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Abstra
t

The fundamental di�eren
e between proposi-

tional and relational learners is the ability to

handle sets. Most 
urrent relational learners

handle sets either by aggregating over them

or by testing the o

urren
e of elements with

spe
i�
 properties, but a non-trivial 
ombin-

ation of both remains a 
hallenge. In this

paper, we present a neural network approa
h

to solve relational learning tasks. These re-

lational neural networks are in prin
iple able

to make su
h a 
ombination. We will dis
uss

some experiments that we 
ondu
ted to test

the 
apa
ity of our approa
h.

1. Introdu
tion

Neural networks have been applied to solve many dif-

ferent learning tasks, but their use is still limited to

relatively simple data types. Feedforward neural net-

works, for example, only deal with propositional data,

where ea
h tuple 
onsists of a �xed-size ve
tor of real

values. Re
urrent networks are able to pro
ess se-

quen
es. However, few attempts have been made to

extend the data domain of neural networks beyond this

point. Allowing di�erent types of relations in the data-

set and relationships between tuples would be a power-

ful extension. We will present an approa
h, based on

standard neural networks, to learn 
on
epts over su
h

relational data.

The most fundamental di�eren
e between proposi-

tional and relational learning is the ability to handle

sets. These sets are the result of following one-to-many

and many-to-many relationships in the dataset. Some

approa
hes to deal with these sets already exist, but

they are often biased as will be explained in the next

se
tion. There are also some approa
hes, based on

neural networks, that deal with problems very similar

to the relational learning task.

The existing work that is probably 
losest to our ap-

proa
h, is a line of work in the neural networks 
om-

munity on learning from stru
tured data using re
urs-

ive neural networks or folding ar
hite
ture networks

(Goller & K�u
hler, 1996; Sperduti & Starita, 1997;

Fras
oni et al., 1998). These authors des
ribe how to

learn from stru
tured data (e.g. logi
al terms, trees,

graphs) and dis
uss tasks like the identi�
ation of sub-

stru
tures. Those tasks relate to the tasks we 
on-

sider, more or less as indu
tive logi
 programming

(ILP) relates to our approa
h and some existing results

on learnability of re
ursive neural networks may 
arry

over to our setting. However, they do not spe
i�
ally


onsider the problem of learning aggregate fun
tions

over sets and the problem of di�erent types of data.

They also fo
us on learning in graph stru
tures instead

of learning in relational databases.

There has also been some resear
h in using neural

networks for multi-instan
e problems (Ramon &

De Raedt, 2000). These problems 
an be seen as a

spe
ial 
ase of relational learning be
ause they deal

with learning over a single set. If one instan
e in the

set is positive, the sample as a whole will be 
lassi�ed

as positive. The basi
 idea behind multi-instan
e net-

works is to use a feedforward network to feed all the

instan
es into and to 
ombine all the results with an

aggregation fun
tion, namely the maximum fun
tion.

Neural logi
 programs (Ramon et al., 2002) are also

somewhat similar to our relational neural networks,

with as main di�eren
es that they are des
ribed in a

�rst order logi
 framework and that, just like for multi-

instan
e neural networks, spe
i�
 aggregate fun
tions

are en
oded in advan
e by the user, instead of learned.

Typi
ally, they represent logi
al 
onjun
tions and dis-

jun
tions.

Our approa
h is also based on neural networks, but it

is oriented spe
i�
ally towards relational data domains

and it does not rely on prede�ned aggregate fun
tions

or 
on
epts. We believe that from the point of view

of relational learning, the ability to learn aggregate

fun
tions is a 
ru
ial advantage of this approa
h.

In the next se
tion, we will dis
uss the di�eren
e
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Figure 1. Example of a relational dataset.

between sele
tion and aggregation over sets. Se
tion

3 gives a de�nition of the stru
ture and training of

relational neural networks. The results of some exper-

iments with these networks will be presented in se
tion

4. We end with some 
on
lusions about the presented

approa
h in se
tion 5.

2. Combining Sele
tion and

Aggregation

The learning task that we are 
onsidering, is a rela-

tional learning task. This means that we have a data-

set with a number of di�erent relations. For ea
h rela-

tion, a set of tuples is given. Ea
h tuple has a number

of attribute values and 
an also have relationships with

other tuples. We want to 
lassify all tuples belonging

to some target relation R

T

, based on their own attrib-

ute values and the attribute values of related tuples.

