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Abstract

We present a focused selection method for social networks. The procedure is driven

by a focus, the main quantity we want to estimate well. It represents the statistical

translation of a research hypothesis into parameters of interest. Given a collection of

models, the procedure estimates for each model the mean squared error of the estimator

of the focus. The model with the smallest such value is selected. We present focused

model selection for (i) exponential random graph models, (ii) network autocorrelation

models and (iii) network regression models to investigate existing relations in social

networks. Worked-out examples illustrate the methodology.

Key words : Variable selection; Social network; Focused information criterion; Expo-

nential random graphs; Network based models

1 Motivation

Social network analysis aims at understanding and explaining regularities and structures that

describe relations linking individuals or any other social units such as organizations, political

parties, etc. We present a methodology for model selection in the context of network based

parameter estimation that is based on the focused information criterion (FIC) introduced and

studied under various statistical contexts in the works of Claeskens and Hjort (2003, 2008a),

Hjort and Claeskens (2006), Zhang and Liang (2011), Rohan and Ramanathan (2011), Claeskens

(2012), Behl et al. (2014) among others. More recently in the works of Pircalabelu et al.

(2015a,b) the FIC has been applied to estimate probabilistic graphical models. The goal of

the present manuscript is to extend the application of FIC to social network models.

In the focused selection procedure, the focus, which is a function of the model param-

eters, plays a central role. Throughout the paper we denote the focus by µ. The focused

information criterion is constructed to select from a set of models that model where the

focus is optimally estimated in terms of mean squared error (MSE), which is the sum of the

estimator’s variance and its squared bias. The FIC selection procedure makes it possible to

select explanatory models for focuses especially suited for social network analysis. Often, re-

searchers are not interested in the whole network, but rather in quantities that summarize or

describe phenomena such as actor centrality, edge prediction or strength of interpersonal in-

fluence between actors. For these quantities of interest (i.e., focuses) that can be formulated

as functions of parameters of the underlying model, the FIC may be used to select models

that estimate those focuses with small MSE. Since the true MSE is in general unknown, it

needs to be estimated. The FIC value is such an estimated MSE, sometimes modulo some
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constants that do not depend on the models. See Section 4 for more details on the relation

between FIC and MSE. First, we specify the focus and a list of plausible explanatory models.

Next, we estimate the focus parameter and its associated MSE (or FIC) value. Finally, we

select as chosen model for this focus that model of the list which has the smallest FIC value.

Unlike the classical information criteria, such as Akaike’s information criterion (AIC,

Akaike, 1973) and the Schwarz Bayesian information criterion (BIC, Schwarz, 1978) the

focused information criterion allows to select a model that is directed towards the particular

focus. That is, the FIC will select a model that performs well in MSE sense to the estimation

of the focus, the quantity of interest. Different focuses, thus different interests, might lead

to different models being selected, which is more informative since the selected model is

determined based on specific research interests.

To motivate the focused selection approach for model selection for social networks we

use three model classes, namely the exponential random graph models (ERGM), network

autocorrelation models (NAM) and network regression models (NRM). See Section 2 for

details regarding model specifications.

We start from the ‘Florentine families’ dataset (Breiger and Pattison, 1986; Padgett,

1994) which consists of a social network that records the marriage ties between 16 influential

Florentine families (which family is linked with which other family), a social network that

records the business ties between the 16 families, the wealth of each family, the number of

seats on the civic council for each family, and the total number of ties linking the family to

any of the other 116 families from Florence. The networks are represented by two adjacency

matrices containing the value 1 on positions (i, j) and (j, i) if members from family i have

married (or have business ties with) members from family j. A value of 1 is translated into a

tie (edge) between families i and j to denote that the two families have marriage or business

ties linking them together. Figure 1 shows both the marriage and business ties that link

together the Florentine families.

The data represent the ties formed around 1430, a period when the Strozzi and the Medici

were considered to be adversaries. It was a period where the Medici family was powerful

(Padgett and Ansell, 1993) and an alliance through marriage between the two families would

have been improbable. In 1434 the Strozzi family have been driven into exile by Cosimo
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Figure 1: Florentine families data. The left panel displays the business network while the

right panel displays the marriage ties between the families.
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de’ Medici, but due to the radical change in the political context in Florence, in 1508 the

two families eventually formed an alliance through marriage (Bullard, 1979). The observed

marriage network which is analyzed here does not however, have such a tie present, since it

pertains to the period around 1430.

In light of this information, it is of interest to select explanatory models that best express

the log odds ratio of such a tie being formed in 1430 between the two families. The log odds

ratio is our first focus parameter. To estimate this focus, we use an exponential random

graph model (ERGM) described in Section 2. A list of 32 = 25 (all possible combinations of

predictors) such models was considered, where the narrow, simplest model contained only one

parameter, the edges parameter which acted similar to an intercept, and the most complex

(full) model contained four extra parameters. All other models, were in between the simplest

and the full model. We postpone the proper definition of the predictors to Section 5 as it

suffices here to show what the method offers in practice. The aim is to select the suitable

collection of parameters that provides the lowest FIC value for the estimated focus, in this

case, the log odds ratio. Table 1 shows the two best ranking models using FIC, as well as

the full and the narrow model (the latter which coincides with the best scoring AIC and BIC

models). The best scoring FIC model to estimate the log odds ratio contains as predictor

the wealth of the Florentine families, whereas the second best model suggests adding also

the change statistic with respect to the number of triangle configurations and the Gwesp

summary statistic (see Section 5). The AIC/BIC selected model (which is insensitive to the

focus specification) suggests the usage of the simplest, narrow model without any additional

predictors.

Model ∆Kstar(2) ∆Kstar(3) ∆Triangle ∆Gwesp(τ = .5) Wealth µ̂ FIC AIC BIC

Best FIC 0 0 0 0 1 -1.80 1.64 111.5 117.0

2nd FIC 0 0 1 1 1 -2.24 2.03 115.0 126.1

Full 1 1 1 1 1 -2.22 3.18 119.0 135.7

Best AIC/BIC 0 0 0 0 0 -1.62 7.12 110.1 112.9

Table 1: Florentine family data. ERGM model selection using the focus µ = log(
pij

1−pij
)

where pij is the probability of a tie occurring between the Medici and Strozzi families. The

estimated focus and the FIC, AIC and BIC scores are presented for four different models.

The values 0/1 in the columns ∆Kstar(2)– Wealth indicate the absence/presence of a predictor

in the model. For all models an ‘edges’ parameter ∆Kstar(1) is included, by default.

With the FIC we can easily change the focus of the analysis. Using the same ERGM

class of models and the same list of potential models, but focusing now on the parameter

associated with the triangle predictor (this is the second focus) instead of the log odds ratio,

we obtain a different ranking of the models as shown in Table 2. The transitive triangle

is an important summary measure for social networks, because it expresses the inclination

for actors to form homogenous groups. If actor a has a tie with actor b and b has a tie

with c, then under a transitive triangle assumption also a and c will be connected, implying

that ‘friends of friends are also friends’, and as such this summary measure is an important
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one when describing social networks. When selecting a model that minimizes the MSE

expression for the triangle parameter, the best FIC model contains as predictors the change

in the transitive triangles statistic, the change in the Gwesp statistic and the wealth of the

families showing that different focuses (which embody different research questions) might

need different explanatory models.

