
Ramachandran et al.

RESEARCH

Hitch Hiker 2.0: a binding model with flexible data
aggregation for the Internet-of-Things
Gowri Sankar Ramachandran1*, José Proença1,3, Wilfried Daniels1, Mario Pickavet2, Dimitri Staessens2,
Christophe Huygens1, Wouter Joosen1 and Danny Hughes1

Abstract
Wireless communication plays a critical role in determining the lifetime of Internet-of-Things (IoT) systems.
Data aggregation approaches have been widely used to enhance the performance of IoT applications. Such
approaches reduce the number of packets that are transmitted by combining multiple packets into one
transmission unit, thereby minimising energy consumption, collisions and congestion. However, current data
aggregation schemes restrict developers to a specific network structure or cannot handle multi-hop data
aggregation. In this paper, we propose Hitch Hiker 2.0, a component binding model that provides support for
multi-hop data aggregation. Hitch Hiker uses component meta-data to discover remote component bindings
and to construct a multi-hop overlay network within the free payload space of existing traffic flows. Hitch Hiker
2.0 provides end-to-end routing of low-priority traffic while using only a small fraction of the energy of standard
communication. This paper extends upon our previous work by incorporating new mechanisms for decentralised
route discovery and providing additional application case studies and evaluation. We have developed a
prototype implementation of Hitch Hiker for the LooCI component model. Our evaluation shows that Hitch
Hiker consumes minimal resources and that using Hitch Hiker to deliver low-priority traffic reduces energy
consumption by up to 32%.

Keywords: Data aggregation; Binding model; Component-based software engineering; Low energy;
Component meta data; Middleware; IoT

1 Introduction
Internet-of-Things (IoT) devices must operate for long
periods on limited power supplies and research has
shown that wireless communication is the primary
source of energy consumption in IoT devices [1]. The
lifetime of IoT applications can therefore be increased
by minimising radio communication. Data aggregation
has been widely applied to tackle this problem [2–4].
Data aggregation is a technique in which multiple mes-
sages are combined in to a single datagram, thus re-
ducing radio transmissions and hence the energy con-
sumption of IoT devices. Furthermore in CSMA net-
works, less frequent transmissions result in fewer colli-
sions and therefore retransmissions. This significantly
improves the performance of IoT devices.
This paper focuses on lossless data aggregation,

through the efficient merging of application traffic
flows, rather than algebraic in-network aggregation.
Contemporary approaches to lossless data aggrega-
*Correspondence: gowrisankar.ramachandran@cs.kuleuven.be
1iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
Full list of author information is available at the end of the article

tion may be classified as either application depen-
dent or application independent [5]. Application de-
pendent approaches [6–8] support the creation of op-
timal network-wide data aggregation structures, but
restrict the topology of the distributed application. In
contrast, application independent approaches [6,9] em-
bed generic aggregation functionality in the underlying
network stack, but do not consider the application, and
therefore do not achieve optimal performance.
A new approach is needed that allows developers to

build custom application communication structures,
while providing support for efficient data aggregation.
To tackle this problem, this paper introduces Hitch
Hiker, a lightweight remote binding model with sup-
port for multi-hop data aggregation. Hitch Hiker uses
the same semantics to configure aggregate data flows
as standard bindings, reducing development overhead.
A component binding model specifies how remote

software components communicate. Well known ex-
amples include Remote Procedure Call (RPC) [10,11]
and event-based communication [12, 13]. Hitch Hiker
extends binding models to distinguish between high-

mailto:gowrisankar.ramachandran@cs.kuleuven.be

Ramachandran et al. Page 2 of 16

and low-priority bindings. Low-priority bindings use
a multi-hop data aggregation overlay network, built
from the free payload space of high-priority bind-
ings, and therefore avoid additional radio transmis-
sions between remote components. Using component
meta-data, Hitch Hiker constructs a multi-hop data
aggregation overlay. The Hitch Hiker binding model
allows developers to specify high-priority remote bind-
ings that generate radio transmissions, or low-priority
remote bindings which communicate exclusively using
the data aggregation overlay and therefore result in no
additional transmissions. By routing low-priority traf-
fic over this data aggregation overlay, Hitch Hiker sig-
nificantly reduces energy consumption. Furthermore,
low-priority bindings provide developers with an ele-
gant way of configuring data aggregation. To the best
of our knowledge, Hitch Hiker is the first binding model
that provides built-in support for data aggregation.
Our previous short paper on this topic [14] intro-

duced a centralised version of Hitch Hiker, in which
multi-hop data aggregation is managed by a single net-
work entity. This paper extends Hitch Hiker [14] by
allowing the user to choose between centralised Hitch
Hiker or Ad-hoc Hitch Hiker. The Ad-hoc variant of
Hitch Hiker eliminates the dependency on the net-
work manager, thereby allowing Hitch Hiker to op-
erate in a fully distributed manner. This allows for
the use of multiple meta-managers as supported by
LooCI. Ad-hoc Hitch Hiker uses an approach inspired
by the well-known Adhoc On-Demand Distance Vector
(AODV) [15] routing approach on top of the aggrega-
tion overlay for discovering data aggregation routes.
A prototype of Hitch Hiker has been implemented for

the LooCI component model [13] running on the Con-
tiki OS [16] and for the OMNeT++ [17] simulator. Our
evaluation using two real-world case studies show that:
(i.) the resource consumption of Hitch Hiker is minimal
and (ii.) by using Hitch Hiker to transmit low-priority
traffic, energy consumption is significantly reduced.
The remainder of this paper is structured as follows.

Section 2 reviews related work. Section 3 introduces
the Hitch Hiker-2.0 binding model. Section 4 explains
the route discovery process of infrastructure Hitch
Hiker. The ad-hoc mode of Hitch Hiker is explained in
Section 5. Section 6 discusses the route maintenance
schemes of Hitch Hiker. Section 7 describes our case
study applications. Section 8 introduces and evaluates
prototype implementations of Hitch Hiker-2.0. Finally
Section 9 concludes and discusses directions for future
work.

2 Related Work
We draw upon two streams of prior work. Section 2.1
discusses related work in the area of data aggrega-
tion. Section 2.2 discusses contemporary component

and binding models. We then discuss opportunities for
applying data aggregation in component bindings in
Section 2.3.

2.1 Data Aggregation Schemes
He et al. [5] describe two classes of data aggregation
approach: Application Dependent Data Aggregation
(ADDA), which requires knowledge of application-
level traffic flows and Application Independent Data
Aggregation (AIDA) which performs aggregation in a
generic fashion without application-specific informa-
tion. We discuss both classes of aggregation in Sec-
tion 2.1.1 and Section 2.1.2, respectively.

2.1.1 Application Dependent Data Aggregation
ADDA approaches use network-wide application infor-
mation to optimise the manner in which information is
collected and routed across the network. These efforts
focus upon the network and application layers of the
communication stack.
At the Network Layer, Intanagonwiwat et al. in-

troduce Directed Diffusion [6], which provides data-
centric routing, in-network caching and aggregation.
To realise these features, Directed Diffusion provides
a common data representation. Entities that request
data register an interest in a particular data type at
a certain network location, which causes a concep-
tual gradient to be established between sources and
requesters, data is then drawn down these gradients
from sources to requesters. As data travels down these
routes, it is aggregated and cached.
At the Application Layer, Madden et al. contribute

the Tiny AGgregation (TAG) [7] service, which allows
users to specify SQL-like queries, which are multicast
to relevant sensor nodes using a tree that is rooted
at the base-station. As responses travel towards the
root, developer-specified aggregation functions may be
applied to data at each hop. Heinzelman et al. con-
tribute the Low-Energy Adaptive Clustering Hierarchy
(LEACH) protocol [8], which creates a clustered net-
work structure that provides inherent support for ag-
gregation and energy balancing during data collection.
SPEED [18] and SPIN [19] extend application layer ag-
gregation approaches to consider current energy levels
when configuring aggregation and routing functional-
ity. Asemani et al. [20] contribute LAG, which aims
to create a data aggregation route towards the sink
by taking into account the energy levels of nodes and
their hop depth in the network. LAG uses learning au-
tomata to update the route as the energy levels of the
nodes change during run-time.
Network-flow based data aggregation protocols [21,

22] take an orthogonal approach, modelling the sensor
network as a graph and, based upon application-level

Ramachandran et al. Page 3 of 16

traffic flows, calculating and configuring an optimal
aggregation structure. Kapakis et al. [21] contribute
MDLA, a network-flow based approach to achieving
maximum network lifetime using linear programming
and constraints. Xue et al. [22] contribute MaxLife, a
commodities-inspired algorithm, wherein a commod-
ity models the data that is generated by a sensor
node and delivered to a base station. MaxLife is capa-
ble of calculating optimal data aggregation structures
and thereby extending network lifetime. Voulkidis et
al. [23] contribute a game-theoretic approach to re-
duce the number of transmissions. This approach es-
timate the spatial correlation of the sensor data and
optimises the transmissions based on the spatial re-
lationship. Xiang et al. [24] contribute a data aggre-
gation approach based on compressed sensing, which
uses diffusion wavelets to account for the spatial and
temporal correlations. Network-flow based approaches
offer efficient calculation of an optimal data aggrega-
tion structure, for static networks where network-wide
data flows are known, but these approaches are un-
suitable for dynamic networks which support runtime
reconfiguration.
From the above application dependent data aggrega-

tion approaches, it can be seen that contemporary ap-
proaches are either inherently static as in network flow
models [6], or otherwise restrict developers to a sin-
gle application interaction model [7] or routing topol-
ogy [21, 22]. In contrast, application-independent ap-
proaches provide a more generic aggregation approach,
discussed below in Section 2.1.2.

