

No-wait scheduling for
locks
Passchyn W, Briskorn D, Spieksma F.

KBI_1605

No-wait scheduling for locks
Ward Passchyn∗ Dirk Briskorn† Frits C.R. Spieksma∗

March 1, 2016

Abstract

We investigate a problem inspired by the practical setting of scheduling
a lock with parallel chambers. We show how this problem relates to known
interval scheduling problems, as well as to a particular graph coloring
problem on multiple unit interval graphs. We explore the relationships
between these problems and discuss the complexity of different problem
variants. In particular, for a lock consisting of two chambers we are able
to characterize the feasible instances and use this result to obtain efficient
algorithms. We also provide an efficient algorithm for the special case with
identical lock chambers. Furthermore, we describe a dynamic programming
approach for the more general case with arbitrary chambers, and prove
that the problem is strongly NP-complete when the number of chambers
is part of the input.

Keywords: Lock scheduling, Graph coloring, Interval scheduling

1 Introduction and existing literature
Locks are a necessity on many inland waterways; they maintain the water
level while allowing ships traversing these waterways to overcome the resulting
water level differences. We consider the following scheduling problem that deals
with ships passing through a lock: consider a single lock that consists of m
parallel chambers. The chambers operate independently of each other, and
are each characterized by two numbers: their lockage time (denoted by Tj ,
j = 1, . . . , m), and their capacity (denoted by Cj , j = 1, . . . , m). A lockage or lock
movement refers to a single operation of the lock, i.e. allowing a ship to enter and
subsequently to change the water level in the lock from the downstream water
level to the upstream water level, or vice versa, allowing the ship to exit the lock
and continue its journey. The term lockage time refers to the time needed to

∗KU Leuven, Faculty of Economics and Business, ORSTAT, Naamsestraat 69, 3000 Leuven,
Belgium

†Chair of Production and Logistics, Bergische Universität Wuppertal, Rainer-Gruenter-
Straße 21, 42119 Wuppertal, Germany

e-mail addresses: {ward.passchyn, frits.spieksma}@kuleuven.be; briskorn@uni-wuppertal.de

1

complete this operation. The capacity of a lock refers to the number of ships
that can be simultaneously served during a single lockage. Ships arrive at the
locks at given times t1, t2, . . . , tn. We use T to denote the set of arrival times,
i.e. T = {t ∣ t = ti, 1 ≤ i ≤ n}. A ship can arrive either from the upstream side
of the lock, or from the downstream side of the lock. We will refer to ships by
their direction of travel, i.e. ships arriving on the upstream (downstream) side
of the lock, are referred to as downstream traveling (upstream traveling) ships.
Our interest in this paper is exclusively on the existence of so-called no-wait
schedules. A no-wait schedule is a schedule where each ship, upon its arrival, can
enter a chamber of the lock immediately. Thus, in a no-wait schedule, each ship
i (1 ≤ i ≤ n) leaves the lock at either ti +T1 or ti +T2 or . . . or ti +Tm, depending
on the particular chamber the ship is assigned to. The question we address is
thus: given the arrival time and the direction of travel for each ship, does there
exist an assignment of each ship to a chamber such that no ship has to wait;
more compactly: does there exist a no-wait schedule?

We are aware that, from a practical point of view, this problem description
does not include all relevant features such as the size of a ship and ship-dependent
lockage time. However, in order to be able to solve problems, it is good to
understand the behavior of this more basic problem. It is also justified to focus
on the no-wait setting initially: in a number of ports, large vessels may be
subject to a ‘tidal window’, i.e. a limited time interval where they are able to
enter a port. For this reason, a policy can be enforced that sea-going vessels
do not incur any waiting time at the locks that allow entry into the port area.
A similar argument can be made for locks on inland waterways when serving
certain classes of ships carrying dangerous cargo. Locks must then be scheduled
such that these ships are immediately served by the lock upon their time of
arrival.

Moreover, as we argue below, the problem can be seen as a particular interval
scheduling problem, which is of independent interest, and some of our results
have implications for other interval scheduling problems. A special case of the
problem that is of interest is the case where all ships travel in the same direction,
to which we refer as the uni-directional case.

