Experiments with Relational Neural Networks

Werner Uwents
Hendrik Blockeel

WERNER.UWENTS@QCS.KULEUVEN.AC.BE
HENDRIK.BLOCKEELQCS.KULEUVEN.AC.BE

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract

The fundamental difference between proposi-
tional and relational learners is the ability to
handle sets. Most current relational learners
handle sets either by aggregating over them
or by testing the occurrence of elements with
specific properties, but a non-trivial combin-
ation of both remains a challenge. In this
paper, we present a neural network approach
to solve relational learning tasks. These re-
lational neural networks are in principle able
to make such a combination. We will discuss
some experiments that we conducted to test
the capacity of our approach.

1. Introduction

Neural networks have been applied to solve many dif-
ferent learning tasks, but their use is still limited to
relatively simple data types. Feedforward neural net-
works, for example, only deal with propositional data,
where each tuple consists of a fixed-size vector of real
values. Recurrent networks are able to process se-
quences. However, few attempts have been made to
extend the data domain of neural networks beyond this
point. Allowing different types of relations in the data-
set and relationships between tuples would be a power-
ful extension. We will present an approach, based on
standard neural networks, to learn concepts over such
relational data.

The most fundamental difference between proposi-
tional and relational learning is the ability to handle
sets. These sets are the result of following one-to-many
and many-to-many relationships in the dataset. Some
approaches to deal with these sets already exist, but
they are often biased as will be explained in the next
section. There are also some approaches, based on
neural networks, that deal with problems very similar
to the relational learning task.

The existing work that is probably closest to our ap-
proach, is a line of work in the neural networks com-

munity on learning from structured data using recurs-
ive neural networks or folding architecture networks
(Goller & Kiichler, 1996; Sperduti & Starita, 1997;
Frasconi et al., 1998). These authors describe how to
learn from structured data (e.g. logical terms, trees,
graphs) and discuss tasks like the identification of sub-
structures. Those tasks relate to the tasks we con-
sider, more or less as inductive logic programming
(ILP) relates to our approach and some existing results
on learnability of recursive neural networks may carry
over to our setting. However, they do not specifically
consider the problem of learning aggregate functions
over sets and the problem of different types of data.
They also focus on learning in graph structures instead
of learning in relational databases.

There has also been some research in using neural
networks for multi-instance problems (Ramon &
De Raedt, 2000). These problems can be seen as a
special case of relational learning because they deal
with learning over a single set. If one instance in the
set, is positive, the sample as a whole will be classified
as positive. The basic idea behind multi-instance net-
works is to use a feedforward network to feed all the
instances into and to combine all the results with an
aggregation function, namely the maximum function.

Neural logic programs (Ramon et al., 2002) are also
somewhat similar to our relational neural networks,
with as main differences that they are described in a
first order logic framework and that, just like for multi-
instance neural networks, specific aggregate functions
are encoded in advance by the user, instead of learned.
Typically, they represent logical conjunctions and dis-
junctions.

Our approach is also based on neural networks, but it
is oriented specifically towards relational data domains
and it does not rely on predefined aggregate functions
or concepts. We believe that from the point of view
of relational learning, the ability to learn aggregate
functions is a crucial advantage of this approach.

In the next section, we will discuss the difference



Order

Customer

Figure 1. Example of a relational dataset.

between selection and aggregation over sets. Section
3 gives a definition of the structure and training of
relational neural networks. The results of some exper-
iments with these networks will be presented in section
4. We end with some conclusions about the presented
approach in section 5.

2. Combining Selection and
Aggregation

The learning task that we are considering, is a rela-
tional learning task. This means that we have a data-
set with a number of different relations. For each rela-
tion, a set of tuples is given. Each tuple has a number
of attribute values and can also have relationships with
other tuples. We want to classify all tuples belonging
to some target relation Ry, based on their own attrib-
ute values and the attribute values of related tuples.

The specific problem that arises in relational datasets,
is how to deal with sets. These sets are the result
of one-to-many or many-to-many relationships. An
example dataset containing the relations customer and
order is given in figure 2. Customer tuples can be
linked to a number of order tuples. These linked tuples
form a set. The first customer is linked to two orders,
the second to three, so the number of tuples in these
sets can vary. This is the reason why we can not reduce
this dataset to a propositional dataset.