2.1.2 Application Independent Data Aggregation
AIDA schemes provide a one size fits all approach to
data aggregation that is independent of application re-
quirements. These approaches typically operate at the
network and data link layer.
At the Network Layer, well known approaches to

aggregation include the Shortest Path Tree (SPT),
wherein a single, network-wide aggregation tree is cen-
trally calculated and configured and the Greedy In-
cremental Tree (GIT) which approximates a shortest
path tree, but is constructed in an incremental and
decentralised fashion [25]. However, these approaches
are poorly suited to WSN scenarios where energy re-
sources are unevenly distributed. Aonishi et al. con-
tribute Adaptive GIT [9] to address this problem. In-
tanagonwiwat et. al. contribute the Centre at the Near-
est Source (CNS) [6] scheme, wherein the responsibility
for data aggregation is assigned to the node which is a
source of that data type and closest to the destination.
Leandro et al. [26] contribute DRINA, a lightweight

and reliable routing approach for in-network aggre-
gation. DRINA follows a cluster-based approach and

builds a shortest path tree to sink. Nodes in each clus-
ter forward the sensed data to the cluster head, which
then relays the data to the sink. This solution relies on
a dedicated node to perform data aggregation, which
means all nodes in the cluster must transmit the sensed
data to the cluster head. Jongsoo et al. [27] propose
Lump to perform Quality-of-Service aware aggrega-
tion for heterogeneous traffic. Lump prioritises packet
based on the latency requirements. Lump maintains
a queue for each next-hop address, where it stores the
packets. Lump uses a periodic send-timer, which raises
the priority level of the packets on each timer event.
Whenever the priority is raised to the highest level, all
packets in the queue are aggregated and transmitted.
At the Data Link Layer, He et al. contribute

AIDA [5], which takes advantage of queuing delay and
the broadcast nature of wireless media to implement
application independent data aggregation. AIDA ag-
gregates multiple packets into single frames prior to
transmission, resulting in significant savings in terms
of energy and latency. While AIDA uses data from the
network layer, it treats the application layer as a black
box and therefore cannot exploit patterns in applica-
tion traffic flows. Furthermore, as AIDA operates at
the data link layer, it is unable to perform multi-hop
data aggregation.

2.2 Remote Component Binding Models
Hitch Hiker combines aggregation with a lightweight
remote binding model. In this section, we review com-
ponent binding models and discuss opportunities for
aggregation. Contemporary remote binding models
typically offer either event-based or Remote Procedure
Call (RPC) semantics.
RPC-based binding models allow remote function-

ality to be called using the same semantics as lo-
cal procedures, thus lowering the overhead on compo-
nent developers. RPC-based models are request-reply
and therefore bidirectional in nature. In the case of
resource-rich sensing systems, Remote Method Invo-
cation (RMI) [10] has been used to provide reliable
RPC-based bindings for Java component models such
as OSGi [28] and RUNES [29]. In a WSN context, May
et al. [11] extend NesC [30] with support for unicast
and anycast RPC calls, wherein exactly one neighbour-
ing node responds to the call. Where component mod-
els support remote reconfiguration, bindings may be
modified at runtime.
Event-based binding models provide simple unidi-

rectional communication between software modules.
Event-based approaches are attractive in resource-
constrained scenarios, as they are lightweight and do
not cause software modules to block while waiting for

Ramachandran et al. Page 4 of 16

responses as in RPC. The Active Messages [12] proto-
col provides remote bindings for the NesC [30] compo-
nent model. A unique reference to an application han-
dler is embedded in each active message and is used to
dispatch incoming messages to the appropriate handler
component. As NesC does not allow for runtime recon-
figuration, bindings are fixed at development time. The
LooCI binding model [13] provides unreliable event-
based binding using a decentralised publish-subscribe
event bus communication medium. In contrast to Ac-
tive Messages, LooCI supports multi-model bindings
allowing for the modelling of one-to-one, one-to-many,
many-to-one and many-to-many relationships. Addi-
tionally, unlike Active Messages, LooCI bindings may
be remotely modified at runtime in order to enact re-
configuration.
Considering opportunities for cross-layer optimisa-

tion, all of the binding models discussed above [10,30]
provide explicit meta-data that can be used to deter-
mine traffic flows and therefore optimise aggregation
functionality. Despite this opportunity, current com-
ponent models typically treat the network layer and
below as a black box, resulting in suboptimal commu-
nication.

2.3 Opportunities for Data Aggregation
There are a number of advantages to embedding data
aggregation support in a component binding model:
Flexible Network Topologies: ADDA approaches to

data aggregation such as TAG [7] and Directed Diffu-
sion [6] enforce a single network topology, which may
be suboptimal for some application scenarios. In con-
trast, components can be remotely bound together to
form distributed component graphs with flexible net-
work topologies.
Support for Multiple Applications: WSN are in-

creasingly required to simultaneously support multi-
ple applications. Contemporary ADDA approaches are
poorly suited to multi-application scenarios as they
enforce a single routing structure across multiple ap-
plications with different networking requirements. In
contrast, component bindings can be used to create a
specific network topology for each application.
Appropriate Separation of Concerns: ADDA ap-

proaches require that the lower layers of the net-
work stack be concerned with application-level data
flows [5]. This means that aggregation protocols must
be updated whenever new data types are introduced.
In contrast, components provide externally visible
meta-data that describes data flows via bindings. This
allows aggregation functionality to evolve along with
the application components during software reconfig-
uration.

Application-Optimised Aggregation: AIDA approaches
such as CNS [6] and AIDA [5] are unaware of applica-
tion data flows and therefore would be expected to per-
form sub-optimally in comparison to application de-
pendent approaches. In contrast, component-binding
meta-data provides a means to optimise generic aggre-
gation functionality to suit a specific application.
By using component binding meta-data to build a

multi-hop aggregation network, Hitch Hiker combines
the key benefits of application dependent aggregation
(i.e. an optimised aggregation approach) with those of
application independent aggregation (i.e. flexible net-
working and a more appropriate separation of con-
cerns). The following section describes the Hitch Hiker
binding model.

3 The Hitch Hiker 2.0 Binding Model
Hitch Hiker 2.0 extends the previous version of Hitch
Hiker, which is reported in [14]. In Hitch Hiker, the
bindings are classified as either high or low priority
bindings. This classification allows Hitch Hiker to sup-
port data aggregation by appending low-priority data
in the overlay network created using the unused pay-
load space of high-priority transmissions. Hitch Hiker
uses meta data provided by component bindings to
create a multi-hop data aggregation overlay. To sup-
port end-to-end routing of low-priority traffic, Hitch
Hiker performs route discovery on multi-hop overlay
network using a central meta-manager.
Hitch Hiker 2.0 expands the previous version of Hitch

Hiker [14] with Ad-hoc Hitch Hiker, which does not
rely on central meta-manager to discover the data
aggregation overlay. Ad-hoc Hitch Hiker uses an ap-
proach inspired by AODV for route discovery.
This section describes the design of the Hitch Hiker

binding model and its associated network stack. Sec-
tion 3.1 provide background on LooCI, which is ex-
tended with Hitch Hiker. Section 3.2 introduces pri-
oritised bindings. Section 3.3 describes how route in-
formation is extracted from bindings. Section 3.4 and
Section 3.5 describe the Hitch Hiker network stack.