Model ∆Kstar(2) ∆Kstar(3) ∆Triangle ∆Gwesp(τ = .5) Wealth µ̂ FIC AIC BIC

Best FIC 0 0 1 1 1 -4.62 50.63 115.0 126.1

2nd FIC 0 0 1 1 0 -4.44 51.10 113.6 122.0

Full 1 1 1 1 1 -4.64 53.34 119.0 135.7

Best AIC/BIC 0 0 0 0 0 0.00 1644.08 110.1 112.9

Table 2: Florentine family data. ERGM model selection using the parameter associated

with the triangle predictor as focus. The estimated focus and the FIC, AIC and BIC scores

are presented for four different models. The values 0/1 in the columns ∆Kstar(2)– Wealth

indicate the absence/presence of a predictor in the model. For all models an ‘edges’ parameter

∆Kstar(1) is included, by default.

We now mention some related research. Model (or parameter) selection for social net-

works is often performed by formal hypothesis testing as in Anderson et al. (1999), Leenders

(2002), Robins et al. (2007), by assessing goodness of fit measures as in Goodreau (2007),

Hunter et al. (2008a), Wang et al. (2013a), Wang et al. (2013b) or Shore and Lubin (2015),

and by using information criteria as in Leenders (2002), Goodreau (2007), Hunter et al.

(2008a), Stadtfeld et al. (2011) and Austin et al. (2013) among many other references. Saito et al.

(2010) proposed model selection based on average Kullback-Leibler divergence. Bayesian

model selection can be found in Koskinen (2004a,b), Zijlstra et al. (2005), Rodŕıguez (2012)

and Caimo and Friel (2013).

2 Social network models

Of all social sciences, sociology and anthropology have been at the forefront of social network

analysis, due to the ease with which studying small communities and the interaction between

its members, can be reflected to a certain degree by graphical objects. The consequence of

such graph oriented representation is that by using basic properties and notions developed

for graphs, one can now describe, summarize and also quantify social relations.

A social network consists of a set of units (represented graphically by a set of nodes,

one node per unit) and the social connections that exist between the units. Most often

the complex relation between the units is reduced to a ‘presence or absence’ decision, al-

though sometimes one may reduce it to a number that reflects in a way the intensity of the

relationship rather than a crude presence/absence representation.

The types of social network models, as summarized nicely in O’Malley and Marsden

(2008) vary in complexity and flexibility and reflect different research interests. We use the

following three types of models.
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(i) Exponential random graph models (ERGM), see Holland and Leinhardt (1981), and

Wasserman and Pattison (1996). Local structures in the form of meaningful subgraphs

model the global structure of the network. For example, one may use the propensity of

forming a triadic configuration (unit i connects with units j and k, and as a transitive

result also j and k connect) as a predictor for modeling marriage ties among families.

To illustrate the method we have used the ‘Florentine marriage’ network.

(ii) ‘Network autocorelation models’ (NAM), see Dow et al. (1982); Leenders (2002). A

variable measured for each actor is modeled as a function of other explanatory variables

and using the assumption that the underlying errors have a special correlation structure

formed as part of an interpersonal influence which is reflected by a social network. For

example, suppose one is modeling the wealth of the Florentine families as a function

of socio-economic indicators, but since marriage opportunities were intricately linked

to wealth, the researcher opts to take this into account by directly using the marriage

ties between the families into the model. We use here the ‘Florentine marriage’ and

the ‘Florentine business’ networks.

(iii) ‘Network regression models’ (NRM), see Krackhardt (1988). The observed ties in one

network are used to predict the ties in another network. For example, a researcher

models the exit orders of monks leaving a convent as a function of their influence on

one another. To illustrate the method we have used the ‘Monastery’ data of Sampson

(1968).

A description of the available implementations of the above methods is given in Butts

(2008a); Hunter et al. (2008b) and Handcock et al. (2008).

As can be seen from the examples given above, each of these models serves a different

explanatory purpose and answers related, but different questions. Similar for all three models

is the fact that they can all be related to classical, likelihood-based linear or generalized linear

models, and as such fast procedures have been developed for estimating coefficients. Most

often the assumption of independent errors is violated and a high degree of collinearity is

present in social networks models, as for example, all transitive triangles contain also dyads.

To give a statistical formulation of the models that we use, we introduce the following

notation. Define Y = (Y1, . . . , Yn)
T to be a column random vector containing measurements

of an outcome for n units in the analysis and X a matrix of dimension n× p for which each

row i = 1, . . . , n represents a vector of p measurements on external predictors. By Ỹ = [Ỹij ]

we denote a random adjacency matrix of size n×n, formed based on binary random variables

Ỹij which take the value 1 if there is a tie present in the network between unit i and j and

0 otherwise. We denote by ỹ = [ỹij ] a particular realization of the adjacency matrix Ỹ

and by ỹij a realization of the random variables Ỹij . If the strength of the tie between two

actors is of interest, rather than the crude presence/absence of ties, we denote by Z̃ = [Z̃ij ]

a random matrix of size n × n that contains real valued entries. The higher the Z̃ij values,

the higher the strength between two actors. We denote by z̃ = [z̃ij ] a particular realization

of the adjacency matrix Z̃ and by z̃ij a realization of the random variables Z̃ij .
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By X̃1, . . . , X̃p we denote p different adjacency matrices, each of dimension n× n to be

used as possible ‘explanatory’ networks, in the sense that ties X̃1,ij , . . . , X̃1,ij could be useful

in predicting ties Ỹij . We further construct X̃ as a matrix whose columns are obtained by

concatenating the vectorized versions of X̃1, . . . , X̃p, i.e., X̃ = [vec(X̃1), . . . , vec(X̃p)].

Let W̃ 1 and W̃ 2 be two fixed n×n adjacency matrices (possibly real valued) that quantify

the influence and relations existing between actors in a social network. The elements w̃ij in

each adjacency matrix represent the extent to which a collaboration/relationship or influence

is exchanged between actors i and j. By convention the diagonal entries are set to 0.

Mathematically the three models can be represented as follows:

(ERGM): P (Ỹ = ỹ) = κ(β)−1 exp(βTg(ỹ)) where κ(β) is a normalizing constant to get

a valid probability mass function, β is a vector of unknown parameters and g(ỹ) is a

vector of network summary statistics used as potential explanatory variables;

(NAM): Y = αW̃ 1Y +Xβ+ǫ,with ǫ = ρW̃ 2ǫ+ν, where ǫ is a vector of stochastic errors,

ν ∼ N(0, σ2I) is a vector of normally distributed stochastic errors, β is a vector of

regression parameters, α measures the effect of the network W̃ 1 on Y and ρ represents

the strength of the network autocorrelation or how much the unobserved errors for each

actor depend on the errors of its neighbors. Due to this specific formulation, this model

is sometimes referred to as an autoregressive and moving average network model;

(NRM): vec(Z̃) = X̃β + ǫ,with Z̃ real valued, β a vector of unknown parameters and

ǫ ∼ N(0,Σ) a vector of stochastic errors.