Relational learners can be divided into two categor-
ies, depending on how they handle one-to-many and
many-to-many relationships, or, equivalently, how
they handle sets of tuples (Blockeel & Bruynooghe,
2003). Most current relational learners are restricted
to one of these categories. This imposes a significant,
possibly undesirable bias on these learners.

Methods in the first category, selective methods,
handle sets by looking at properties of their elements.
A set S is examined by testing a condition of the form
dxz € S: P(x). This P(z) can be a complicated cri-

terium, but it only considers the attributes of a single
tuple. Using this method, we can learn a concept like
‘people with at least one son’.

Aggregating methods, the second category, compute a
function F'(S) over a set S of tuples. This reduces the
set to a single value. One example of such a function is
the cardinality function that simply counts the number
of elements in the set. With such a function, we could
express a concept like ‘people with two children’.

Many approaches to relational learning rely on some
kind of propositionalization of the relational data. On
the resulting propositional dataset, a propositional
learner can be used. An example of this is the RE-
LAGGS system (Krogel & Wrobel, 2001). The pro-
positional data is extended with some extra attrib-
utes, which are the result of evaluating predefined ag-
gregate functions over the related data. This method,
however, cannot learn undefined aggregate functions.
How combinations of aggregation and selection could
be learned, is not explained by the authors.

This is a problem when we want to express a concept
like ‘people with two sons’. This concept clearly com-
bines aggregation and selection: we have to select all
males from the set of children and then count them
to check this criterium. Other concepts may require
different kinds of combinations of selection and aggreg-
ation. As aggregation and selection are both very nat-
ural operations, a relational learning system should be
able to combine both in the models it builds. However,
these combinations can be quite complicated and di-
verse, and they may depend on the structure of the
dataset and the relations in it.

For instance, probabilistic relational models (PRMs),
as defined by (Getoor et al., 2001), cannot learn the
concept, of ‘people having two sons’ without having
separate relations for sons and daughters. Manually
introducing these separate relations of course presup-
poses that the user is aware of the possible importance
of these concepts. Alternatively, one could predefine
a large number of aggregate functions that have ap-
propriate selection conditions built in. In that case,
a search through a space of aggregate functions is
needed. The power of this approach largely depends
on which aggregate functions are defined.

In inductive logic programming (ILP), one could for
instance define aggregate functions as background
knowledge. Then, e.g., the rule p(X) :- count(Y,
(child(X,Y), male(Y)), 2) expresses the concept
of people having two sons. The main difficulty here
is that the second argument of the count metapre-
dicate is itself a query that is the result of a search



through some hypothesis space. It is not obvious how
such a search should be conducted. The many results
in ILP on how to search a first-order hypothesis space
efficiently (Nienhuys-Cheng & De Wolf, 1997), do not
consider the case where the resulting hypothesis will
be used as the argument of a metapredicate.

ILP-like approaches that do not include aggregate
functions, can still express the concept as, e.g., ‘the
person has a male child 2 and a male child y and z # y
and there does not exist a child z such that z is male
and z # x and z # y’. But in practice, the length of
this rule, as well as the occurrence of a negation, make
it difficult to learn. The comprehensibility of the result
is also negatively influenced.

Knobbe et al. (2002) are, to our knowledge, the first
to present a method that performs a systematic search
in a hypothesis space (in this case, that of ‘selection
graphs’) where hypotheses combine aggregation and
selection. Their approach is however limited to mono-
tone aggregate functions, which limits its applicabil-
ity somewhat (for instance, sum and average are not
monotone), and to selecting aggregate functions from
a limited set given by the user.

Our relational neural networks would have as advant-
age over the other approaches that they can learn an
aggregate function, without that function being pre-
defined and with selection possibly integrated in it.
Training the relational neural network automatically
constitutes a search through aggregations and selec-
tions simultaneously.

3. Relational Neural Networks

Assume that we have a dataset with a target relation
Rp and some other relations Ry,..., Ry. We denote
the attribute sets of R; by U;. For any relation R, we
define

e Si(R): R; € S1(R) iff each tuple ¢t € R is connec-
ted to exactly one tuple in R;. This means R has
a one-to-one or many-to-one relationship with R;,
in which R participates completely.

e So1(R): R; € Sp1(R) iff each tuple t € R is con-
nected to at most one tuple in R;. This is, again,
a one-to-one or many-to-one relationship between
R and R;, but now with partial participation.