The spe
i�
 problem that arises in relational datasets,

is how to deal with sets. These sets are the result

of one-to-many or many-to-many relationships. An

example dataset 
ontaining the relations 
ustomer and

order is given in �gure 2. Customer tuples 
an be

linked to a number of order tuples. These linked tuples

form a set. The �rst 
ustomer is linked to two orders,

the se
ond to three, so the number of tuples in these

sets 
an vary. This is the reason why we 
an not redu
e

this dataset to a propositional dataset.

Relational learners 
an be divided into two 
ategor-

ies, depending on how they handle one-to-many and

many-to-many relationships, or, equivalently, how

they handle sets of tuples (Blo
keel & Bruynooghe,

2003). Most 
urrent relational learners are restri
ted

to one of these 
ategories. This imposes a signi�
ant,

possibly undesirable bias on these learners.

Methods in the �rst 
ategory, sele
tive methods,

handle sets by looking at properties of their elements.

A set S is examined by testing a 
ondition of the form

9x 2 S : P (x). This P (x) 
an be a 
ompli
ated 
ri-

terium, but it only 
onsiders the attributes of a single

tuple. Using this method, we 
an learn a 
on
ept like

`people with at least one son'.

Aggregating methods, the se
ond 
ategory, 
ompute a

fun
tion F (S) over a set S of tuples. This redu
es the

set to a single value. One example of su
h a fun
tion is

the 
ardinality fun
tion that simply 
ounts the number

of elements in the set. With su
h a fun
tion, we 
ould

express a 
on
ept like `people with two 
hildren'.

Many approa
hes to relational learning rely on some

kind of propositionalization of the relational data. On

the resulting propositional dataset, a propositional

learner 
an be used. An example of this is the RE-

LAGGS system (Krogel & Wrobel, 2001). The pro-

positional data is extended with some extra attrib-

utes, whi
h are the result of evaluating prede�ned ag-

gregate fun
tions over the related data. This method,

however, 
annot learn unde�ned aggregate fun
tions.

How 
ombinations of aggregation and sele
tion 
ould

be learned, is not explained by the authors.

This is a problem when we want to express a 
on
ept

like `people with two sons'. This 
on
ept 
learly 
om-

bines aggregation and sele
tion: we have to sele
t all

males from the set of 
hildren and then 
ount them

to 
he
k this 
riterium. Other 
on
epts may require

di�erent kinds of 
ombinations of sele
tion and aggreg-

ation. As aggregation and sele
tion are both very nat-

ural operations, a relational learning system should be

able to 
ombine both in the models it builds. However,

these 
ombinations 
an be quite 
ompli
ated and di-

verse, and they may depend on the stru
ture of the

dataset and the relations in it.

For instan
e, probabilisti
 relational models (PRMs),

as de�ned by (Getoor et al., 2001), 
annot learn the


on
ept of `people having two sons' without having

separate relations for sons and daughters. Manually

introdu
ing these separate relations of 
ourse presup-

poses that the user is aware of the possible importan
e

of these 
on
epts. Alternatively, one 
ould prede�ne

a large number of aggregate fun
tions that have ap-

propriate sele
tion 
onditions built in. In that 
ase,

a sear
h through a spa
e of aggregate fun
tions is

needed. The power of this approa
h largely depends

on whi
h aggregate fun
tions are de�ned.

In indu
tive logi
 programming (ILP), one 
ould for

instan
e de�ne aggregate fun
tions as ba
kground

knowledge. Then, e.g., the rule p(X) :- 
ount(Y,

(
hild(X,Y), male(Y)), 2) expresses the 
on
ept

of people having two sons. The main diÆ
ulty here

is that the se
ond argument of the 
ount metapre-

di
ate is itself a query that is the result of a sear
h



through some hypothesis spa
e. It is not obvious how

su
h a sear
h should be 
ondu
ted. The many results

in ILP on how to sear
h a �rst-order hypothesis spa
e

eÆ
iently (Nienhuys-Cheng & De Wolf, 1997), do not


onsider the 
ase where the resulting hypothesis will

be used as the argument of a metapredi
ate.