3 General steps for FIC model selection

Before we present more technical details of the focused information criterion and how it is

used in the context of estimating models for social networks, we first provide a more intuitive

and less technical description of the grounds on which FIC selection is based.

As in Section 1, one starts by setting one or more research focuses for which one desires

estimation and consequently models that perform well with respect to themean squared error.

In the example in Section 1, one studies family ties as an indirect measure of accumulating

wealth and power among Florentine families in the 15th century. At the measurement level

the marriage network was used. To understand how families unite in marriages the first focus

is the log odds ratio between the probability pij that family i unites with family j and the

probability that family i does not unite with family j. To study the wealth of the families

one might be interested in a second focus, the expected value of the wealth, E(Wealth|x), as
a function of other covariates x. A third focus could be the direct effect α, that the business

network has on the wealth of the families. These are just a few examples of focuses which

translate our research purposes into quantities that can be estimated based on data.

Relevant examples of focuses that are used in this manuscript include:

(i) the probability of observing a tie between two actors as a function of the other covariates

(see Section 5),
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(ii) the effect of a transitive triad on the probability of two actors forming a tie (see

Section 5),

(iii) the magnitude of the autoregressive or autocorrelation effect of a network on the de-

pendent variable (see Section 6),

(iv) the expected wealth of the Medici family as a function of other predictors (see Sec-

tion 6),

(v) the expected exit orders of monks from a monastery (see Section 7),

(vi) information centrality (Stephenson and Zelen, 1989) of actors (see Section 7).

The above list can easily be enriched with other interesting focuses, more specialized de-

pending on the application area.

Once the focuses are set, we proceed by producing a list of models from which we aim

to select the best scoring one. The list should contain at least two models: one which is the

smallest, most parsimonious model one is willing to consider, and one which is the largest,

most complex model that is appropriate for the data. In between these two models, we list

other models, some which contain certain covariates and exclude others. All of the models

listed should be deemed appropriate for the data at hand. The list might be based on the

set of all possible models in between the smallest and the largest model, as was done in

Section 1, but this does not need to be case.

The estimators depend on the predictors one is using and thus they can have a large or

small bias and variance. For example, the bias/variance trade-off can be different when one

is using the narrow model, the full model or one in between the two models. Having a large

number of possible predictors one might be tempted to include all of them for the sake of not

missing the important predictors, while another researcher might opt for introducing only

few predictors for the sake of having a simple, parsimonious model. Both these strategies

might be deficient in case the true model is neither the full model, nor the narrow model.

In the first case, one deliberately introduces potential noise variables that might blur the

underlying signal, the model becomes less biased, but due of the added ‘noise’ the variance

is increased. On the other hand, working with a simplistic model decreases the variance

estimated for that model, but in the same time it increases the bias.

For each model we estimate the focus, the bias and the corresponding variance of the

focus estimator. Different models lead to different bias values and to different variances. The

purpose is to select that model that provides the best such bias/variance trade-off. Adding

the squared bias and the corresponding variance of the estimators, one obtains the value for

the MSE of the focus of interest. Next, all models are ranked according to the estimated MSE

value and the final choice is for that model with the lowest such quantity, as one generally

strives for models with low MSE values.

When one is performing model selection with respect to several focus quantities (as in

Section 1 where we focused on the log odds ratio and on the parameter associated with the

triangle statistic), it should not be surprising that different final models are selected, because

some models might perform well with respect to some focuses and maybe less well with

respect to other focuses. A bivariate search is possible too. This should be seen as a strong
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point of the technique, since it allows for a search of a good model in terms of mean squared

error with respect to the quantities one is interested in. This should be contrasted to the

traditional AIC/BIC information criteria which result in a single selected model that might

not have close connections to the research questions, and is always the same, regardless of

the model’s use. Indeed, AIC/BIC selection does not require to specify any focus parameter.

Those criteria cannot be directed towards a specific focus, as is explicitly included in the

FIC. In the end the interpretation step proceeds as in the classical case, with the amendment

that the model is targeted to provide low MSE for that particular focus.

To summarize, all main steps are listed below:

1. define focuses of interest related to the research theme (which are mathematical rep-

resentations of our research interests);

2. conduct research and gather data;

3. construct a sequence of plausible models that allow to estimate the focuses;

4. for each model estimate the focus, the bias, the variance and the MSE of the estimator

of the focus of interest;

5. select the model that provides the lowest MSE value as the final model for that focus.

4 Technical description of FIC

4.1 Protected and unprotected parameters

To set the notation, we denote the true value of the parameter vector in the narrow model by

θ0. The full model depends on both θ0 and an additional parameter vector γ = (γ1, . . . , γp).

Other models in between the narrow and full model contain θ0 and only some of the com-

ponents of γ. For example, only γ2 and γ4 are included. In order to not have to work with

different parameter lengths in the different models we denote by γ0 the specific, known, value

of γ, often zero, such that when we fill in this value γ0 in the full model, we get back the

narrow model as a special case. Hence we denote the true parameters of the narrow model

by (θ0,γ0), where only θ0 is to be estimated.

Since θ0 is common to all models, this is called the protected parameter vector. The

different models contain some or all components of γ in addition to θ0. In other words,

variable selection will make a choice of which components of the vector γ to include in the

model. These are the unprotected parameters, subject to selection.

Revisiting the example introduced in Section 1, we have used the following models. The

narrow model contained only one protected parameter θ∆Kstar(1)
, while all other parameters

were set to 0. As such, for the narrow model we use the vector (θ,γ0) = (θ∆Kstar(1)
, 0, 0, 0, 0, 0).

The next model in the list contained one extra unprotected parameter, namely γ∆Kstar(2)
and

as such, the vector of parameters was (θ,γ) = (θ∆Kstar(1)
, γ∆Kstar(2)

, 0, 0, 0, 0). The full, most

complex, model contained the parameters (θ,γ) = (θ∆Kstar(1)
, γ∆Kstar(2)

, γ∆Kstar(3)
, γ∆Triangle

,

γ∆Gwesp(τ=.5)
, γWealth).
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4.2 The focus, local misspecification and MSE

For each model, one is interested in estimating a univariate function µ of the corresponding

parameters, denoted as µ = µ(θ,γ). Different choices for which components of γ to include,

lead to different models, and thus to different estimators of the focus µ. We use MSE to

decide on which of those estimators of µ is the best.

Since the true model is unknown, the MSE of the focus estimators needs to be estimated

too. For this purpose we make the assumption of a locally misspecified model. This means

that the true model is in a ‘neighborhood’ of the narrow model. With increasing n the

neighborhood becomes smaller and in the limit experiment n → ∞, the two models coincide.

This is less strict than assuming the true model to be one of the models used.

Under a locally misspecified framework, we assume that the density of a random variable

depends on the parameters vectors θ0, γ0 + δ/
√
n, with n the sample size. The vector γ0 is

known and user-specified, e.g., containing all zeros, while θ0 and δ are to be estimated. The

vector δ determines the ‘proximity’ around the narrow model, to indicate the true model.

This true model is only used to compute the bias and variance of the focus estimators in the

different candidate models.

