
Experiments with Relational Neural Networks

Werner Uwents werner.uwents�s.kuleuven.a.be

Hendrik Blokeel hendrik.blokeel�s.kuleuven.a.be

Department of Computer Siene, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstrat

The fundamental di�erene between proposi-

tional and relational learners is the ability to

handle sets. Most urrent relational learners

handle sets either by aggregating over them

or by testing the ourrene of elements with

spei� properties, but a non-trivial ombin-

ation of both remains a hallenge. In this

paper, we present a neural network approah

to solve relational learning tasks. These re-

lational neural networks are in priniple able

to make suh a ombination. We will disuss

some experiments that we onduted to test

the apaity of our approah.

1. Introdution

Neural networks have been applied to solve many dif-

ferent learning tasks, but their use is still limited to

relatively simple data types. Feedforward neural net-

works, for example, only deal with propositional data,

where eah tuple onsists of a �xed-size vetor of real

values. Reurrent networks are able to proess se-

quenes. However, few attempts have been made to

extend the data domain of neural networks beyond this

point. Allowing di�erent types of relations in the data-

set and relationships between tuples would be a power-

ful extension. We will present an approah, based on

standard neural networks, to learn onepts over suh

relational data.

The most fundamental di�erene between proposi-

tional and relational learning is the ability to handle

sets. These sets are the result of following one-to-many

and many-to-many relationships in the dataset. Some

approahes to deal with these sets already exist, but

they are often biased as will be explained in the next

setion. There are also some approahes, based on

neural networks, that deal with problems very similar

to the relational learning task.

The existing work that is probably losest to our ap-

proah, is a line of work in the neural networks om-

munity on learning from strutured data using reurs-

ive neural networks or folding arhiteture networks

(Goller & K�uhler, 1996; Sperduti & Starita, 1997;

Frasoni et al., 1998). These authors desribe how to

learn from strutured data (e.g. logial terms, trees,

graphs) and disuss tasks like the identi�ation of sub-

strutures. Those tasks relate to the tasks we on-

sider, more or less as indutive logi programming

(ILP) relates to our approah and some existing results

on learnability of reursive neural networks may arry

over to our setting. However, they do not spei�ally

onsider the problem of learning aggregate funtions

over sets and the problem of di�erent types of data.

They also fous on learning in graph strutures instead

of learning in relational databases.

There has also been some researh in using neural

networks for multi-instane problems (Ramon &

De Raedt, 2000). These problems an be seen as a

speial ase of relational learning beause they deal

with learning over a single set. If one instane in the

set is positive, the sample as a whole will be lassi�ed

as positive. The basi idea behind multi-instane net-

works is to use a feedforward network to feed all the

instanes into and to ombine all the results with an

aggregation funtion, namely the maximum funtion.

Neural logi programs (Ramon et al., 2002) are also

somewhat similar to our relational neural networks,

with as main di�erenes that they are desribed in a

�rst order logi framework and that, just like for multi-

instane neural networks, spei� aggregate funtions

are enoded in advane by the user, instead of learned.

Typially, they represent logial onjuntions and dis-

juntions.

Our approah is also based on neural networks, but it

is oriented spei�ally towards relational data domains

and it does not rely on prede�ned aggregate funtions

or onepts. We believe that from the point of view

of relational learning, the ability to learn aggregate

funtions is a ruial advantage of this approah.

In the next setion, we will disuss the di�erene

Customer

1

2

Order

1

2

3

4

5

Figure 1. Example of a relational dataset.

between seletion and aggregation over sets. Setion

3 gives a de�nition of the struture and training of

relational neural networks. The results of some exper-

iments with these networks will be presented in setion

4. We end with some onlusions about the presented

approah in setion 5.

2. Combining Seletion and

Aggregation

The learning task that we are onsidering, is a rela-

tional learning task. This means that we have a data-

set with a number of di�erent relations. For eah rela-

tion, a set of tuples is given. Eah tuple has a number

of attribute values and an also have relationships with

other tuples. We want to lassify all tuples belonging

to some target relation R

T

, based on their own attrib-

ute values and the attribute values of related tuples.

