
Experiments with Relational Neural Networks

Werner Uwents werner.uwents�
s.kuleuven.a
.be

Hendrik Blo
keel hendrik.blo
keel�
s.kuleuven.a
.be

Department of Computer S
ien
e, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstra
t

The fundamental di�eren
e between proposi-

tional and relational learners is the ability to

handle sets. Most
urrent relational learners

handle sets either by aggregating over them

or by testing the o

urren
e of elements with

spe
i�
 properties, but a non-trivial
ombin-

ation of both remains a
hallenge. In this

paper, we present a neural network approa
h

to solve relational learning tasks. These re-

lational neural networks are in prin
iple able

to make su
h a
ombination. We will dis
uss

some experiments that we
ondu
ted to test

the
apa
ity of our approa
h.

1. Introdu
tion

Neural networks have been applied to solve many dif-

ferent learning tasks, but their use is still limited to

relatively simple data types. Feedforward neural net-

works, for example, only deal with propositional data,

where ea
h tuple
onsists of a �xed-size ve
tor of real

values. Re
urrent networks are able to pro
ess se-

quen
es. However, few attempts have been made to

extend the data domain of neural networks beyond this

point. Allowing di�erent types of relations in the data-

set and relationships between tuples would be a power-

ful extension. We will present an approa
h, based on

standard neural networks, to learn
on
epts over su
h

relational data.

The most fundamental di�eren
e between proposi-

tional and relational learning is the ability to handle

sets. These sets are the result of following one-to-many

and many-to-many relationships in the dataset. Some

approa
hes to deal with these sets already exist, but

they are often biased as will be explained in the next

se
tion. There are also some approa
hes, based on

neural networks, that deal with problems very similar

to the relational learning task.

The existing work that is probably
losest to our ap-

proa
h, is a line of work in the neural networks
om-

munity on learning from stru
tured data using re
urs-

ive neural networks or folding ar
hite
ture networks

(Goller & K�u
hler, 1996; Sperduti & Starita, 1997;

Fras
oni et al., 1998). These authors des
ribe how to

learn from stru
tured data (e.g. logi
al terms, trees,

graphs) and dis
uss tasks like the identi�
ation of sub-

stru
tures. Those tasks relate to the tasks we
on-

sider, more or less as indu
tive logi
 programming

(ILP) relates to our approa
h and some existing results

on learnability of re
ursive neural networks may
arry

over to our setting. However, they do not spe
i�
ally

onsider the problem of learning aggregate fun
tions

over sets and the problem of di�erent types of data.

They also fo
us on learning in graph stru
tures instead

of learning in relational databases.

There has also been some resear
h in using neural

networks for multi-instan
e problems (Ramon &

De Raedt, 2000). These problems
an be seen as a

spe
ial
ase of relational learning be
ause they deal

with learning over a single set. If one instan
e in the

set is positive, the sample as a whole will be
lassi�ed

as positive. The basi
 idea behind multi-instan
e net-

works is to use a feedforward network to feed all the

instan
es into and to
ombine all the results with an

aggregation fun
tion, namely the maximum fun
tion.

Neural logi
 programs (Ramon et al., 2002) are also

somewhat similar to our relational neural networks,

with as main di�eren
es that they are des
ribed in a

�rst order logi
 framework and that, just like for multi-

instan
e neural networks, spe
i�
 aggregate fun
tions

are en
oded in advan
e by the user, instead of learned.

Typi
ally, they represent logi
al
onjun
tions and dis-

jun
tions.

Our approa
h is also based on neural networks, but it

is oriented spe
i�
ally towards relational data domains

and it does not rely on prede�ned aggregate fun
tions

or
on
epts. We believe that from the point of view

of relational learning, the ability to learn aggregate

fun
tions is a
ru
ial advantage of this approa
h.

In the next se
tion, we will dis
uss the di�eren
e

Customer

1

2

Order

1

2

3

4

5

Figure 1. Example of a relational dataset.

between sele
tion and aggregation over sets. Se
tion

3 gives a de�nition of the stru
ture and training of

relational neural networks. The results of some exper-

iments with these networks will be presented in se
tion

4. We end with some
on
lusions about the presented

approa
h in se
tion 5.