1.1 Practical motivation
Scheduling locks is a problem that is receiving an increasing amount of attention.
In particular, when confronted with a series of locks (e.g. along a canal), the
problem of operating the locks jointly to minimize total waiting time or emissions
is dealt with in Prandtstetter et al. (2015) and Passchyn et al. (2016); see also
Disser et al. (2015) for a related more abstract setting.

Also, the problem of scheduling a lock consisting of one chamber is treated by
Hermans (2014), who presents a O(n4 log n) dynamic programming algorithm
that asserts feasibility with respect to given ship deadlines when the single
chamber has unit capacity. Passchyn et al. (2015) deal with minimizing total
waiting time for a single lock chamber. They give an O(n4) algorithm for
the bi-directional single chamber setting and discuss results for such practical

2

features as ship handling times, drought, etc. Smith et al. (2011) view the
single-lock single-chamber setting as a two-stage queue and describe a mixed
integer programming model as well as a heuristic solution procedure.

The research mentioned above concentrates on single-chamber locks. In
practice, however, many locks consist of more than one chamber. On the
Panama Canal, for example, each lock consists of two identical parallel chambers.
Another example is the Wijnegem lock, situated in Belgium, which connects the
Albert Canal to the port of Antwerp. Like all other locks on the Albert Canal,
this lock consists of three non-identical chambers. Furthermore, the construction
of a fourth lock chamber in Wijnegem is currently under consideration, see also
Waterwegen en Zeekanaal NV and nv De Scheepvaart (2014).

Ting and Schonfeld (2001) mention a heuristic for a lock consisting of two
chambers. The only work we are aware of that deals with exact methods for
scheduling a lock with multiple chambers is Verstichel et al. (2014); a mixed
integer program is proposed that simultaneously decides upon the packing of
ships in chambers, and the operating times of the chambers, see also Verstichel
(2013). Thus, studying a single lock that consists of multiple chambers is a
practical, largely unexplored problem.

1.2 Interval scheduling
The problem described above can be phrased in terms of interval scheduling as
follows. Let a chamber be a machine, and let a ship be a job. Furthermore, let
the direction of travel for each ship correspond the job type for each job. Multiple
intervals are associated to each job, one for each machine in the instance. The
starting time of each of the intervals corresponding to a particular job i is equal
to ti; the ending times of these intervals are given by ti + Tj , j ∈ {1, . . . , m}.
Notice that when considering a particular interval, it is associated with a job and
with a machine. A feasible solution consists of a selection of intervals such that
(i) one interval corresponding to each job is selected, (ii) the selected intervals
that correspond to a machine are disjoint, and even more: when two consecutive
intervals of a machine correspond to jobs with the same job type, there must
be a difference of Tj between the ending point of the earlier interval and the
starting point of the later interval. The requirement involving this difference
is needed because a chamber transporting a ship needs Tj time units to return
before transporting another ship that travels in the same direction. Notice that
in the uni-directional case (when all jobs have the same type), this difference
requirement vanishes since it can be modeled by assuming that the length of the
intervals equal 2Tj .

Interval scheduling is a well-studied subject, see Kolen et al. (2007) for an
overview. A recent paper by Krumke et al. (2011) deals with interval scheduling
on related machines: given are m machines, each with a certain speed sj

(1 ≤ j ≤ m), and n intervals specified by a starting point ri and a processing
time pi (1 ≤ i ≤ n). They show that even deciding the existence of a schedule
is NP-complete. This setting is related to the uni-directional variant of our
problem: by setting the speed of chamber j equal to Tj/Tmax (where Tmax refers to

3

the maximum lockage time over the chambers, i.e. Tmax = maxj Tj), our problem
is seen to be a special case of the problem in Krumke et al. (2011) since in our
case the lengths of intervals corresponding to a particular machine are identical.

