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ABSTRACT
Non-deterministic computations are conventionally modelled by
lists of their outcomes. This approach provides a concise declara-
tive description of certain problems, as well as a way of generically
solving such problems.

However, the traditional approach falls short when the non-deter-
ministic problem is allowed to be recursive: the recursive problem
may have infinitely many outcomes, giving rise to an infinite list.

Yet there are usually only finitely many distinct relevant results.
This paper shows that this set of interesting results corresponds to
a least fixed point. We provide an implementation based on alge-
braic effect handlers to compute such least fixed points in a finite
amount of time, thereby allowing non-determinism and recursion
to meaningfully co-occur in a single program.

CCS Concepts
•Software and its engineering→ Functional languages; Recur-
sion;

Keywords
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1. INTRODUCTION
Non-determinism [24] models a variety of problems in a declara-

tive fashion, especially those problems where the solution depends
on the exploration of different choices. The conventional approach
represents non-determinism as lists of possible outcomes. For in-
stance, consider the semantics of the following non-deterministic
expression:

1 ? 2

This expression represents a non-deterministic choice (with the op-
erator ?) between 1 and 2. Traditionally we model this with the list
[1, 2]. Now consider the next example:

swap (m,n) = (n,m)

pair = (1, 2) ? swap pair
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The corresponding Haskell code is:

swap :: [(a, b)]→ [(b, a)]
swap e = [(m,n) | (n,m)← e ]
pair :: [(Int , Int)]
pair = [(1, 2)] ++ swap pair

This is an executable model (we use ≫ to denote the prompt of
the GHCi Haskell REPL):

≫ pair
[(1, 2), (2, 1), (1, 2), (2, 1) ...

We get an infinite list, although only two distinct outcomes ((1, 2)
and (2, 1)) exist. The conventional list-based approach is clearly in-
adequate in this example. In this paper we model non-determinism
with sets of values instead, such that duplicates are implicitly re-
moved. The expected model of pair is then the set {(1, 2), (2, 1)}.
We can execute this model: 1

swap :: (Ord a,Ord b)⇒ Set (a, b)→ Set (b, a)
swap = map (λ(m,n)→ (n,m))
pair :: Set (Int , Int)
pair = singleton (1, 2) ‘union‘ swap pair

≫ pair
fromList *** Exception: <loop>

Haskell lazily prints the first part of the Set constructor, and then
has to compute union infinitely many times. As an executable
model of non-determinism it clearly remains inadequate: it fails to
compute the solution {(1, 2), (2, 1)}.

This paper solves the problem caused by the co-occurence of
non-determinism and recursion, by recasting it as the least fixed
point problem of a different function. The least fixed point is com-
puted explicitly by iteration, instead of implicitly by Haskell’s re-
cursive functions.

The contributions of this paper are:
• We define a monadic model that captures both non-determin-

ism and recursion. This yields a finite representation of re-
cursive non-deterministic expressions. We use this represen-
tation as a light-weight (for the programmer) embedded Do-
main Specific Language to build non-deterministic expres-
sions in Haskell.
• We give a denotational semantics of the model in terms of

the least fixed point of a semantic function RJ · K. The se-
mantics is subsequently implemented as a Haskell function
that interprets the model.
• We generalize the denotational semantics to arbitrary com-

plete lattices. We illustrate the added power on a simple
1Here map comes from Data.Set



graph problem, which could not be solved with the more spe-
cific semantics.
• We provide a set of benchmarks to demonstrate the expres-

sivity of our approach and evaluate the performance of our
implementation.

2. OVERVIEW

2.1 Non-determinism
A computation is non-deterministic if it has several possible out-

comes. In this paper, we interpret such non-deterministic computa-
tions as the set of their results.

Consider the following non-deterministic expression that pro-
duces either 1 or 2:

1 ? 2

For this example, the semantics is given by the set {1, 2}. The
semantic function J · K formally characterizes this interpretation:

Jn K = {n}
J e1 ? e2 K = J e1 K ∪ J e2 K

The semantics of a literal n is the singleton of n, and the semantics
of a choice e1 ? e2 is the union of the semantics of the left and right
branches. A simple calculation shows that J 1?2 K is indeed {1, 2}.

J 1 ? 2 K = J 1 K ∪ J 2 K = {1} ∪ {2} = {1, 2}

Let us extend our semantics to allow for addition of non-determin-
istic values:

J e1 + e2 K = {n+m | n ∈ J e1 K,m ∈ J e2 K}

Now, consider the expression:

(1 ? 2) + (1 ? 2)

Here we have an expression that contains an addition of two choices.
This expression has 4 possible outcomes of which two coincide: the
result is either 2 (1+1), 3 (1+2 or 2+1) or 4 (2+2).2 Again calcula-
tion gives the expected result:

J (1 ? 2) + (1 ? 2) K
= {n+m | n ∈ J 1 ? 2 K,m ∈ J 1 ? 2 K}
= {n+m | n ∈ {1, 2},m ∈ {1, 2}}
= {2, 3, 4}

Recursion The next example presents a recursive non-determin-
istic expression pair which chooses between (1, 2) and the new
primitive swap to swap pair ’s components around.

pair = (1, 2) ? swap pair

The semantics of swap e is the set obtained by flipping all pairs in
the set of results of e:

J swap e K = {(m,n) | (n,m) ∈ J e K}

The semantics of pair are given by the following recursive equa-
tion:

J pair K = J (1, 2) ? swap pair K
⇐⇒ J pair K = J (1, 2) K ∪ J swap pair K
⇐⇒ J pair K = {(1, 2)} ∪ {(m,n) | (n,m) ∈ J pair K} (1)

2The conventional list-based semantics would be [2, 3, 3, 4].

This equation admits infinitely many solutions, e.g.

J pair K = {(1, 2), (2, 1)},
J pair K = {(0, 0), (1, 2), (2, 1)},
J pair K = {(1, 1), (1, 2), (2, 1)},
· · ·

However, we can identify a least solution: the set {(1, 2), (2, 1)}
is contained in every other solution.

As we saw previously, a naive translation of this idea in Haskell
does not work:

det ::Ord a ⇒ a → Set a
det x = singleton x
(?) ::Ord a ⇒ Set a → Set a → Set a
a ? b = union a b
swap :: (Ord a,Ord b)⇒ Set (a, b)→ Set (b, a)
swap = Data.Set .map (λ(x , y)→ (y , x ))
pair :: Set (Int , Int)
pair = det (1, 2) ? swap pair

≫ pair
fromList *** Exception: <loop>

The reason it does not work is that under Haskell’s (cpo-based)
semantics the equation (1) has a different least solution: ⊥ (i.e.
non-termination).3 As this additional⊥ in the domain is clearly not
the desired solution, we cannot rely on Haskell’s native semantics
for recursion.

The main contribution of this paper is to reformulate the prob-
lem as a different least fixed point problem, for which we can iter-
atively compute the solution. Moreover, our approach incurs mini-
mal overhead for the programmer, compared to writing the function
using the conventional recursive approach.