e Sy(R): R; € Sy(R) iff each tuple t € R is con-
nected to zero, one or more tuples in R;. This
is a one-to-many or many-to-many relationship
between R and R;, with complete or partial par-
ticipation.

e Sy(R): R; € Sy(R) iff R; is a relation of the
relational dataset, but not in S;(R), So1(R) or
Sn(R). This means R is not directly connected
to Rz

Given a tuple t € Rp, we want to classify it based
on the information contained in the tuple and in any
tuples linked to this tuple. For a relation R;, we use
U; to denote the original attribute set of that relation.
All attributes in U; must be real values, as this is the
only type of input a neural network can process. Other
types of attributes need to be converted to real values
first. We use [; to denote the attribute set actually
used as input to our neural network. One might expect
that I; = U;, but there will be some small differences:

e For Ry, the target relation, It = Ur—{C'}, where
C' is the class attribute.

e For any R; € Spi(R), there can be a tuple t €
R for which there exists no tuple s € R; that ¢
is directly connected to. As neural networks do
not have a distinguished encoding for null values,
we will use an extra attribute E; that indicates
whether the link to R; yielded a tuple or not. I; =
U, U{E;}.

e The same problem arises for R; € Sy (R), so here
also I; = U; U{E;}.

Based on the above, we can construct a relational
neural network that classifies ¢ € Rt based on its own
attribute values as well as those of related tuples. For
each tuple t € Ry, we construct a tuple ¢’ with attrib-
utes

Ir U ( U

i:R; €S1(R1)USo1(RT)

o)u( U

i:RiGSN(RT)

Oni)

with I; as defined above, O1; a set of attributes that
are the output values of a feedforward neural network
taking I; as input values and Op; a set of attributes
that are the output values of a recurrent neural net-
work taking I; as input values. This tuple ¢’ has then
a fixed set of attributes which can be used to feed into
a feedforward neural network. The output of this net-
work gives us the final result of our classifier.

In the described approach, sets resulting from rela-
tions in Sy (R7) are processed using recurrent neural
networks. These networks are able to process tuple se-
quences of indefinite length. However, we are present-
ing the tuples to the network in some imposed order
while the sets are actually unordered. As we will see,
this fact can be exploited in training the network.



Figure 2. Example of the structure of a relational neural
network.

The precise structure of the different neural networks
in our classifier must be defined now. We take both
the feedforward and recurrent networks to have two
layers. The ideal number of neurons in each layer needs
to be tuned by conducting experiments, there is no
straightforward rule to determine this.

For the recurrent networks, we also have to define
which recurrent connections are allowed. The most
expressive recurrent network is a fully connected net-
work in which each neuron has connections with all
other neurons. But as this makes the number of con-
nections increase quadratically when the number of
neurons increases, we prefer the Jordan recurrent net-
work (Jordan, 1986).

In this kind of recurrent network, each neuron in the
second layer is connected with all neurons in the first
layer. The number of recurrent connections is then
ni X me, with n; and ns the number of neurons in
the first and second layer respectively. This gives us a
good trade-off between expressiveness and the number
of neurons and connections in the network.

A small example of a relational network is given in
figure 3. The two attributes of the target relation are
fed into the feedforward part of the network (white
neurons). The two attributes of the tuples of another
relation, linked to the target relation, are fed into the
recurrent part of the network (black neurons). The
output of this recurrent part is used as extra input to
the feedforward part.

The technique of adding to ¢ the Oq; and Op; attrib-
utes that summarize related tuples, can be repeated
for those tuples, thus also incorporating information
in indirectly linked tuples. In the end, this yields a
hierarchical structure where each node is a neural net-
work that takes the attributes of a relation and the
outputs of its children as input and propagates the

result to its parent node.

Training this relational neural network can be done
with an adapted form of the standard backpropaga-
tion algorithm. The feedforward neural networks
in the relational network are trained with standard
backpropagation. The recurrent networks are trained
with backpropagation through time (BPTT) (Werbos,
1990). The key idea to BPTT is the unfolding of the
recurrent network into a feedforward network.

As many folds (copies of the original network) are
created as there are instances in the input sequence
and recurrent connections are converted into feedfor-
ward connections between successive folds. The result-
ing feedforward network is trained using the standard
backpropagation algorithm, but with one important
restriction: since all folds have been created by replic-
ating the original network, weights in all folds should
be the same.