As such, whenever we model ties between actors we work with the probability mass

function fn(ỹij) = f(ỹij ,θ0,γ0 + δ/
√
n) (in the case of ERGMs and NRMs) and whenever

we model actor related continuous variables we work with the density fn(yij) = f(yij ,θ0,γ0+

δ/
√
n). By n we denote the sample size which when modeling ties refers to the total number

of ties between actors in the network, while in the case of actor related variables, it refers to

the number of actors.

As we have argued, these estimators µ̂ have different biases and different variances. The

MSE(µ̂) = {bias(µ̂)}2 + Var(µ̂) is an objective method of performance as it brings together

the bias and the variance of the estimator into one single measure. The smaller the MSE,

the better the performance of the estimator.

We now repeat the general derivation of the FIC as in Claeskens and Hjort (2003, 2008b).

We start by defining the Fisher information matrix J , i.e., the expected value of the matrix

of minus second partial derivatives of the log-likelihood with respect to the parameters,

for the ‘wide’ model, as this is one of the key ingredients for calculating the bias and the

variance expressions. We further partition J according to the length of θ and γ into J =(
J00 J01

J10 J11

)
. The submatrix J00 relates to the second order partial derivatives of the

log-likelihood with respect to the vector θ, the submatrix J11 corresponds to using the

second order derivatives of the log-likelihood with respect to the vector γ and the submatrix

J01 corresponds to using the second order derivatives of the log-likelihood first with respect

to the vector θ and then with respect to the vector γ. The partitioning according to the

distinction between protected and unprotected parameters is important, as further on in

the calculations the different submatrices play different roles. We further define the matrix

Q = (J11 − J10J
−1
00 J01)

−1 which plays an important role both in the variance (indirectly

through the matrix Q0
S defined below) as well as in the bias (indirectly through the matrix
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GS defined below).

A model is selected from a list of plausible models. Let S be a subset of {1, . . . , p} where

p is the number of parameters in the vector γ. To not have to write down separate notation

for each model in the list we identify the model with the index set S. The narrow model

corresponds to S = ∅, the empty set, while the full model corresponds to S = {1, . . . , p}. For
a certain model S we further introduce the matrices QS = (πSQ

−1πT

S)
−1, Q0

S = πT

SQSπS

(which plays a role in the variance) and GS = πT

SQSπSQ
−1 (which plays a role in the

bias), where πS is a projection matrix that contains 0s and 1s, such that when multiplied

with matrices of interest, it retains those rows and columns that relate to the parameters

contained in model S. For example, for a vector v, with π{2} = (0, 1, 0, . . . , 0), π{2}v = v2,

the second component of v (see Claeskens and Hjort, 2008b, p. 146).

The focus parameter is estimated in each considered model S. With a slight abuse of

notation regarding the order of the components of γ, this leads to considering estimators

µ̂S = µ(θ̂S , γ̂S ,γ0,Sc), where θ̂S and γ̂S represents the estimated protected and unprotected

parameters when using model S, while γ0,Sc are the known fixed values of components of γ0

that are not considered in the set S. For example, if γ5 is not in the model, we set γ0,5 = 0.

From Theorem 6.1 in Claeskens and Hjort (2008b) for any model S, the maximum like-

lihood estimator of the focus parameter obeys

√
n (µ̂S − µtrue)

d→ Λ ∼ N
(
ωT(I −GS)δ,

(
∂µ

∂θ

)T

J−1
00

∂µ

∂θ
+ ωTQ0

Sω
)
.

The true focus µtrue = µ(θ0,γ0 + δ/
√
n) is the function µ evaluated at the true parameters.

We define ω = J10J
−1
00

∂µ
∂θ − ∂µ

∂γ , where
∂µ
∂θ and ∂µ

∂γ are the vectors of partial derivatives of

the focus with respect to the vectors θ and γ, while I is the identity matrix of the same

dimensions as GS . Adding the squared bias and variance of the estimator using model S

leads to the mean squared error expression:

MSE(µ̂S) =

(
∂µ

∂θ

)T

J−1
00

∂µ

∂θ
+ ωTQ0

Sω + ωT(I −GS)δδ
T(I −GS)

Tω.

By plugging-in sample versions of the unknown quantities, the estimated MSE is

M̂SE(µ̂S) =

(
∂µ

∂θ

)T

Ĵ
−1
00

∂µ

∂θ
+ 2ω̂TQ̂

0
Sω̂ + ω̂T(I − ĜS)δ̂δ̂

T

(I − ĜS)
Tω̂ − ω̂TQ̂ω̂.

Eliminating constants that do not depend on the model S the focused information crite-

rion (Claeskens and Hjort, 2003) is obtained as

FIC(µ̂S) = ω̂T(I − ĜS)δ̂δ̂
T

(I − ĜS)
Tω̂ + 2ω̂TQ̂

0
Sω̂. (4.1)

In following sections, we show how expression (4.1) can be used to perform model selection

within the general classes of ERGMs, NAM and NRM models introduced in Section 2. An

implementation of FIC using the R software (R Development Core Team, 2008) is available

from the authors’ webpage.
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5 Empirical example ERGM

To make the previous concepts more concrete, in this section we present examples on how

the above quantities can be estimated from data. For this we retake the ‘Florentine families’

dataset introduced in Section 1. The marriage social network and the wealth of the families

are used to exemplify the concepts.

We denote by ∆network statisticij a change in a network statistic when the tie ỹij is

changed from 0 to 1, or vice versa. As network statistics we consider the number of edges

in the network (∆Kstar(1)ij
), the number of two edge configurations (∆Kstar(2)ij

), the number

of three edge configurations (∆Kstar(3)ij
), the number of transitive triangles (∆Triangleij ), the

Gwesp(τ = 0.5) statistic (Hunter and Handcock, 2006) and the absolute difference in wealth

(on the log scale) between any two families. For example, the network statistic ∆Triangleij

records the change in the number of transitive triangles in the network that would occur if

the observed value of a tie ỹij were changed from 0 to 1, while leaving all other ties intact.

The same holds for all other summary statistics.

For this purpose consider the following model:

P (Ỹij = 1|ỹcij) = pij =

=
exp(θ1∆Kstar(1)ij

+γ1∆Kstar(2)ij
+γ2∆Kstar(3)ij

+γ3∆Triangleij
+γ4∆Gwesp(τ=.5)ij

+γ5Wealthij)

1+exp(θ1∆Kstar(1)ij
+γ1∆Kstar(2)ij

+γ2∆Kstar(3)ij
+γ3∆Triangleij

+γ4∆Gwesp(τ=.5)ij
+γ5Wealthij)

,

or more concisely

pij =
exp(uT

ijθ + zT

ijγ)

1 + exp(uT

ijθ + zT

ijγ)
, (5.1)

where we denote by uij a column vector of differences of summary statistics whose associ-

ated θ parameters are protected and by zij a column vector of difference statistics whose

associated γ parameters are unprotected.