2.2 Effect Handlers
Monads are a way to model side-effects such as non-determinism

in a pure functional programming language [25]. In this paper, we
use effect handlers to construct a monad for non-determinism and
recursion. Effect handlers [10, 27] factor the problem of modeling
effectful computations into two parts: first a syntax is introduced to
represent all relevant operations, second effect handlers are defined
that interpret the syntax within a semantic domain.

The syntax of non-deterministic computations can be modeled
with the following data type ND , which supports three operations:
SuccessND a is a deterministic computation with result a , Fail
is a failed computation, and Or l r represents a non-deterministic
choice between two non-deterministic computations l and r .

data ND a
= SuccessND a
| FailND

| OrND (ND a) (ND a)

Because the above data type is a free monad [20] we can easily
define the following Monad instance:

instance Monad ND where
return a = SuccessND a
SuccessND a >>= f = f a
FailND >>= f = FailND

OrND l r >>= f = OrND (l >>= f ) (r >>= f )

3In Haskell we work in the domain 〈P(N× N) ∪ {⊥},v〉, where
every type is inhabited by ⊥, representing non-termination, and
⊥ v v for any value v.



This monad instance substitutes f a for every SuccessND a in
the data structure, leaves Fail untouched, and recurses on both
branches of Or l r . With this monad instance, the example (1 ?
2) + (1 ? 2) is expressed as:

exampleND ::ND Int
exampleND = do x ← return 1 ‘OrND‘ return 2

y ← return 1 ‘OrND‘ return 2
return (x + y)

Values of type ND a are abstract syntax trees. The function
exampleND constructs such an abstract syntax tree. The inter-
preter nd decodes this tree according to the semantics defined by
J · K. It turns Success into a singleton set, Fail into an empty set,
and Or into the union of the interpretations of its branches.

nd ::Ord a ⇒ ND a → Set a
nd (SuccessND a) = singleton a
nd FailND = empty
nd (OrND l r) = union (nd l) (nd r)

≫ nd exampleND
fromList [2, 3, 4]

The equivalent of pair in the abstract syntax is pairND :

pairND ::ND (Int , Int)
pairND = return (1, 2) ‘OrND‘ fmap swap pairND where
swap (x , y) = (y , x )

≫ nd pairND
fromList ...

Encoding the non-deterministic syntax as a data type does not solve
the problem of non-termination. This can be explained by looking
at the syntax tree for pairND in Figure 1: it is an infinite tree with
an Or node at the root, a Success node in the left branch, and in
the right branch another tree with Or at the root after which the
pattern repeats. Obviously the interpreter nd does not terminate
when interpreting such an infinite tree.

We have little chance of processing the infinite tree in a finite
time if we do not represent it in a finite way. Yet the current recur-
sive form of pairND hides the recursive call in the function body,
making the construction of an infinite tree unavoidable.

3. EXPLICATING RECURSION
In order to obtain a finite syntax tree, we have to once more

change the representation of non-deterministic computations. First,
we add a constructor to the abstract syntax to explicitly represent
a recursive call. Second, we replace all recursive calls with this
constructor, and finally, we define a new effect handler that inter-
prets the now finite syntax tree, producing the desired solution. The
following data type models recursive calls in addition to non-deter-
minism:

data NDRec i o a
= Success a – (1)
| Fail – (2)
| Or (NDRec i o a) (NDRec i o a) – (3)
| Rec i (o → NDRec i o a) – (4)

The first three constructors (1–3) capture non-determinism, exactly
like the previously defined data type ND . The last constructor (4)
captures a recursive call: Rec a k represents a recursive call with
argument a :: i , and continuation k :: o → NDRec i o a . For con-
venience, we define four additional smart constructors. The smart

constructor rec performs a recursive call and immediately wraps
the result in a successful computation:

rec :: i → NDRec i o o
rec i = Rec i Success

The smart constructor choice picks a computation from a list in a
non-deterministic fashion.

choice :: [NDRec i o a ]→ NDRec i o a
choice = foldr Or Fail

The smart constructor choose picks an element from a list in a non-
deterministic fashion.

choose :: [a ]→ NDRec i o a
choose = choice ◦map Success

The smart constructor guard returns () if its argument is true and
fails otherwise.

guard :: Bool → NDRec i o ()
guard b = if b then return () else Fail

The data type NDRec is again a free monad, the corresponding
monad instance is:

instance Monad (NDRec i o) where – (1)
return a = Success a – (2)
Success a >>= f = f a – (3)
Fail >>= f = Fail – (4)
Or l r >>= f = Or (l >>= f ) (r >>= f ) – (5)
Rec i k >>= f = Rec i (λx → k x >>= f ) – (6)

Lines 1–5 are identical to the Monad instance for ND . Line (6)
defines that >>= of a recursive call is obtained by a new recursive
call to the same argument, but with an extended continuation. 4

As an example, consider this latest incarnation of pair , written
in the NDRec syntax:

pairNDRec :: ()→ NDRec () (Int , Int) (Int , Int)
pairNDRec () = return (1, 2) ‘Or ‘ do (x , y)← rec ()

return (y , x )

We interpret this program in the next section.

4. EFFECT HANDLER FOR EXPLICIT RE-
CURSION

4.1 Denotational semantics
In this section we formalize the meaning of the abstract syn-

tax. The meaning of a non-deterministic function f of type5 I →
NDRec I O O , mapping I onto NDRec I O O is given by a
function J f K : I → P(O). This function maps values of type I
onto a subset of the values described by the type O.

J · K : (I → NDRec I O O)→ (I → P(O))

Let us first define the semantics of an easier case: suppose we al-
ready have an environment s : I → P(O) that contains a partial
set of solutions for every call f(a), i.e.

s(a) ⊆ J f K(a) for every a ∈ I

4The new continuation is the Kleisli composition k >=> f where
(>=>)::Monad m ⇒ (a → m b)→ (b → m c)→ (a → m c).
5In deference to mathematical convention, we use uppercase char-
acters for meta-variables I and O when using mathematical syntax.



Then for every syntax tree t : ND I O O we can define a se-
mantic function RJ t K(s). This semantic function gives us the set
of results associated with t, given s. Because the ND I O O
data type is inductive, we define the functionRJ · K using structural
recursion, as follows:

RJ · K: NDRec I O O → (I → P(O))→ P(O)

RJSuccess x K(s) = {x} (2)
RJFail K(s) = ∅ (3)
RJOr l r K(s) = RJ l K(s) ∪RJ r K(s) (4)

RJRec i k K(s) =
⋃

x∈s(i)

RJ k(x) K(s) (5)

The two base cases are fairly simple: in the deterministic case (2)
the result is just a singleton set of the result, and in the failure
case (3) it is the empty set.