3.1 The Loosely-coupled Component Infrastructure
The Loosely-coupled Component Infrastructure (Loo-
CI) [13] is a platform-independent component model
and supporting middleware targeting networked em-
bedded systems. The LooCI middleware is open-source
and ports are available for embedded operating sys-
tems such as Contiki [16], Squawk [31] and Android.
LooCI is a representative example of a runtime recon-
figurable component model for the IoT, with which we
have extensive experience. Hitch Hiker extends the ba-
sic LooCI component model to support priority-based

Ramachandran et al. Page 5 of 16

Temperature
periodicity=30s

Node
Monitor

Manager Node
Alert

Comfort Level
periodicity=30s

N1 N2 N3

Figure 1 Application view of a deployed application.

multi-hop data aggregation. The remainder of this sub-
section provides a basic overview of the relevant fea-
tures of LooCI.

Components LooCI components are individually de-
ployable units of functionality. They are managed by
creating an instance of the basic LooCI meta-model,
described in [13], using a simple component declara-
tion and communication API consisting of required
and provided interfaces. LooCI is language-agnostic
and components may be implemented in C or Java,
allowing developers to exploit language-specific fea-
tures while providing standardised encapsulation, dis-
covery and lifecycle management. All messages that
travel across component interfaces are hierarchically
typed as described in [32]. Components may also de-
clare properties that allow for inspection and customi-
sation of component behaviour through externally ac-
cessible name/value tuples.

Communication All LooCI components commu-
nicate over a fully distributed ‘event bus’ spanning
the entire network. The event-bus is an asynchronous
event-based communication medium that follows a de-
centralised topic-based publish-subscribe model. Lo-
cal and remote bindings are established by creating
new subscription relationships, supporting one-to-one,
many-to-one, and one-to-many bindings (as specified
in [13]). Hitch Hiker extends the binding model of
LooCI with support for data aggregation. Hitch Hiker
classifies LooCI bindings as high-priority and low-
priority, and this classification allows Hitch Hiker to
support data aggregation by appending low-priority
data in the overlay network created using the unused
payload space of high-priority transmissions.

Reconfiguration LooCI components are connected
to the middleware runtime installed on every device.
Each component declares its human-readable name,
its required interfaces (i.e. services) and provided in-
terfaces (i.e. dependencies). A reconfiguration engine
manages the basic meta-model and supports reflective
operations using both local or remote API calls.

Meta Manager LooCI applications are deployed,
inspected, and configured by manager nodes. In prin-
ciple, any LooCI node may serve as a manager and

a network may have multiple managers. The man-
ager interacts with the nodes by using the reflection
API to inspect and reconfigure LooCI’s meta-model.
Hitch Hiker uses a single meta manager in infrastruc-
ture mode for the creation of data aggregation overlay,
which is a major restriction. Hitch Hiker 2.0 supports
Ad-hoc Hitch Hiker, which operates with either multi-
ple or no manager at all.

3.2 Prioritised Bindings
Figure. 1 shows a small part of the smart building case
study, evaluated later in this paper. Here, a tempera-
ture component, deployed on sensor node N1, samples
temperature data once every 30s and sends the data to
the comfort level component. The comfort level com-
ponent on N2, analyses sensor data, and sends the re-
sult to a manager located on N3 every 30s. These three
components communicate via standard bindings, de-
picted as . For the remainder of this paper, we
refer the standard bindings as high-priority bindings.
LooCI provides bindTo and bindFrom calls to create
high-priority bindings.
Hitch Hiker introduces the concept of low-priority

bindings, depicted as in Figure. 1. Low-priority
bindings are used by non-critical applications, the defi-
nition of which is left to the developer. In principle, the
developer should use low-priority bindings for traffic
that can tolerate long latencies. Hitch Hiker provides
bindHHTo and bindHHFrom calls to create low-priority
bindings. In our example, a node monitor component
deployed onN1 is connected to a node alert component
deployed on N3 via a low-priority binding. The use of
a low-priority binding indicates that the developer is
willing to trade communication performance for energy
efficiency. Low-priority bindings are realised in Hitch
Hiker by routing messages via the data aggregation
overlay network, referred to as Hitch Hiker network.

High-Priority Bindings Hitch Hiker extends the
event-based LooCI binding model described in Sec-
tion 3.1. LooCI bindings are: event-based, unidirec-
tional, and unreliable. Conceptually, a LooCI binding
is a connection between a source and a destination
component, with an associated data type and a ref-
erence to the network link that connects the nodes
hosting the two components. Table 1 shows the list

Ramachandran et al. Page 6 of 16

Table 1 List of LooCI binding types and their payload sizes.

Components Binding Type Payload Size (in bytes)
Temperature Sensor TEMP 5

Light Sensor LIGHT 3
Moisture Sensor MOISTURE 3
Air Quality Sensor AIRQUALITY 8

PIR Sensor PIR 4
RFID Reader RFID 8
Door Sensor DOOR 3

Buzzer BUZZER 3

of well-known LooCI binding types and their payload
sizes.
Definition 1 (Binding) A binding is a tuple b =
〈Cs, Cd,Type,Link〉, where Cs is the source compo-
nent, Cd is the destination component, Type is the type
of the events sent through the binding, and Link is the
remote connection between the nodes where the binding
is deployed, defined below.
Definition 2 (Remote Connection) A remote con-
nection is a tuple ` = 〈Ns, Nd, MTU ,Bw ,D〉 describ-
ing the communication channel between two network
nodes, where Ns is the source node, Nd is the desti-
nation node, MTU is the maximum transmission unit
between Ns and Nd, Bw is the bandwidth of the re-
mote connection, and D is the expected delay of the
remote connection.
A LooCI binding is realised as an outgoing binding

entry on the sending node and an incoming binding
entry on the receiving node, which is established by
issuing bindTo and bindFrom calls to the sender and
receiver, respectively. These bindings are stored in a
binding table which is used to dispatch events. LooCI
bindings are created at runtime after the deployment
of the involved components. High-priority binding is
mediated by the transmission of a event using the net-
work stack of the host operating system.
The binding from the temperature component is

formally represented as 〈Temperature,Comfort Level,
Temp, `〉, where the associated remote connection ` =
〈N1, N2, 127B, 250 kbps, 0.1s〉.

Low-Priority Bindings Hitch Hiker introduces the
concept of a low-priority binding, depicted as
in Figure. 1. In our example, a node monitor com-
ponent gathers the local node status and transmits
this data to a node alert component running on a
server. We selected node monitoring as an exam-
ple of a low-priority application because this func-
tionality is less important than the core WSN mis-
sion of gathering environmental data and this appli-
cation data can tolerate delay. However, it should be
noted that developers are free to define which compo-
nents are high-priority and low-priority in their ap-
plication context. In our example (Figure. 1), the

low priority binding that connects the node mon-
itor to the node alert component is formally rep-
resented as 〈Node Monitor,Node Alert, Status, `status〉,
where Status is the event type containing node status
information and `status is the remote connection of the
overlay network.
High-priority and low-priority bindings have an iden-

tical set of artefacts: a source component, destination
component, data type (Definition 1) and a remote con-
nection (Definition 2). Low-priority bindings are re-
alised in LooCI by adding a separate set of binding
tables to each node.
The overlay routes necessary to support low-priority

bindings are established reactively, as it required to
support low-priority bindings.

3.3 Component Model Probe Extracts Network Data
The component model probe extracts data from the
high-priority application to create the remote connec-
tions of the Hitch Hiker network. It intercepts binding
acknowledgment messages containing the source com-
ponent Cs, the source node Ns, the destination node
Nd, and the binding Type, and builds a remote connec-
tion for the Hitch Hiker network. Recall that a remote
connection is formally a tuple 〈Ns, Nd,MTU ,Bw ,D〉
(Definition 2). The MTU is calculated based on the
event type, which has an associated payload size, as
shown in Table 1. Hitch Hiker extracts periodicity in-
formation by querying source components for their
periodicity property using the standard LooCI API.
Hitch Hiker distinguishes between periodic and non-
periodic components: the former send values at a fixed
rate (e.g., a temperature reading every 10 s), and the
latter exhibit unpredictable behaviour (e.g., an alert
generated when a window is opened).
Formally, we write Π(C) to denote the periodicity

of a component C, defined below, which returns the
special symbol ⊥ when C is non-periodic.

Π(C) =

{
r if C is periodic with rate r;
⊥ otherwise.