ILP-like approa
hes that do not in
lude aggregate

fun
tions, 
an still express the 
on
ept as, e.g., `the

person has a male 
hild x and a male 
hild y and x 6= y

and there does not exist a 
hild z su
h that z is male

and z 6= x and z 6= y'. But in pra
ti
e, the length of

this rule, as well as the o

urren
e of a negation, make

it diÆ
ult to learn. The 
omprehensibility of the result

is also negatively in
uen
ed.

Knobbe et al. (2002) are, to our knowledge, the �rst

to present a method that performs a systemati
 sear
h

in a hypothesis spa
e (in this 
ase, that of `sele
tion

graphs') where hypotheses 
ombine aggregation and

sele
tion. Their approa
h is however limited to mono-

tone aggregate fun
tions, whi
h limits its appli
abil-

ity somewhat (for instan
e, sum and average are not

monotone), and to sele
ting aggregate fun
tions from

a limited set given by the user.

Our relational neural networks would have as advant-

age over the other approa
hes that they 
an learn an

aggregate fun
tion, without that fun
tion being pre-

de�ned and with sele
tion possibly integrated in it.

Training the relational neural network automati
ally


onstitutes a sear
h through aggregations and sele
-

tions simultaneously.

3. Relational Neural Networks

Assume that we have a dataset with a target relation

R

T

and some other relations R

1

; : : : ; R

N

. We denote

the attribute sets of R

i

by U

i

. For any relation R, we

de�ne

� S

1

(R): R

i

2 S

1

(R) i� ea
h tuple t 2 R is 
onne
-

ted to exa
tly one tuple in R

i

. This means R has

a one-to-one or many-to-one relationship with R

i

,

in whi
h R parti
ipates 
ompletely.

� S

01

(R): R

i

2 S

01

(R) i� ea
h tuple t 2 R is 
on-

ne
ted to at most one tuple in R

i

. This is, again,

a one-to-one or many-to-one relationship between

R and R

i

, but now with partial parti
ipation.

� S

N

(R): R

i

2 S

N

(R) i� ea
h tuple t 2 R is 
on-

ne
ted to zero, one or more tuples in R

i

. This

is a one-to-many or many-to-many relationship

between R and R

i

, with 
omplete or partial par-

ti
ipation.

� S

U

(R): R

i

2 S

U

(R) i� R

i

is a relation of the

relational dataset, but not in S

1

(R), S

01

(R) or

S

N

(R). This means R is not dire
tly 
onne
ted

to R

i

.

Given a tuple t 2 R

T

, we want to 
lassify it based

on the information 
ontained in the tuple and in any

tuples linked to this tuple. For a relation R

i

, we use

U

i

to denote the original attribute set of that relation.

All attributes in U

i

must be real values, as this is the

only type of input a neural network 
an pro
ess. Other

types of attributes need to be 
onverted to real values

�rst. We use I

i

to denote the attribute set a
tually

used as input to our neural network. One might expe
t

that I

i

= U

i

, but there will be some small di�eren
es:

� For R

T

, the target relation, I

T

= U

T

�fCg, where

C is the 
lass attribute.

� For any R

i

2 S

01

(R), there 
an be a tuple t 2

R for whi
h there exists no tuple s 2 R

i

that t

is dire
tly 
onne
ted to. As neural networks do

not have a distinguished en
oding for null values,

we will use an extra attribute E

i

that indi
ates

whether the link to R

i

yielded a tuple or not. I

i

=

U

i

[ fE

i

g.

� The same problem arises for R

i

2 S

N

(R), so here

also I

i

= U

i

[ fE

i

g.

Based on the above, we 
an 
onstru
t a relational

neural network that 
lassi�es t 2 R

T

based on its own

attribute values as well as those of related tuples. For

ea
h tuple t 2 R

T

, we 
onstru
t a tuple t

0

with attrib-

utes

I

T

[ (

[

i:R

i

2S

1

(R

T

)[S

01

(R

T

)

O

1i

) [ (

[

i:R

i

2S

N

(R

T

)

O

Ni

)

with I

i

as de�ned above, O

1i

a set of attributes that

are the output values of a feedforward neural network

taking I

i

as input values and O

Ni

a set of attributes

that are the output values of a re
urrent neural net-

work taking I

i

as input values. This tuple t

0

has then

a �xed set of attributes whi
h 
an be used to feed into

a feedforward neural network. The output of this net-

work gives us the �nal result of our 
lassi�er.