There are two inductive cases as well: a binary choice (4) and a
recursive call (5). A binary choice is handled by taking the union
of the results of the left and right branches. A recursive call has an
argument i and a continuation k. The result is obtained by finding
the set of outcomes in the environment s, and then applying the
continuation k to every element x in s(i), and taking the union of
the result.

Now we can of define J · K as follows: since RJ f(a) K(J f K)
gives the set of outcomes of f(a) given environment J f K, and
J f K(a) gives the set of outcomes of f(a), the following must hold
aboutRJ f(a) K(J f K):

RJ f(a) K(J f K) = J f K(a) (∀a ∈ I)

[ equivalence of λ-abstraction and ∀-quantification ]
⇐⇒ λa.RJ f(a) K(s) = λa.J f K(a)
⇐⇒ λa.RJ f(a) K(J f K) = J f K [ η-reduction ]
⇐⇒ J f K is a fixed point of λs.λa.RJ f(a) K(s)

Now all that remains is to choose a canonical fixed point for J f K,
such that it corresponds to the desired meaning. Note that environ-
ments of the type I → P(O) (such as J f K) are ordered by the
ordering relation v:

f v g ⇐⇒ ∀a ∈ I : f(a) ⊆ g(a)

The desired fixed point is the least fixed point6 denoted by lfp(·),
when fixed points are ordered by v:

J f K = lfp(λs.λa.RJ f(a) K(s)) (6)

To make this more concrete, consider the denotational semantics of
pairNDRec.

J pairNDRec () K(())

= lfp(λs.λ().RJ pairNDRec () K(s))
(
()
)

[ by (6) ]

[ λ().{(1, 2), (2, 1)} is the least fixed point ]

=
(
λ().{(1, 2), (2, 1} ()

)
[ function application ]
{(1, 2), (2, 1)}

6The least fixed point is well defined, as the function is always
continuous (if the syntax tree is finite) and therefore monotonic,
but the domain I → P(O) may not possess the finite ascending
chain property, preventing us from computing the solution in a fi-
nite amount of time.

Or

Success (1, 2) Or

Success (2, 1) · · ·

Figure 1: Infinite syntax tree created by pairND .

Or

Success (1, 2) Rec ()
λ

(x , y) Success (y , x )

Figure 2: Finite syntax tree created by pairNDRec ().

We can see that λ().{(1, 2), (2, 1)} is the least fixed point be-
cause it is a fixed point and it is contained in every other fixed
point.

4.2 Effect Handler Implementation
In this section we provide a Haskell implementation that cor-

respond to the denotational semantics from the previous section.
This implementation comes in the form of an effect handler [10,
27]. Like the denotational semantics, the effect handler is split into
two parts: a part that delivers the solution for the entire function by
computing a least fixed point (similar to J · K), and the counterpart
of RJ · K, which, given an environment, computes the results for
one syntax tree.

The first part is called runNDRec and the second part is called
go. The effect handler first computes the least fixed point of the
step function. The step function is a function that takes an envi-
ronment (of type Map i (Set o) from Data.Map7) and obtains a
new environment by running go for every entry in the environment.
The fixed point of this function is again an environment, in which
we look up i0, the second argument to runNDRec.

runNDRec :: (Ord i ,Ord o)
⇒ (i → NDRec i o o)→ i → Set o

runNDRec expr i0 = lfp step s0 ! i0 where
s0 = M .singleton i0 empty
step m = foldr (λk → go k (expr k)) m (M .keys m)

The function go, likeRJ · K proceeds by case analysis on the syntax
tree. However, unlike RJ · K, go updates an environment instead
of just returning a set of solutions. This difference is mainly for
programming convenience.

go :: (Ord i ,Ord o)
⇒ i → NDRec i o o
→ M .Map i (Set o)→ M .Map i (Set o)

go i (Success a) m = M .insertWith union i (singleton a) m
go i Fail m = m
go i (Or l r) m = go i r (go i l m)
go i (Rec j k) m = case M .lookup j m of

Nothing → M .insert j empty m
Just s → foldr (go i ◦ k) m (toList s)

7Functions and types residing in Data.Map are imported with the
qualifier M, except the lookup operator “!”.
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Figure 3: The graph used in the reachable and shortest path
example.

If the syntax tree contains a deterministic result (line 4), we simply
add this result to the environment. If the syntax contains a failure
(line 5), the environment remains unchanged. When presented with
a binary choice (line 6), we first update the environment according
to the left branch and then according to the right branch. Finally,
in the case of a recursive call Rec j k , we first check if the map
contains an entry for the argument j (line 7). If it has no such
entry, we add an entry containing the empty set (line 8), otherwise
we update the environment based on the existing elements (line 9).
Inserting an empty entry for j , ensures that the next iteration of
step also updates the map for expr j .

We still need a function lfp to iteratively compute a least fixed
point. Given an initial value, this function keeps calling itself until
the result no longer changes.

lfp :: Eq a ⇒ (a → a)→ a → a
lfp f a0 = let a1 = f a0 in if a1 ≡ a0 then a1 else lfp f a1

As an example, consider the semantics of pairNDRec:

≫ runNDRec pairNDRec ()
fromList [(1, 2), (2, 1)]

The denotational semantics and its Haskell implementation coin-
cide as expected, but only up to termination (as we show in Sec-
tion 6).
Graph Example We compute reachability in a cyclic directed
graph using our non-determinism framework. We use the adja-
cency list representation of a graph where every Node has a label
(of type String) and a list of adjacent nodes:

data Node = Node { label :: String , adj :: [Node ]}
instance Eq Node where n1 ≡ n2 = label n1 ≡ label n2

instance Ord Node where n1 6 n2 = label n1 6 label n2

Our example graph (see Figure 3) consists of five nodes. It con-
tains two cycles: from 3 to 4 and back, and from 5 to itself.

[n1,n2,n3,n4,n5 ] = [Node "1" [n2,n5 ],
Node "2" [n3 ],
Node "3" [n4 ],
Node "4" [n3,n1 ],
Node "5" [n5 ]]

Reachability is straightforwardly computed as:

reach ::Node → NDRec Node Node Node
reach n = return n ‘Or ‘ (choose (adj n)>>= rec)

i.e. n is reachable from n and all nodes reachable from a neighbor
of n are reachable from n .

≫ runNDRec reach n1

fromList [Node 1,Node 2,Node 3,Node 4,Node 5]

2: ∅,[]

2: ∅,[] 1: ∅,[go 2 ◦ k0 ]

2: ∅,[] 1: {1},[go 2 ◦ k0 ]

2: ∅,[] 1: {1},[go 2 ◦ k0 ] 0: ∅,[go 1 ◦ l1 ]

2: ∅,[] 1: {1},[go 2 ◦ k0 ] 0: {0},[go 1 ◦ l1 ]

2: {2},[] 1: {1},[go 2 ◦ k0 ] 0: {0},[go 1 ◦ l1 ]

2: {2},[] 1: {1},[go 2 ◦ k0 ] 0: {0},[go 1 ◦ l1 ]

Table 1: The trace of the environment for runNDk fib 2.