In the above model, θ = θ1 and γ = (γ1, . . . , γ5) represent unknown parameters. The

parameters θ represent the parameters that are always present in all considered models and

act as protected parameters, whereas the γ vector corresponds to all parameters that are

unprotected and for which variable selection is desired. We consider here the number of

edges in the network as a protected variable, always included in the models through which

we search, acting in a sense similar to an intercept in a regression model. The distinction

protected/unprotected comes from the scientific intuitions and hypotheses on which the

models are built. Extreme cases where all parameters are protected (equivalent to not

performing any selection) or unprotected are also possible.

Since (5.1) corresponds to using a logistic regression to model the probability of a tie

occurring between two actors we write the log-likelihood as

ℓ(θ,γ) =
∑

i,j|i 6=j

yij log(pij) + (1− yij) log(1− pij),

for which the empirical Fisher information matrix is

Jn =
1

n

∑

i,j|i 6=j

pij(1− pij)

(
uT

ijuij uT

ijzij

zT

ijuij zT

ijzij

)
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which is the main quantity needed when computing the MSE values.

For this example we consider three focuses:

- the log odds ratio log(
pij

1−pij
), where pij is the probability of a tie occurring between

families (or how likely is it to have a tie between two families as opposed to not having

it present) at fixed values for the change statistics : µ(θ,γ) = log(
pij

1−pij
) = uT

ijθ+zT

ijγ.

We concentrate here on the Strozzi family and inspect the change statistics when the

tie between this family and the Medici or Peruzzi family changes from 0 to 1 in the

observed network. The changes with respect to the Medici family are used in the first

focus, i.e., µ1(θ,γ) and the changes with respect to the Peruzzi family are used in the

second focus, namely µ2(θ,γ);

- the effect a transitive triangle has on forming a tie between two families: µ3(θ,γ) = γ3.

Table 3 presents the results of the analysis. The first two panels present results when

focusing on the log odds ratio as a function of the modifications obtained when the Strozzi

family would develop a tie with the Medici family (µ1) or if the link between Strozzi and the

Peruzzi family would not be present (µ2). In the last panel, results are presented for the case

when we focus on the effect that a transitive triad (µ3) has on the probability of observing

such a network.

The best five fitting models selected based on FIC when focusing on µ1 estimate the

focus at low values which suggests that based on these models, the probability of observing

such a tie is much smaller than the probability of not observing a tie. It suggests thus, that

the model does not sustain the presence of such a tie in the network. Alongside the best

five scoring FIC models, we have also inspected four other models: the best scoring AIC

and BIC models, as well as the full model (containing the predictors ∆Kstar(1) ∆Kstar(2),

∆Kstar(3), ∆Triangle, ∆Gwesp(τ = .5) and Wealth) and the narrow model (containing only the

predictor ∆Kstar(1)). The AIC and BIC selected the narrow model for these data. As we

have mentioned in Section 3, Table 3 illustrates that the full model provided the largest

estimated variances 1.65 (µ1), 2.22 (µ2) and 26.74 (µ3), while the narrow model provided

the largest estimated biases 2.67 (µ1), 11.69 (µ2) and 40.55 (µ3). Models in between the

narrow and the full model provided a better trade-off between squared bias and variance

resulting in better FIC performance. Also worth mentioning is that the differences between

the scores, especially of the best two fitting models, is small and as such the selection of the

final model to be used further might be dictated by other considerations like cost, availability

of measurements, time, etc. In general, the question ‘how small is a small difference?’ that

affects all information criteria is still an open question also for the FIC. For an interpretation

of the FIC values, it is useful to present the root-estimated MSE, i.e. {M̂SE(µ̂S)}1/2, since
this bares similarity to the more traditional standard error of an estimator, though now

including the bias component too. Following the advice of Burnham and Anderson (2002),

we suggest inspecting the top three or top five best scoring models, for which the scores are

‘close’ together (as a rule of thumb differences between 0 to 2 units are deemed close). If

the difference between models is judged to be small, other considerations like parsimony or

12



Focus Parameters µ̂ M̂SE
1/2

FIC b̂ias V̂ar AIC BIC

(γ1, γ2, γ3, γ4, γ5)

µ1 : log(
pij

1−pij
) Medici

Best FIC 0 0 0 0 1 -1.80 0.34 1.643 -0.47 0.12 111.5 117.0

2nd FIC 0 0 1 1 1 -2.24 0.71 2.026 -0.75 0.50 115.0 126.1

3rd FIC 1 0 1 0 1 -1.90 1.06 2.660 0.64 1.13 115.4 126.5

4th FIC 1 0 0 1 1 -1.92 1.07 2.663 0.35 1.14 115.3 126.5

5th FIC 1 0 0 0 1 -1.80 1.15 2.841 0.84 1.13 113.5 121.8

Full 1 1 1 1 1 -2.22 1.29 3.181 0.00 1.65 119.0 135.7

Best AIC/BIC 0 0 0 0 0 -1.62 2.68 7.122 2.67 0.06 110.1 112.9

µ2 : log(
pij

1−pij
) Peruzzi

Best FIC 0 0 0 1 0 1.27 1.33 3.856 0.71 1.74 112.0 117.6

2nd FIC 0 0 1 1 1 1.32 1.36 3.939 -0.20 1.84 115.0 126.1

3rd FIC 1 0 0 1 0 1.14 1.47 4.249 0.24 2.15 114.0 122.4

4th FIC 1 0 1 1 1 1.27 1.49 4.311 -0.33 2.16 117.0 130.9

5th FIC 0 1 1 1 1 1.29 1.49 4.322 0.03 2.22 117.0 130.9

Full 1 1 1 1 1 1.28 1.49 4.322 0.00 2.22 119.0 135.7

Best AIC/BIC 0 0 0 0 0 1.62 11.70 136.720 11.69 0.06 110.1 112.9

µ3 = γ3

Best FIC 0 0 1 1 1 -4.62 4.90 50.629 0.27 24.02 115.0 126.1

2nd FIC 0 0 1 1 0 -4.44 4.95 51.099 1.79 24.01 113.6 122.0

3rd FIC 1 0 1 1 1 -4.62 5.17 53.302 0.65 26.51 117.0 130.9

4th FIC 0 1 1 1 1 -4.61 5.17 53.325 -0.34 26.67 117.0 130.9

5th FIC 1 1 1 1 1 -4.64 5.17 53.343 0.00 26.74 119.0 135.7

Best AIC/BIC 0 0 0 0 0 0.00 40.55 1644.076 40.55 0.06 110.1 112.9

Table 3: Florentine family data. ERGM based example using three focuses.

The narrow model contains only the change in the number of edges statistic

θ = ∆Kstar(1). The parameters (γ1, γ2, γ3, γ4, γ5) correspond to the predictors

(∆Kstar(2),∆Kstar(3),∆Triangle,∆Gwesp(τ=.5),Wealth). For µ1 the vector of change statistics

is (2, 10, 21, 1, 2.4, 0.35), corresponding to the changes with respect to the relations Strozzi-

Medici, while for µ2 the vector is (-2, -5, -4, -1, -5.4, -1.1), corresponding to the changes

with respect to the relations Strozzi-Peruzzi, which makes the two focuses distinct from one

another. The focus µ3 corresponds to the parameter associated with the transitive triangle

network statistic. In the ‘Variables’ column 0/1 indicate the absence/presence of a predictor

in the model.

external expert advice might play a decisive role in selecting the final model.