Based upon the information intercepted in the bind-
ing acknowledgment—the source component Cs, the
source node Ns, the destination node Nd, and the
source Type—and the periodicity Π(Cs), the probe cal-
culates the remote connection for the Hitch Hiker net-
work as follows.
1 Get the payload size ps associated with the Type.
2 Get the MTU m of the remote connection be-

tween the source (Ns) and destination (Nd).
3 Define hd to be the size of the headers used by

the data-link, network and transport layers of the
host protocol stack.

Ramachandran et al. Page 7 of 16

1. Physical

2. Data-link

3. Network

4. Transport

5. Application

Comfort
 Level Runtime Probe

Hitch Hiker Bindings

Hiker

Hitch

set binding

Network
Manager

request binding

binding ack.

intercept request H
iker binding

Infrastructure route discovery

e.g. IPv6

e.g. CX-MAC
intercept

1. Physical

2. Data-link

3. Network

4. Transport

5. Application

Comfort
 Level Runtime Probe

Hitch Hiker Bindings

Hiker

Hitch

set binding

e.g. IPv6

e.g. CX-MAC
intercept

A
d-hoc route discovery

Application
Network

.....

Figure 2 Architecture of a Hitch Hiker node: Infrastructure Hitch Hiker (left) and Ad-hoc Hitch Hiker (right).

4 Define MTUHH to be the unused payload size,
calculated as m− ps − hd .

5 If Π(Cs) = ⊥ then return the remote connection
〈Ns, Nd,MTUHH ,⊥,⊥〉, otherwise return the re-
mote connection

〈Ns , Nd , MTUHH , MTUHH /Π(Cs) , Π(Cs)〉.

The component model probe reveals the remote con-
nection between a source node Ns and a destination
node Nd with a free payload space of MTUHH . The
probe also reveals the delay or the time-interval be-
tween two successive transmissions as Π(Cs). For the
example application shown in Figure 1, the remote
connection between node N1 and N2 has a free pay-
load space of 75 B (excluding the temperature data
and the overhead added by the other layers) with a
delay of 30s. This connection meta data is used for
the configuration of Hiker routing protocol and it is
discussed in Section 3.5.

3.4 Hitch Medium Access Control (MAC) Protocol
Figure. 2 shows the Hitch Hiker network stack for

a single embedded sensor node, with each layer num-
bered according to the 5-layer Tanenbaum reference

model [33]. The Hitch Hiker protocol stack is com-
posed of two protocols the Hitch MAC protocol and
the Hiker routing protocol. The former is described
below and the latter in the following subsection.
Hitch is a virtual MAC protocol that manages and

provides access to the data aggregation overlay links.
The Hitch MAC protocol is implemented as an inde-
pendent module, which allows Hitch to be used with
third-party routing protocols at the aggregation over-
lay level.

Link Data Structures: Hitch manages the set of
virtual data links that are available on each sensor
node. Each virtual data link maps to a remote over-
lay connection (Definition 2) that may be multi-hop
and is composed of: a destination address, MTU, delay
and bandwidth. Virtual links are created by the probe
and may be accessed through the HitchAPI, available
online: http://goo.gl/7m2nwN. A First In First Out
(FIFO) queue is maintained per link where packets
are buffered until they can be aggregated with high-
priority traffic and dispatched. If the buffer reaches its
capacity, the oldest frame in the queue is discarded,
resulting in packet loss. Hitch is a best-effort protocol,
which provides no reliability guarantees. Where reli-

http://goo.gl/7m2nwN

Ramachandran et al. Page 8 of 16

Frame
header

Netw.
header

Payload HH
header1

HH
payload1

HH
header2

HH
payload2

. . .

Host frame

Host packet

Figure 3 Hiker packet; darker background captures the low-priority aggregated data.

ability is required, it should be implemented by the
upper layers.

Aggregation: The Hitch protocol intercepts outgo-
ing packets as they are passed to the host MAC pro-
tocol, and this protocol does not violate the security
requirements of the host MAC protocol. If the virtual
link queue associated with the destination of an inter-
cepted packet is not empty, the available payload size
is filled with packets from the queue, until either the
available payload space is exhausted or the buffer is
empty. The modified packet is then returned to the
host MAC protocol to be transmitted.

Disaggregation: The Hitch protocol intercepts in-
coming frames in the host MAC protocol, and disag-
gregates all encapsulated Hitch packets. The disaggre-
gated packets are then passed to the network layer,
while the original frame is passed back to the host
data link protocol. And, it operates within boundary
of the host MAC protocol.

3.5 Hiker Network Protocol
Hiker is a multi-hop routing protocol that operates
efficiently with the Hitch data link protocol.

Route Data Structures: Hiker maintains a mini-
malist routing table on each node. This routing table
begins empty, and routes are reactively configured by
the network manager to support low-priority bindings.
Each route is comprised of a remote destination, the
virtual link that represents the next hop on the route
to this address and a route-MTU which denotes the
maximum packet size that can traverse the complete
route.

Routing: When an incoming Hiker packet is received,
the destination field of the packet is checked. If the
destination is the local sensor node, it is passed to the
transport layer. If the destination matches a known
route, it is transmitted on the appropriate link us-
ing the transmit(frame,link) method of Hitch. If no
route is known, the packet is discarded. Section 4 and
Section 5 explains the route discovery process of Hitch
Hiker in infrastructure and ad-hoc mode, respectively.

Definition 3 (Route) A route is a multi-hop remote
connection (Definition 2) obtained by composing a
non-empty sequence of remote connections, such that
for every consecutive remote connections ` and `′ the
destination node of ` matches the source node of `′.
Given a sequence of n remote connections:

〈Ns,1 , Nd,1 ,MTU 1 , Bw1, D1 〉, . . . ,
〈Ns,n, Nd,n,MTU n, Bwn, Dn〉

its composition yields the route 〈Ns, Nd,MTU , Bw,D〉,
where

Ns = Ns,1

Nd = Nd,n

MTU = minni=1 MTU i

Bw = minni=1 Bwi
D =

∑n
i=1 Di.

Hiker Packet Encapsulation: Figure. 3 shows a
host packet that is aggregated with multiple Hitch
Hiker (HH) packets. Each encapsulated HH packet has
a 2a+1 byte header, where a is the length of a network
address. One additional byte is used to represent the
length of the payload that follows. We use 6LowPAN
IPv6 address shortening [34], resulting in 2B addresses
in our case-studies.

4 Infrastructure Hitch Hiker
In infrastructure mode, Hiker assumes that a single
LooCI network manager is running for the entire net-
work, as shown in Figure. 2. This network manager
enacts all management and reconfiguration. This in-
formation is exploited to create the data aggregation
overlay network as follows:
1 Overlay links are discovered based upon extended

binding acknowledgements. This information is
provided by the component model probe as de-
scribed in Section 3.3.

2 The network manager assembles discovered over-
lay links to form a network graph, wherein each
link is labelled with its associated delay, MTU and
bandwidth.

3 When the user requests the establishment of a
low-priority binding b:
(a) The graph is pruned to remove all links

which have an insufficient MTU to support
the specified data type.

Ramachandran et al. Page 9 of 16

Node N1 Node N2 Node N3

Network
Manager

(1) (6)

(2) (7) (9) (5) (10)(3) (4) (8)

(1) Request HP bindings
(2) bindTo N1 → N2

(3) bindFrom N1 → N2

(4) bindTo N2 → N3

(5) bindFrom N2 → N3

(6) Request LP bindings
(7) addHHRoute N1 → N2

(8) addHHRoute N2 → N3

(9) bindHHTo N1 → N3

(10) bindHHFrom N1 → N3

Figure 4 Network view - configuration of bindings and routes for Infrastructure Hitch Hiker.

(b) The Dijkstra algorithm is used to calculate
the shortest path between the source and des-
tination, using either delay or bandwidth as
the link cost. Our evaluation uses delay as
the link cost.

(c) The network manager configures the short-
est path overlay route, or responds with an
exception where no overlay route is possible.

(d) Finally, the network manager configures the
route required by the low-priority binding b,
by sending route-creation messages to all in-
volved nodes.

Figure. 4 shows the networked interactions that are
required to create both the high-priority and low-
priority bindings for the running example shown in
Figure. 1. In the interests of clarity and brevity, bind-
ing and route data shows only the network end-points.
Steps (1)–(5) The network manager receives a re-

quest to establish high-priority bindings to con-
nect the Temperature, Comfort Level, and Manager
components. The network manager then enacts
this request by issuing standard LooCI bindTo
and bindFrom commands that establish the re-
quired binding table entries. The associated bind-
ing acknowledgements inform the network man-
ager of newly available overlay routes.