Another interesting paper, by Böhmová et al. (2013), concerns a version
with machine-dependent intervals. Here, a job corresponds to a set of intervals,
one for each machine, and to schedule a job exactly one of its intervals must
be selected. A set of selected intervals is then called feasible if the intervals
corresponding to the same machine do not overlap. In their paper, they consider
different special cases, one of which is of primary importance to our problem:
the problem with so-called cores, where all intervals corresponding to the same
job have a point in time in common. More specifically, Böhmová et al. (2013)
deal with the problem where all intervals of a job end at the same time; they
prove that deciding whether a feasible selection of intervals scheduling all jobs
exists is NP-complete, solving an open problem from Sung and Vlach (2005).
As this problem is equivalent to dealing with the problem where all intervals of
a job start at the same time, this seems to be identical to our problem. There
is one difference however: in our case, the set of lengths of the intervals that
correspond to a job is the same for all jobs, which is not necessarily the case in
Böhmová et al. (2013). They also mention a dynamic program given in Sung
and Vlach (2005); translated in our terms, this means that the uni-directional
case can be solved by a dynamic program in O(mnm+1) time. In addition, they
mention that the special case with two machines is polynomially solvable by a
reduction to 2-SAT.

1.3 Graph coloring
Consider the following graph coloring problem on a number of unit interval
graphs with a common node set. For each unit interval graph, by definition,
a set of equal-length real intervals exists where each interval corresponds to a
node and an edge exists if and only if the intervals corresponding to these nodes
overlap. Given are m unit interval graphs (V, E1), . . ., (V, Em) where the edge
sets satisfy E1 ⊆ . . . ⊆ Em. Notice that these m graphs have the node set V in
common. The question is: does there exist a partition of the node set V into m
subsets V1, . . . , Vm such that Vj ⊆ V is an independent set in (V, Ej) for each
j ∈ {1, . . . , m}?

The two problem descriptions are related as follows. Consider the uni-
directional case of the problem formulated in the “lock”-description and assume
that all arrival times are distinct. Build a node set V by having a node in V
for each arrival of a ship. Next, build an edge set Ej by having an edge in Ej

between the nodes i1, i2 ∈ V if and only if ti1 + Tj > ti2 for j = 1, . . . , m. Observe
that if the lock chambers are ordered such that T1 ≤ . . . ≤ Tm, this immediately
implies that E1 ⊆ . . . ⊆ Em. The existence of a partition of V into subsets Vj ,
with Vj an independent set in (V, Ej) for all j ∈ {1, . . . , m}, then corresponds
to the existence of a no-wait schedule. Indeed, the nodes, or arrivals, in Vj are
handled by chamber j in a corresponding solution to the “lock” problem.

Observe that the “lock”-description gives rise to a problem that is more

4

general than the problem from the “graph”-description in two ways: (i) multiple
ships may arrive at the same time, and (ii) ships may travel in the downstream
as well as the upstream direction. One point to note is that to obtain a “lock”-
instance from a given “graph”-instance, an interval representation (leading to
the values ti) needs to be determined. In this work, we do not not consider this
conversion explicitly.

1.4 Summary of results
We use the “lock” description of the problem to describe our results. Thus,
our results are formulated in terms of locks and ships; for example, the phrase
‘assigning ship i to chamber j’ corresponds to ‘executing job i on machine j’ in
the “interval” description, and to ‘placing node i in subset Vj ’ in the “graph”
description.

As mentioned before, the input of our problem consists of lockage times
Tj and capacities Cj for j ∈ {1, . . . , m}, and arrival times ti and direction
di ∈ {upstream, downstream} for i ∈ {1, . . . , n}. We consider the question “does
there exist a no-wait solution?”. We refer to this problem as “no-wait lock
scheduling” (NLS). In addition to this problem, we consider different special
cases in what follows, deciding on whether a no-wait solution exists subject to
additional restrictions imposed on the input. For convenience, we introduce a
notation to refer to these special cases. We refer to the problem settings as NLS{-
uni, ∅}{-2, -m, ∅}{-id, ∅}{-distinct, ∅}, where uni refers to the uni-directional
case (omitting this implies bi-directional traffic), 2 refers to the setting with two
lock chambers and m refers to the setting where the number of chambers m is
fixed (omitting these implies that the number of chambers is part of the input),
id refers to the setting with identical chambers (omitting this implies that values
for lockage time and capacity are arbitrary), and distinct refers to the setting
where all arrival times are distinct (omitting this implies that multiple ships may
arrive simultaneously). We point out that specifying additional parameters in
the problem name increasingly yields a more specific case of the problem. NLS,
which describes the setting with an arbitrary number of non-identical chambers
and bi-directional traffic, thus describes the most general problem covered by
this notation. Table 1 lists the notation, as well as the results discussed in this
paper, for the different special cases of the problem that we consider. Based on
the chamber characteristics, we consider the following settings:

1. The setting where m = 2 with two arbitrary chambers. For the uni-
directional setting, called NLS-uni-2, we give necessary and sufficient
conditions for deciding on the existence of a no-wait schedule (Section 2),
and we show how to find such a schedule in O(n) time, provided that the
arrival times are sorted (see Section 1.5). Further, for the bi-directional
case NLS-2, we give a reduction to 2-SAT that leads to an O(n2) algorithm
(Section 3).