The analysis in Wasserman and Faust (1994) as well as the historical classification in

Molho (1994) have placed the Peruzzi family close to the Strozzi family and as such, we
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have further focused on the log odds ratio of observing a tie between the two families given

the vector of change statistics. The observed adjacency matrix contains this tie, and so we

expect a rather high probability of this tie occurring if the identified models are appropriate.

In the five best ranked models when focusing on this log odds ratio, the estimated probability

of a tie being observed is much larger than the probability of it not being observed.

In the third example, we have focused on the parameter corresponding to the effect a

change statistic based on transitive triangles has on forming ties. In this case, all of the five

best ranked FIC models suggest including the change statistic based on triangles as it helps

reduce the estimated MSE values. All five models estimate a large negative effect of this

change statistic on the logit, whereas the best AIC and BIC model would avoid including

any such effects.

The main message of the analysis is that different explanatory models performed dif-

ferently with respect to the bias and the variance of the estimated focus. Using the FIC a

researcher is able to guide the model selection process towards that part of the model which is

of interest. For comparison, the AIC or BIC criteria are inflexible to such targeted searches,

and given data they select a ‘best’ model which should be then used for all purposes. Using

the full model as a safe-guard against missing out important and relevant variables is still a

bad idea, because as the theory predicts and Table 3 verifies empirically, this would intro-

duce a large variance, which in turn inflates the estimated MSE. Not including anything is

also not a wise option because even though we decrease the variance part, we increase the

bias resulting in large estimated MSE values. Models somewhere in between the full and the

empty model, for this example, better balance the bias-variance trade-off.

This reflects that the purpose for which a researcher aims to construct a well performing

model, is of utmost importance and different models might perform better or worse in offering

an answer to the scientific question. In the FIC case, before starting to think about plausible

causal relations, one needs to think first for which purpose is the model being developed and

to which scientific questions the model should provide an answer.

One of the complications that arise when working with ERGMs is model degeneracy. The

subject has been treated in Handcock (2003a,b) and is empirically illustrated in Goodreau et al.

(2008), Handcock et al. (2008) and Hunter et al. (2008b). Loosely speaking degeneracy is

connected to model misspecification, in the sense that trying to fit a model far from the

underlying generating process can lead to non-existence of the maximum likelihood estima-

tor. Being a model selection criterion, FIC is not equipped to alleviate model degeneracy, it

makes use of the maximum likelihood estimator, as do the classical AIC and BIC. Inflated

standard errors due to non-convergence of the estimation algorithm, are visible in values of

the FIC via large values in the Fisher information matrix. To such cases the FIC does not

apply.
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6 Empirical example NAM

The example in Section 5 presented models that describe the process of presence or absence

of ties as a function of other network summary statistics. In this section we concentrate on

estimating models that describe the relations determining the wealth of a family, using the

same ‘Florentine family’ dataset, as a function of several other family characteristics.

The added complications arise from the fact that one is also interested in quantifying

the effect a social network has on determining the family wealth. It is quite plausible that

since marriages were seen more as alliances between families in order to increase their social

and financial power, this might also affect their wealth. It is sensible to think that in the

15th century, wealthier families would have an inclination to marry other wealthy families to

maintain their social status and financial power and also to gain access to other resources.

Alongside the marriage network used in Section 5 we use here also the ‘Florentine business’

network which records which of the 16 families have conducted business transactions together.

It is quite plausible that the interactions between actors involved in such a network would

have a direct consequence on the wealth of a family, maybe more importantly than the effect

of the marriage network.

The model we put forward is

Y = αW̃ 1Y + β0 +Xβ + ǫ,with ǫ = ρW̃ 2ǫ+ ν,

where Y represents a vector corresponding to the wealth of the families, X is a matrix of

explanatory predictors and W̃ 1 and W̃ 2 are the business and marriage networks. Here the

X matrix contains as columns the measurements for ‘Priorates’ (the number of seats on the

civic council), ‘Totalties’ (the number of all ties linking the family to any of the other 116

families from Florence), the degree centrality of the families involved in marriage network,

the average betweenness score of each family and the average flow betweenness scores of each

families. The averages are obtained by taking the respective measures estimated from the

marriage and business networks and averaging them for each family. The vector (α, β0,β, ρ)

collects unknown coefficients to be estimated from the data, β = (βPriorates, βTotalties, βDegree,

βBetweenness, βFlow) is the vector of unknown parameters associated to predictors stored in

X, ǫ represents a vector of unknown errors and ν is a vector of normal random variables,

ν ∼ N(0, σ2
νI).

In this particular application θ = (σ2
ν , β0) which corresponds to having only an intercept

in the protected group of predictors and to saying that all models should contain the variance

parameter. The parameters related to the possible predictors are γ = (α, ρ,β). We want

to perform model selection and thus the different models set some of the γ entries to 0.

For example, the narrow model uses the parameter vector (θ,γ0) = (σ2
ν , β0, 0, 0, 0, 0, 0, 0, 0),

whereas the full model uses the parameter vector (θ,γ) = (σ2
ν , β0, α, ρ, βPriorates, βTotalties,

βDegree, βBetweenness, βFlow).

Depending on the research interest one may also consider one or both components of

the vector (α, ρ) that is associated with the network effects, as being protected if one desires

models that should contain such dependencies, but for didactic reasons we have left these two
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parameters unprotected, reflecting interest in allowing for some focuses a possible exclusion

of such dependencies, if simpler models would perform better in terms of FIC scores.

We focus on two parameters:

1. the expected wealth of the Medici family as a function of all other predictors and social

networks i.e. µ1(θ,γ) = E(YMedici|W̃ 1, W̃ 2,x);

2. α the autoregressive effect mediating the effect of the business network on the wealth,

i.e. µ1(θ,γ) = α.

These two focuses represent the statistical translation of our research questions. Estimat-

ing the expected wealth with small MSE seems a natural choice for a focus. There might be a

connection between the wealth of the family and the business network a family is involved in,

since this is directly linked to revenue. There might also be an indirect connection between

the wealth of the family and the marriage network a family belongs to, since there might be

a tendency for wealthier families to be united by marriage ties with other wealthy families.

Table 4 presents the obtained results. The first two parts present the selected models

when it is desired to have good performing models for the two focuses separately, while the

third part contains models which are ranked according to the average of the estimated MSE

for both focuses, 0.5{M̂SE(µ̂1) + M̂SE(µ̂2)}. As in Section 5 the full and empty model as

well as the best scoring AIC and BIC models are included for comparison.

As before, the main message is that different focuses are better estimated by different

models. With respect to the best scoring FIC models, they all estimate the wealth of the

Medici family closer to the actual observed wealth (see the ‘Abs.Diff.’ column in Table 4,

which presents the absolute value of the difference between the predicted wealth of the family

based on the model and the actual observed wealth) either when estimating models targeted

solely for this focus, or for the joint combination of focuses (last panel from Table 4). As

in the previous example, the AIC and BIC models perform poorly and result in estimating

high values for the MSE.