The spei� problem that arises in relational datasets,

is how to deal with sets. These sets are the result

of one-to-many or many-to-many relationships. An

example dataset ontaining the relations ustomer and

order is given in �gure 2. Customer tuples an be

linked to a number of order tuples. These linked tuples

form a set. The �rst ustomer is linked to two orders,

the seond to three, so the number of tuples in these

sets an vary. This is the reason why we an not redue

this dataset to a propositional dataset.

Relational learners an be divided into two ategor-

ies, depending on how they handle one-to-many and

many-to-many relationships, or, equivalently, how

they handle sets of tuples (Blokeel & Bruynooghe,

2003). Most urrent relational learners are restrited

to one of these ategories. This imposes a signi�ant,

possibly undesirable bias on these learners.

Methods in the �rst ategory, seletive methods,

handle sets by looking at properties of their elements.

A set S is examined by testing a ondition of the form

9x 2 S : P (x). This P (x) an be a ompliated ri-

terium, but it only onsiders the attributes of a single

tuple. Using this method, we an learn a onept like

`people with at least one son'.

Aggregating methods, the seond ategory, ompute a

funtion F (S) over a set S of tuples. This redues the

set to a single value. One example of suh a funtion is

the ardinality funtion that simply ounts the number

of elements in the set. With suh a funtion, we ould

express a onept like `people with two hildren'.

Many approahes to relational learning rely on some

kind of propositionalization of the relational data. On

the resulting propositional dataset, a propositional

learner an be used. An example of this is the RE-

LAGGS system (Krogel & Wrobel, 2001). The pro-

positional data is extended with some extra attrib-

utes, whih are the result of evaluating prede�ned ag-

gregate funtions over the related data. This method,

however, annot learn unde�ned aggregate funtions.

How ombinations of aggregation and seletion ould

be learned, is not explained by the authors.

This is a problem when we want to express a onept

like `people with two sons'. This onept learly om-

bines aggregation and seletion: we have to selet all

males from the set of hildren and then ount them

to hek this riterium. Other onepts may require

di�erent kinds of ombinations of seletion and aggreg-

ation. As aggregation and seletion are both very nat-

ural operations, a relational learning system should be

able to ombine both in the models it builds. However,

these ombinations an be quite ompliated and di-

verse, and they may depend on the struture of the

dataset and the relations in it.

For instane, probabilisti relational models (PRMs),

as de�ned by (Getoor et al., 2001), annot learn the

onept of `people having two sons' without having

separate relations for sons and daughters. Manually

introduing these separate relations of ourse presup-

poses that the user is aware of the possible importane

of these onepts. Alternatively, one ould prede�ne

a large number of aggregate funtions that have ap-

propriate seletion onditions built in. In that ase,

a searh through a spae of aggregate funtions is

needed. The power of this approah largely depends

on whih aggregate funtions are de�ned.

In indutive logi programming (ILP), one ould for

instane de�ne aggregate funtions as bakground

knowledge. Then, e.g., the rule p(X) :- ount(Y,

(hild(X,Y), male(Y)), 2) expresses the onept

of people having two sons. The main diÆulty here

is that the seond argument of the ount metapre-

diate is itself a query that is the result of a searh

through some hypothesis spae. It is not obvious how

suh a searh should be onduted. The many results

in ILP on how to searh a �rst-order hypothesis spae

eÆiently (Nienhuys-Cheng & De Wolf, 1997), do not

onsider the ase where the resulting hypothesis will

be used as the argument of a metaprediate.

ILP-like approahes that do not inlude aggregate

funtions, an still express the onept as, e.g., `the

person has a male hild x and a male hild y and x 6= y

and there does not exist a hild z suh that z is male

and z 6= x and z 6= y'. But in pratie, the length of

this rule, as well as the ourrene of a negation, make

it diÆult to learn. The omprehensibility of the result

is also negatively inuened.