2. The setting where Cj = C and Tj = T for all j ∈ {1, . . . , m}, i.e. the setting
with m identical chambers. The resulting problems are called NLS-uni-id

5

2 arbitrary
chambers

m identical
chambers

m arbitrary
chambers

m arbitrary chambers
(m part of the input)

uni-
directional

NLS-uni-2
O(n)†

(Section 2)

NLS-uni-id
O(n)†

(implied)

NLS-uni-m
O(mnm)
(implied)

NLS-uni
strongly NP-complete

(Section 6)

bi-
directional

NLS-2
O(n2)

(Section 3)

NLS-id
O(n)†

(Section 4.3)

NLS-m
O(mnm)
(Section 5)

NLS
strongly NP-complete

(implied)

Table 1: Summary of results. † These results apply to input with arrival times
given in sorted order, see Section 1.5.

and NLS-id, and we show that we can solve these problems in O(n) time
for sorted arrival times (Section 4).

3. The setting where the number of chambers m is fixed. We give a dynamic
program (DP) for our problem that runs in polynomial time (Section 5).
For the problem of finding a feasible no-wait schedule described here, this
DP strengthens the result in Sung and Vlach (2005) that can be applied
to the uni-directional case.

4. The setting with an arbitrary number of chambers. We prove that the
uni-directional case of this variant is NP-complete (Section 6). This result
strengthens both the result given in Krumke et al. (2011) and a result in
Böhmová et al. (2013).

1.5 A note on sorted arrival times
Notice that some of the results stated in Table 1 apply exclusively to sorted
input, i.e. these results require the assumption that arrival times are given
in non-decreasing order. Due to the well-known Ω(n log n) lower bound on
comparison-based sorting algorithms, it may not be possible to improve beyond
a complexity of O(n log n) in the general case of unsorted arrival times. However,
assuming that the arrival times are known in sorted order may be justified. For
instance, when iteratively applying the presented methods, a large part of the
input may have remained unchanged since earlier iterations, so that sorting is
no longer required for a large subset of the given arrival times. Furthermore, the
input may be unsorted but may satisfy additional assumptions which allow the
use of a non-comparison-based sorting algorithm such as radix sort, which runs
in linear time. Therefore, we choose to report the complexity assuming that the
arrival times are sorted.

6

2 Two arbitrary chambers, uni-directional case
In this section we deal with the case of two chambers, more specifically with
the uni-directional setting. In order to serve a ship with chamber j ∈ {1, 2}, a
lockage time Tj is incurred. We assume T1 ≤ T2. We refer to the two chambers
as the short and long chamber respectively, and to their lockages as a short and
a long lockage.

In Section 2.1, we first look at problem NLS-uni-2-distinct, i.e. the special
case where (i) all ships travel in the same direction, and (ii) all arrival times are
distinct. Notice that the numbers C1, C2 are then irrelevant since a chamber
contains at most one ship. In Sections 2.2 and 2.3, we extend our approach
to a more general setting where some ships are pre-assigned to a chamber and
describe how this result can be used to model the setting NLS-uni-2, where the
numbers C1 and C2 become relevant.

2.1 Uni-directional setting with distinct arrival times
As argued in Section 1.5, we assume throughout this section that the arrival times
are given in sorted order. We describe an O(n) algorithm under this assumption.
We organize this section as follows: in Section 2.1.1 we describe the construction
of a graph corresponding to an instance of NLS-uni-2-distinct, and discuss some
basic observations. In Section 2.1.2 we prove a theorem characterizing feasibility,
and Section 2.1.3 describes an O(n) algorithm.

