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1 Introduction

In robust statistics one often tries to estimate a parameter from observations following a
distribution belonging to a certain neighborhood of a parametric family. Another feature
of robust statistics is to detect structure in the data, even before a parametric model is
specified. In that case, one assumes that the majority of the observations belongs to a
certain “structure”. A minority of the points however may belong to other structures and
will be called contaminants. Estimators can help us to identify and summarize the main
structure of the data. Therefore it is important that these estimators are quite stable when
a certain proportion of the data is contaminated. The aim of this article is to investigate
the maximum deviation of a estimator under contamination. For reasons of simplicity, only
univariate location estimators are considered. It is important to notice that no parametric
assumptions will be made, since we focus in this paper on the behavior of robust estimators
in the context of an exploratory data-analysis.

Consider uniquely defined location estimators 7T,, : IR" — IR, symmetric in their argu-

ments and satisfying the following affine equivariance property:
T.(aX +b) =aT,(X)+b for all real numbers a and b (1.1)

and for every data set X = {z1,...,2,}.
A well known measure of robustness is the sensitivity curve (SC') of an estimator defined
as

SC(x, X, T,) = (n+ D{Tpsr (X U {z}) — Tu(X)}.

The sensitivity curve measures the influence of one single observation on the estimator 7,.
It can be seen as a finite sample version of the influence function (Hampel et al. 1986, page
43). The drawbacks of the sensitivity curve are that it only allows for one outlier and that
it depends on the configuration X. Sometimes X is taken to be a stylized sample (Andrews
et al. 1972, page 96) from a certain distribution, but this introduces a dependency on the
specified distributional form.

Another measure of robustness is the breakdown point (Donoho and Huber 1983) of
an estimator. It gives the minimal fraction of observations you have to replace before the
estimator tends to infinity and it is defined as

(X, Ty) = inf{=;  sup |Tp(X) — Tu(X')| = oo}

N X'eNm(X)
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where N,,(X) is the collection of all data sets obtained by replacing m observations from
X to arbitrary places. For most (but not all) location estimators the breakdown point does
not depend on X. Therefore the following definition of the breakdown point of an estimator
T, will be used in this paper:

e"(T,) = i&sz*(X7 T,).

The breakdown point tells us when an estimator becomes completely unreliable, i.e. tends
to infinity due to contaminating points. It gives a one-number summary of the robustness of
the estimator. However, we are looking for more information: what can happen in the worst
case when the number of contaminants is between 1 and ne*(7,,) ? The mazimum deviation
curve (MDC) addresses to this question. It is related to the concept of a bias curve (Hampel
et al. 1986, Martin et al. 1989). The bias curve for an estimator 7" at a distribution
F' describes the worst possible deviation when ¢ percent of the observations are outliers,
while 1 — € percent of the observations come from the model distribution F'. The maximum
deviation curve is essentially different, since it requires no distributional assumptions and
describes only the finite sample behavior of the estimator. Denote the maximum deviation of
the estimator T;, at a given data set X when replacing m observations to arbitrary positions,
by

b(m, X, T,) = sup{|Tn(X) — To(X")|; X' € Np(X)}. (1.2)

Since we want to know something about the behavior of our estimator on all possible data
sets X, we remove the dependency on X, and obtain the following definition of the maximum

deviation curve.

Definition:

1 1
MDC(m, T,,) = sup{b(m, X, T,,); ) <z < 5 for all x; € X}. (1.3)

A condition has been set on the range of the good observations to avoid that the maximum
deviation would always be infinite: all the “good” observations have to lie in the interval
[—1/2,1/2]. This restriction is not really strong due to the equivariance property (1.1).
Indeed, suppose for a moment that the n good observations lie in an interval of length R
and that at most m out of the n good observations will become contaminated, then the
difference between the estimate based on the clean and the contaminated data can be at
most R x MDC,(m,T). In order to compute the maximum deviation curve we have to

choose both the good observations and the contaminants in such a way that the deviation
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|T(X) —T,,(X")| becomes maximal. This is a very pessimistic viewpoint, yielding a measure
of “robustness under all circumstances” of an estimator.