2. Combining Sele
tion and

Aggregation

The learning task that we are
onsidering, is a rela-

tional learning task. This means that we have a data-

set with a number of di�erent relations. For ea
h rela-

tion, a set of tuples is given. Ea
h tuple has a number

of attribute values and
an also have relationships with

other tuples. We want to
lassify all tuples belonging

to some target relation R

T

, based on their own attrib-

ute values and the attribute values of related tuples.

The spe
i�
 problem that arises in relational datasets,

is how to deal with sets. These sets are the result

of one-to-many or many-to-many relationships. An

example dataset
ontaining the relations
ustomer and

order is given in �gure 2. Customer tuples
an be

linked to a number of order tuples. These linked tuples

form a set. The �rst
ustomer is linked to two orders,

the se
ond to three, so the number of tuples in these

sets
an vary. This is the reason why we
an not redu
e

this dataset to a propositional dataset.

Relational learners
an be divided into two
ategor-

ies, depending on how they handle one-to-many and

many-to-many relationships, or, equivalently, how

they handle sets of tuples (Blo
keel & Bruynooghe,

2003). Most
urrent relational learners are restri
ted

to one of these
ategories. This imposes a signi�
ant,

possibly undesirable bias on these learners.

Methods in the �rst
ategory, sele
tive methods,

handle sets by looking at properties of their elements.

A set S is examined by testing a
ondition of the form

9x 2 S : P (x). This P (x)
an be a
ompli
ated
ri-

terium, but it only
onsiders the attributes of a single

tuple. Using this method, we
an learn a
on
ept like

`people with at least one son'.

Aggregating methods, the se
ond
ategory,
ompute a

fun
tion F (S) over a set S of tuples. This redu
es the

set to a single value. One example of su
h a fun
tion is

the
ardinality fun
tion that simply
ounts the number

of elements in the set. With su
h a fun
tion, we
ould

express a
on
ept like `people with two
hildren'.

Many approa
hes to relational learning rely on some

kind of propositionalization of the relational data. On

the resulting propositional dataset, a propositional

learner
an be used. An example of this is the RE-

LAGGS system (Krogel & Wrobel, 2001). The pro-

positional data is extended with some extra attrib-

utes, whi
h are the result of evaluating prede�ned ag-

gregate fun
tions over the related data. This method,

however,
annot learn unde�ned aggregate fun
tions.

How
ombinations of aggregation and sele
tion
ould

be learned, is not explained by the authors.

This is a problem when we want to express a
on
ept

like `people with two sons'. This
on
ept
learly
om-

bines aggregation and sele
tion: we have to sele
t all

males from the set of
hildren and then
ount them

to
he
k this
riterium. Other
on
epts may require

di�erent kinds of
ombinations of sele
tion and aggreg-

ation. As aggregation and sele
tion are both very nat-

ural operations, a relational learning system should be

able to
ombine both in the models it builds. However,

these
ombinations
an be quite
ompli
ated and di-

verse, and they may depend on the stru
ture of the

dataset and the relations in it.

For instan
e, probabilisti
 relational models (PRMs),

as de�ned by (Getoor et al., 2001),
annot learn the

on
ept of `people having two sons' without having

separate relations for sons and daughters. Manually

introdu
ing these separate relations of
ourse presup-

poses that the user is aware of the possible importan
e

of these
on
epts. Alternatively, one
ould prede�ne

a large number of aggregate fun
tions that have ap-

propriate sele
tion
onditions built in. In that
ase,

a sear
h through a spa
e of aggregate fun
tions is

needed. The power of this approa
h largely depends

on whi
h aggregate fun
tions are de�ned.

In indu
tive logi
 programming (ILP), one
ould for

instan
e de�ne aggregate fun
tions as ba
kground

knowledge. Then, e.g., the rule p(X) :-
ount(Y,

(
hild(X,Y), male(Y)), 2) expresses the
on
ept

of people having two sons. The main diÆ
ulty here

is that the se
ond argument of the
ount metapre-

di
ate is itself a query that is the result of a sear
h

through some hypothesis spa
e. It is not obvious how

su
h a sear
h should be
ondu
ted. The many results

in ILP on how to sear
h a �rst-order hypothesis spa
e

eÆ
iently (Nienhuys-Cheng & De Wolf, 1997), do not

onsider the
ase where the resulting hypothesis will

be used as the argument of a metapredi
ate.