2.1.1 Graph and concepts

An instance I is given by specifying distinct ordered arrival times t1 < t2 < . . . < tn

and lockage times T1 < T2. We say that an instance is feasible if there exists a
no-wait solution, otherwise it is not feasible. Given an instance I, we create a
graph G(I); we will, in the sequel, simply write G. Notice that we allow multiple
edges between a pair of nodes in G; more precisely, the edge set of G consists of
a set ES and a set EL. The graph is constructed as follows. There is a node for
each arrival time; two nodes i < j are connected via an s-edge (i, j) ∈ ES if and
only if tj − ti < 2T1; two nodes i < j are connected via an l-edge (i, j) ∈ EL if and
only if tj − ti < 2T2. Observe that (V, ES) and (V, EL) are unit interval graphs
by construction, and that ES ⊆ EL. In fact, deciding whether the set of nodes
V can be partitioned into two subsets which are independent sets in ES and EL

respectively corresponds exactly to the problem stated in the “graph”-description
of our problem, defined in Section 1.3, for m = 2, where ES = E1 and EL = E2.

Because the arrival times are assumed to be strictly ordered, this same
ordering applies to the nodes of V . Node i then refers to the arrival of a ship at
time ti, with 1 ≤ i ≤ n. We may thus refer to a ‘first’ and ‘last’, or ‘earlier and
‘later’ nodes without ambiguity. We call a pair of nodes (i, j) consecutive when
j = i + 1. In all figures, we represent an s-edge by a straight line segment (),
while an l-edge is represented by a segment in the form of an arc (⌢).

7

i i + 1 j − 1 j

Figure 1: Structure described in Observation 2.3. The existence of (i, j) ∈ EL

implies that (i, j − 1) ∈ EL and (i + 1, j) ∈ EL since ti < ti+1 < tj−1 < tj

A no-wait solution to the given instance can exist only if each ship can be
assigned to one of the two lock chambers so that a lockage starts at the ship’s
time of arrival. We can immediately observe the following: for a solution to
be no-wait, two arrivals connected by an s-edge cannot both be served by the
short chamber; two arrivals connected by an l-edge cannot both be served by the
long chamber. Furthermore, we can observe a number of interesting properties
in graph G. In addition to highlighting some structural characteristics of an
instance and its graph, we will refer to these observations in the proof that
follows.

Observation 2.1. If there exists a node i ∈ V ∖ {n} such that (i, i + 1) ∉ EL,
i.e. if there exists a pair of consecutive nodes which are not connected by
an l-edge, the instance splits into two independent sub-problems. This
is easily seen since both chambers are then available at time ti+1 for any
no-wait solution, regardless of the assignment of nodes 1, . . . , i. A no-wait
solution thus exists if and only if there is a no-wait solution for each of the
two sub-problems.

Observation 2.2. If there exists a node i ∈ V such that (i, i + 2) ∈ ES , i.e. if
there exists a triangle of s-edges in G, then the instance is not feasible. This
readily follows from the fact that there does not exist a proper 2-coloring
in a triangle graph.

Observation 2.3. If an l-edge contains two s-edges that are node-disjoint, i.e. if
there exist nodes i, j ∈ V with j > i+2 so that (i, i+1) ∈ ES , (j −1, j) ∈ ES ,
and (i, j) ∈ EL, then the instance is not feasible. This is easily verified by
enumerating all possible assignments for nodes i, i + 1, j − 1, and j. An
example is shown in Figure 1.

Observation 2.4. If there exists a node i ∈ V such that there exist s-edges
(i, i+1), (i+1, i+2), (i+2, i+3) ∈ ES and l-edges (i, i+2), (i+1, i+3) ∈ EL, the
instance is not feasible. Figure 2 shows the graph for an instance consisting
of 4 such nodes. It is easily verified (see also the next observation) that
both nodes i+1 and i+2 must be served by the short chamber in all feasible
solutions, which is impossible due to the presence of s-edge (i + 1, i + 2).
Hence, an instance containing this structure is not feasible.