The fact that sets are fed into the recurrent network
in some imposed order, can be used to improve our
training algorithm. This can be done by reshuffling
the sequence and presenting the set to the recurrent
network in a different order. Two possibilities can be
considered: reshuffling after every training iteration
and expanding the training set by adding reshuffled
copies of the initial instances.

4. Experiments

To evaluate this approach, we have performed exper-
iments on the musk and trains datasets. The musk
dataset, available from UCI (Merz & Murphy, 1996),
is an example of a multi-instance learning task. As
mentioned above, this can be seen as a special case
of relational learning. In this dataset, each example
describes a molecule. For each example, several poses
(instances) are given, each with 166 attributes. If at
least one of these poses has some property, the mo-
lecule is said to be musk.

There are two versions of this dataset, musk 1, con-
taining 92 molecules, and musk 2, containing 102 mo-
lecules, which differ in size. Musk 2 has more con-
formations per molecule than musk 1. Several learning
approaches have been compared on this dataset (Diet-
terich et al., 1997). To be able to compare our results
with these results, we conduct our experiments in the
same setting, namely ten-fold cross-validation.

Overall results are summarized in table 1 (results for
multi-instance neural networks come from Ramon and
De Raedt (2000), other results from Dietterich et al.
(1997)). The tangent distance and dynamic reposing



Table 1. Classification accuracies on the musk dataset.

method musk 1 | musk 2
iterated-discrim APR 92.4% | 89.2%
GFS elim-kde APR 91.3% 80.4%
GFS elim-count APR 90.2% 75.5%
GFS all-positive APR 83.7% 66.7%
all-positive APR 80.4% 72.6%
simple backpropagation 75.0% 67.7%
multi-instance neural networks 88.0% 82.0%
C4.5 68.5% 58.8%
1-nearest neighbor (euclidean distance) / 75%

neural network (standard poses) / 5%

1-nearest neighbor (tangent distance) / 79%

neural network (dynamic reposing) / 91%

relational neural networks 89.1% | 85.3%

Table 2. Training configurations for the musk dataset (n1 = number of neurons in first layer of the recurrent component,
ns = number of neurons in second layer of the recurrent component, n = learning rate, p = momentum term).

| | dataset | ni | na | n | n | reshuffle | iterations | accuracy
1| musk1 | 50 | 10 | 0.5 | 0.2 | every it. 190 84.8%
2 | musk1 | 50 | 10 | 0.5 | 0.2 none 110 88.0%
3 | musk1l | 50 | 10 | 0.5 | 0.2 | 30 copies 10 89.1%
4 | musk2 | 80 | 20 | 0.5 | 0.2 | every it. 40 76.5%
5| musk2 | 80 | 20 | 0.5 | 0.2 none 240 85.3%
6 | musk2 | 40 | 15 | 0.5 | 0.2 none 50 77.5%
7| musk2 | 40 | 15 | 0.5 | 0.2 | 5 copies 20 80.4%

technique require computation of the molecular sur-
face, which cannot be done using the feature vectors
included in the dataset. A comparison of different con-
figurations for the relational neural networks, is shown
in table 2.

These results show that relational neural networks are
performing quite well. They give results that are a lot
better than simple backpropagation and even better
than multi-instance neural networks. The latter can
only be the result of better parameters because the hy-
pothesis space searched by relational neural networks,
Hgnn, is a superset of the hypothesis space Hpyrn v
searched by multi-instance neural networks. This
means that the hypothesis in Hzyn that best approx-
imates the target hypothesis, must also be in Hyrnn-
The accuracy of iterated-discrim axis-parallell rect-
angles (iterated-discrim APR), the best method, is still
significantly higher, but this method is specifically de-
signed for this kind of problems.

When we look at the differences between different con-

figurations for training the relational neural networks,
we see that reshuffling the training data after every
iteration gives poor results. However, expanding the
training set with reshuffled copies does improve train-
ing. Although the training set becomes larger, the ac-
curacy is better and the necessary number of iterations
is reduced. It also helps to avoid overfitting.

Figure 3 shows us why reshuffling after every itera-
tion is not working well. Reshuffling after every iter-
ation actually changes the training set continuously.
This means that the error function also changes con-
tinuously, and what was the gradient in the previous
iteration may be unrelated to the gradient in this it-
eration. This makes it difficult for the backpropaga-
tion algorithm to converge. The mean square error on
training and test set is very jagged in this case (see
figure 4(a)). This is not the case for adding reshuffled
copies to the training set (see figure 4(b)). Adding
reshuffled copies has a similar effect as enlarging the
dataset with new samples.