ILP-like approa
hes that do not in
lude aggregate

fun
tions,
an still express the
on
ept as, e.g., `the

person has a male
hild x and a male
hild y and x 6= y

and there does not exist a
hild z su
h that z is male

and z 6= x and z 6= y'. But in pra
ti
e, the length of

this rule, as well as the o

urren
e of a negation, make

it diÆ
ult to learn. The
omprehensibility of the result

is also negatively in
uen
ed.

Knobbe et al. (2002) are, to our knowledge, the �rst

to present a method that performs a systemati
 sear
h

in a hypothesis spa
e (in this
ase, that of `sele
tion

graphs') where hypotheses
ombine aggregation and

sele
tion. Their approa
h is however limited to mono-

tone aggregate fun
tions, whi
h limits its appli
abil-

ity somewhat (for instan
e, sum and average are not

monotone), and to sele
ting aggregate fun
tions from

a limited set given by the user.

Our relational neural networks would have as advant-

age over the other approa
hes that they
an learn an

aggregate fun
tion, without that fun
tion being pre-

de�ned and with sele
tion possibly integrated in it.

Training the relational neural network automati
ally

onstitutes a sear
h through aggregations and sele
-

tions simultaneously.

3. Relational Neural Networks

Assume that we have a dataset with a target relation

R

T

and some other relations R

1

; : : : ; R

N

. We denote

the attribute sets of R

i

by U

i

. For any relation R, we

de�ne

� S

1

(R): R

i

2 S

1

(R) i� ea
h tuple t 2 R is
onne
-

ted to exa
tly one tuple in R

i

. This means R has

a one-to-one or many-to-one relationship with R

i

,

in whi
h R parti
ipates
ompletely.

� S

01

(R): R

i

2 S

01

(R) i� ea
h tuple t 2 R is
on-

ne
ted to at most one tuple in R

i

. This is, again,

a one-to-one or many-to-one relationship between

R and R

i

, but now with partial parti
ipation.

� S

N

(R): R

i

2 S

N

(R) i� ea
h tuple t 2 R is
on-

ne
ted to zero, one or more tuples in R

i

. This

is a one-to-many or many-to-many relationship

between R and R

i

, with
omplete or partial par-

ti
ipation.

� S

U

(R): R

i

2 S

U

(R) i� R

i

is a relation of the

relational dataset, but not in S

1

(R), S

01

(R) or

S

N

(R). This means R is not dire
tly
onne
ted

to R

i

.

Given a tuple t 2 R

T

, we want to
lassify it based

on the information
ontained in the tuple and in any

tuples linked to this tuple. For a relation R

i

, we use

U

i

to denote the original attribute set of that relation.

All attributes in U

i

must be real values, as this is the

only type of input a neural network
an pro
ess. Other

types of attributes need to be
onverted to real values

�rst. We use I

i

to denote the attribute set a
tually

used as input to our neural network. One might expe
t

that I

i

= U

i

, but there will be some small di�eren
es:

� For R

T

, the target relation, I

T

= U

T

�fCg, where

C is the
lass attribute.

� For any R

i

2 S

01

(R), there
an be a tuple t 2

R for whi
h there exists no tuple s 2 R

i

that t

is dire
tly
onne
ted to. As neural networks do

not have a distinguished en
oding for null values,

we will use an extra attribute E

i

that indi
ates

whether the link to R

i

yielded a tuple or not. I

i

=

U

i

[fE

i

g.

� The same problem arises for R

i

2 S

N

(R), so here

also I

i

= U

i

[fE

i

g.

Based on the above, we
an
onstru
t a relational

neural network that
lassi�es t 2 R

T

based on its own

attribute values as well as those of related tuples. For

ea
h tuple t 2 R

T

, we
onstru
t a tuple t

0

with attrib-

utes

I

T

[(

[

i:R

i

2S

1

(R

T

)[S

01

(R

T

)

O

1i

) [(

[

i:R

i

2S

N

(R

T

)

O

Ni

)

with I

i

as de�ned above, O

1i

a set of attributes that

are the output values of a feedforward neural network

taking I

i

as input values and O

Ni

a set of attributes

that are the output values of a re
urrent neural net-

work taking I

i

as input values. This tuple t

0

has then

a �xed set of attributes whi
h
an be used to feed into

a feedforward neural network. The output of this net-

work gives us the �nal result of our
lassi�er.