5. DEPENDENCY TRACKING
The effect handler that was provided in Section 4 computes the

least fixed point in a very naive way, resulting in sub par perfor-
mance. To illustrate the problem, consider the following program
to compute the Fibonacci numbers:

fib :: Int → NDRec Int Int Int
fib n | n ≡ 0 = return 0

| n ≡ 1 = return 1
| otherwise = do f1 ← rec (n − 1)

f2 ← rec (n − 2)
return (f1 + f2)

The evolution of the environment for runNDRec fib 2 after each
application of step is shown in Table 1 (ignore the list after the
comma for now). Every value in the environment is recomputed in
every step. The work performed by the effect handler is monotonic:
the work performed by a single iteration is also performed in all
later iterations. In the case of fib this leads to an O(n2) runtime.8

This duplication of work has two sources:

1. The naive least fixed point computation lfp iteratively ap-
plies the step function which folds over all keys in the envi-
ronment, even when the set of outcomes of that key has not
changed.

2. The function go computes too much: the only part of the
syntax tree that is influenced by a recursive call Rec j k is
the continuation k of that recursive call. Therefore only the
continuation needs to be recomputed.

Although efficiency is not the main focus of this paper, we would be
remiss not to address such a glaring problem. Especially since the
solution is simple: both problems can be solved by keeping track of
which continuation depends on which recursive call (identified by
its argument), and only evaluating the continuation once for every
new value of the recursive call.

Figure 4 shows the code for the interpreter runNDk that tracks
dependencies. This effect handler relies on seven auxiliary func-
tions defined for the type Env i o. This type abstracts over envi-
ronments that contain continuations in addition to a set of values.
We show their signatures and implementations in Figure 4.

The computation starts with the call to go on line 1, which re-
turns the environment after the least fixed point computed. From
this environment the result is extracted using !!!. The go function
proceeds by case analysis: if the syntax tree is Success x and the
value x is not yet in the environment, the environment is updated
by sequentially applying every continuation that is currently in the
environment (line 2-3). If the syntax tree is a failed computation
the environment is unchanged (line 4). If the syntax tree is a bi-
nary choice (line 5) the environment is updated first for the left
8modulo a logarithmic factor for the use of finite maps.



branch, then for the right branch. If the syntax tree is a recursive
call Rec j k (line 6-10), and there is no entry for j in the map
(line 9), i.e. this is the first time we see a call to j , a continuation
for j is added (line 7) and the recursive function is evaluated for j .
Otherwise (line 10), a new continuation is added for j , and this con-
tinuation is applied to every known result of j . The least fixed point
is reached when the ifNew check on line 2 no longer succeeds.

The trace for runNDk fib 2 is identical to the trace for runND fib 2,
but now only a single entry is updated in each iteration. More-
over, the result from the call to 1 only triggers the continuation
k0 = λf1 → Rec 0 (λf2 → return (f1 + f2)) and the result of 0
only triggers computation of l1 = λf2 → return (1 + f2), instead
of the entire syntax tree fib 2.

In summary, we obtain a linear runtime for fib.

6. LATTICES
Reconsider the graph defined in Section 4. Instead of just finding

all reachable nodes, we may want to additionally know the length
of the shortest path. The program sp is a first attempt at computing
the shortest path between src and dst .

sp ::Node → Node → NDRec Node Int Int
sp dst src
| dst ≡ src = return 0
| otherwise = choose (adj src)>>= rec >>= return ◦ (+1)

The denotational semantics gives us the following value for the ex-
pression sp n1 rec n2:

J sp n1 rec K(n2) = {2, 4, 6, 8, . . .}

Since this value is infinite, the effect handler does not terminate.
In order to implement a terminating effect handler, we need to first
define an alternative denotational semantics that at least produces a
finite value, which we can then compute in a finite amount of time.
Lattice-based Semantics Instead of powersets P(O), we gen-
eralize the semantic domain to an arbitrary complete lattice L. On
this domain we define a new denotational semantics for non-deter-
ministic computations. The signature of this denotational seman-
tics is:

J · KL : (I → NDRec I L L)→ (I → L)

where 〈L,v〉 is a complete lattice.
A complete lattice is a partially ordered set 〈S,v〉 such that for

every subset X ∈ S there exists a least upper bound, i.e. an element
tX that is the least element that is larger than every element in X ,
more formally:

DEFINITION 1 (COMPLETE LATTICE). A complete lattice 〈L,t〉
is a partially ordered set 〈L,v〉 where ∀X ⊆ L there exists a least
upper bound tX ∈ L, such that:

∀z ∈ L : tX v z ⇐⇒ ∀x ∈ X : x v z

It follows from the definition that tX is unique. A complete lat-
tice L always has a least element ⊥ that is smaller than all other
elements. It corresponds to the least upper bound of the empty set:
⊥ = t∅. With a slight abuse of notation we also write a t b to
denote the least upper bound t{a, b}, pronounced “join”.

As before, we first consider the semantics for the case where we
already possess an environment s : I → L containing the (partial)
solution for every call f(a), i.e.

s(a) v J f KL(a) for every a ∈ I

Then for every syntax tree t : NDRec I L L we can define the
denotational semanticsRJ · KL in the new setting:

RJ · KL: NDRec I L L→ (I → L)→ L

RJSuccess x KL(s) = x

RJFail KL(s) = ⊥
RJOr l r KL(s) = RJ l KL(s) tRJ r KL(s)
RJRec j k KL(s) = RJ k(s(j)) KL(s)

This semantics is very similar to the previously defined semantics
for sets. In particular, the semantics RJ · K almost corresponds to
the semanticsRJ · KL specialized to the powerset of the output type
(RJ · KP(O)). We will make this relationship more precise in Sec-
tion 6.1.

For J f KL we would again like to compute the least fixed point
of λs.λa.

(
RJ f(a) KL(s)

)
. However, unlike for sets, this function

is not guaranteed to be monotonic for arbitrary lattices in general,
so a least fixed point might not always exist. Instead, we define the
operator ⇑:

DEFINITION 2. The operator ⇑ is defined as:

f ⇑ 0 = ⊥
f ⇑ (i+ 1) = f ⇑ i t f(f ⇑ i)

f ⇑ ∞ =

∞⊔
i=0

(f ⇑ i)

Observe that the sequence f ⇑ 0, f ⇑ 1, f ⇑ 2, . . ., f ⇑ ∞ is
non-decreasing.9

If the domain of f has the finite ascending chain property this
sequence is finite, and then f ⇑ ∞ must be a fixed point. Thus, we
define J · KL as:

J f KL = (λs.λa.RJ f(a) KL(s)) ⇑ ∞

Moreover, if λs.λa.RJ f(a) KL(s) is continuous, then ⇑ computes
the least fixed point, i.e.

lfp(λs.λa.RJ f(a) KL(s)) = (λs.λa.RJ f(a) KL(s)) ⇑ ∞ = J f KL

Otherwise, ⇑ may compute a fixed point that is strictly greater than
the least fixed point. In practice, however, almost all functions are
continuous.
Shortest Path Example For our shortest path problem, the rele-
vant partial order is 〈N ∪ {∞},v〉 where

a v b ⇐⇒ a =∞ or b 6 a

which is the reverse order of the canonical order on N, i.e. smaller
(shorter) is better. Since the canonical order is well-founded (i.e.
has no infinite descending chains),v has the finite ascending chain
property. The relevant lattice is 〈N ∪ {∞},t〉 where

tX =

{
∞ if X = ∅
minv X otherwise

In this lattice the least fixed point exists, since continuation return◦
(+1) in sp n1 is continuous.