Figure 3. Mean square error (MSE) for training and test set in function of the number of training iterations.

'Training Error
Test Error - 1

0.5

MSE

0 1 1 1 1
0 200 400 600 800

iterations

1000

(a) With reshuffling after every iteration.

'Training Error
Test Error - 1

MSE

400
iterations

0 200 600 800 1000

(b) With adding reshuffled copies.

Table 3. Accuracies on the trains dataset, comparing relational neural networks with first order decision trees using
random forrests (RNN 1 is without reshuffling, RNN 2 is with reshuffled copies).

| dataset | concept | samples | noise | RNN 1 | RNN 2 | FORF
trains 1 | simple 100 none 80% 95% 100.0%
trains 2 | simple 100 5% 78% 89% 92.8%
trains 3 | simple 1000 none | 100% 100% | 100.0%
trains 4 | complex 800 none | 89.4% | 97.8% 96.1%
trains 5 | complex 800 5% 84.5% | 89.8% | 90.3%

The second tested dataset is the train dataset based on
the Michalski train problem. This problem was inven-
ted by Ryszard Michalski around 25 years ago (Michal-
ski, 1980). The aim is to find a concept which ex-
plains why trains are travelling eastbound or west-
bound. Every train consists of a number of cars, carry-
ing some load. The concept is based on the properties
of these cars and their loads.

We used a generator for this train problem to create
a dataset (Michie et al., 1994). Two different con-
cepts are used for the generation, a simple and a more
complicated. The simple concept defines trains that
are eastbound as trains with at least two circle loads,
the other trains are westbound. The more complic-
ated concept defines westbound trains as trains that
have more than seven wheels in total but not more
than one open car with a rectangle load, or trains that
have more than one circle load; the other trains are
eastbound.

First-order decision trees using random forests (Vens
et al., 2004) are another approach to tackle the prob-

lems combining selection and aggregation. We com-
pare our results with results obtained with the latter
method. A complete overview of the results is given
in tables 3 and 4. The used datasets are generated to
test different settings: a simple versus a more complic-
ated concept and noise versus no noise. The tests were
done with five-fold cross-validation.

What we see for the simple concept (datasets 1,
2 and 3), is that 100 samples is not enough to
learn the concept completely. Taking a dataset with
1000 samples, however, we can reach 100% accuracy.
Adding 5% noise results in an accuracy that is a little
more than 5% lower, so our classifier seems to be rather
noise resistant.

For the more complicated concept (datasets 4 and 5),
the results are quite similar to those for first-order de-
cision trees using random forests. The effect of noise
is the same as for the simple concept. For both the
simple and complicated concept, there is a remark-
able difference between training without reshuffling
and with added reshuffled copies.



Table 4. Training configurations for the trains dataset (n; = number of neurons in first layer of the recurrent component,
ny = number of neurons in second layer of the recurrent component, = learning rate, 4 = momentum term).

dataset | ni | n2 | n | I3 | reshuffle

iterations | accuracy
trains 1 | 20 | 10 | 0.1 | 0.0 none 250 80%
trains 1 | 20 | 10 | 0.1 | 0.0 | 10 copies 100 95%
trains 2 | 20 | 10 | 0.1 | 0.0 none 300 78%
trains 2 | 20 | 10 | 0.1 | 0.0 | 20 copies 150 89%
trains 3 | 20 | 10 | 0.1 | 0.0 none 40 100%
trains 3 | 20 | 10 | 0.1 | 0.0 | 10 copies 10 100%
trains 4 | 60 | 40 | 0.2 | 0.1 none 300 89.4%
trains 4 | 60 | 40 | 0.2 | 0.1 | 20 copies 200 97.8%
trains 5 | 60 | 40 | 0.2 | 0.1 none 200 84.5%
trains 5 | 60 | 40 | 0.2 | 0.1 | 20 copies 130 89.8%
5. Conclusions forests.
We have presented a novel, neural network based
References

approach to relational learning. The approach con-
sists of constructing a neural network that reflects the
structure of the relational dataset. This relational
neural network may contain both feedforward and re-
current parts. The training algorithm for this rela-
tional network is based on the standard backpropaga-
tion (through time) algorithm.

Our approach was tested on two datasets. It turned
out that relational neural networks are performing
quite well compared with other methods. They can
deal with noisy data and the expressive power of
Jordan recurrent networks seems to be sufficient to
learn the desired concepts.