Knobbe et al. (2002) are, to our knowledge, the �rst

to present a method that performs a systemati searh

in a hypothesis spae (in this ase, that of `seletion

graphs') where hypotheses ombine aggregation and

seletion. Their approah is however limited to mono-

tone aggregate funtions, whih limits its appliabil-

ity somewhat (for instane, sum and average are not

monotone), and to seleting aggregate funtions from

a limited set given by the user.

Our relational neural networks would have as advant-

age over the other approahes that they an learn an

aggregate funtion, without that funtion being pre-

de�ned and with seletion possibly integrated in it.

Training the relational neural network automatially

onstitutes a searh through aggregations and sele-

tions simultaneously.

3. Relational Neural Networks

Assume that we have a dataset with a target relation

R

T

and some other relations R

1

; : : : ; R

N

. We denote

the attribute sets of R

i

by U

i

. For any relation R, we

de�ne

� S

1

(R): R

i

2 S

1

(R) i� eah tuple t 2 R is onne-

ted to exatly one tuple in R

i

. This means R has

a one-to-one or many-to-one relationship with R

i

,

in whih R partiipates ompletely.

� S

01

(R): R

i

2 S

01

(R) i� eah tuple t 2 R is on-

neted to at most one tuple in R

i

. This is, again,

a one-to-one or many-to-one relationship between

R and R

i

, but now with partial partiipation.

� S

N

(R): R

i

2 S

N

(R) i� eah tuple t 2 R is on-

neted to zero, one or more tuples in R

i

. This

is a one-to-many or many-to-many relationship

between R and R

i

, with omplete or partial par-

tiipation.

� S

U

(R): R

i

2 S

U

(R) i� R

i

is a relation of the

relational dataset, but not in S

1

(R), S

01

(R) or

S

N

(R). This means R is not diretly onneted

to R

i

.

Given a tuple t 2 R

T

, we want to lassify it based

on the information ontained in the tuple and in any

tuples linked to this tuple. For a relation R

i

, we use

U

i

to denote the original attribute set of that relation.

All attributes in U

i

must be real values, as this is the

only type of input a neural network an proess. Other

types of attributes need to be onverted to real values

�rst. We use I

i

to denote the attribute set atually

used as input to our neural network. One might expet

that I

i

= U

i

, but there will be some small di�erenes:

� For R

T

, the target relation, I

T

= U

T

�fCg, where

C is the lass attribute.

� For any R

i

2 S

01

(R), there an be a tuple t 2

R for whih there exists no tuple s 2 R

i

that t

is diretly onneted to. As neural networks do

not have a distinguished enoding for null values,

we will use an extra attribute E

i

that indiates

whether the link to R

i

yielded a tuple or not. I

i

=

U

i

[fE

i

g.

� The same problem arises for R

i

2 S

N

(R), so here

also I

i

= U

i

[fE

i

g.

Based on the above, we an onstrut a relational

neural network that lassi�es t 2 R

T

based on its own

attribute values as well as those of related tuples. For

eah tuple t 2 R

T

, we onstrut a tuple t

0

with attrib-

utes

I

T

[(

[

i:R

i

2S

1

(R

T

)[S

01

(R

T

)

O

1i

) [(

[

i:R

i

2S

N

(R

T

)

O

Ni

)

with I

i

as de�ned above, O

1i

a set of attributes that

are the output values of a feedforward neural network

taking I

i

as input values and O

Ni

a set of attributes

that are the output values of a reurrent neural net-

work taking I

i

as input values. This tuple t

0

has then

a �xed set of attributes whih an be used to feed into

a feedforward neural network. The output of this net-

work gives us the �nal result of our lassi�er.

In the desribed approah, sets resulting from rela-

tions in S

N

(R

T

) are proessed using reurrent neural

networks. These networks are able to proess tuple se-

quenes of inde�nite length. However, we are present-

ing the tuples to the network in some imposed order

while the sets are atually unordered. As we will see,

this fat an be exploited in training the network.

b b

b b

Figure 2. Example of the struture of a relational neural

network.