J sp n1 KN∪{∞}(n2) = 3

9For environments, assume the order 4 defined as:

s1 4 s2 ⇐⇒ ∀a ∈ I : s1(a) v s2(a)



runNDk :: (Ord i ,Ord o)⇒ (i → NDRec i o o)→ i → Set o
runNDk expr i0 = go i0 (expr i0) emptyEnv !!! i0 where – (1)

go i (Success x ) m = ifNew i x m newEnv where – (2)
newEnv = foldr ($x ) (store i x m) (conts i m) – (3)

go i Fail m = m – (4)
go i (Or l r) m = go i r (go i l m) – (5)
go i (Rec j k) m = – (6)

let newEnv = addCont j (go i ◦ k) m – (7)
in case results j m of – (8)
Nothing → go j (expr j ) newEnv – (9)
Just rs → foldr (go i ◦ k) newEnv (toList rs) – (10)

ifNew :: (Ord i ,Ord o)
⇒ i → o → Env i o → Env i o → Env i o

ifNew i o env newEnv =
if maybe True (¬ ◦member o) (results i env)

then newEnv
else env

type Env i o = M .Map i (Set o, [C i o ])
newtype C i o = C {runC :: o → Env i o → Env i o}
emptyEnv :: Env i o
emptyEnv = M .empty

store :: (Ord i ,Ord o)⇒ i → o → Env i o → Env i o
store i o = M .insertWith mappend i (singleton o, [ ])

results ::Ord i ⇒ i → Env i o → Maybe (Set o)
results i = fmap fst ◦M .lookup i

(!!!) ::Ord i ⇒ Env i o → i → Set o
m !!! i = fromJust (results i m)

conts ::Ord i ⇒ i → Env i o → [o → Env i o → Env i o ]
conts i = map runC ◦M .findWithDefault [ ] i ◦ fmap snd

addCont :: (Ord i ,Ord o)⇒ i → (o → Env i o → Env i o)
→ Env i o → Env i o

addCont i k = M .insertWith mappend i (empty , [C k ])

Figure 4: Effect Handler and Environment type for dependency tracking.

The length of the shortest path from node 2 to node 1 is indeed 3.
When a path does not exist, we get the following length:

J sp n1 KN∪{∞}(n5) =∞

Notice the similarity to solving a problem with Dynamic Program-
ming. The idea of dynamic programming is to compute the optimal
solution to a problem by combining optimal solutions to smaller
instances of the same problem. In this setting, recursive calls cor-
respond to instances of the same problem. The lattice allows us to
keep only the optimal solution to a given instance, from which the
result of a larger instance is computed.
Subset Sum Example Another example is the following:
Given a list of integer numbers and an integer s, find the shortest
non-empty sublist that sums to s.

To solve this problem, first observe that lists form a lattice when
ordered by descending length, if we adjoin a bottom element InfList
representing any list of infinite length. This is embodied by the
Shortest-datatype (see Section 4.2 for the definition of Lattice).

data Shortest = InfList | List [Int ]
cons :: Int → Shortest → Shortest
cons n InfList = InfList
cons n (List ns) = List (n : ns)

instance Lattice Shortest where
bottom = InfList
join InfList a = a
join a InfList = a
join (List a) (List b)
| length a 6 length b = List a
| otherwise = List b

The function sss returns the Shortest list which sums to its first
argument and is a sublist of of its second argument.

sss :: (Int , [Int ])→ NDRec (Int , [Int ]) Shortest Shortest
sss (n, [ ])
| n ≡ 0 = return (List [ ])
| otherwise = Fail

sss (n, x : xs) = choice [rec (n, xs),
fmap (cons x ) (rec (n − x , xs))]

When the input list is empty we can only construct an empty list
with sum 0. When the input list is non-empty, the shortest list sum-

ming to n is obtained by either recursively searching for a list sum-
ming to n , or cons-ing x onto a list that sums to n − x .

The function RJ sss (n, xs) KL is continuous for all (n, xs).
Moreover, the environment possesses a finite ascending chain prop-
erty: every recursive call decreases the size of the input list by one.
Then, given a finite input list, there can only be a finitely many
recursive calls.

For instance, consider the application of sss to (10, [5, 0, 5]):

J sss K(10, [5, 0, 5]) = List[5, 5]

Indeed sum [5, 5] ≡ 10. Note that the list [5, 0, 5] itself also sums
to 10. However, only the shortest list is retained.
Grammar Analysis example We demonstrate the added power
of the lattice-based semantics by solving a simple grammar analysis
problem. Informally, a grammar is a list of rules or productions:

type Grammar = [Production ]

A production is of the form

data Production = Symbol 7−→ [Symbol ]

There is a single Symbol to the left of 7−→, called the head, and
zero or more symbols, the body, on the right hand side. Symbols
can be either terminals or non-terminals:

type Symbol = Char
isTerminal :: Symbol → Bool
isTerminal s = ¬ (isUpper s)

Terminals may not appear in the head of a rule. For our purpose we
distinguish terminals and non-terminals based on whether they are
upper or lower case characters.

Now, consider the following grammar:

grammar ::Grammar
grammar = [’E’ 7−→ "T Z", ’E’ 7−→ "(E)",

’Z’ 7−→ "+ T Z",’Z’ 7−→ "+ (E)",
’Z’ 7−→ "",
’T’ 7−→ "a", ’T’ 7−→ "1"]

This grammar describes a simple expression language consisting of
one identifier (a), one literal (1) and a binary operator (+). We im-
plement a program that analyses grammars for nullability: a sym-
bol is Nullable if it derives the empty string. Nullability is charac-



terized by a function from Symbol to Any , where Any is a lattice
of booleans, where join is disjunction and False is bottom .

newtype Any = Any {getAny :: Bool }
instance Lattice Any where
bottom = Any False
join (Any a) (Any b) = Any (a ∨ b)

Given this lattice, the implementation of nullable is straightfor-
ward:

nullability ::Grammar → Symbol → NDRec Symbol Any Any
nullability g s
| isTerminal s = return (Any False)
| otherwise = do

head 7−→ body ← choose g
guard (head ≡ s)
nullables ← mapM rec body
return (Any (and (map getAny nullables)))

A terminal symbol is never nullable. In order to decide if a non-
terminal symbol s is nullable, we need to check if there exists a
production with s in the head and with a body consisting of nullable
symbols. Note that s may also occur in the body.