Steps (6)–(8) The network manager receives a re-
quest to establish a low-priority binding to con-
nect the Node Monitor and the Node Alert compo-
nents. To support this binding, Hitch Hiker con-
figures an overlay route between the nodes N1 and
N3 (Definition 3).

Steps (9)–(10) The network manager establishes
the low-priority binding by issuing the required
bindHHTo and bindHHFrom method calls, which es-
tablish the necessary entries in the Hitch Hiker
wiring tables.

Since this mode of Hitch Hiker operate with a single
network manager, the creation of Hitch Hiker bind-
ings require binding meta data from the entire appli-
cation network. In principle, any Hitch Hiker node in

the network can create or remove bindings. In order
to increase the flexibility of Hitch Hiker and to allow
Hitch Hiker to operate with either multiple managers
or no managers, we extend Hitch Hiker with support
for decentralised route discovery, which is explained in
Section 5.

5 Ad-Hoc Hitch Hiker
In ad-hoc mode, Hiker routes are discovered in a
fully decentralised manner. This allows Hiker to op-
erate in networks with multiple managers or no man-
agers at all, as shown in Figure. 2. The binding re-
quest can come from any node in the application net-
work, and the Hiker of the source node self-discovers
a overlay route, unlike Infrastructure Hitch Hiker.
To realise this, Hiker reimagines the well-known Ad-
hoc On-Demand Distance Vector (AODV) routing ap-
proach [15]. To find overlay routes on top of bindings
as opposed to at the network layer. In this mode, Hiker
discovers the route as follows:
1 When the user requests the establishment of a

low-priority binding b, a route-discovery message
is flooded across the data aggregation overlay as
shown in Figure. 5.

2 The source node broadcasts a discovery mes-
sage containing the destination address, required
MTU, a sequence number and a Time to Live
(TTL) on all links provided by the Hitch MAC
protocol, as indicated in Figure. 5. And, the
source node waits for NET_TRAVERSAL_TIME
seconds for route-creation message. If the route-
creation message is not received within NET_TR-
AVERSAL_TIME, then the source node notifies
the developer that there is no route between the
source and destination, and the low-priority bind-
ing is not accepted. Section 6 explains the error
handling schemes of Hitch Hiker.

3 All nodes receiving a route-discovery message
decrement the TTL, add the sequence number and

Ramachandran et al. Page 10 of 16

source link to their cache and re-broadcast the dis-
covery message, discarding the message when the
TTL reaches zero, or the available MTU is insuf-
ficient, or if the sequence number was previously
observed.

4 When the destination node receives the route-
discovery message as presented in Figure. 5, it
establishes a route r by responding with a route-
creation message as follows:
(a) The first route-discovery message received

by the destination denotes the shortest
path between the source and the destina-
tion nodes. The destination node forwards
a route-creation message back to the link
on which the discovery message was re-
ceived. This message contains the matching
sequence number and the address of the des-
tination node.

(b) On receipt of a route-creation message, each
intermediate node adds a routing table entry
mapping the specified destination address to
the link on which the route-creation message
was received.

(c) Following the creation of a routing table en-
try, the intermediate node checks its cache
and forwards the route creation message
on the link via which the original route-
discovery was received. Step 2 repeats until
the route is fully established.

As can be seen from the process described above, in
ad-hoc mode, Hitch Hiker requires no supporting in-
frastructure. However, the use of flooding increases the
overhead and latency of route discovery in comparison
to infrastructure mode. Figure. 5 shows the networked
interactions that are required to create low-priority
bindings for the running example shown in Figure. 1
using AODV routing approach.

6 Route Errors and Maintenance
Whenever a user creates a Hitch Hiker binding as de-
scribed in Section 3, route discovery executes as de-
scribed in Section 4 and 5. If a low priority route was
successfully created, Hitch Hiker returns true together
with the performance properties of the route as listed
in Definition 3, i.e. route MTU, latency and band-
width. If the route was not created, Hitch Hiker re-
turns false and the performance properties of the best
available route, if one exists. Based upon this infor-
mation, the developer may choose to (i.) abandon the
binding, (ii.) modify the binding to work within avail-
able Hitch Hiker network capacity or (iii.) establish a
high-priority binding.

6.1 Impact of reconfiguration
Hitch Hiker-2.0 builds on top of LooCI component
model, which provides support for run-time reconfig-
uration of application. Such run-time reconfigurations
may result in deployment of new components or the

N2 Nx

N3

1

N3

2

N2

N1 N1

Nx

3

N2

N1

Nx

N3Ny Ny Ny

4

N2

N1

Nx

N3 Ny

Figure 5 Network topology of the application presented in Figure 1. Each box represents the node in the network. The shaded nodes
are new recipients. The dashed lines show possible reverse routes, while the solid lines show the discovered route. (1) Node N1
receives a low-priority binding request. (2) N1 broadcasts a route discovery message, N2 and Nx receive it. (3) N2 and Nx are not
the intended destination. N2 and Nx make an entry in their node and forwards the request to their neighbours. (4) The intended
destination N3 has been found. N3 sends out a route reply message along the reversed path of the request. This route reply message
configures all the intermediate nodes and the source node.

Ramachandran et al. Page 11 of 16

removal of existing components. In addition, the re-
configuration may also change the existing bindings in
the application network. These reconfigurations dis-
rupts the existing data aggregation overlay and might
invalidate the existing routes of low-priority bindings.
In infrastructure mode, when the manager receives

a reconfiguration command that invalidates a route,
it removes the old route and then execute the route
discovery process to find a replacement route. If no
replacement route exists, an exception is generated.
In adhoc mode, a mote that receives a reconfiguration
command, which impacts a Hitch Hiker route will flood
a route-remove message with the sequence number of
the matching route. All motes that receive this mes-
sage will remove the route, causing the source node to
re-run the route discovery process.

7 Case Study Applications
We validate the performance of Hitch Hiker-2.0 in

two representative application scenarios that are re-
alised using the LooCI component model and priori-
tised bindings. Section 7.1 describes a low data rate
multi-hop static smart office sensor network, while
Section 7.2 describes a high data rate one-hop mo-
bile robot sensor network. The mobile robot applica-
tion provides the greatest opportunities for data ag-
gregation due to its high data rate and one-hop net-
work structure, while the smart office application is
more challenging. In reality, we expect the character-
istics of most WSN applications to fall somewhere be-
tween those of these two applications. The smart office
and the mobile robots applications are overlaid with a
non-critical node health monitoring application, which
uses low-priority Hitch Hiker bindings, described in
Section 7.3.

7.1 Smart Office Application
The smart office application aims to ensure employee
comfort, while reducing energy consumption by sens-
ing environmental conditions and controlling relevant
appliances. Sensor nodes (N2, N3 and N4) monitor:
temperature, light and whether the window is open
or closed every 120s. This sensor data is transmitted
to a comfort level component running on the cluster-
head node (N1) which aggregates the sensor informa-
tion and forwards the aggregated data to a manager
component running on a server (N0), once every 600s.
Based upon the observed sensor data and configured
comfort levels, a management component running on
the server (N0) issues commands to a control compo-
nent running on the cluster-heads (N1), which then
activate or deactivate relay switches running on nodes
N2 to N4 that control: lighting, ventilation and an au-
dio alarm, which indicates that the window should be

closed. The smart office application is realised using
high-priority (i.e. standard) LooCI bindings. The pay-
load size of all sensor data is 4 bytes, the payload size
of aggregated data is 12 bytes and the payload size
of relay control commands is 4 bytes.
Figure. 6 shows the application composition and all

relevant binding and properties information. In terms
of network topology, the scenario is comprised of 25
offices. Each office contains three sensor nodes, and
a cluster-head node. Sensor nodes communicate with
cluster heads, which in turn communicate with a single
server for management of comfort level. This approxi-
mates a 101-node tree topology rooted at the server.

7.2 Mobile Robot Application
The mobile robot application coordinates a set of mo-
bile robots to detect chemical spills. Each robot (N1

to N100) runs a chemical sensor and a location sensor
which sample every 10 seconds and transmit the data
to a coordination component running on the server
(N0). The coordination component then calculates a
set of navigation instructions every 10 seconds and
transmits these to the navigation component running
on each mobile robot (N1 to N100). The mobile robot
application is realised using standard LooCI bindings.
The payload size of location data is 6 bytes, the pay-
load size of chemical sensor data is 4 bytes and the
payload size of navigation commands is 5 bytes. Fig-
ure. 6 shows the application composition and all rele-
vant binding and properties data. In terms of network
topology, the scenario contains 100 mobile robots, all
of which communicate directly with the coordinating
server. This approximates a 101-node star topology.