The preise struture of the di�erent neural networks

in our lassi�er must be de�ned now. We take both

the feedforward and reurrent networks to have two

layers. The ideal number of neurons in eah layer needs

to be tuned by onduting experiments, there is no

straightforward rule to determine this.

For the reurrent networks, we also have to de�ne

whih reurrent onnetions are allowed. The most

expressive reurrent network is a fully onneted net-

work in whih eah neuron has onnetions with all

other neurons. But as this makes the number of on-

netions inrease quadratially when the number of

neurons inreases, we prefer the Jordan reurrent net-

work (Jordan, 1986).

In this kind of reurrent network, eah neuron in the

seond layer is onneted with all neurons in the �rst

layer. The number of reurrent onnetions is then

n

1

� n

2

, with n

1

and n

2

the number of neurons in

the �rst and seond layer respetively. This gives us a

good trade-o� between expressiveness and the number

of neurons and onnetions in the network.

A small example of a relational network is given in

�gure 3. The two attributes of the target relation are

fed into the feedforward part of the network (white

neurons). The two attributes of the tuples of another

relation, linked to the target relation, are fed into the

reurrent part of the network (blak neurons). The

output of this reurrent part is used as extra input to

the feedforward part.

The tehnique of adding to t the O

1i

and O

Ni

attrib-

utes that summarize related tuples, an be repeated

for those tuples, thus also inorporating information

in indiretly linked tuples. In the end, this yields a

hierarhial struture where eah node is a neural net-

work that takes the attributes of a relation and the

outputs of its hildren as input and propagates the

result to its parent node.

Training this relational neural network an be done

with an adapted form of the standard bakpropaga-

tion algorithm. The feedforward neural networks

in the relational network are trained with standard

bakpropagation. The reurrent networks are trained

with bakpropagation through time (BPTT) (Werbos,

1990). The key idea to BPTT is the unfolding of the

reurrent network into a feedforward network.

As many folds (opies of the original network) are

reated as there are instanes in the input sequene

and reurrent onnetions are onverted into feedfor-

ward onnetions between suessive folds. The result-

ing feedforward network is trained using the standard

bakpropagation algorithm, but with one important

restrition: sine all folds have been reated by repli-

ating the original network, weights in all folds should

be the same.

The fat that sets are fed into the reurrent network

in some imposed order, an be used to improve our

training algorithm. This an be done by reshu�ing

the sequene and presenting the set to the reurrent

network in a di�erent order. Two possibilities an be

onsidered: reshu�ing after every training iteration

and expanding the training set by adding reshu�ed

opies of the initial instanes.

4. Experiments

To evaluate this approah, we have performed exper-

iments on the musk and trains datasets. The musk

dataset, available from UCI (Merz & Murphy, 1996),

is an example of a multi-instane learning task. As

mentioned above, this an be seen as a speial ase

of relational learning. In this dataset, eah example

desribes a moleule. For eah example, several poses

(instanes) are given, eah with 166 attributes. If at

least one of these poses has some property, the mo-

leule is said to be musk.

There are two versions of this dataset, musk 1, on-

taining 92 moleules, and musk 2, ontaining 102 mo-

leules, whih di�er in size. Musk 2 has more on-

formations per moleule than musk 1. Several learning

approahes have been ompared on this dataset (Diet-

terih et al., 1997). To be able to ompare our results

with these results, we ondut our experiments in the

same setting, namely ten-fold ross-validation.

Overall results are summarized in table 1 (results for

multi-instane neural networks ome from Ramon and

De Raedt (2000), other results from Dietterih et al.