While many open questions remain regarding the op-
timal architecture of these relational neural networks,
their learning behaviour, the optimal learning method-
ology, etcetera, we did obtain a first important result
from these experiments: the ‘copy reshuffling’ method
to temove the effect of set ordering is clearly super-
ior to the other reshuffling method. Its effects include
a higher final accuracy, less iterations needed to train
the network and reducing the risk of overfitting. These
advantages outweigh the disadvantage of having a lar-
ger training set,.

Acknowledgements

Hendrik Blockeel is a postdoctoral fellow of the Fund
for Scientific Research of Flanders (FWO-Vlaanderen).
Werner Uwents is supported by IDO/03/006 ‘Develop-
ment of meaningful predictive models for critical dis-
ease’. We thank Celine Vens for generating the train
dataset and obtaining results with first-order random

Blockeel, H., & Bruynooghe, M. (2003). Aggregation
versus selection bias, and relational neural networks.
IJCAI-2008 Workshop on Learning Statistical Mod-
els from Relational Data, SRL-2003, Acapulco, Mex-
ico, August 11, 2003.

Dietterich, T. G., Lathrop, R. H., & Lozano-Pérez, T.
(1997). Solving the multiple-instance problem with

axis-parallel rectangles. Artificial Intelligence, 89,
31-71.

Frasconi, P., Gori, M., & Sperduti, A. (1998). A gen-
eral framework for adaptive processing of data struc-
tures. IEEE-NN, 9, 768-786.

Getoor, L., Friedman, N., Koller, D., & Pfeffer, A.
(2001). Learning Probabilistic Relational Models.
In S. Dzeroski and N. Lavrac (Eds.), Relational data
mining, 307-334. Springer-Verlag.

Goller, C., & Kiichler, A. (1996). Learning task-
dependent distributed representations by back-
propagation through structure. Proceedings of the

IEEE International Conference on Neural Networks
(ICNN-96) (pp. 347-352).

Jordan, M. I. (1986). Attractor dynamics and parallel-
ism in a connectionist sequential machine. Proceed-
ings of the Eighth Annual Conference on Cognitive
Science (pp. 531-546).

Knobbe, A., Siebes, A., & Marseille, B. (2002).
Involving aggregate functions in multi-relational
search. Principles of Data Mining and Knowledge
Discovery, Proceedings of the 6th European Confer-
ence (pp. 287-298). Springer-Verlag.



Krogel, M.-A., & Wrobel, S. (2001). Transformation-
based learning using multi-relational aggregation.
Proceedings of the Eleventh International Confer-
ence on Inductive Logic Programming (pp. 142-155).

Merz, C., & Murphy, P. (1996). UCT re-
pository  of  machine learning  databases
[http://www.ics.uci.edu/"mlearn/mlrepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science.

Michalski, R. (1980). Pattern Recognition as Rule-
Guided Inductive Inference. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2, 349—
361.

Michie, D., Muggleton, S., Page, D., & Srinivasan,
A. (1994). To the international computing com-
munity: A new east-west challenge (Technical Re-
port). Oxford University Computing Laboratory,
Oxford, UK. Available at ftp.comlab.ox.ac.uk.

Nienhuys-Cheng, S.-H., & De Wolf, R. (1997). Found-
ations of Inductive Logic Programming, vol. 1228
of Lecture Notes in Computer Science and Lecture
Notes in Artificial Intelligence. New York, NY,
USA: Springer-Verlag.

Ramon, J., & De Raedt, L. (2000). Multi in-
stance neural networks. Proceedings of the ICML-
Workshop on Attribute- Value and Relational Learn-
ng.

Ramon, J., Driessens, K., &  Demoen,
B.  (2002). Neural logic  programs.
http://www.cs.kuleuven.ac.be/~janr/nlptechrep.ps,
to be published as a technical report.

Sperduti, A., & Starita, A. (1997). Supervised neural
networks for the classification of structures. IEEFE
Transactions on Neural Networks, 8, 714-735.

Vens, C., Van Assche, A., Blockeel, H., & Dzeroski, S.
(2004). First order random forests with complex ag-
gregates. Proceedings of the 14th International Con-

ference on Inductive Logic Programming (pp. 323—
340). Springer.

Werbos, P. J. (1990). Back propagation through time:
What it does and how to do it. Proceedings of the
IEEFE (pp. 1550-1560).



