency of the forces applied at nodes 27 and 48 is increased in steps
of 1 mHz and 0.75 mHz every 30 ms, respectively. Two cycles of 285 s are considered. The response
of the structure depends on the rate at which the frequency increases, i.e. 1/30 Hz/s for the force
applied at node 27 and 1/40 Hz/s for the force applied at node 48. For each frequency step, the
response of the structure evolves from harmonic vibration at the previous excitation frequencies
to harmonic vibration at the current excitation frequencies. When the excitation frequency is
slowly increased, the response achieves steady-state before the excitation frequency is changed
again, whereas if the excitation frequency is rapidly increased, the response is mainly dominated
by transient phenomena. In the transition phase, the structure primarily vibrates at its natural
frequencies and the errors are comparable to those observed in the free vibration phase following
impact excitation. In addition, modeling errors at the excitation frequency result in errors on
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the estimated stationary forces. As in the case of harmonic excitation, modeling errors prohibit
a proper distinction between the two forces, resulting in large errors on the estimated forces for
some frequencies.
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Fig. 12: Time history (left), detail of the time history (middle), and averaged amplitude of the narrow band frequency
spectrum (right) of the impact forces applied at node 27 ((a) – (c)) and node 48 ((d) – (f)), sensor set 1. The measured
force signals are shown in black, the identified force signals are shown in gray.
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Fig. 13: Time history (left), detail of the time history (middle), and averaged amplitude of the narrow band frequency
spectrum (right) of the harmonic forces applied at node 27 ((a) – (c)) and node 48 ((d) – (f)), sensor set 1. The
measured force signals are shown in black, the identified force signals are shown in gray.
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Fig. 14: Time history (left), detail of the time history (middle), and averaged amplitude of the narrow band frequency
spectrum (right) of the swept sine forces applied at node 27 ((a) – (c)) and node 48 ((d) – (f)), sensor set 1. The
measured force signals are shown in black, the identified force signals are shown in gray.

8. Conclusions

This paper presents a verification of a joint input-state estimation algorithm, using data ob-
tained from in situ experiments on a footbridge. The joint input-state estimation algorithm is
used for the identification of impact, harmonic, and swept sine forces applied to the bridge deck.
A dynamic model of the structure has been composed using a detailed finite element model of
the structure, which was updated using a set of experimental modal characteristics. Numerical
simulations show good overall agreement with the true dynamic behavior of the footbridge. The
noise processes considered in the joint input-state estimation mainly cover unknown stochastic ex-
citation acting on the structure, in addition to the forces to be identified. The unknown stochastic
excitation in the present case primarily consists of wind loads that give rise to uncertainty in the
estimated forces. The uncertainty is quantified based on the power spectral density of the ambient
forces, which is identified from the response of the structure under ambient loading. Verification of
the results is carried out by comparing the estimated forces with the actual measured forces. For
the case of broadband impact loading, the forces obtained from joint input-state estimation are in
good agreement with the true, measured forces. Although good overall agreement is also observed
between the estimated and measured forces for harmonic and swept sine loads, modeling errors in
this case are found to prohibit a proper distinction between the multiple independent forces.

Acknowledgments

The research presented in this paper has been performed within the framework of the project
G.0738.11 “Inverse identification of wind loads on structures”, funded by the Research Foundation
Flanders (FWO), Belgium. Their financial support is gratefully acknowledged. The authors affili-
ated to KU Leuven are all members of the KU Leuven - BOF PFV/10/002 OPTEC - Optimization
in Engineering Center.

20



References

[1] P. Guillaume, E. Parloo, G. De Sitter, Source identification from noisy response measurements using an iter-
ative weighted pseudo-inverse approach., in: Proceedings of ISMA2002 International Conference on Noise and
Vibration Engineering, Leuven, Belgium, pp. 1817–1824.

[2] Y. Liu, W. Shepard, Dynamic force identification based on enhanced least squares and total least squares
schemes in the frequency domain, Journal of Sound and Vibration 282 (2005) 37–60.