In the des
ribed approa
h, sets resulting from rela-

tions in S

N

(R

T

) are pro
essed using re
urrent neural

networks. These networks are able to pro
ess tuple se-

quen
es of inde�nite length. However, we are present-

ing the tuples to the network in some imposed order

while the sets are a
tually unordered. As we will see,

this fa
t 
an be exploited in training the network.
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Figure 2. Example of the stru
ture of a relational neural

network.

The pre
ise stru
ture of the di�erent neural networks

in our 
lassi�er must be de�ned now. We take both

the feedforward and re
urrent networks to have two

layers. The ideal number of neurons in ea
h layer needs

to be tuned by 
ondu
ting experiments, there is no

straightforward rule to determine this.

For the re
urrent networks, we also have to de�ne

whi
h re
urrent 
onne
tions are allowed. The most

expressive re
urrent network is a fully 
onne
ted net-

work in whi
h ea
h neuron has 
onne
tions with all

other neurons. But as this makes the number of 
on-

ne
tions in
rease quadrati
ally when the number of

neurons in
reases, we prefer the Jordan re
urrent net-

work (Jordan, 1986).

In this kind of re
urrent network, ea
h neuron in the

se
ond layer is 
onne
ted with all neurons in the �rst

layer. The number of re
urrent 
onne
tions is then

n

1

� n

2

, with n

1

and n

2

the number of neurons in

the �rst and se
ond layer respe
tively. This gives us a

good trade-o� between expressiveness and the number

of neurons and 
onne
tions in the network.

A small example of a relational network is given in

�gure 3. The two attributes of the target relation are

fed into the feedforward part of the network (white

neurons). The two attributes of the tuples of another

relation, linked to the target relation, are fed into the

re
urrent part of the network (bla
k neurons). The

output of this re
urrent part is used as extra input to

the feedforward part.

The te
hnique of adding to t the O

1i

and O

Ni

attrib-

utes that summarize related tuples, 
an be repeated

for those tuples, thus also in
orporating information

in indire
tly linked tuples. In the end, this yields a

hierar
hi
al stru
ture where ea
h node is a neural net-

work that takes the attributes of a relation and the

outputs of its 
hildren as input and propagates the

result to its parent node.

Training this relational neural network 
an be done

with an adapted form of the standard ba
kpropaga-

tion algorithm. The feedforward neural networks

in the relational network are trained with standard

ba
kpropagation. The re
urrent networks are trained

with ba
kpropagation through time (BPTT) (Werbos,

1990). The key idea to BPTT is the unfolding of the

re
urrent network into a feedforward network.

As many folds (
opies of the original network) are


reated as there are instan
es in the input sequen
e

and re
urrent 
onne
tions are 
onverted into feedfor-

ward 
onne
tions between su

essive folds. The result-

ing feedforward network is trained using the standard

ba
kpropagation algorithm, but with one important

restri
tion: sin
e all folds have been 
reated by repli
-

ating the original network, weights in all folds should

be the same.

The fa
t that sets are fed into the re
urrent network

in some imposed order, 
an be used to improve our

training algorithm. This 
an be done by reshu�ing

the sequen
e and presenting the set to the re
urrent

network in a di�erent order. Two possibilities 
an be


onsidered: reshu�ing after every training iteration

and expanding the training set by adding reshu�ed


opies of the initial instan
es.

4. Experiments

To evaluate this approa
h, we have performed exper-

iments on the musk and trains datasets. The musk

dataset, available from UCI (Merz & Murphy, 1996),

is an example of a multi-instan
e learning task. As

mentioned above, this 
an be seen as a spe
ial 
ase

of relational learning. In this dataset, ea
h example

des
ribes a mole
ule. For ea
h example, several poses

(instan
es) are given, ea
h with 166 attributes. If at

least one of these poses has some property, the mo-

le
ule is said to be musk.

There are two versions of this dataset, musk 1, 
on-

taining 92 mole
ules, and musk 2, 
ontaining 102 mo-

le
ules, whi
h di�er in size. Musk 2 has more 
on-

formations per mole
ule than musk 1. Several learning

approa
hes have been 
ompared on this dataset (Diet-

teri
h et al., 1997). To be able to 
ompare our results

with these results, we 
ondu
t our experiments in the

same setting, namely ten-fold 
ross-validation.

Overall results are summarized in table 1 (results for

multi-instan
e neural networks 
ome from Ramon and

De Raedt (2000), other results from Dietteri
h et al.