In the des
ribed approa
h, sets resulting from rela-

tions in S

N

(R

T

) are pro
essed using re
urrent neural

networks. These networks are able to pro
ess tuple se-

quen
es of inde�nite length. However, we are present-

ing the tuples to the network in some imposed order

while the sets are a
tually unordered. As we will see,

this fa
t
an be exploited in training the network.

b b

b b

Figure 2. Example of the stru
ture of a relational neural

network.

The pre
ise stru
ture of the di�erent neural networks

in our
lassi�er must be de�ned now. We take both

the feedforward and re
urrent networks to have two

layers. The ideal number of neurons in ea
h layer needs

to be tuned by
ondu
ting experiments, there is no

straightforward rule to determine this.

For the re
urrent networks, we also have to de�ne

whi
h re
urrent
onne
tions are allowed. The most

expressive re
urrent network is a fully
onne
ted net-

work in whi
h ea
h neuron has
onne
tions with all

other neurons. But as this makes the number of
on-

ne
tions in
rease quadrati
ally when the number of

neurons in
reases, we prefer the Jordan re
urrent net-

work (Jordan, 1986).

In this kind of re
urrent network, ea
h neuron in the

se
ond layer is
onne
ted with all neurons in the �rst

layer. The number of re
urrent
onne
tions is then

n

1

� n

2

, with n

1

and n

2

the number of neurons in

the �rst and se
ond layer respe
tively. This gives us a

good trade-o� between expressiveness and the number

of neurons and
onne
tions in the network.

A small example of a relational network is given in

�gure 3. The two attributes of the target relation are

fed into the feedforward part of the network (white

neurons). The two attributes of the tuples of another

relation, linked to the target relation, are fed into the

re
urrent part of the network (bla
k neurons). The

output of this re
urrent part is used as extra input to

the feedforward part.

The te
hnique of adding to t the O

1i

and O

Ni

attrib-

utes that summarize related tuples,
an be repeated

for those tuples, thus also in
orporating information

in indire
tly linked tuples. In the end, this yields a

hierar
hi
al stru
ture where ea
h node is a neural net-

work that takes the attributes of a relation and the

outputs of its
hildren as input and propagates the

result to its parent node.

Training this relational neural network
an be done

with an adapted form of the standard ba
kpropaga-

tion algorithm. The feedforward neural networks

in the relational network are trained with standard

ba
kpropagation. The re
urrent networks are trained

with ba
kpropagation through time (BPTT) (Werbos,

1990). The key idea to BPTT is the unfolding of the

re
urrent network into a feedforward network.

As many folds (
opies of the original network) are

reated as there are instan
es in the input sequen
e

and re
urrent
onne
tions are
onverted into feedfor-

ward
onne
tions between su

essive folds. The result-

ing feedforward network is trained using the standard

ba
kpropagation algorithm, but with one important

restri
tion: sin
e all folds have been
reated by repli
-

ating the original network, weights in all folds should

be the same.

The fa
t that sets are fed into the re
urrent network

in some imposed order,
an be used to improve our

training algorithm. This
an be done by reshu�ing

the sequen
e and presenting the set to the re
urrent

network in a di�erent order. Two possibilities
an be

onsidered: reshu�ing after every training iteration

and expanding the training set by adding reshu�ed

opies of the initial instan
es.

4. Experiments

To evaluate this approa
h, we have performed exper-

iments on the musk and trains datasets. The musk

dataset, available from UCI (Merz & Murphy, 1996),

is an example of a multi-instan
e learning task. As

mentioned above, this
an be seen as a spe
ial
ase

of relational learning. In this dataset, ea
h example

des
ribes a mole
ule. For ea
h example, several poses

(instan
es) are given, ea
h with 166 attributes. If at

least one of these poses has some property, the mo-

le
ule is said to be musk.

There are two versions of this dataset, musk 1,
on-

taining 92 mole
ules, and musk 2,
ontaining 102 mo-

le
ules, whi
h di�er in size. Musk 2 has more
on-

formations per mole
ule than musk 1. Several learning

approa
hes have been
ompared on this dataset (Diet-

teri
h et al., 1997). To be able to
ompare our results

with these results, we
ondu
t our experiments in the

same setting, namely ten-fold
ross-validation.

Overall results are summarized in table 1 (results for

multi-instan
e neural networks
ome from Ramon and

De Raedt (2000), other results from Dietteri
h et al.