[3] E. Parloo, P. Guillaume, M. Van Overmeire, Damage assessment using mode shape sensitivities, Mechanical
Systems and Signal Processing 17 (2003) 499–518.

[4] M. Klinkov, C. Fritzen, An updated comparison of the force reconstruction methods, Key Engineering Materials
347 (2007) 461–466.

[5] L. Nordström, T. Nordberg, A critical comparison of time domain load identification methods, in: Proceedings
of the 6th International Conference on Motion and Vibration Control, Saitama, Japan, pp. 1151–1156.

[6] E. Jacquelin, A. Bennani, P. Hamelin, Force reconstruction: analysis and regularization of a deconvolution
problem, Journal of Sound and Vibration 265 (2003) 81–107.

[7] D. Bernal, A. Ussia, Sequential deconvolution input reconstruction, Mechanical Systems and Signal Processing
50–51 (2015) 41–55.

[8] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations., Yale University Press,
New Haven, CT, 1923.

[9] E. Hernandez, D. Bernal, State estimation in structural systems with model uncertainties, ASCE Journal of
Engineering Mechanics 134 (2008) 252–257.

[10] E. Hernandez, A natural observer for optimal state estimation in second order linear structural systems,
Mechanical Systems and Signal Processing 25 (2011) 2938–2947.

[11] J. Ching, J. Beck, Real-time reliability estimation for serviceability limit states in structures with uncertain
dynamic excitation and incomplete output data, Probabilistic Engineering Mechanics 22 (2007) 50–62.

[12] C. Papadimitriou, C.-P. Fritzen, P. Kraemer, E. Ntotsios, Fatigue predictions in entire body of metal-
lic structures from a limited number of vibration sensors using Kalman filtering, Structural Control and
Health Monitoring 18 (2011) 554–573. Published online in Wiley InterScience (www.interscience.wiley.com).
DOI:10.1002/stc.395.

[13] M. Wu, A. Smyth, Application of the unscented Kalman filter for real-time nonlinear structural system identi-
fication, Structural Control and Health Monitoring 14 (2007) 971–990.

[14] E. Chatzi, A. Smyth, The unscented Kalman filter and particle filter methods for nonlinear structural system
identification with non-collocated heterogeneous sensing, Structural Control and Health Monitoring 16 (2009)
99–123.

[15] S. Mariani, A. Corigliano, Impact induced composite delamination: state and parameter identification via
joint and dual extended kalman filters, Computer Methods in Applied Mechanics and Engineering 194 (2005)
5242–5272.

[16] J. Ching, J. Beck, K. Porter, Bayesian state and parameter estimation of uncertain dynamical systems, Prob-
abilistic Engineering Mechanics 21 (2006) 81–96.

[17] E. Chatzi, A. Smyth, Nonlinear system identification: Particle-based methods, in: M. Beer, I. Kougioumtzoglou,
E. Patelli, I.-K. Au (Eds.), Encyclopedia of Earthquake Engineering, Springer, London, UK, 2014.

[18] M. Klinkov, C.-P. Fritzen, Online estimation of external loads from dynamic measurements, in: P. Sas, M. D.
Munck (Eds.), Proceedings ISMA2006, Leuven, Belgium, pp. 3957–3968.

[19] C. Hsieh, Robust two-stage Kalman filters for systems with unknown inputs, IEEE Transactions on Automatic
Control 45 (2000) 2374–2378.

[20] C.-S. Hsieh, Extension of unbiased minimum-variance input and state estimation for systems with unknown
inputs, Automatica 45 (2009) 2149–2153.

[21] C.-S. Hsieh, On the global optimality of unbiased minimum-variance state estimation for systems with unknown
inputs., Automatica 46 (2010) 708–715.

[22] C.-S. Hsieh, Optimal filtering for systems with unknown inputs via the descriptor Kalman filtering method.,
Automatica 47 (2011) 2313–2318.

[23] S. Eftekhar Azam, C. Papadimitriou, E. Chatzi, A dual Kalman filter approach for state estimation via output-
only acceleration measurements, Mechanical Systems and Signal Processing 60–61 (2015) 866–886.