All five best FIC models, when compared to the AIC/BIC model, estimate a higher effect

(α) of the business network on the estimated wealth suggesting that business ties seem to

have some importance in determining the wealth of a family. As in the previous case, the

empty model seems to be the worst performing model.

7 Empirical example NRM

We perform a small simulation study, starting from a real data example, where we evaluate

the performance of the models selected by FIC and AIC in a controlled experiment.

The general considered model is

vec(Z̃) ∼ N(β0 + X̃β, σ2{(I − ρW̃
T

2 )(I − ρW̃ 2)}−1) ≡ N(β0 + X̃β, σ2Σρ),

where β0,β, ρ and σ2 are unknown parameters and X̃ and W̃ 2 are known matrices. The neg-

ative log-likelihood function to be minimized is proportional to log(eTρ σ
−2Σρeρ)+log det(σ2Σρ),
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Focus Parameters µ̂ Abs.Diff. M̂SE
1/2

FIC b̂ias V̂ar AIC BIC

(α, ρ, P, T,D,B, F )

µ1

Best FIC 0 1 1 1 1 1 0 5.48 0.85 0.58 0.644 0.00 0.33 44.2 49.6

2nd FIC 0 1 0 1 1 1 0 5.42 0.79 0.62 0.674 0.07 0.31 42.5 47.1

3rd FIC 0 1 0 1 1 1 1 5.46 0.83 0.61 0.705 0.01 0.35 44.4 49.8

4th FIC 0 1 0 1 1 0 1 5.59 0.96 0.68 0.711 0.19 0.27 42.7 47.3

5th FIC 1 1 0 1 1 1 1 5.38 0.75 0.73 0.871 0.17 0.36 45.7 51.9

Full 1 1 1 1 1 1 1 5.48 0.85 0.74 1.075 0.00 0.55 47.6 54.6

Narrow 0 0 0 0 0 0 0 3.37 1.26 7.32 53.508 53.51 0.01 48.4 49.9

Best AIC/BIC 0 1 0 1 0 0 0 5.73 1.45 1.10 2.335 1.85 0.25 41.8 44.8

µ2

Best FIC 1 0 0 0 1 0 0 0.599 / 0.41 0.322 0.02 0.15 46.4 49.5

2nd FIC 1 1 0 0 1 0 0 0.603 / 0.48 0.378 0.08 0.15 45.1 49.0

3rd FIC 1 0 0 0 0 1 0 0.598 / 0.50 0.497 0.00 0.25 49.2 52.3

4th FIC 1 0 1 0 1 0 0 0.767 / 0.58 0.510 0.16 0.17 48.2 52.0

5th FIC 1 1 0 0 0 1 0 0.663 / 0.55 0.555 0.06 0.25 50.5 54.4

Full 1 1 1 1 1 1 1 0.531 / 0.92 1.680 0.00 0.84 47.6 54.6

Narrow 0 0 0 0 0 0 0 0.000 / 1.77 3.137 3.14 0.00 48.4 49.9

Best AIC/BIC 0 1 0 1 0 0 0 0.000 / 2.10 4.409 4.41 0.00 41.8 44.8

(µ1, µ2)

Best FIC 1 1 0 1 1 1 0 (5.31 ,0.24) (0.68,/) 0.31 0.132 / / 44.2 49.7

2nd FIC 1 1 0 1 1 1 1 (5.38 ,0.65) (0.74,/) 0.33 0.142 / / 45.7 51.9

3rd FIC 1 1 1 1 1 1 0 (5.40 ,0.13) (0.77,/) 0.38 0.175 / / 46.2 52.4

4th FIC 1 1 1 1 1 1 1 (5.48 ,0.53) (0.84,/) 0.33 0.182 / / 47.6 54.6

5th FIC 1 1 0 1 1 0 1 (5.35 ,0.59) (0.71,/) 0.31 0.190 / / 43.7 49.1

Full 1 1 1 1 1 1 1 (5.48 ,0.53) (0.84,/) 0.32 0.199 / / 47.6 54.6

Narrow 0 0 0 0 0 0 0 (3.37 ,0.00) (1.27,/) 3.51 12.352 / / 48.4 49.9

Best AIC/BIC 0 1 0 1 0 0 0 (5.73 ,0.00) (1.09,/) 0.88 0.797 / / 41.8 44.8

Table 4: Florentine family data. NAM example using two focuses. The focus µ1 rep-

resents the expected wealth of the Medici family given its observed network ties, i.e.

E(YMedici|W̃ 1, W̃ 2,x) and covariate values. The focus µ2 corresponds to the parameter

associated with the autoregressive effect mediating the effect of the business network on

wealth, i.e. α. The narrow model contains only the intercept. The vector of parameters

(α, ρ, P, T,D,B, F ) stands for (α, ρ, βPriorates, βTotalties, βDegree, βBetweenness, βFlow).

where eρ = Ỹ − X̃(X̃
T

σ−2Σ−1
ρ X̃)−1X̃

T

(σ−2Σρ)Ỹ . The likelihood function depends only

on ρ after inserting the maximum likelihood estimators for β and σ2. The estimator of ρ is

obtained by numerical optimization because a closed form expression is not available.
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The Fisher information matrix (see Waller and Gotway, 2004), needed for calculating the

MSE values for the considered models, takes the form:

J(ρ, σ2, β0,β) =
1

σ2




∑
i(

ϑ2
i

(1−ρϑi)2
) + trace(GT

ρGρ) trace(Gρ) 0

trace(Gρ)
Nσ2

2 0

0 0 (1, X̃)TAρ(1, X̃)


 ,

where Aρ = (I−ρW̃ 2)
−1(I−ρW̃

T

2 )
−1, Gρ = W̃ 2(I−ρW̃ 2)

−1, ϑi are the eigenvalues of W̃ 2

and trace(·) denotes the trace operator, the sum of the diagonal elements of a square matrix.

Under this model we optimize the log-likelihood with respect to all unknown parameters,

considering θ = (β0, ρ, σ
2) as protected parameters included in all models and γ = β as the

unprotected parameters.

In this section we start from the ‘Monastery’ data of Sampson (1968) which contains

information regarding 18 monks entering a monastery. Data were collected regarding the

order in which the monks have left the monastery (due to ideological and political tensions

some of the monks have been expelled from the monastery or have quit voluntarily) and

as well eight different social relations between monks have been recorded. Each monk was

asked to list three other monks which he likes, dislikes, praises or blames, esteems the most,

esteems the least, has had the most influence on him or has had the least influence on him.

The three nominations were afterward recoded as scores and eight social networks which

embody monk-to-monk relations have been constructed. All eight networks are regarded as

potential explanatory social networks.

In our analysis, the dependent network Z̃ is given by Z̃ij =| zi − zj |, where zi and zj

represent the exit orders of monk i and monk j respectively. Note that the elements Z̃ij

reflect the strength of the relation between the actors, rather than presence/absence of ties.

The purpose is to model vec(Z̃) as a linear function of the other eight explanatory social

networks. The assumption of independent ties is questionable, because leaving the convent

has been registered to occur in groups: first a group of four monks has been expelled and five

other monks have soon afterward left on a voluntary base. The monks continued to leave

the convent and as such, of the original 18 monks only four remained until the end of the

seminar.