7.3 Node Health Monitoring Application
The node health monitoring application [35] is a low-
priority application, inspired from real world deploy-
ments such as Great Duck Island [36]. We consider it
low-priority because it adds value, but (i.) the data is
not critical and (ii.) it should not reduce the lifetime of
the base application. This component monitors battery
level, memory use and the radio link quality. The ap-
plication consists of a health monitor component that
runs on all sensor nodes (N1 to Nn) and sends node
health information to an alert component running on
the server node (N0). Node health monitoring is over-
laid on the smart building and mobile robot applica-
tion using low-priority bindings. The payload size of
node health monitor data is 18B. The composition is
shown in Figure. 6.

8 Implementation and Evaluation
We have developed prototypes of Hitch Hiker-2.0
for the OMNeT++ simulator [17] and the Zigduino

Ramachandran et al. Page 12 of 16

Manager

N0

Comfort
Level [30s]

Control
N1

Temp.
Sensor [30s]

Fan Relay
N2

Light
Sensor [30s]

Light Relay
N3

Contact
Switch

Alarm
N4

x25

Controller
N0

Location
Sensor [10s]

Chemical
Sensor [10s]

Navigation

N1 . . .N100

Node Status Alert
N0

Node Health Monitor

N1 . . .Nn

Figure 6 Component bindings of the smart building (top), mobile robot (bottom-left) and monitoring (bottom-right) applications.

mote [37]. Simulation is used to study the performance
of the three case-study applications described in Sec-
tion 7. The Zigduino implementation validates node-
local memory and energy characteristics for a concrete
hardware/software stack.
OMNeT++ settings: The physical layer is a CC2420

IEEE 802.15.4 radio [38]. We use B-MAC [39] as a
representative Low Power Listening (LPL) protocol.
Simulation settings are based on prior experiments by
Polastre et al. [39]. Table 2 shows the configuration
settings of OMNeT++.
Zigduino configuration: Zigduino is an Arduino-

compatible mote based on the ATmega128RFA1 [40],
which offers a 16MHz MCU, 16KB of RAM, 128KB
of Flash and an IEEE 802.15.4 radio. We use Con-
tikiOS v2.6, Contiki X-MAC (CX-MAC) [41] and
LooCI v2.0 [13] extended with Hitch Hiker 2.0. The
parameterisation of CX-MAC uses the default Contiki
values. In the case of the mobile robot case-study the
Zigduino is extended with a ShieldBot mobile robot
base [42]. Table 2 shows the configuration settings of
Zigduino. We compare Hitch Hiker against (i.) trans-
mission of standard messages (referred as Standard
binding) and (ii.) an optimally configured one-hop
data aggregation scheme using an optimal aggrega-
tion buffer size of 3 (referred as One-hop aggregation).
Values reported below represent averages taken over
one week.
All source code and simulation material are available

at: http://goo.gl/7m2nwN.

8.1 OMNET++ Simulation Results

Latency Figure. 7 shows the results of our latency
simulation. The x -axis shows the sampling frequency
of the node health monitoring app, which was set to
a consistent fraction of the case study application fre-
quency (from left to right from 10% to 50% of the
base app frequency). The y-axis shows the latency of
message transmission in seconds for low-priority Hitch
Hiker bindings, standard bindings and one-hop data
aggregation.
As expected, the node health monitoring app exhib-

ited a higher latency when using low-priority bindings
than with standard bindings due to packets waiting for
aggregation at each hop. However, the latency of low-
priority bindings is lower than the one-hop aggregation
scheme due to the exploitation of multi-hop routes. For
the mobile robot app (right of Figure. 7) the latency of
Hitch Hiker falls as high-priority traffic is transmitted
at a higher rate and thus, there are increased oppor-
tunities for aggregation.

Energy Figure. 8 shows the results of our energy
simulation. As with our latency experiments, the sam-
pling frequency of the node health monitoring app was
set to 10% to 50% of the base application frequency.
The y-axis shows the power consumption low-priority
Hitch Hiker bindings, standard bindings and one-hop
data aggregation.

Table 2 Configuration of the OMNeT++ simulation and the Zigduino implementation.

Radio OMNeT Zigduino MAC protocol OMNeT Zigduino

Transmit current 17mA 18.6mA Check interval 0.1 s 0.125 s
Receive current 16.2mA 16.6mA Slot duration 1.0 s 2.0 s
Sleep current 0.02mA 4.1mA Queue length 10 15

http://goo.gl/7m2nwN

Ramachandran et al. Page 13 of 16

300 240 180 120 60

0

100

200

250

Periodicity of the low-priority packets (seconds)

La
te
nc
y
(s
ec
on

ds
)

Smart building

Standard binding
One-hop aggregation
Hitch Hiker

100 80 60 40 20
0

20

40

Periodicity of the low-priority packets (seconds)

La
te
nc
y
(s
ec
on

ds
)

Mobile robot

Standard binding
One-hop aggregation
Hitch Hiker

Figure 7 Latency of the health monitoring app. overlaid on the smart building (left) and mobile robot (right), with Hitch Hiker-2.0,
one hop aggregation and standard bindings.

The results shown in Figure. 8 confirm the expected
savings when using Hitch Hiker to route low-priority
traffic. Energy consumption is reduced by up to 15%
in the smart building scenario and up to 32% in the
mobile robot scenario compared to standard bindings.
The energy consumption of Hitch Hiker is also lower
than that of one-hop data aggregation. The greatest
savings are achieved for the mobile robot application
as more low-priority transmissions are aggregated.

8.2 Zigduino/Contiki Implementation Results
This section reports the performance timings of route
configuration and message transmission as well as en-
ergy consumption and memory overhead for the Con-
tiki/Zigduino implementation. Configuration timings
are dependent upon the type of route being config-
ured. We therefore report average timings based upon
the smart building application, as this has the most
complex routing structure.

Route Creation: The Hitch Hiker 2.0 provides two
approaches for route creation. Infrastructure Hitch
Hiker requires approximately 86ms to configure a sin-
gle low-priority binding. Each additional hop that
must be configured adds 30ms to the configuration
overhead. Route configuration is thus lightweight; cre-
ating all of the Hitch Hiker bindings required for the
smart building takes less than 3 s. However, this gen-
erates three transmissions per Hitch Hiker binding,
which costs 36.5mJ.
In contrast, Ad-hoc Hitch Hiker, takes more time to

configure a route since it uses data aggregation overlay
itself to flood route discovery messages. For the smart
building application, in the worst case, Ad-hoc Hitch
Hiker requires 65 s to configure a single low priority
binding. Each additional hop that must be configured
adds 30 s to the configuration time, and the complete
smart building app takes less than an hour to con-
figure. However, Ad-hoc Hitch Hiker generates only

Table 3 Memory overhead of Hitch Hiker-2.0 (HH).

Memory LooCI Infrastructure HH Ad-Hoc HH

ROM 56534B 1882B (+3.3%) 3244B (+5.7%)
RAM 8998B 722B (+8.0%) 756B (+8.4%)

two transmissions per Hitch Hiker binding, which costs
23mJ – significantly less than infrastructure mode.

Message Transmission: Enqueueing, dequeueing
and encapsulating a single Hitch Hiker packet within
a host frame requires on average of 12.27mJ, while a
standard frame transmission using CX-MAC requires
21.41mJ, a saving of 57.4% compared to standard
transmission.

Memory: Hitch Hiker introduces minimal memory
overhead in comparison to the basic LooCI component
model. As shown in Table 3, the implementation of In-
frastructure Hitch Hiker adds 3% of ROM and 8% of
RAM to the LooCI component model. This implemen-
tation consists of component model probe along with
Hitch and Hiker protocols, as presented in Section 3.
For Ad-hoc Hitch Hiker, the ROM and RAM over-

head is approximately 6% and 8% respectively. Ad-hoc
Hitch Hiker consumes more memory than Infrastruc-
ture mode as each node must embed route discovery
logic. Each routing table entry uses an additional 6B
of memory. We believe that this low overhead is rea-
sonable in light of the energy savings reported in Sec-
tion 8.1.