The maximum deviation curve is finite if 0 < m < ne}(7T'), since
. .m
e*(T,,) = inf{—; MDC(m, T;,) = co}. (1.4)
n

This means that we can read off the value of the breakdown point from the MDC.
Consider now a sequence of estimators {7,; n > 1}, which we will often abbreviate as
“an estimator 7”. An asymptotic version of the maximum deviation curve of this estimator
T is defined as
AMDC(e, T') = limsup MDC(|en],T},) (1.5)

n—odo

where ¢ < 1/2 and |x] denotes the integer part of . While the asymptotic breakdown point

of an estimator is usually defined as
e"(T) =liminf e*(T5), (1.6)
one can also consider the “asymptotic maximum deviation curve” breakdown point
eanvpce (7)) = inf{e; AMDC(e, T') = oo} (1.7)

For most estimators the two breakdown points (1.6) and (1.7) are equal, but in Section 4 a
counterexample is given.

In Section 2 we derive a lower bound for the maximum deviation curve, compute the
MDC for L-estimators and show that these can attain, with properly chosen scores, the
lower bound. The trimmed mean comes very close to this lower bound. For contamination
percentages higher than one third, also the median has minimax deviation. It is shown in
Section 3 that high breakdown estimators are relatively unstable in the presence of small
amounts of contamination. In Section 4 we compute the MDC for some other estimators. A

small simulation study and some discussion is presented in the final section.

2 A Lower Bound for the Maximum Deviation Curve

A result of Rousseeuw and Leroy (1984, page 185) says that the maximal breakdown point
for an affine equivariant location estimator is given by |[(n + 1)/2]| /n. Due to (1.4) one shall

therefore always assume 1 < m < [(n + 1)/2] when considering MDC(m, T,,).
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Lemma 1. For every equivariant location estimator T,, with breakdown point ¢*(T,,) we have

MDC(m.T,) > 1/ {n — 26;;75,?)” + 2-‘

(2.1)
where [z] denotes the smallest integer greater than or equal to x.

Proof: Denote d = ne*(T,,) — 1. Since MDC(m, T},) is only finite for m < d one may suppose
that m < d. The following exact fit property (Rousseeuw and Leroy 1984, page 123) holds:
(EF) If n — d or more observations of a data set Y are identical to «, then T,,(Y) = a.
Indeed, suppose that T,,(Y) # a, then Y’ defined by y; = ¢(y; — «) belongs to Ng({0,...,0})
while T,,(Y") = ¢(T,,(Y) —«) — o0 if ¢ — oo. This is in contradiction with MDC,,(d,T") < oo.
Denote now X' the data set consisting of ¢ times (—1/2) and n — 4 times 1/2. Consider

the telescope sum
Tn(Xd) _ (Tn(XdJr(jfl)m) B Tn(ij+d)> + Tn(X ((n72d)/m]m+d)' (22)

Due to (EF) T,,(X%) = 1/2 and T, (X(m=2d/mIm+d) — _1/2 (since [(n — 2d)/m]m +d >
n—d). Furthermore, by definition (1.3) it holds that |T;,(X’™)—T, (XU+Ym)| < MDC(m, T,).
Therefore (2.2) yields

< [(n —2d)/m] MDC(m,T,,) —

N =
N =

which proves (2.1). O

Theorem 1. For every equivariant location estimator T, we have

MDC (m,T,) > 1/ U%W - 2) . (2.3)
Proof: The maximum deviation MDC(m, T},) is only finite when €*(7},) > m+1. The result

follows now immediately from Lemma 1. O

In Figure 1 we plotted the lower bound 1/([n/m] — 2) for a few values of n. If m > n/3
the MDC will be bigger than 1, and if n/3 > m > n/4 the MDC is bounded below by 1/2.
From Theorem 1 and (1.5) it follows that

1
€

AMDC(e, T) > 1/ ([ ] ~2) for e < % (2.4)
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Figure 1: Lower bounds for the mazximum deviation curve MDC(m,T,) for n = 50 and

n = 200

The lower bound increases with the percentage of contamination, but is not strictly increas-
ing.
We will now derive the MDC for the class of L-estimators, which are defined as linear

combinations of order statistics:

(2.5)

where z(1) < ... < (). In order to obtain the equivariance property (1.1) the weights have
to satisfy

n
w; > 0, Zwi =1, and w; = wp_i11-
i=1

(2.6)

The tolerance (Hettmansperger 1984, page 18) of an L-estimator is given by r = min{i; w; #
0} — 1 and satisfies 7 < [(n — 1)/2]. It is easy to see that r < m implies MDC(m, T},) = oo.
The next theorem shows that the MDC(7,,, m) is given by the maximal sum of m contiguous

SCOTES Wy, - .y Witm—1-



Theorem 2. If T, is an L-estimator with tolerance r > m, then
I+m—1
MDC(m,T,) = r+1§l1§r717,a£§fm+1 ; w; ifm<n-—2r 27)
=1 if m>n—2r
Proof: L-estimators are monotone in the observations, meaning that 7,(X) < T,(X’) if
x; <z} for all i. Therefore, the largest possible difference |T,,(X)—T,(X")| for X’ € N,,(X)

is obtained by replacing the m smallest observations from X to infinity (or equivalently the

m largest to minus infinity). We will work with that X’. Then

n—r n—r n—r+m
T.(X') = Z wix’(i) = Z Wi (i4m) = Z Wi m(s).- (2.8)

i=r+1 i=r+1 i=r+1+m

If r+m < n —r it follows from (2.8) that
n—r+m r+m n—r
/

To(X') = To(X) = > wiimTey— Y. widm+ Y, (Wimm — wi)T(). (2.9)

i=n—r+1 i=r+1 i=r+m+1

Using x¢;) < 1/2, 24 > —1/2 for all i, and the symmetry of the weights, one obtains for the

first two terms in (2.9):

n—r4+m r+m 1 n—r4+m 1 r+m r4+m
Z Wi—m () — Z Wiz < = Z Wiy + = Z w; = Z w;. (2.10)
i=n—r+1 i=r+1 2 i=n—r+1 2 i=r+1 i=r+1
With 2y = —1/2 the third term in (2.9) equals
i=r4+m+1 i=r4+m-+1 =1

Changing the order of the double sum and using Y727, 1 (wi—m — w;) = 0 yields for (2.11)

nir ( g (Wi—m — wz)) (xa) — za-1))-

I=1 \i=max(l,m+r+1)
Since every element z(;) — z(;_1)(j = 1,...,n — r) is non-negative and their sum equals

T(n_r) + 1/2, an upper bound for the above expression is given by

(1 max nir (Wi—m, — wz)) (T(n—r) +1/2) (2.12)

""" i=max(l,m+r+1)

Since
n—r n—r
max Wi—m — W; ) = max Wi—m — W; =
I=1,...n—7r . Z ( m 2) I=m+r+1,...n—r Z( m z)
i=max(l,m+r+1) i=

-1 n—r -1 r+m

max E w; — E w; = max E w; — E W;
I=m+r+1,...n—1r . . I=m+r+1,...n—1r . .
i=l—m i=n—r—m+1 i=l—m i=r+1



and using (2.9), (2.10), and (2.12) one obtains

l=m+r+1,....n—1 i

T.(X')-T,(X) < (Tf wi) (1/2 — z(n—p)) + ( max i wi) (Tm—r) +1/2)

i=r+1 =l-m
-1 I+m—1
< max w; = max w;.
- l=m+r+1,..,n—r i:lz—m l=r+1,...n—r—m+1 ;
Note that the above inequality becomes an equality if 2y = ... = Zqym_1) = —1 /2 and

T(14m)s - - - Tm) = 1/2 for the choice of [ yielding the maximum in (2.7). This ends the proof
form+r<n-—r.

Suppose now that m + r > n — r, then things become easier since

Tn(X/) — Tn(X) < Z wi(:c(Hm) — az(i)) < Z w; =1
i=r+1 i=r+1
with equality if x) = ... = 2441y = ... = T(n—r) = —1/2 and T(mgr41) = -+ = T(nerim) =
...:$(n):1/2. (Il

Corollary 1: Consider the r/n-trimmed mean, given by

1 n—r

n—2r Z Ta)-

1=r+1

T =

n

Since all weights w; (r+1 <i <n —r) are equal to 1/(n — 2r), (2.7) yields

MDC(m,T,) = min(1 ) for m<r.