(1997)). The tangent distane and dynami reposing

Table 1. Classi�ation auraies on the musk dataset.

method musk 1 musk 2

iterated-disrim APR 92.4% 89.2%

GFS elim-kde APR 91.3% 80.4%

GFS elim-ount APR 90.2% 75.5%

GFS all-positive APR 83.7% 66.7%

all-positive APR 80.4% 72.6%

simple bakpropagation 75.0% 67.7%

multi-instane neural networks 88.0% 82.0%

C4.5 68.5% 58.8%

1-nearest neighbor (eulidean distane) / 75%

neural network (standard poses) / 75%

1-nearest neighbor (tangent distane) / 79%

neural network (dynami reposing) / 91%

relational neural networks 89.1% 85.3%

Table 2. Training on�gurations for the musk dataset (n

1

= number of neurons in �rst layer of the reurrent omponent,

n

2

= number of neurons in seond layer of the reurrent omponent, � = learning rate, � = momentum term).

dataset n

1

n

2

� � reshu�e iterations auray

1 musk 1 50 10 0.5 0.2 every it. 190 84.8%

2 musk 1 50 10 0.5 0.2 none 110 88.0%

3 musk 1 50 10 0.5 0.2 30 opies 10 89.1%

4 musk 2 80 20 0.5 0.2 every it. 40 76.5%

5 musk 2 80 20 0.5 0.2 none 240 85.3%

6 musk 2 40 15 0.5 0.2 none 50 77.5%

7 musk 2 40 15 0.5 0.2 5 opies 20 80.4%

tehnique require omputation of the moleular sur-

fae, whih annot be done using the feature vetors

inluded in the dataset. A omparison of di�erent on-

�gurations for the relational neural networks, is shown

in table 2.

These results show that relational neural networks are

performing quite well. They give results that are a lot

better than simple bakpropagation and even better

than multi-instane neural networks. The latter an

only be the result of better parameters beause the hy-

pothesis spae searhed by relational neural networks,

H

RNN

, is a superset of the hypothesis spae H

MINN

searhed by multi-instane neural networks. This

means that the hypothesis in H

RNN

that best approx-

imates the target hypothesis, must also be in H

MINN

.

The auray of iterated-disrim axis-parallell ret-

angles (iterated-disrim APR), the best method, is still

signi�antly higher, but this method is spei�ally de-

signed for this kind of problems.

When we look at the di�erenes between di�erent on-

�gurations for training the relational neural networks,

we see that reshu�ing the training data after every

iteration gives poor results. However, expanding the

training set with reshu�ed opies does improve train-

ing. Although the training set beomes larger, the a-

uray is better and the neessary number of iterations

is redued. It also helps to avoid over�tting.

Figure 3 shows us why reshu�ing after every itera-

tion is not working well. Reshu�ing after every iter-

ation atually hanges the training set ontinuously.

This means that the error funtion also hanges on-

tinuously, and what was the gradient in the previous

iteration may be unrelated to the gradient in this it-

eration. This makes it diÆult for the bakpropaga-

tion algorithm to onverge. The mean square error on

training and test set is very jagged in this ase (see

�gure 4(a)). This is not the ase for adding reshu�ed

opies to the training set (see �gure 4(b)). Adding

reshu�ed opies has a similar e�et as enlarging the

dataset with new samples.

Figure 3. Mean square error (MSE) for training and test set in funtion of the number of training iterations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000

M
S

E

iterations

Training Error
Test Error

(a) With reshu�ing after every iteration.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000

M
S

E

iterations

Training Error
Test Error

(b) With adding reshu�ed opies.

Table 3. Auraies on the trains dataset, omparing relational neural networks with �rst order deision trees using

random forrests (RNN 1 is without reshu�ing, RNN 2 is with reshu�ed opies).

dataset onept samples noise RNN 1 RNN 2 FORF

trains 1 simple 100 none 80% 95% 100.0%

trains 2 simple 100 5% 78% 89% 92.8%

trains 3 simple 1000 none 100% 100% 100.0%

trains 4 omplex 800 none 89.4% 97.8% 96.1%

trains 5 omplex 800 5% 84.5% 89.8% 90.3%

The seond tested dataset is the train dataset based on

the Mihalski train problem. This problem was inven-

ted by Ryszard Mihalski around 25 years ago (Mihal-

ski, 1980). The aim is to �nd a onept whih ex-

plains why trains are travelling eastbound or west-

bound. Every train onsists of a number of ars, arry-

ing some load. The onept is based on the properties

of these ars and their loads.