We evaluate nullability for grammar :

Jnullability grammar KAny(’T’) = Any False

Jnullability grammar KAny(’Z’) = Any True

Jnullability grammar KAny(’E’) = Any False

We have demonstrated that a semantics based on lattices allows us
to tackle problems we could not previously solve in a finite amount
of time. Note that we again arrived at this solution by computing a
least fixed point, but of a different function. Furthermore, only the
semantics of the syntax has changed, the syntax itself is unmodi-
fied. Hence, to implement this semantics only the effect handler
needs to be reworked.

6.1 Generalized Effect Handler
This section shows that the semantics from Section 6 is strictly

more general than the semantics from Section 4.2. The NDRec
monad is a free monad. More precisely, it is the coproduct monad
of two other free monads respectively implementing non-determin-
ism and recursion. In this section we make this coproduct explicit
by following the data types à la carte approach [20]. All free mon-
ads have the following shape:

data Free f a = Return a | Free (f (Free f a))

They either return a pure value (Return) or an impure effect (Free),
constructed using f . When f is a Functor , Free f is a monad:

instance Functor f ⇒ Monad (Free f ) where
return a = Return a
Return a >>= f = f a
Free g >>= f = Free (fmap (>>=f ) g)

Functions interpreting Free are built using the function fold :

fold :: Functor f ⇒ (a → b)→ (f b → b)→ Free f a → b
fold ret alg (Return a) = ret a
fold ret alg (Free f ) = alg (fmap (fold ret alg) f )

where the first argument ret is applied to pure values and the sec-
ond argument alg is an algebra that is applied to impure values.

We use the coproduct + of two Functors to express the combi-
nation of two effects:

data (f + g) a = Inl (f a) | Inr (g a) deriving Functor

This data type is similar to the Either type, but it works on type
constructors (kind ∗ → ∗) instead of types (kind ∗). We use the
following two effect signatures to express recursion and non-de-
terminism respectively. Their functor instances are automatically
derived by GHC.

data RecF i o a = RecF i (o → a) deriving Functor
data NDF a = OrF a a | FailF deriving Functor

For convenience, we label the combined free monad (which is iso-
morphic to the NDRec type) with a type synonym NDRecF , and
define some smart constructors for it:

type NDRecF i o = Free (NDF + RecF i o)

orF ::NDRecF i o a → NDRecF i o a → NDRecF i o a
orF l r = Free (Inl (OrF l r))

chooseF :: [a ]→ NDRecF i o a
chooseF = foldr orF failF ◦map return where

failF = Free (Inl FailF )

recF :: i → NDRecF i o o
recF i = Free (Inr (RecF i Return))

Effect Handler Implementation for Lattices The typeclass
Lattice is defined as follows:

class Lattice l where
bottom :: l
join :: l → l → l

This typeclass prioritizes the view of the t-operator as a binary
operator because this is the most useful in practice.

Now we replace every FailF in a value of type NDRecF with
bottom and every OrF with join:

runND :: (Functor f ,Lattice o)
⇒ Free (NDF + f ) o → Free f o

runND = fold return alg where
alg (Inl FailF ) = return bottom
alg (Inl (OrF l r)) = join <$> l <∗> r
alg (Inr f ) = Free f

The effect handler runND effectively eliminates the NDF effect
from the syntax tree. Only the recursive effect RecF i o remains.
This effect is then interpreted by runRec:

runRec :: (Ord i ,Eq o,Lattice o)
⇒ (i → Free (RecF i o) o)→ i → o

runRec expr i0 = lfp step s0 ! i0 where
s0 = M .singleton i0 bottom
step m = foldr (λk → go (expr k) k) m (M .keys m)
go expr = fold onReturn alg expr where

onReturn x i = M .insertWith join i x
alg (RecF j k) i m = case M .lookup j m of

Nothing → k bottom i (M .insert j bottom m)
Just l → k l i m

Note that runRec does not expect a plain effect, but an effectful
function i → Free (RecF i o) o, and also returns a function i →
o. Essentially, runRec is a memoizing fixpoint operator applied to
the recursive equation defined by expr .

Reconsider the shortest path program from Section 6:

spF ::Node → Node → NDRecF Node Dist Dist
spF dst src | src ≡ dst = return 0

| otherwise = do n ← chooseF (adj src)
d ← recF n
return (d + 1)



where the Dist datatype and its instances are defined as:

data Dist = InfDist | Dist Int deriving (Eq ,Show)
instance Lattice Dist where
bottom = InfDist
join InfDist a = a
join a InfDist = a
join (Dist d1) (Dist d2) = Dist (min d1 d2)

instance Num Dist where
InfDist + a = InfDist
a + InfDist = InfDist
Dist d1 +Dist d2 = Dist (d1 + d2)
fromInteger = Dist ◦ fromInteger

Note that Dist has a Lattice-instance corresponding to the lattice
(N ∪ {∞},t) from Section 6. Combining runND and runRec
gives an effect handler runRec ◦ (runND◦) implementing the se-
mantic function J · KL. For spF this effect handler computes the
expected result:

≫ runRec (runND ◦ spF n1) n2

Dist 2
≫ runRec (runND ◦ spF n1) n5

InfDist

Lifting Continuations The semantic functionsRJ · K andRJ · KL
only differ in the case for Rec j k : RJ · K computes the union of
the k applied to every element of s(j), while RJ · KL directly ap-
plies the k to s(j). The similarity between RJ · K and RJ · KP(O)

suggests that we can obtain the behaviour of the former with the
latter if we just change the continuation in Rec j k appropriately.
More formally, we want to construct a continuation k ′ such that:

RJRec j k K(s) = RJRec j k ′ KP(O)(s)

This is achieved by the following code, that lifts a computation in
the Free (NDF + RecF i o)-monad to one in the Free (NDF +
Rec i (Set o))-monad.

liftRec ::Ord o
⇒ Free (NDF + RecF i o ) o
→ Free (NDF + RecF i (Set o)) (Set o)

liftRec = fold (return ◦ singleton) alg where
alg (Inl f ) = Free (Inl f )
alg (Inr (RecF i k)) = Free (Inr (RecF i k ′)) where

k ′ = fmap unions ◦ traverse k ◦ toList

Since the powerset 〈P(O),∪〉 forms a lattice, we can define a
Lattice instance for Set :

instance Ord a ⇒ Lattice (Set a) where
bottom = empty
join = union

Composing liftRec, runND and runRec yields a complete effect
handler for Free (NDF + RecF i o), corresponding to J · K:

runNDRecF :: (Ord i ,Ord o)
⇒ (i → Free (NDF + RecF i o) o)
→ (i → Set o)

runNDRecF f = runRec (runND ◦ liftRec ◦ f )

Examples Redefining our running example:

pairF :: ()→ NDRecF () (Int , Int) (Int , Int)
pairF () = return (1, 2) ‘orF ‘ do (x , y)← recF ()

return (y , x )

leads to the following familiar result:

≫ runRecF pairF ()
fromList [(1, 2), (2, 1)]

To recapitulate, we have shown how to implement the effect han-
dler for J · KL for NDRecF . On top of this we implement the effect
handler for J · K for sets, showing that the semantics for lattices gen-
eralize the semantics for sets.