(1997)). The tangent distan
e and dynami
 reposing



Table 1. Classi�
ation a

ura
ies on the musk dataset.

method musk 1 musk 2

iterated-dis
rim APR 92.4% 89.2%

GFS elim-kde APR 91.3% 80.4%

GFS elim-
ount APR 90.2% 75.5%

GFS all-positive APR 83.7% 66.7%

all-positive APR 80.4% 72.6%

simple ba
kpropagation 75.0% 67.7%

multi-instan
e neural networks 88.0% 82.0%

C4.5 68.5% 58.8%

1-nearest neighbor (eu
lidean distan
e) / 75%

neural network (standard poses) / 75%

1-nearest neighbor (tangent distan
e) / 79%

neural network (dynami
 reposing) / 91%

relational neural networks 89.1% 85.3%

Table 2. Training 
on�gurations for the musk dataset (n

1

= number of neurons in �rst layer of the re
urrent 
omponent,

n

2

= number of neurons in se
ond layer of the re
urrent 
omponent, � = learning rate, � = momentum term).

dataset n

1

n

2

� � reshu�e iterations a

ura
y

1 musk 1 50 10 0.5 0.2 every it. 190 84.8%

2 musk 1 50 10 0.5 0.2 none 110 88.0%

3 musk 1 50 10 0.5 0.2 30 
opies 10 89.1%

4 musk 2 80 20 0.5 0.2 every it. 40 76.5%

5 musk 2 80 20 0.5 0.2 none 240 85.3%

6 musk 2 40 15 0.5 0.2 none 50 77.5%

7 musk 2 40 15 0.5 0.2 5 
opies 20 80.4%

te
hnique require 
omputation of the mole
ular sur-

fa
e, whi
h 
annot be done using the feature ve
tors

in
luded in the dataset. A 
omparison of di�erent 
on-

�gurations for the relational neural networks, is shown

in table 2.

These results show that relational neural networks are

performing quite well. They give results that are a lot

better than simple ba
kpropagation and even better

than multi-instan
e neural networks. The latter 
an

only be the result of better parameters be
ause the hy-

pothesis spa
e sear
hed by relational neural networks,

H

RNN

, is a superset of the hypothesis spa
e H

MINN

sear
hed by multi-instan
e neural networks. This

means that the hypothesis in H

RNN

that best approx-

imates the target hypothesis, must also be in H

MINN

.

The a

ura
y of iterated-dis
rim axis-parallell re
t-

angles (iterated-dis
rim APR), the best method, is still

signi�
antly higher, but this method is spe
i�
ally de-

signed for this kind of problems.

When we look at the di�eren
es between di�erent 
on-

�gurations for training the relational neural networks,

we see that reshu�ing the training data after every

iteration gives poor results. However, expanding the

training set with reshu�ed 
opies does improve train-

ing. Although the training set be
omes larger, the a
-


ura
y is better and the ne
essary number of iterations

is redu
ed. It also helps to avoid over�tting.

Figure 3 shows us why reshu�ing after every itera-

tion is not working well. Reshu�ing after every iter-

ation a
tually 
hanges the training set 
ontinuously.

This means that the error fun
tion also 
hanges 
on-

tinuously, and what was the gradient in the previous

iteration may be unrelated to the gradient in this it-

eration. This makes it diÆ
ult for the ba
kpropaga-

tion algorithm to 
onverge. The mean square error on

training and test set is very jagged in this 
ase (see

�gure 4(a)). This is not the 
ase for adding reshu�ed


opies to the training set (see �gure 4(b)). Adding

reshu�ed 
opies has a similar e�e
t as enlarging the

dataset with new samples.



Figure 3. Mean square error (MSE) for training and test set in fun
tion of the number of training iterations.
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Table 3. A

ura
ies on the trains dataset, 
omparing relational neural networks with �rst order de
ision trees using

random forrests (RNN 1 is without reshu�ing, RNN 2 is with reshu�ed 
opies).

dataset 
on
ept samples noise RNN 1 RNN 2 FORF

trains 1 simple 100 none 80% 95% 100.0%

trains 2 simple 100 5% 78% 89% 92.8%

trains 3 simple 1000 none 100% 100% 100.0%

trains 4 
omplex 800 none 89.4% 97.8% 96.1%

trains 5 
omplex 800 5% 84.5% 89.8% 90.3%

The se
ond tested dataset is the train dataset based on

the Mi
halski train problem. This problem was inven-

ted by Ryszard Mi
halski around 25 years ago (Mi
hal-

ski, 1980). The aim is to �nd a 
on
ept whi
h ex-

plains why trains are travelling eastbound or west-

bound. Every train 
onsists of a number of 
ars, 
arry-

ing some load. The 
on
ept is based on the properties

of these 
ars and their loads.