[24] S. Gillijns, B. De Moor, Unbiased minimum-variance input and state estimation for linear discrete-time systems
with direct feedthrough, Automatica 43 (2007) 934–937.

[25] E. Lourens, C. Papadimitriou, S. Gillijns, E. Reynders, G. De Roeck, G. Lombaert, Joint input-response

21



estimation for structural systems based on reduced-order models and vibration data from a limited number of
sensors, Mechanical Systems and Signal Processing 29 (2012) 310–327.

[26] K. Maes, A. Smyth, G. De Roeck, G. Lombaert, Joint input-state estimation in structural dynamics, Mechanical
Systems and Signal Processing 70–71 (2016) 445–466.

[27] Y. Niu, M. Klinkov, C.-P. Fritzen, Online force reconstruction using an unknown-input Kalman filter approach.,
in: Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium,
pp. 2569–2576.

[28] E. Lourens, E. Reynders, G. De Roeck, G. Degrande, G. Lombaert, An augmented Kalman filter for force
identification in structural dynamics, Mechanical Systems and Signal Processing 27 (2012) 446–460.

[29] K. Maes, E. Lourens, K. Van Nimmen, E. Reynders, G. De Roeck, G. Lombaert, Design of sensor networks
for instantaneous inversion of modally reduced order models in structural dynamics, Mechanical Systems and
Signal Processing 52–53 (2015) 628–644.

[30] E. Chatzi, C. Fuggini, Structural identification of a super-tall tower by GPS and accelerometer data fusion using
a multi-rate Kalman filter, in: F. Strauss, Bergmeister (Eds.), Proceedings of IALCCE 2014,4th International
Symposium on Life-Cycle Civil Engineering, Tokyo, Japan, pp. 144–151.

[31] F. Naets, J. Cuadrado, W. Desmet, Stable force identification in structural dynamics using kalman filtering and
dummy-measurements, Mechanical Systems and Signal Processing 50–51 (2015) 235–248.

[32] P. Van Overschee, B. De Moor, Subspace algorithm for the stochastic identification problem, Automatica 29
(1993) 649–660.

[33] E. Reynders, G. De Roeck, Reference-based combined deterministic-stochastic subspace identification for ex-
perimental and operational modal analysis, Mechanical Systems and Signal Processing 22 (2008) 617–637.

[34] K. Maes, A. Smyth, G. De Roeck, G. Lombaert, Uncertainty quantification for joint input-state estimation in
structural dynamics, in: M. Papadrakakis, V. Papadopoulos, V. Plevris (Eds.), Proceedings of the 1st Inter-
national Conference on Uncertainty Quantification in Computational Sciences and Engineering, UNCECOMP
2015, Crete Island, Greece.

[35] K. Van Nimmen, G. Lombaert, G. De Roeck, P. Van den Broeck, Vibration serviceability of footbridges:
Evaluation of the current codes of practice, Engineering Structures 59 (2014) 448–461.

[36] K. Deckers, P. Guillaume, D. Lefeber, G. De Roeck, E. Reynders, Modal testing of bridges using low-weight
pneumatic artificial muscle actuators, in: Proceedings of IMAC 26, the International Modal Analysis Conference,
Orlando, FL. CD-ROM.

[37] Basic Analysis Guide, ANSYS Release 11.0, ANSYS Inc., 2007.
[38] B. Peeters, G. De Roeck, Reference-based stochastic subspace identification for output-only modal analysis,

Mechanical Systems and Signal Processing 13 (1999) 855–878.
[39] MATLAB Optimization Toolbox User’s Guide, The MathWorks, 2011.
[40] E. Reynders, System identification methods for (operational) modal analysis: review and comparison, Archives

of Computational Methods in Engineering 19 (2012) 51–124.
[41] ENV1991-2-4:1995 Eurocode 1: Basis of design and actions on structures - Part 2-4: Actions on structures -

Wind actions, European Committee for Standardization, 1995.

22