‘n—2r
The estimator 7, has minimax deviation if » > m > n/3, in which case MDC(m,T)) = 1 =
1/([n/m] — 2). The lower bound can also be reached when r is a divisor of n and m = r,
yielding MDC(r, T,)7) =r/(n — 2r) = 1/([n/r] — 2).

The asymptotic maximum deviation curve of the a-trimmed mean, which is the estimator

corresponding to the sequence {TL*":n > 21 is given by

AMDC(e, T*) = min(1,

1
f <a<-.
—2a) ore<a<g

Figure 2 pictures AMDC(e, T%) together with the lower bound. We see that these two curves
are close, especially when € < 1/4. The function AMDC(e, T%) for « = 1/4 in also plotted
in Figure 2. This curve is linear in the percentage of contamination and has a low maximum

deviation for € < 1/4 (the more realistic range of contamination percentages).
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Corollary 2: Since the median is equal to a r/n-trimmed mean with r = |[(n —1)/2],
Corollary 1 yields MDC(m,med,,) = 1 for m < r. (Except for m = 1 and n even, then
MDC(1,med,) = 1/2.) It follows that the median has minimal max-deviation for m > n/3.

Corollary 3: Define the midpoint of the r-trimmed data as

T(r+1) + T(
2

QM” = “ for r < |(n—1)/2]. (2.13)

This estimator was called a quasi-median by Mosteller (1946). The maximum deviation

curve of this estimator, as given by (2.7), equals
MDC(m,QM;) = 1 for n—2r<m<r (2.14)
= 1/2 for 1 <m <min(n—2r—1,r).
From (2.14) we obtain the asymptotic version of the maximum deviation curve for QM*

AMDC(e,QM®) = for 1 —-2a<e<a

1
1
3 for0<e<l—-2a<aoande<a<l-2«

yielding optimality for 1/3 <e<a<1/2,1/4<e<a<1/3.
One can see from the above corollaries that there is no unique estimator with minimal

MDC(m,T,). It is possible to define a weighting scheme which defines an L-estimator W7,
such that MDC(r, WT},) is always optimal. For a fixed n and r < [(n — 1)/2]:

1. Set w; := 0 for all 7 and set j := [ |n/2] /r]

2. If j > 1set weypy = Worg1 = ... = Wi—1)r41 = Wpyp = Wy_p = ... = Wy_(j—1)r €qual

to a:=1/([n/r] —2)
3. Set wjri1 = Wp—jr = B := (1 = 2a(j — 1)) /2.

It is easy to verify that WT, with weights defined as above obeys (2.6) and has tolerance

equal to r.

Theorem 3. For a given amount of contamination r, the mazximum deviation curve of WT,

reaches the lower bound:

MDC(r, WTT) = 1/ ([ﬂ - 2) . (2.15)
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Proof: The case r > n/3, and therefore r > n — 2r is, using (2.7), trivial. Therefore, take
r < n/3. Since MDC(r, WT7) = maxX,, 1<j<p_ar+1 ooy w;. one has to maximize the sum of
r contiguous scores. If |(n—jr)— (jr+1)| > r then, due to the construction of our estimator,
only one term in such a sum will be different from zero, yielding MDC(r, WT},) = max(c, ().
On the other hand, if |(n — jr) — (jr + 1)| < r, we obtain MDC(r, WT} ) = max(a, 2(3).

Some easy calculations show that

B<as [[nf2]/r] > [n/r] 2-1 (2.16)

and

26<a<s ||n/2]/r] >[n/r]/2—-1/2. (2.17)

Now it is not hard to verify that the RHS of (2.16) is always valid and that the RHS of (2.17)
holds under the assumption that n — 2jr — 1 < r. Therefore MDC(r, WT},) = a which ends
the proof. O

Note that we only have optimality for m = r, not for m < r. The estimator WT, is thus
only “pointwise”, but not uniformly optimal. If r = 1, WT} equals the 1/n-trimmed mean.