We used a generator for this train problem to 
reate

a dataset (Mi
hie et al., 1994). Two di�erent 
on-


epts are used for the generation, a simple and a more


ompli
ated. The simple 
on
ept de�nes trains that

are eastbound as trains with at least two 
ir
le loads,

the other trains are westbound. The more 
ompli
-

ated 
on
ept de�nes westbound trains as trains that

have more than seven wheels in total but not more

than one open 
ar with a re
tangle load, or trains that

have more than one 
ir
le load; the other trains are

eastbound.

First-order de
ision trees using random forests (Vens

et al., 2004) are another approa
h to ta
kle the prob-

lems 
ombining sele
tion and aggregation. We 
om-

pare our results with results obtained with the latter

method. A 
omplete overview of the results is given

in tables 3 and 4. The used datasets are generated to

test di�erent settings: a simple versus a more 
ompli
-

ated 
on
ept and noise versus no noise. The tests were

done with �ve-fold 
ross-validation.

What we see for the simple 
on
ept (datasets 1,

2 and 3), is that 100 samples is not enough to

learn the 
on
ept 
ompletely. Taking a dataset with

1000 samples, however, we 
an rea
h 100% a

ura
y.

Adding 5% noise results in an a

ura
y that is a little

more than 5% lower, so our 
lassi�er seems to be rather

noise resistant.

For the more 
ompli
ated 
on
ept (datasets 4 and 5),

the results are quite similar to those for �rst-order de-


ision trees using random forests. The e�e
t of noise

is the same as for the simple 
on
ept. For both the

simple and 
ompli
ated 
on
ept, there is a remark-

able di�eren
e between training without reshu�ing

and with added reshu�ed 
opies.



Table 4. Training 
on�gurations for the trains dataset (n

1

= number of neurons in �rst layer of the re
urrent 
omponent,

n

2

= number of neurons in se
ond layer of the re
urrent 
omponent, � = learning rate, � = momentum term).

dataset n

1

n

2

� � reshu�e iterations a

ura
y

trains 1 20 10 0.1 0.0 none 250 80%

trains 1 20 10 0.1 0.0 10 
opies 100 95%

trains 2 20 10 0.1 0.0 none 300 78%

trains 2 20 10 0.1 0.0 20 
opies 150 89%

trains 3 20 10 0.1 0.0 none 40 100%

trains 3 20 10 0.1 0.0 10 
opies 10 100%

trains 4 60 40 0.2 0.1 none 300 89.4%

trains 4 60 40 0.2 0.1 20 
opies 200 97.8%

trains 5 60 40 0.2 0.1 none 200 84.5%

trains 5 60 40 0.2 0.1 20 
opies 130 89.8%

5. Con
lusions

We have presented a novel, neural network based

approa
h to relational learning. The approa
h 
on-

sists of 
onstru
ting a neural network that re
e
ts the

stru
ture of the relational dataset. This relational

neural network may 
ontain both feedforward and re-


urrent parts. The training algorithm for this rela-

tional network is based on the standard ba
kpropaga-

tion (through time) algorithm.

Our approa
h was tested on two datasets. It turned

out that relational neural networks are performing

quite well 
ompared with other methods. They 
an

deal with noisy data and the expressive power of

Jordan re
urrent networks seems to be suÆ
ient to

learn the desired 
on
epts.

While many open questions remain regarding the op-

timal ar
hite
ture of these relational neural networks,

their learning behaviour, the optimal learning method-

ology, et
etera, we did obtain a �rst important result

from these experiments: the `
opy reshu�ing' method

to temove the e�e
t of set ordering is 
learly super-

ior to the other reshu�ing method. Its e�e
ts in
lude

a higher �nal a

ura
y, less iterations needed to train

the network and redu
ing the risk of over�tting. These

advantages outweigh the disadvantage of having a lar-

ger training set.
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