7. MUTUAL RECURSION
The syntax we have defined so far has a serious limitation: it can

only handle a single function at a time. This section lifts this limi-
tation by extending the syntax to support several, potentially mutu-
ally recursive functions within the same non-deterministic compu-
tation. Moreover, these functions are allowed to possess different
argument and return types.
Motivating Example We demonstrate the added power with an-
other grammar analysis. We implement a program that finds the
First set of a symbol. A symbol X is in the First set of another
symbol Y if any of the strings derived from Y start with X . Solv-
ing First requires also solving Nullable .

Recall that nullability is characterized by a function from Symbol
to Any . First is a also characterized by a function, but one from
Symbol to Set Symbol (recall that Set is also a lattice). We en-
code this fact with a Generalized Algebraic Data Type (GADT)
[14]:

data Analyze o where
Nullable :: Symbol → Analyze Any
First :: Symbol → Analyze (Set Symbol)

The arguments to the data constructors Nullable and First in-
dicate the argument type (in both cases Symbol ). The argument
to the type constructor Analyze indicates the return type (Any or
Set Symbol ).

The syntax data type NDM is a variation of NDRec:

data NDM i a where
SuccessM :: a → NDM i a
FailM :: NDM i a
OrM :: NDM i a → NDM i a → NDM i a
RecM :: Lattice o

⇒ i o → (o → NDM i a)→ NDM i a

The recursive call constructor RecM expects an existentially qual-
ified parameter o (which must be a lattice). The previous syntax
introduces o in the type, and as such fixes o to one particular type
for the entire syntax tree. Because of the existential parameter,
NDM does allow calls with different return types. Furthermore,
the argument is of type i o. When i is a GADT, such as Analyze ,
the type i o will only be inhabited for the desired os (e.g. Any and
Set Symbol for Analyze).

We also define four additional smart constructors recM ,
chooseM , choiceM and guardM . Their meaning is analogous to
the smart constructors for NDRec. For brevity, their signature and
implementation is omitted here. With these smart constructors we
define explicit recursive calls for nullable and first .

nullable :: Symbol → NDM Analyze Bool
nullable = fmap getAny ◦ recM ◦Nullable

first :: Symbol → NDM Analyze Symbol
first s = recM (First s)>>= chooseM ◦ toList

Solving Nullable and First is straightforward:

analyze ::Grammar → Analyze o → NDM Analyze o
analyze g (Nullable s)



| isTerminal s = return (Any False)
| otherwise = do

head 7−→ body ← chooseM g
guardM (head ≡ s)
nullables ← mapM nullable body
return (Any (and nullables))

analyze g (First s)
| isTerminal s = return (singleton s)
| otherwise = do

head 7−→ body ← chooseM g
guardM (head ≡ s)
nullables ← mapM nullable body
let nulls = takeWhile snd (zip body nullables)

notNulls = dropWhile snd (zip body nullables)
prefix = nulls ++ take 1 notNulls
firsts = map (first ◦ fst) prefix

terminal ← choiceM firsts
return (singleton terminal)

In order to determine the First set of a symbol s , we need to find
the longest nullable prefix of the body for every production with
s in the head. Then we find the First sets of every symbol in the
prefix and the symbol directly following the prefix.
Implementation From Analyze we derive the actual input and
output types that need to be stored in the environment:

type EnvM i = M .Map (Input i) (Output i)

data Input (i :: ∗ → ∗) where
Input :: Lattice o ⇒ i o → Input i

data Output (i :: ∗ → ∗) where
Output :: i o → o → Output i

The data types Input and Output wrap a particular instantiation of
the Analyze type constructor in an existential quantification. The
implementation of the Eq and Ord instances is elided for brevity.

We use the typeclass Coerce to type-safely coerce Output Analyze
back to Any or Set Symbol , depending on which constructor of
Analyze is pattern-matched.

class Coerce c where
coerce :: c o → Output c → Maybe o

instance Coerce Analyze where
coerce (Nullable s) (Output (Nullable t) o) = Just o
coerce (First s) (Output (First t) o) = Just o
coerce a o = Nothing

Now we lift join to Outputs:

joinO :: (Coerce i ,Lattice o)
⇒ i o → Output i → Output i → Output i

joinO i o1 o2 =
maybe o1 (Output i) (join <$> coerce i o1

<∗> coerce i o2)

At last we have all the pieces to define the effect handler. The func-
tion goM evaluates an NDM i o, given an environment EnvM i
and runNDM computes the least fixed point of goM :

goM :: (Coerce i ,Lattice o,Ord (Input i))
⇒ i o → NDM i o → EnvM i → EnvM i

goM i (SuccessM x ) m =
M .insertWith (joinO i) (Input i) (Output i x ) m

goM i FailM m = m
goM i (OrM l r) m = goM i r (goM i l m)
goM i (RecM j k) m =
case M .lookup (Input j ) m >>= coerce j of

Nothing → M .insert (Input j ) (Output j bottom) m
Just s → goM i (k s) m

runNDM
:: (Ord (Input i),Eq (Output i),Coerce i ,Lattice a)
⇒ (∀ o .Lattice o ⇒ i o → NDM i o)→ i a → a

runNDM expr i0 =
fromJust (coerce i0 (lfp step s0 ! Input i0)) where

s0 = M .singleton (Input i0) (Output i0 bottom)
step m = foldr goM ′ m (M .keys m) where

goM ′ (Input k) = goM k (expr k)

This implementation is not very different from runNDRec (see
Section 4), except that some wrapping and unwrapping of Input
and Output is required. Note that dependency tracking is orthogo-
nal to the problem of mutual recursion, i.e. dependency tracking is
easily added.
Evaluation Using runNDM we now solve First , which re-
quires solving Nullable , in the same computation.

analyzeF ::Grammar → Symbol → [Symbol ]
analyzeF g = toList ◦ runNDM (analyze g) ◦ First

≫ map (analyzeF grammar) [’E’,’Z’,’T’]
["(1a","+","1a"]