(1997)). The tangent distan
e and dynami
 reposing

Table 1. Classi�
ation a

ura
ies on the musk dataset.

method musk 1 musk 2

iterated-dis
rim APR 92.4% 89.2%

GFS elim-kde APR 91.3% 80.4%

GFS elim-
ount APR 90.2% 75.5%

GFS all-positive APR 83.7% 66.7%

all-positive APR 80.4% 72.6%

simple ba
kpropagation 75.0% 67.7%

multi-instan
e neural networks 88.0% 82.0%

C4.5 68.5% 58.8%

1-nearest neighbor (eu
lidean distan
e) / 75%

neural network (standard poses) / 75%

1-nearest neighbor (tangent distan
e) / 79%

neural network (dynami
 reposing) / 91%

relational neural networks 89.1% 85.3%

Table 2. Training
on�gurations for the musk dataset (n

1

= number of neurons in �rst layer of the re
urrent
omponent,

n

2

= number of neurons in se
ond layer of the re
urrent
omponent, � = learning rate, � = momentum term).

dataset n

1

n

2

� � reshu�e iterations a

ura
y

1 musk 1 50 10 0.5 0.2 every it. 190 84.8%

2 musk 1 50 10 0.5 0.2 none 110 88.0%

3 musk 1 50 10 0.5 0.2 30
opies 10 89.1%

4 musk 2 80 20 0.5 0.2 every it. 40 76.5%

5 musk 2 80 20 0.5 0.2 none 240 85.3%

6 musk 2 40 15 0.5 0.2 none 50 77.5%

7 musk 2 40 15 0.5 0.2 5
opies 20 80.4%

te
hnique require
omputation of the mole
ular sur-

fa
e, whi
h
annot be done using the feature ve
tors

in
luded in the dataset. A
omparison of di�erent
on-

�gurations for the relational neural networks, is shown

in table 2.

These results show that relational neural networks are

performing quite well. They give results that are a lot

better than simple ba
kpropagation and even better

than multi-instan
e neural networks. The latter
an

only be the result of better parameters be
ause the hy-

pothesis spa
e sear
hed by relational neural networks,

H

RNN

, is a superset of the hypothesis spa
e H

MINN

sear
hed by multi-instan
e neural networks. This

means that the hypothesis in H

RNN

that best approx-

imates the target hypothesis, must also be in H

MINN

.

The a

ura
y of iterated-dis
rim axis-parallell re
t-

angles (iterated-dis
rim APR), the best method, is still

signi�
antly higher, but this method is spe
i�
ally de-

signed for this kind of problems.

When we look at the di�eren
es between di�erent
on-

�gurations for training the relational neural networks,

we see that reshu�ing the training data after every

iteration gives poor results. However, expanding the

training set with reshu�ed
opies does improve train-

ing. Although the training set be
omes larger, the a
-

ura
y is better and the ne
essary number of iterations

is redu
ed. It also helps to avoid over�tting.

Figure 3 shows us why reshu�ing after every itera-

tion is not working well. Reshu�ing after every iter-

ation a
tually
hanges the training set
ontinuously.

This means that the error fun
tion also
hanges
on-

tinuously, and what was the gradient in the previous

iteration may be unrelated to the gradient in this it-

eration. This makes it diÆ
ult for the ba
kpropaga-

tion algorithm to
onverge. The mean square error on

training and test set is very jagged in this
ase (see

�gure 4(a)). This is not the
ase for adding reshu�ed

opies to the training set (see �gure 4(b)). Adding

reshu�ed
opies has a similar e�e
t as enlarging the

dataset with new samples.

Figure 3. Mean square error (MSE) for training and test set in fun
tion of the number of training iterations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000

M
S

E

iterations

Training Error
Test Error

(a) With reshu�ing after every iteration.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000

M
S

E

iterations

Training Error
Test Error

(b) With adding reshu�ed
opies.

Table 3. A

ura
ies on the trains dataset,
omparing relational neural networks with �rst order de
ision trees using

random forrests (RNN 1 is without reshu�ing, RNN 2 is with reshu�ed
opies).

dataset
on
ept samples noise RNN 1 RNN 2 FORF

trains 1 simple 100 none 80% 95% 100.0%

trains 2 simple 100 5% 78% 89% 92.8%

trains 3 simple 1000 none 100% 100% 100.0%

trains 4
omplex 800 none 89.4% 97.8% 96.1%

trains 5
omplex 800 5% 84.5% 89.8% 90.3%

The se
ond tested dataset is the train dataset based on

the Mi
halski train problem. This problem was inven-

ted by Ryszard Mi
halski around 25 years ago (Mi
hal-

ski, 1980). The aim is to �nd a
on
ept whi
h ex-

plains why trains are travelling eastbound or west-

bound. Every train
onsists of a number of
ars,
arry-

ing some load. The
on
ept is based on the properties

of these
ars and their loads.