If r > |n/2| /2, we obtain WT, = QM. If |n/2] /3 <r < |n/2] /2 we have

2% (r41) + T(2r41) + Tn—2r) + 2T (n—r)
6

W =

or
T(r+1) T T(2r+1) + T(n—2r) T T(n—r)
4

(the first type for roughly 1/5 < r/n < 1/4, and the second type for 1/6 < r/n < 1/5).

WT” =

The practical importance of the estimator WT) is limited, since it is only optimal for
a fixed amount of contamination r. It is quite unrealistic to assume that the number of
contaminants is known in advance. It is however interesting to know that the lower bound
for MDC(m, T},) given by Theorem 1, can be attained for each value of m.

Highly stable estimators are given by the median for heavy contamination (> 33%) and
the QM3 for contamination between 25% and 33%. Corollaries 2 and 3 showed that their
MDC equals the lower bound in the indicated range. From Figure 2, we can see that the
MDC curve of the 25%-trimmed mean is very close to the lower bound for realistic amounts
of contamination (< 25%). In this sense, one can consider the 25%-trimmed mean as a

“nearly” optimal estimator and recommend it instead of the more artificial estimators W'T},.

10



3 Breakdown Point versus Maximum Deviation

It was already mentioned in the literature that a 50% breakdown point leads inevitably to
a high instability (Rousseeuw 1994). Here it is shown that the results obtained in Section 2
are consistent with the earlier findings that there is a conflict between high breakdown and
local stability of an estimator.

Suppose that an estimator 7, has the maximal breakdown point ¢ (7T") = [(n + 1)/2].
It results from Lemma 1 that MDC(m,T,) > 1 with the exception of MDC(1,T,,) > 1/2,
for m = 1 and n even. Comparing this lower bound with the MDC of the median obtained
in Corollary 2, shows that the MDC of the median is minimal within the class of maximal
breakdown estimators.

Nevertheless, replacing only one observation can change the median quite drastically. A
measure of the maximal deviation of an estimator 7" in the presence of only one contaminant
is given by

v(T) = limnsup nMDC(1,T,).

(Note that the maximum deviation is standardized by the fraction of contaminants 1/n.)
Since the 1/n-trimmed mean minimizes MDC(1,7},), it will also yield the minimal (7',
namely lim,, . n/(n —2) = 1. From (2.1) a lower bound for this measure of sensitivity to

small amounts of contamination is obtained:

1

(T) = Té*(T) (3.1)

if ¢*(T') > 0. Note that the a-trimmed mean has the lowest possible v(7") within the class
(T*) = 1/(1 — 2a).

The higher the breakdown point, the higher (in general) . For *(7') = %, we even obtain

of estimators with an asymptotic breakdown point of ¢* = «, since v

an infinite v. In particular, AMDC(e,T) is discontinuous at € = 0 if 7" has the maximal
breakdown point. This unpleasant property can only be avoided when one gives up the
50% breakdown point. For estimators with a strictly positive (but not maximal) breakdown
point, it stays possible to combine the high breakdown property with a finite (but possibly
high) ~.

This definition of «y is similar to the definition of the gross-error sensitivity (Hampel et
al. 1986, page 87). There it was proved that the median has the lowest possible gross-error

sensitivity when the data are distributed according to a symmetric distribution. Our ap-
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proach shows however that the median can, at certain configurations, become very sensitive

to small amounts of contamination (which corresponds with the intuition).

Remark: Defining alternatively v(7') as limsup, ;o AMDC(e, T') /¢ yields the same inequality
(3.1).

4 Examples

It can be quite hard to compute the maximum deviation curve of an estimator, even in the
univariate location model. One often has to limit himself deriving only a lower bound for
the MDC. The following examples show how the maximum deviation curve can be used to

investigate the behavior of robust estimators.

Example 1: Compute d; = |z; — med; x;| as a measure of outlyingness of an observation.
The estimator DT, is defined as the average of all observations remaining after deletion of
the r observations with largest d;. This estimator resembles the r/n trimmed mean, but
differs from it since it can attain the same breakdown point while discarding only half as

much observations.