The computed First sets of E,Z and T are the results one would
expect from the definition: an expression may start with a paren-
thesis, a literal or an identifier, and similarly for sub-expressions
and terms. We now extend First to strings of symbols:

firstS ::Grammar → [Symbol ]→ Set Symbol
firstS g s =

let nulls = takeWhile analyzeN s
notNulls = dropWhile analyzeN s
prefix = nulls ++ take 1 notNulls
analyzeN = getAny ◦ runNDM (analyze g) ◦Nullable

in unions $map (runNDM (analyze g) ◦ First) prefix

So called left-recursive conflicts occur when the First sets of bod-
ies of two rules with the same head have a non-empty intersection.
The following function hasConflict uses firstS of rule bodies to
detect conflicts:

hasConflict ::Grammar → Bool
hasConflict g =

let ruleHead (h 7−→ ) = h
ruleBody ( 7−→ b) = b
ruleConflict [r ] = False
ruleConflict rs = ¬ (null (foldr1 intersection firsts))

where firsts = map (firstS g ◦ ruleBody) rs
in or $map ruleConflict $ groupBy ((≡) ‘on‘ ruleHead) g

Our example grammar is conflict free:

≫ hasConflict grammar
False

However, in the following grammar the rules for ’E’ do conflict:

grammar2 ::Grammar
grammar2 = [’E’ 7−→ "E + T",’E’ 7−→ "T",

’T’ 7−→ "a", ’T’ 7−→ "1"]
≫ hasConflict grammar2
True

Note that the implementation of firstS and hasConflict is not
very efficient: in between calls to runNDM the results are sim-
ply thrown away. We see two ways to resolve this: either have



Size Naive Dependency
Tracking

Fibonacci 800 455.7 13.77
805 462.8 13.85
810 469.3 13.97

Knapsack 10 155.9 8.185
15 226.6 12.32
20 309.0 16.04

NQueens 7 4.864 1.259
9 152.9 26.79

10 914.8 132.0

SCC 30 57.31 8.843
33 104.9 10.67
35 97.97 12.67

Shortest Path 8000 1306 676.6
8500 1362 718.7
9000 1451 775.1

Table 2: The benchmark results in milliseconds.

runNDM return the environment EnvM to directly perform look-
ups, or embed firstS and hasConflict in NDM as well. Such an
embedding requires extending Analyze with new constructors for
FirstS and HasConflict . This is left as an exercise to the reader.
In a more generic setting, one could imagine using a “data types à
la carte”-approach to solve this extension more satisfactorily.

8. BENCHMARKS
To demonstrate the performance impact of dependency track-

ing, we evaluate several benchmarks with and without dependency-
tracking effect handlers and compare their results.

We consider five problems: computing (large) fibonacci num-
bers, (a variation of) the knapsack problem, the nqueens problem,
computing strongly connected components in a directed graph and
finding the shortest path in a directed graph.

The benchmarks were build using the Criterion-benchmark har-
ness and compiled using GHC 7.10.2 (with optimization setting
-O2) on a 64-bit Linux machine with an Intel Core i7-2600 @ 3.6
Ghz and 16 GB of RAM. All code and results are available in the
the Bitbucket repository.10

Table 2 shows the ordinary least squares regression of all samples
of the execution time. The R2 goodness of fit was above 0.99 in all
cases. All values are in milliseconds.

For Fibonacci the first column is the index of the fibonacci num-
ber that is computed. For Knapsack it specifies the number of items
to choose from (the capacity of the knapsack is fixed to 200). For
NQueens, it indicates the number of queens that need to be placed
on the board. For SCC it is the number of nodes in the graph (the
number of edges is fixed to half the number of possible edges). Fi-
nally, for Shortest Path it is the number of edges in the graph.

The results show that effect handlers with dependency tracking
massively outperform the naive effect handlers.

9. RELATED WORK
There are various related works.

Least fixed point computations In their seminal work [17] Scott
and Strachey have introduced the idea of denotational mathemati-
cal semantics. In particular, they already define the semantics of
programming language syntax based on least fixed points.

10https://bitbucket.org/AlexanderV/thesis,
in the IFL2015/benchmarks directory.

Jeannin et al. [8] give a category theoretic treatment of “Non-
well-Founded computations”. They give many examples, several
of which can be implemented in our non-deterministic framework.
Others are beyond our iterative least fixed point solver, and require
more sophisticated techniques, for instance, Gaussian elimination.

The use of least fixed points for solving grammar analysis prob-
lems has been extensively treated by Jeuring and Swierstra [9].

It is a well-known result that dynamic programming can be viewed
as memoization of recursive equations. The related work section of
Swadi et al. gives an overview [19].
Effect Handlers Algebraic effects as a way to write effectful
programs are the subject of much contemporary research [27, 10].

New languages have been created specifically for studying alge-
braic effect handlers: Eff [1] extends ML with syntax constructs
for effect handlers and Frank [12] which has a Haskell-like syntax
and tracks effect in its type system.
Non-determinism The classical introduction of non-determin-
ism in functional programming based on the list monad is due to
Wadler [24]. Hinze [7] derives a backtracking monad transformer
from a declarative specification. This transformer adds backtrack-
ing (non-determinism and failure) to any monad.

Kiselyov et al. [11] improve on Hinze’s work by implementing
backtracking monad transformers which support fair non-determin-
istic choice. They present three different implementations: the clas-
sical approach based on Streams (i.e. lazy lists), one based on con-
tinuation passing style and another one based on control operators
for delimited continuations.
Tabling in Prolog Since Prolog has native non-determinism, it
too suffers from the issues we discussed in the introduction: non-
determinism and recursion can interact to cause non-termination
even when a finite solution does exist. The semantics of defi-
nite logic programs is given by the least fixed point of the imme-
diate consequence operator TP [23] that strongly resembles the
semantics given by J · K. Tabling is a technique that produces a
different semantics in the same way we produce different seman-
tics for non-determinism. Several Prolog implementations sup-
port tabling, such as XSB-Prolog [22, 26], B-Prolog [28], Yap-
Prolog [15], ALS-Prolog [5] and Mercury [18]. XSB-Prolog in
particular also implements lattice-based answer subsumption [21]
which strongly resembles and has partially inspired the techniques
of Section 6. Other systems provide similar functionality through
mode-directed tabling [16, 29, 6].
Explicit Recursion We are not the first to tame unbridled re-
cursion by representing recursive calls explicitly. Devriese and
Piessens [3, 4] overcome the limitations of so-called “ω-regular”
grammars by representing recursive occurrences of non-terminals
in production bodies explicitly.

McBride [13], working in the dependently typed total language
Agda,11 gives a free monadic model for recursive calls. Several
possible semantics are discussed, but none based on fixed points.

Oliveira and Cook [2] extend traditional algebraic datatypes to
with explicit definition and manipulation of cycles, offering a prac-
tical and convenient way of programming graphs in Haskell. Their
approach to explicating recursion differs from ours. Where we use
the smart constructor rec to indicate a recursive call, they instead
use open recursion. While this is a good fit for the explicit graph
data structure they work with, for our purposes (non-deterministic
computations) the former style is more convenient.

10. CONCLUSIONS
We have described mutually recursive non-deterministic compu-

11http://wiki.portal.chalmers.se/agda/pmwiki.php



tations in a free monadic fashion, and have given these descrip-
tions a concise denotational semantics in terms of sets, and more
generally in terms of lattices. We have shown how to efficiently
implement these semantics in Haskell using Effect Handlers.
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