We used a generator for this train problem to
reate

a dataset (Mi
hie et al., 1994). Two di�erent
on-

epts are used for the generation, a simple and a more

ompli
ated. The simple
on
ept de�nes trains that

are eastbound as trains with at least two
ir
le loads,

the other trains are westbound. The more
ompli
-

ated
on
ept de�nes westbound trains as trains that

have more than seven wheels in total but not more

than one open
ar with a re
tangle load, or trains that

have more than one
ir
le load; the other trains are

eastbound.

First-order de
ision trees using random forests (Vens

et al., 2004) are another approa
h to ta
kle the prob-

lems
ombining sele
tion and aggregation. We
om-

pare our results with results obtained with the latter

method. A
omplete overview of the results is given

in tables 3 and 4. The used datasets are generated to

test di�erent settings: a simple versus a more
ompli
-

ated
on
ept and noise versus no noise. The tests were

done with �ve-fold
ross-validation.

What we see for the simple
on
ept (datasets 1,

2 and 3), is that 100 samples is not enough to

learn the
on
ept
ompletely. Taking a dataset with

1000 samples, however, we
an rea
h 100% a

ura
y.

Adding 5% noise results in an a

ura
y that is a little

more than 5% lower, so our
lassi�er seems to be rather

noise resistant.

For the more
ompli
ated
on
ept (datasets 4 and 5),

the results are quite similar to those for �rst-order de-

ision trees using random forests. The e�e
t of noise

is the same as for the simple
on
ept. For both the

simple and
ompli
ated
on
ept, there is a remark-

able di�eren
e between training without reshu�ing

and with added reshu�ed
opies.

Table 4. Training
on�gurations for the trains dataset (n

1

= number of neurons in �rst layer of the re
urrent
omponent,

n

2

= number of neurons in se
ond layer of the re
urrent
omponent, � = learning rate, � = momentum term).

dataset n

1

n

2

� � reshu�e iterations a

ura
y

trains 1 20 10 0.1 0.0 none 250 80%

trains 1 20 10 0.1 0.0 10
opies 100 95%

trains 2 20 10 0.1 0.0 none 300 78%

trains 2 20 10 0.1 0.0 20
opies 150 89%

trains 3 20 10 0.1 0.0 none 40 100%

trains 3 20 10 0.1 0.0 10
opies 10 100%

trains 4 60 40 0.2 0.1 none 300 89.4%

trains 4 60 40 0.2 0.1 20
opies 200 97.8%

trains 5 60 40 0.2 0.1 none 200 84.5%

trains 5 60 40 0.2 0.1 20
opies 130 89.8%

5. Con
lusions

We have presented a novel, neural network based

approa
h to relational learning. The approa
h
on-

sists of
onstru
ting a neural network that re
e
ts the

stru
ture of the relational dataset. This relational

neural network may
ontain both feedforward and re-

urrent parts. The training algorithm for this rela-

tional network is based on the standard ba
kpropaga-

tion (through time) algorithm.

Our approa
h was tested on two datasets. It turned

out that relational neural networks are performing

quite well
ompared with other methods. They
an

deal with noisy data and the expressive power of

Jordan re
urrent networks seems to be suÆ
ient to

learn the desired
on
epts.

While many open questions remain regarding the op-

timal ar
hite
ture of these relational neural networks,

their learning behaviour, the optimal learning method-

ology, et
etera, we did obtain a �rst important result

from these experiments: the `
opy reshu�ing' method

to temove the e�e
t of set ordering is
learly super-

ior to the other reshu�ing method. Its e�e
ts in
lude

a higher �nal a

ura
y, less iterations needed to train

the network and redu
ing the risk of over�tting. These

advantages outweigh the disadvantage of having a lar-

ger training set.

A
knowledgements

Hendrik Blo
keel is a postdo
toral fellow of the Fund

for S
ienti�
 Resear
h of Flanders (FWO-Vlaanderen).