9 Conclusions and Future Work
This paper introduced Hitch Hiker 2.0, a novel re-
mote binding model for IoT which supports prioritised
bindings and multi-hop data aggregation. This priori-
tised binding model provides developers with a low-
effort mechanism to manage data aggregation. Unlike
prior work in the area of aggregation, Hitch Hiker uses

Ramachandran et al. Page 14 of 16

300 240 180 120 60

80

90

100

Periodicity of the low-priority packets (seconds)

E
ne
rg
y
co
ns
um

pt
io
n

(K
ilo

jo
ul
es
/d

ay
)

Smart building

Standard binding
One-hop Aggregation
Hitch Hiker

100 80 60 40 20

140

160

180

200

220

Periodicity of the low-priority packets (seconds)

Mobile robot

Standard binding
One-hop Aggregation
Hitch Hiker

Figure 8 Energy consumption of health monitoring overlaid on the smart building (left) and mobile robot (right), with Hitch
Hiker-2.0, one-hop aggregation and standard bindings.

component binding meta-data to construct a multi-
hop overlay network for data aggregation. Hitch Hiker
provides support for routing on multi-hop overlay net-
work. To the best of our knowledge, Hitch Hiker is
both the first generic and yet application aware data
aggregation approach. Furthermore, Hitch Hiker is the
first remote binding model to provide built-in support
for data aggregation.
Hitch Hiker 2.0 extended our previous work [14] and

provides a decentralised routing approach. Hitch Hiker
2.0 allows the user to choose between centralised and
decentralised routing approach, making it a flexible
binding model.
We have simulated the Hitch Hiker protocol in OM-

NeT++ for two case-study application scenarios. Our
results show that using Hitch Hiker to route low-
priority traffic reduces energy consumption and, for
applications with a high data rate, latency. We also
implemented a prototype of Hitch Hiker for the LooCI
component model running on the Contiki OS and the
Zigduino mote. Our evaluation of the prototype imple-
mentation shows that Hitch Hiker consumes minimal
memory, introduces limited overhead and that trans-
mitting messages with Hitch Hiker consumes a small
fraction of the energy that is required for a standard
radio transmission.
Our future work will focus on four fronts: improving

the performance of Hitch Hiker for non-periodic com-
ponents, adding support for virtual circuits, extending
Hitch Hiker to support variable component payloads
and realising a RPC version of the Hitch Hiker bind-
ing model.
Non-periodic components: The current design of

Hitch Hiker tends to avoid aggregation with non-
periodic bindings, where the source component not
specify the rate property, due to the unpredictability
performance of those links. This is a potential source
of inefficiency in cases where non-periodic components
transmit frequently. We plan to address this ineffi-
ciency by extending the Component Model Probe with

support for monitoring the transmission timings of
non-periodic components and extracting timing data.
Virtual circuits: In the current model, it is possi-

ble for the Hitch Hiker overlay to become congested
and for buffers to overflow. In our future work, we will
explore how resource reservation can be used to cre-
ate virtual circuits on top of the Hitch Hiker overlay
with associated Quality of Service assurances. We en-
visage that this could be achieved by extending the
role of the network manager to include remote config-
uration of Hitch buffer sizes and admission control on
low-priority bindings.
Variable component payloads: The current design of

Hitch Hiker supports only fixed sized data types. While
we believe that this covers the vast majority of WSN
traffic, it is interesting to explore how Hitch Hiker
could be extended to support variable sized payloads
such as compressed images or microphone captures. As
with non-periodic components this would necessitate
extension of the Component Model Probe to support
the monitoring of previous transmissions and mainte-
nance of historic payload size data.
Remote Procedure Call: As Hitch Hiker extends

LooCI, it supports only unidirectional event-based
bindings. It would be interesting to extend Hitch Hiker
with support for Remote Procedure Call (RPC) bind-
ings. As RPC method calls are inherently request-reply
and therefore bidirectional, this would result in a much
more densely connected data aggregation overlay and
therefore improved performance for Hitch Hiker.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
GSR worked on the design, implementation and the evaluation of Hitch
Hiker. JP worked on the design and modeling. WD helped with the
implementation on Zigduino hardware platform. MP,DS,CH and WJ
were involved in the discussions during the design phase. DH supervised
and played a critical role in the entire work. In addition, all authors read
and approved the work.

Ramachandran et al. Page 15 of 16

Acknowledgements
This research is partially supported by the Research Fund, KU Leuven
and iMinds (a research institute founded by the Flemish government),
and by the Portuguese FCT grant SFRH/BPD/91908/2012. The
research is conducted in the context of FWO-RINAiSense project.

Author details
1iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium. 2iMinds-IBCN,
Ghent University, 9000 Gent, Belgium. 3HASLab/INESC TEC,
Universidade do Minho , Portugal.

References
1. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M., Shaw, B.:

Energy-aware wireless microsensor networks. In: IEEE Signal
Processing Magazine, pp. 40–50 (2002)

2. Rajagopalan, R., Varshney, P.K.: Data-aggregation techniques in
sensor networks: A survey. Communications Surveys Tutorials, IEEE
8(4), 48–63 (2006). doi:10.1109/COMST.2006.283821

3. Tan, H.O., Körpeoǧlu, I.: Power efficient data gathering and
aggregation in wireless sensor networks. SIGMOD Rec. 32(4),
66–71 (2003). doi:10.1145/959060.959072

4. Kalpakis, K., Dasgupta, K., Namjoshi, P.: Maximum lifetime data
gathering and aggregation in wireless sensor networks. Proceedings
of IEEE Networks, 685–696 (2002)

5. He, T., Blum, B.M., Stankovic, J.A., Abdelzaher, T.: Aida:
Adaptive application-independent data aggregation in wireless
sensor networks. ACM Transactions on Embedded Computing
Systems, 426–457 (2004). doi:10.1145/993396.993406

6. Intanagonwiwat, C., Govindan, R., Estfin, D., Heidemann, J., Silva,
F.: Directed diffusion for wireless sensor networking. IEEE/ACM
Transactions on Networking 11, 2–16 (2003)

7. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A
tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper.
Syst. Rev., 131–146 (2002). doi:10.1145/844128.844142

8. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.:
Energy-efficient communication protocol for wireless microsensor
networks. In: 33rd Annual Hawaii Int. Conf. on System Sciences, p.
10 (2000). doi:10.1109/HICSS.2000.926982

9. Aonishi, T., Matsuda, T., Mikami, S., Kawaguchi, H., Ohta, C.,
Yoshimoto, M.: Impact of aggregation efficiency on git routing for
wireless sensor networks. In: Int. Conf. on Parallel Processing
Workshops, pp. 8–158 (2006). doi:10.1109/ICPPW.2006.41

10. Birrell, A.D., Nelson, B.J.: Implementing remote procedure calls.
ACM Transacations on Computer Systems, 39–59 (1984).
doi:10.1145/2080.357392

11. May, T.D., Dunning, S.H., Dowding, G.A., Hallstrom, J.O.: An
RPC design for wireless sensor networks. Int. Journal of Pervasive
Computing and Communications 2(4), 384–397 (2007)

12. von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active
messages: A mechanism for integrated communication and
computation. In: 19th Annual Int. Symposium on Computer
Architecture, pp. 256–266 (1992). doi:10.1145/139669.140382

13. Hughes, D., Thoelen, K., Maerien, J., Matthys, N., Del Cid, J.,
Horre, W., Huygens, C., Michiels, S., Joosen, W.: Looci: The
loosely-coupled component infrastructure. In: IEEE Symposium on
Network Computing and Applications, pp. 236–243 (2012).
doi:10.1109/NCA.2012.30

14. Ramachandran, G.S., Daniels, W., Proença, J., Michiels, S., Joosen,
W., Hughes, D., Porter, B.: Hitch hiker: A remote binding model
with priority based data aggregation for wireless sensor networks. In:
Proceedings of the 18th International ACM SIGSOFT Symposium
on Component-Based Software Engineering. CBSE ’15, pp. 43–48.
ACM, New York, NY, USA (2015). doi:10.1145/2737166.2737179.
http://doi.acm.org/10.1145/2737166.2737179

15. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector
routing. In: Mobile Computing Systems and Applications., pp.
90–100 (1999). doi:10.1109/MCSA.1999.749281

16. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and
flexible operating system for tiny networked sensors. In: 29th
Annual IEEE Int. Conf. on Local Computer Networks, pp. 455–462
(2004). doi:10.1109/LCN.2004.38

17. Chen, K.: Performance Evaluation by Simulation and Analysis with
Applications to Computer Networks. John Wiley & Sons, NJ, USA