It is expected that not all the predictor social matrices have an effect on the order of

exit, but it is unknown to the researcher which social networks to keep or exclude in order

to obtain a good model.

In a second step, for each real value in the social network Z̃ we have generated random

errors that have been elementwise added to each tie. For the generation of errors, we first

set kij(0 ≤ kij ≤ 1) and σsim to particular values. We consider kc = 1 − kij as measuring

the autocorrelation within columns and generate two random variables uj and uij from the

normal distribution N(0, σ2
sim). In the final steps, errors for each tie (i, j) are generated as

ǫij = kcuj + kijuij and added to Z̃ij . The larger kc, the stronger the correlation between

monks; the larger σsim, the more noise is added to measurements for a particular monk j

and the more noise is added to ties between actors i and j. In this example, kij took a

value in the set {.1, .5, .7, .9} and σ2
sim took a value in the set {1, 2, 3, 5}. This resulted in 16

18



different scenarios for generating errors and the noisy version of Z̃ has been used throughout

the calculations as the ‘response’ network.

In the above model, the likelihood expression requires the specification of the W̃ 2 matrix

which is assumed to be a known matrix that represents the autocorrelation structure existing

between ties, however its precise form is almost always unknown to the researcher, and it is

not excluded that the ties are in some situations uncorrelated to each other. For this reason,

we choose to add generated noise with correlated ties following the above procedure, but

since the actual W̃ 2 matrix is unknown, we chose to fit models where such dependencies

are ignored. More specifically, we wanted to see how detrimental modeling is under the

assumption of independent ties, when this assumption is violated.

For this example we focus on two parameters:

1. the expected difference between exit orders of the monks i and j as a function of all

other social networks ties i.e. µ1(θ,γ) = E(Z̃ij |W̃ 1, W̃ 2, x̃); we repeat the procedure

for each tie and select the model that provides on average the lowest FIC score;

2. the information centrality scores (Stephenson and Zelen, 1989) of each monk.

1 3 5 7 9 11 13 15

4900

5200

5500

5800
AIC

FIC

1 3 5 7 9 11 13 15

0

1000

2000

3000
AIC

FIC

Figure 2: Sampson data. SSEExit (left panel) and SSEInfoCent (right panel), on the y-axis,

for FIC and AIC selected models across 16 different simulation settings, on the x-axis.

We evaluate the performance of the models in terms of sums of squared errors (smaller

is better) of the form

SSEExit =

18∑

i=1

18∑

j=1

(Z̃ij − Z̃pred
ij )2;

SSEInfoCent =
18∑

i=1

(InfoCenti − InfoCent
pred
i )2.

where Z̃ij and InfoCenti represent the true order of exit differences and information centrality

score and Z̃pred
ij , InfoCentpredi represent their predicted counterparts based on the selected

models.
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The final selected models correspond to the models that have the smallest value of the

FIC and the AIC from the list of 28 possible different models. Figure 2 presents the SSEExit

(left panel) and the SSEInfoCent (right panel) performance of both the FIC and AIC and

under all types of autocorrelation structure the FIC model produces smaller SSEExit values

than AIC. The values of SSEInfoCent are nearly the same for FIC and AIC, suggesting that

the selected models do not influence to a high degree the centrality scores of the monks. The

close values of SSEInfoCent show that in some cases, depending on the focus under study the

FIC models behave similar to AIC selected models and it is not necessarily the case that

FIC always improves on the AIC models, it all depends on the focus under study.

8 Discussion

We provide examples of how the FIC can be applied for model selection for social networks for

three classes of models: ERGM, NAM and NRM. The procedure allows for selecting targeted

models for certain quantities of interest which are linked to specific research questions. The

advantage of using FIC is that the selected model represents best the question of interest.

Different research questions can be offered possibly different selected models, because the

final models are selected to perform optimally with respect to the focused parameters that

statistically summarize one’s research questions. Through the FIC one has a direct access

to models that are more closely linked to the subject of the study and the researcher’s

interests as well as flexibility in using several models, each of them fine-tuned for a particular

focus. A possible interesting extension of the applications of FIC is that of community

detection (see Amini et al., 2013) where one could focus on probabilities for node labels to

differentiate between communities of nodes in the graph. A further interesting development of

the FIC can be towards dynamic networks where one might focus on transition probabilities

(see Fan and Shelton, 2009) that link the existence of edges at time t with the existence

of edges at future time points. Roughly in the same spirit, the FIC can also be extended

towards relational event models (Butts, 2008b), where the focus can be related to parameters

modeling survival functions. These possible extensions and similar others illustrate that the

FIC is quite versatile with respect to model selection aspects and at the same time might

open the way for further research.
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A., and Sebag, M., editors, Machine Learning and Knowledge Discovery in Databases,

volume 6323, pages 180–195. Springer.

Sampson, F. S. (1968). A novitiate in a period of change: An experimental and case study

of social relationships. PhD thesis, Cornell University.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2):461–

464.

Shore, J. and Lubin, B. (2015). Spectral goodness of fit for network models. Social Networks,

43:16–27.

Stadtfeld, C., Geyer-Schulz, A., and Allmendinger, O. (2011). The influence of distance,

time and communication network structures on the choice of communication partners.

In Proceedings of the 2011 IEEE International Conference on Social Computing, pages

402–409.

Stephenson, K. and Zelen, M. (1989). Rethinking centrality: Methods and applications.

Social Networks, 11:1–37.

Waller, L. and Gotway, C. (2004). Applied Spatial Statistics for Public Health Data. Wiley.

Wang, P., Pattison, P., and Robins, G. (2013a). Exponential random graph model specifi-

cations for bipartite networks: A dependence hierarchy. Social Networks, 35(2):211–222.

Wang, P., Robins, G., Pattison, P., and Lazega, E. (2013b). Exponential random graph

models for multilevel networks. Social Networks, 35(1):96–115.

Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications.

Cambridge University Press.

Wasserman, S. and Pattison, P. (1996). Logit models and logistic regressions for social

networks: I. An introduction to Markov graphs and p*. Psychometrika, 61:401–425.

Zhang, X. and Liang, H. (2011). Focused information criterion and model averaging for

generalized additive partial linear models. The Annals of Statistics, 39(1):174–200.

Zijlstra, B. J. H., Duijn, M. A. J., and Snijders, T. A. B. (2005). Model selection in random

effects models for directed graphs using approximated Bayes factors. Statistica Neerlandica,

59(1):107–118.

23



 

 

 

FACULTY OF ECONOMICS AND BUSINESS 
Naamsestraat 69 bus 3500 

3000 LEUVEN, BELGIË 
tel. + 32 16 32 66 12 
fax + 32 16 32 67 91 

info@econ.kuleuven.be 
www.econ.kuleuven.be 


	OZrapport_sjabloon
	FIC for Social Networks
	Motivation
	Social network models
	General steps for FIC model selection
	Technical description of FIC
	Protected and unprotected parameters
	The focus, local misspecification and MSE

	Empirical example ERGM
	Empirical example NAM
	Empirical example NRM
	Discussion