Proposition 1. The mazimum deviation curve of DT, , with r < |(n —1)/2] satisfies

2m+min(r, L%J +1-m)

n—r

MDC(m,DT,) > for m < (4.1)

Proof: Consider the configuration X consisting of | (n — 1)/2]| +m times —1/2 and |n/2] +
1 — m times 1/2. Replace now m points from —1/2 to 3/2 — §, with § small and positive in
order to obtain X'. Now it is straightforward to check that 7,,(X") — 7,,(X) equals the right
hand side in (4.1), when ¢ tends to zero. 0

For the sequence of estimators DTL*™ (X) we obtain

2¢ + min(a, 3 — ¢)

1
AMDC(e, DT?) > for 0 <e< 3"

l-«a
The sensitivity to small amounts of contaminations equals v(DT) = co. This means that
a procedure based on robust deletion of outliers, followed by the classical averaging can be
more sensitive to contamination than non data-based deletion. A reason for this is that good
points can be detected erroneously as outliers, when the contaminated points are not too far

from the good observations. This is called the swamping effect.
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Ezample 2: In regression analysis the Least Median of Squares (LMS) estimator
(Rousseeuw 1984) is a popular highly robust estimator. Taking only an intercept term and
no slope parameter reduces the regression model to the univariate location model and the
LMS to the midpoint of the shortest interval containing half of the observations. A bit more
general, define the univariate LMS], as the midpoint of the shortest interval containing n —r
observations, with » < [(n —1)/2]. The originally proposed LMS takes r = |(n —1)/2].
To ensure that LMS] is uniquely defined we can take the average over the midpoints of the
shortest intervals. It’s easy to see that e*(LMST) = r+1. In particular LMS,, := LMSL®=1/2]

has the maximal breakdown point.

Proposition 2. The mazimum deviation curve of the estimator LMS, is given by

MDC(m, LMS;) = forn—=2r<m<r

2
1 for 1<m<n—2randm<r

Proof: For proving the inequality >, consider the sample X consisting of m + r times
—1/2 and n —r —m times 1/2. If r+m > n —r < m > n — 2r then LMS] (X) = —1/2,
otherwise LMS; (X) = 0. Now remove m points from —1/2 to (3 — §)/2 for a small positive
6. Then LMS; (X') = (1/2+ (3 —6)/2)/2 =1 — 6/4, which tends to 1 if § tends to 0. Since
MDC,,(m,LMS") > infs |LMS; (X) — LMS; (X")|, the > part is proven.

For the inequality < consider an arbitrary sample X in the interval [—1/2,1/2], and
replace now m arbitrary points to arbitrary positions to get X’. First, there is an interval
containing at least n — r < n — m observations lying in [—1/2,1/2] with length at most 1.
Secondly, the shortest interval should have at least n — r —m > 1 points in common with
[—1/2,1/2]. Combining these two facts gives that the shortest interval covering half of the
points of X’ lies somewhere between —3/2 and 3/2 and has a non-empty intersection with
[—1/2,1/2]. Therefore |LMS;, (X")| < 1 yielding |LMS;,(X) — LMS; (X’)| < 3/2. Now the
shortest intervals based on the clean observations and on the contaminated observations have
at least (n —r —m) —r = n — 2r —m points in common. If m < n — 2r both intervals have
a non-empty intersection and a length smaller than 1, yielding [LMS;, (X) — LMS] (X")| < 1.
([

For the asymptotic version LMS® (corresponding to the sequence {LMSL:n > 21) we

obtain

AMDC(e,LMS*) =2 for 1-2a<e<aanda>1/3

2
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=1 fore<l—-2a<aand a>1/3

=1 for a<1/3.

As a consequence the LMS estimator and the median, which both have the same breakdown
point, don’t have the same maximum deviation curve. Also note that v(LMS®) is infinite

for each value of a.

Example 3: This example will illustrates the power of the maximum curve with respect
to the breakdown point. Consider the following estimator, based on iterative detection of
outliers. Denote S? = med; |z; — med; x;| the median absolute deviation scale estimator and
T? the median. We will define V¢ = {z;; |z; — T°| < CSi} where S! = range(V* 1) for i > 1.
When Vi = Vi~! := V for some i we stop the iteration and compute the average T}, over the
observations in V. The constant C' is taken larger than 1. It is not difficult to see that the
breakdown point (1.4) of this estimator T,, is the same as that of the initial estimator, the
median, namely |(n+1)/2].