We used a generator for this train problem to reate

a dataset (Mihie et al., 1994). Two di�erent on-

epts are used for the generation, a simple and a more

ompliated. The simple onept de�nes trains that

are eastbound as trains with at least two irle loads,

the other trains are westbound. The more ompli-

ated onept de�nes westbound trains as trains that

have more than seven wheels in total but not more

than one open ar with a retangle load, or trains that

have more than one irle load; the other trains are

eastbound.

First-order deision trees using random forests (Vens

et al., 2004) are another approah to takle the prob-

lems ombining seletion and aggregation. We om-

pare our results with results obtained with the latter

method. A omplete overview of the results is given

in tables 3 and 4. The used datasets are generated to

test di�erent settings: a simple versus a more ompli-

ated onept and noise versus no noise. The tests were

done with �ve-fold ross-validation.

What we see for the simple onept (datasets 1,

2 and 3), is that 100 samples is not enough to

learn the onept ompletely. Taking a dataset with

1000 samples, however, we an reah 100% auray.

Adding 5% noise results in an auray that is a little

more than 5% lower, so our lassi�er seems to be rather

noise resistant.

For the more ompliated onept (datasets 4 and 5),

the results are quite similar to those for �rst-order de-

ision trees using random forests. The e�et of noise

is the same as for the simple onept. For both the

simple and ompliated onept, there is a remark-

able di�erene between training without reshu�ing

and with added reshu�ed opies.

Table 4. Training on�gurations for the trains dataset (n

1

= number of neurons in �rst layer of the reurrent omponent,

n

2

= number of neurons in seond layer of the reurrent omponent, � = learning rate, � = momentum term).

dataset n

1

n

2

� � reshu�e iterations auray

trains 1 20 10 0.1 0.0 none 250 80%

trains 1 20 10 0.1 0.0 10 opies 100 95%

trains 2 20 10 0.1 0.0 none 300 78%

trains 2 20 10 0.1 0.0 20 opies 150 89%

trains 3 20 10 0.1 0.0 none 40 100%

trains 3 20 10 0.1 0.0 10 opies 10 100%

trains 4 60 40 0.2 0.1 none 300 89.4%

trains 4 60 40 0.2 0.1 20 opies 200 97.8%

trains 5 60 40 0.2 0.1 none 200 84.5%

trains 5 60 40 0.2 0.1 20 opies 130 89.8%

5. Conlusions

We have presented a novel, neural network based

approah to relational learning. The approah on-

sists of onstruting a neural network that reets the

struture of the relational dataset. This relational

neural network may ontain both feedforward and re-

urrent parts. The training algorithm for this rela-

tional network is based on the standard bakpropaga-

tion (through time) algorithm.

Our approah was tested on two datasets. It turned

out that relational neural networks are performing

quite well ompared with other methods. They an

deal with noisy data and the expressive power of

Jordan reurrent networks seems to be suÆient to

learn the desired onepts.

While many open questions remain regarding the op-

timal arhiteture of these relational neural networks,

their learning behaviour, the optimal learning method-

ology, etetera, we did obtain a �rst important result

from these experiments: the `opy reshu�ing' method

to temove the e�et of set ordering is learly super-

ior to the other reshu�ing method. Its e�ets inlude

a higher �nal auray, less iterations needed to train

the network and reduing the risk of over�tting. These

advantages outweigh the disadvantage of having a lar-

ger training set.

Aknowledgements

Hendrik Blokeel is a postdotoral fellow of the Fund

for Sienti� Researh of Flanders (FWO-Vlaanderen).