(2015)
18. He, T., Stankovic, J.A., Lu, C., Abdelzaher, T.: Speed: a stateless

protocol for real-time communication in sensor networks. In:
Distributed Computing Systems, 2003. Proceedings. 23rd Int. Conf.
On, pp. 46–55 (2003). doi:10.1109/ICDCS.2003.1203451

19. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols
for information dissemination in wireless sensor networks. In: 5th
Annual ACM/IEEE Int. Conf. on Mobile Computing and
Networking, pp. 174–185. ACM, New York, NY, USA (1999).
doi:10.1145/313451.313529

20. Asemani, M., Esnaashari, M.: Learning automata based energy
efficient data aggregation in wireless sensor networks. Wirel. Netw.
21(6), 2035–2053 (2015). doi:10.1007/s11276-015-0894-3

21. Kalpakis, K., Dasgupta, K., Namjoshi, P.: Efficient algorithms for
maximum lifetime data gathering and aggregation in wireless sensor
networks. Computer Networks 42(6), 697–716 (2003).
doi:10.1016/S1389-1286(03)00212-3

22. Xue, Y., Cui, Y., Nahrstedt, K.: Maximizing lifetime for data
aggregation in wireless sensor networks. Mob. Netw. Appl. 10(6),
853–864 (2005). doi:10.1007/s11036-005-4443-7

23. Voulkidis, A.C., Anastasopoulos, M.P., Cottis, P.G.: Energy
efficiency in wireless sensor networks: A game-theoretic approach
based on coalition formation. ACM Trans. Sen. Netw. 9(4),
43–14327 (2013). doi:10.1145/2489253.2489260

24. Xiang, L., Luo, J., Rosenberg, C.: Compressed data aggregation:
Energy-efficient and high-fidelity data collection. IEEE/ACM Trans.
Netw. 21(6), 1722–1735 (2013). doi:10.1109/TNET.2012.2229716

25. Krishnamachari, B., Estrin, D., Wicker, S.: The impact of data
aggregation in wireless sensor networks. In: 22nd Int. Conf. on
Distributed Computing Systems Workshops, pp. 575–578 (2002).
doi:10.1109/ICDCSW.2002.1030829

26. Villas, L.A., Boukerche, A., Ramos, H.S., de Oliveira, H.A.B.F., de
Araujo, R.B., Loureiro, A.A.F.: Drina: A lightweight and reliable
routing approach for in-network aggregation in wireless sensor
networks. Computers, IEEE Transactions on 62(4), 676–689 (2013).
doi:10.1109/TC.2012.31

27. Jeong, J., Kim, J., Cha, W., Kim, H., Kim, S., Mah, P.: A
qos-aware data aggregation in wireless sensor networks. In:
Advanced Communication Technology (ICACT), 2010 The 12th
International Conference On, vol. 1, pp. 156–161 (2010)

28. Tavares, A.L.C., Valente, M.T.: A gentle introduction to OSGi.
SIGSOFT Softw. Eng. Notes 33(5), 8–185 (2008).
doi:10.1145/1402521.1402526

29. Costa, P., Coulson, G., Mascolo, C., Picco, G.P., Zachariadis, S.:
The runes middleware: a reconfigurable component-based approach
to networked embedded systems. In: IEEE 16th Int. Symposium on
Personal, Indoor and Mobile Radio Communications, pp. 806–8102
(2005). doi:10.1109/PIMRC.2005.1651554

30. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler,
D.: The nesc language: A holistic approach to networked embedded
systems. In: ACM Conf. on Programming Language Design and
Implementation, pp. 1–11 (2003). doi:10.1145/781131.781133

31. Simon, D., Cifuentes, C.: The squawk virtual machine: JavaTMon
the bare metal. In: Companion to the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages,
and Applications. OOPSLA ’05, pp. 150–151. ACM, New York, NY,
USA (2005). doi:10.1145/1094855.1094908.
http://doi.acm.org/10.1145/1094855.1094908

32. Thoelen, K., Preuveneers, D., Michiels, S., Joosen, W., Hughes, D.:
Types in their prime: Sub-typing of data in resource constrained
environments. In: Stojmenovic, I., Cheng, Z., Guo, S. (eds.) Mobile
and Ubiquitous Systems: Computing, Networking, and Services.
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol. 131, pp.
250–261. Springer, New York, NY, USA (2014)

33. Tanenbaum, A.S.: Computer Networks (4. Ed.), pp. –1891.
Prentice Hall, NJ,USA (2002)

34. Shelby, Z., Bormann, C.: 6LoWPAN: The Wireless Embedded
Internet. Wiley Publishing, NJ, USA (2010)

35. Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J.,
Lees, J., Welsh, M.: Deploying a wireless sensor network on an

http://dx.doi.org/10.1109/COMST.2006.283821
http://dx.doi.org/10.1145/959060.959072
http://dx.doi.org/10.1145/993396.993406
http://dx.doi.org/10.1145/844128.844142
http://dx.doi.org/10.1109/HICSS.2000.926982
http://dx.doi.org/10.1109/ICPPW.2006.41
http://dx.doi.org/10.1145/2080.357392
http://dx.doi.org/10.1145/139669.140382
http://dx.doi.org/10.1109/NCA.2012.30
http://dx.doi.org/10.1145/2737166.2737179
http://dx.doi.org/10.1109/MCSA.1999.749281
http://dx.doi.org/10.1109/LCN.2004.38
http://dx.doi.org/10.1109/ICDCS.2003.1203451
http://dx.doi.org/10.1145/313451.313529
http://dx.doi.org/10.1007/s11276-015-0894-3
http://dx.doi.org/10.1016/S1389-1286(03)00212-3
http://dx.doi.org/10.1007/s11036-005-4443-7
http://dx.doi.org/10.1145/2489253.2489260
http://dx.doi.org/10.1109/TNET.2012.2229716
http://dx.doi.org/10.1109/ICDCSW.2002.1030829
http://dx.doi.org/10.1109/TC.2012.31
http://dx.doi.org/10.1145/1402521.1402526
http://dx.doi.org/10.1109/PIMRC.2005.1651554
http://dx.doi.org/10.1145/781131.781133
http://dx.doi.org/10.1145/1094855.1094908

Ramachandran et al. Page 16 of 16

active volcano. Internet Computing, IEEE 10(2), 18–25 (2006).
doi:10.1109/MIC.2006.26

36. Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.:
An analysis of a large scale habitat monitoring application. In: 2nd
Int. Conf. on Embedded Networked Sensor Systems. SenSys ’04,
pp. 214–226 (2004). doi:10.1145/1031495.1031521

37. Logos Electromechanical: Zigduino Manual. (2014). Logos
Electromechanical. Rev. 2

38. Texas Instruments: CC2420 Datasheet. (2014). Texas Instruments
39. Polastre, J., Hill, J., Culler, D.: Versatile low power media access

for wireless sensor networks. In: 2nd Int. Conf. on Embedded

Networked Sensor Systems. SenSys ’04, pp. 95–107. ACM, New
York, NY, USA (2004). doi:10.1145/1031495.1031508

40. Atmel Corporation: ATmega128RFA1 Datasheet. (2012). Atmel
Corporation

41. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: A short
preamble MAC protocol for duty-cycled wireless sensor networks. In:
4th Int. Conf. on Embedded Networked Sensor Systems, pp.
307–320 (2006). doi:10.1145/1182807.1182838

42. Seeedstudio: Shield Bot. (2014). Seeedstudio.
http://www.seeedstudio.com/wiki/Shield_Bot

http://dx.doi.org/10.1109/MIC.2006.26
http://dx.doi.org/10.1145/1031495.1031521
http://dx.doi.org/10.1145/1031495.1031508
http://dx.doi.org/10.1145/1182807.1182838
http://www.seeedstudio.com/wiki/Shield_Bot

	Abstract
	Introduction
	Related Work
	Data Aggregation Schemes
	Application Dependent Data Aggregation
	Application Independent Data Aggregation

	Remote Component Binding Models
	 Opportunities for Data Aggregation

	The Hitch Hiker 2.0 Binding Model
	The Loosely-coupled Component Infrastructure
	Prioritised Bindings
	Component Model Probe Extracts Network Data
	Hitch Medium Access Control (MAC) Protocol
	Hiker Network Protocol

	Infrastructure Hitch Hiker
	Ad-Hoc Hitch Hiker
	Route Errors and Maintenance
	Impact of reconfiguration

	Case Study Applications
	Smart Office Application
	Mobile Robot Application
	Node Health Monitoring Application

	Implementation and Evaluation
	OMNET++ Simulation Results
	Zigduino/Contiki Implementation Results

	Conclusions and Future Work