Replace now m observations from a data set X with zq) = —1/2 and z(,) = 1/2 in
order to get a new data set X’ = {—1/2,...,1/2,2},...,2,} with z = C*, med(X') = 0
and V° = X N X'. It is possible to construct such an X and X’. Since V' D (X N X') U
{z!,...,2}} we have V = X'. Therefore, |T,,(X’) — T,,(X)| > C™/n. So we may conclude
that MDC(m,T,,) > C™/n, which yields a fast increasing function in m. The asymptotic

maximum deviation curve satisfies

C'len]
AMDC(e,T) > lim

n—oo n

=00 for € >0,

yielding EMDC (T') = 0. This seems to be in contradiction with £*(7") = 1/2. Essentially,
this is because the deviation supy, |T,,(X) — T,,(X’)| is finite, but not uniformly bounded in
n. Therefore the breakdown points defined in (1.6) and (1.7) don’t always need to be equal.
This example shows that the classical breakdown point can be a very poor measure of the
robustness of an estimator (this was also discussed in Croux, 1994). The estimator defined in
this example does not deserve to be called robust (although it has a 50% breakdown point),
as is witnessed by its large maximum deviation curve and even more by its asymptotic

maximum deviation breakdown point.

Example 4: A referee asked to compute the maximum deviation curve for the Huber M-

estimator of location. This estimator H,, is defined as the solution of the following equation
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in t:

n Lt
> =) =0,

where ¢(u) = min(max(b,u), —b). To ensure the affine equivariance property (1.1) an

auxiliary scale estimate s,, is needed. Usually one takes for s, the median absolute deviation

(MAD) about the median: s, = med; |x; — med; z;|. In the following proposition a lower

bound for the MDC of H,, is derived. (To avoid technical details, the assumptions b > 1 and

n odd are made.)

Proposition 3. The mazimum deviation curve for the above defined Huber M-estimator H,

with b > 1 and n odd is given by

MDC(H,,m) > 1 for 1<m < h/(1+0)
> %+% Jor h)(b+1) < m < n/2— (h—1)/2b
> 1—|—b(2:1—__hh) for n/2—(h—1)/2b <m < |(n—1)/2]

where h = |n/2] + 1.

Proof: Take X the sample consisting of h times —1/2 and n — h times 1/2, yielding
H,,(X) = —1/2. Replace now m observations from —1/2 to infinity to get X’. Observe that
MAD(X') = 1 and denote A(t) = >, ¢¥p(x} — t), which is a decreasing function in ¢. For
1/2 <t < b—1/2 we have \(t) = mb+ (h — m)(—=1/2 —t) + (n — h)(1/2 — t) and for
b—1/2 <t < b+ 1/2 it yields A(t) = mb+ (h — m)(=b) + (n — h)(1/2 — t). One can
check that A\(1/2) <0< m < h/(1+b), A(b—1/2) <0< m < n/2—(h—1)/2b and
Ab+1/2) <0< m <n/2. If A\(1/2) <0 we consider the data set X" consisting of h — m
times —1/2 and n — h + m times 1/2, yielding MDC(H,,, m) > |H,(X") — H,(X)| = 1. For
A(1/2) > 0 > A(b — 1/2), the root of A(t) = 0 is given by ((2b0+ 1)m — 1)/ (2(n —m)).
On the other hand, for A(b—1/2) > 0 > A(b+ 1/2), the solution of A(t) = 0 is given by
1/24+b(2m — h)/(n— h). Noting that A(H, (X)) = 0 and MDC(H,,, m) > |H,(X") — H,(X)|
ends the proof. O

Since the estimator H,, has the maximal breakdown point, its MDC is higher then the
MDC of the median. We also see that the higher the value of the tuning parameter b, the
higher the maximum deviation. This confirms the well-known fact that the robustness of
the Huber-estimator decreases with the value of the tuning parameter b (but the statistical

efficiency at normal distributions will increase).
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