Werner Uwents is supported by IDO/03/006 `Develop-

ment of meaningful predi
tive models for
riti
al dis-

ease'. We thank Celine Vens for generating the train

dataset and obtaining results with �rst-order random

forests.

Referen
es

Blo
keel, H., & Bruynooghe, M. (2003). Aggregation

versus sele
tion bias, and relational neural networks.

IJCAI-2003 Workshop on Learning Statisti
al Mod-

els from Relational Data, SRL-2003, A
apul
o, Mex-

i
o, August 11, 2003.

Dietteri
h, T. G., Lathrop, R. H., & Lozano-P�erez, T.

(1997). Solving the multiple-instan
e problem with

axis-parallel re
tangles. Arti�
ial Intelligen
e, 89,

31{71.

Fras
oni, P., Gori, M., & Sperduti, A. (1998). A gen-

eral framework for adaptive pro
essing of data stru
-

tures. IEEE-NN, 9, 768{786.

Getoor, L., Friedman, N., Koller, D., & Pfe�er, A.

(2001). Learning Probabilisti
 Relational Models.

In S. Dzeroski and N. Lavra
 (Eds.), Relational data

mining, 307{334. Springer-Verlag.

Goller, C., & K�u
hler, A. (1996). Learning task-

dependent distributed representations by ba
k-

propagation through stru
ture. Pro
eedings of the

IEEE International Conferen
e on Neural Networks

(ICNN-96) (pp. 347{352).

Jordan, M. I. (1986). Attra
tor dynami
s and parallel-

ism in a
onne
tionist sequential ma
hine. Pro
eed-

ings of the Eighth Annual Conferen
e on Cognitive

S
ien
e (pp. 531{546).

Knobbe, A., Siebes, A., & Marseille, B. (2002).

Involving aggregate fun
tions in multi-relational

sear
h. Prin
iples of Data Mining and Knowledge

Dis
overy, Pro
eedings of the 6th European Confer-

en
e (pp. 287{298). Springer-Verlag.

Krogel, M.-A., & Wrobel, S. (2001). Transformation-

based learning using multi-relational aggregation.

Pro
eedings of the Eleventh International Confer-

en
e on Indu
tive Logi
 Programming (pp. 142{155).

Merz, C., & Murphy, P. (1996). UCI re-

pository of ma
hine learning databases

[http://www.i
s.u
i.edu/~mlearn/mlrepository.html℄.

Irvine, CA: University of California, Department of

Information and Computer S
ien
e.

Mi
halski, R. (1980). Pattern Re
ognition as Rule-

Guided Indu
tive Inferen
e. IEEE Transa
tions on

Pattern Analysis and Ma
hine Intelligen
e, 2, 349{

361.

Mi
hie, D., Muggleton, S., Page, D., & Srinivasan,

A. (1994). To the international
omputing
om-

munity: A new east-west
hallenge (Te
hni
al Re-

port). Oxford University Computing Laboratory,

Oxford, UK. Available at ftp.
omlab.ox.a
.uk.

Nienhuys-Cheng, S.-H., & De Wolf, R. (1997). Found-

ations of Indu
tive Logi
 Programming, vol. 1228

of Le
ture Notes in Computer S
ien
e and Le
ture

Notes in Arti�
ial Intelligen
e. New York, NY,

USA: Springer-Verlag.

Ramon, J., & De Raedt, L. (2000). Multi in-

stan
e neural networks. Pro
eedings of the ICML-

Workshop on Attribute-Value and Relational Learn-

ing.

Ramon, J., Driessens, K., & Demoen,

B. (2002). Neural logi
 programs.

http://www.
s.kuleuven.a
.be/~janr/nlpte
hrep.ps,

to be published as a te
hni
al report.

Sperduti, A., & Starita, A. (1997). Supervised neural

networks for the
lassi�
ation of stru
tures. IEEE

Transa
tions on Neural Networks, 8, 714{735.

Vens, C., Van Ass
he, A., Blo
keel, H., & D�zeroski, S.

(2004). First order random forests with
omplex ag-

gregates. Pro
eedings of the 14th International Con-

feren
e on Indu
tive Logi
 Programming (pp. 323{

340). Springer.

Werbos, P. J. (1990). Ba
k propagation through time:

What it does and how to do it. Pro
eedings of the

IEEE (pp. 1550{1560).