Werner Uwents is supported by IDO/03/006 `Develop-

ment of meaningful preditive models for ritial dis-

ease'. We thank Celine Vens for generating the train

dataset and obtaining results with �rst-order random

forests.

Referenes

Blokeel, H., & Bruynooghe, M. (2003). Aggregation

versus seletion bias, and relational neural networks.

IJCAI-2003 Workshop on Learning Statistial Mod-

els from Relational Data, SRL-2003, Aapulo, Mex-

io, August 11, 2003.

Dietterih, T. G., Lathrop, R. H., & Lozano-P�erez, T.

(1997). Solving the multiple-instane problem with

axis-parallel retangles. Arti�ial Intelligene, 89,

31{71.

Frasoni, P., Gori, M., & Sperduti, A. (1998). A gen-

eral framework for adaptive proessing of data stru-

tures. IEEE-NN, 9, 768{786.

Getoor, L., Friedman, N., Koller, D., & Pfe�er, A.

(2001). Learning Probabilisti Relational Models.

In S. Dzeroski and N. Lavra (Eds.), Relational data

mining, 307{334. Springer-Verlag.

Goller, C., & K�uhler, A. (1996). Learning task-

dependent distributed representations by bak-

propagation through struture. Proeedings of the

IEEE International Conferene on Neural Networks

(ICNN-96) (pp. 347{352).

Jordan, M. I. (1986). Attrator dynamis and parallel-

ism in a onnetionist sequential mahine. Proeed-

ings of the Eighth Annual Conferene on Cognitive

Siene (pp. 531{546).

Knobbe, A., Siebes, A., & Marseille, B. (2002).

Involving aggregate funtions in multi-relational

searh. Priniples of Data Mining and Knowledge

Disovery, Proeedings of the 6th European Confer-

ene (pp. 287{298). Springer-Verlag.

Krogel, M.-A., & Wrobel, S. (2001). Transformation-

based learning using multi-relational aggregation.

Proeedings of the Eleventh International Confer-

ene on Indutive Logi Programming (pp. 142{155).

Merz, C., & Murphy, P. (1996). UCI re-

pository of mahine learning databases

[http://www.is.ui.edu/~mlearn/mlrepository.html℄.

Irvine, CA: University of California, Department of

Information and Computer Siene.

Mihalski, R. (1980). Pattern Reognition as Rule-

Guided Indutive Inferene. IEEE Transations on

Pattern Analysis and Mahine Intelligene, 2, 349{

361.

Mihie, D., Muggleton, S., Page, D., & Srinivasan,

A. (1994). To the international omputing om-

munity: A new east-west hallenge (Tehnial Re-

port). Oxford University Computing Laboratory,

Oxford, UK. Available at ftp.omlab.ox.a.uk.

Nienhuys-Cheng, S.-H., & De Wolf, R. (1997). Found-

ations of Indutive Logi Programming, vol. 1228

of Leture Notes in Computer Siene and Leture

Notes in Arti�ial Intelligene. New York, NY,

USA: Springer-Verlag.

Ramon, J., & De Raedt, L. (2000). Multi in-

stane neural networks. Proeedings of the ICML-

Workshop on Attribute-Value and Relational Learn-

ing.

Ramon, J., Driessens, K., & Demoen,

B. (2002). Neural logi programs.

http://www.s.kuleuven.a.be/~janr/nlptehrep.ps,

to be published as a tehnial report.

Sperduti, A., & Starita, A. (1997). Supervised neural

networks for the lassi�ation of strutures. IEEE

Transations on Neural Networks, 8, 714{735.

Vens, C., Van Asshe, A., Blokeel, H., & D�zeroski, S.

(2004). First order random forests with omplex ag-

gregates. Proeedings of the 14th International Con-

ferene on Indutive Logi Programming (pp. 323{

340). Springer.

Werbos, P. J. (1990). Bak propagation through time:

What it does and how to do it. Proeedings of the

IEEE (pp. 1550{1560).