For convenience, we restrict ourselves in the remainder of Section 2 to
instances I whose corresponding graphs G(I) do not contain any of the structures

8

i i + 1 i + 2 i + 3

Figure 2: Structure described in Observation 2.4.

i i + 1 j

(a)

i j − 1 j

(b)

Figure 3: Structures described in Observation 2.5. Note that the existence of
the dashed edges is implied.

described in Observations 2.1 to 2.4. This can be done without loss of generality,
since we can recognize these structures efficiently, see Section 2.1.3. Furthermore,
an additional observation allows us to recognize certain nodes which must be
assigned to the short chamber:

Observation 2.5. If there exist nodes i, j ∈ V with j > i+1 such that (i, i+1) ∈
ES and (i, j) ∈ EL, a feasible solution can exist only when node j is
assigned to the short chamber. This follows readily from the fact that
either i or i + 1 must be assigned to the long chamber, and an l-edge to
j starts at both i and i + 1. From symmetry, it immediately follows that
the same holds for a node i where (i, j) ∈ EL and (j, j − 1) ∈ ES . The
associated graphs are shown in Figures 3a and 3b.

We proceed by describing paths and nodes in the graph which have a specific
structure. We show later that checking for the presence of such paths suffices to
decide on the feasibility of a given instance.

Definition 1. Given an instance I and graph G(I), a bad path is any sequence
of distinct nodes (i1, i2, . . . , ik) with k ≥ 4 that satisfies:

1. The nodes in the sequence appear in the order defined on V , with exception
of i1 and ik, which satisfy i2 < i1 < i3 and ik−2 < ik < ik−1. More formally:
ix < ix+1 for all x ∈ {2, . . . , k − 2}, i2 < i1 < i3, and ik−2 < ik < ik−1.

2. The pairs of consecutive nodes in the sequence are alternatingly connected
by an s-edge and an l-edge, with the first and last edges in the sequence being
both s-edges. More formally: (ix, ix+1) ∈ ES for all odd x ∈ {1, . . . , k − 1},
(ix, ix+1) ∈ EL for all even x ∈ {1, . . . , k − 1}, and k is even.

Note that a bad path necessarily contains an even number of nodes. An
example is shown in Figure 4. Observe that a bad path with k = 4 is present
Figure 1.

We also describe specific nodes that are closely related to the definition of a
bad path. Intuitively, we define a potentially bad node as the latest node in a

9

i2 i1 i3 i4 i5 i6 i8 i7

Figure 4: Example of a bad path. Note that the structure described in Definition 1
remains satisfied if the dashed edges are replaced with a longer sequence (with
odd number of nodes) consisting alternatingly of s-edges and l-edges.

path (i1, i2, . . . , ik) that contains at least 5 nodes, and that could be extended to
a bad path if there would exist a node j with ik−1 < j < ik and an s-edge (j, ik).
Note that the existence of such a node j is not required for ik to be a potentially
bad node. More formally, we define a potentially bad node as follows.

Definition 2. A node ik is a potentially bad node if there exists a path (i1, i2,
. . ., ik) that satisfies the following:

• ix < ix+1 for all x ∈ {2, . . . , k − 1} and i2 < i1.

• (ix, ix+1) ∈ ES for all odd x ∈ {1, . . . , k − 1} and (ix, ix+1) ∈ EL for all even
x ∈ {1, . . . , k − 1}.

• k ≥ 5 and k is odd

Observe that in a bad path, all nodes ij in the path with j ≥ 5 and j odd
are potentially bad nodes. E.g. in Figure 4, nodes i5 and i7 are potentially bad
nodes, whereas i3 is not.

2.1.2 Characterizing feasible instances

We present the following theorem to characterize when an instance is feasible:

Theorem 1. An instance I of NLS-uni-2-distinct is feasible if and only if its
corresponding graph G(I) does not contain a bad path.

Proof. ⇒We argue that if G(I) contains a bad path, the instance is not feasible.
Consider a bad path (i1, . . . , ik) in G. It follows from Observation 2.5 and
i2 < i1 < i3 that node i3 must be assigned to the short chamber. We now
trace the path from i3 to ik−1. Note that, since l-edges and s-edges alternate,
any solution must assign nodes i3, . . . , ik−1 to the short and long chamber in
alternating order. This implies that node ik−2 must be assigned to the long
chamber, while node ik−1 must be assigned to the short chamber. However, the
bad path implies that (ik−1, ik) ∈ ES and (ik−2, ik) ∈ EL so that no chamber is
available for ik and hence no feasible solution exists.
⇐ We now argue by contradiction that a feasible solution exists whenever

the graph does not contain a bad path. For this, let us assume that there
exists an instance which is not feasible while its corresponding graph does not
contain a bad path. Assuming that such instances exist, consider one with a
minimum number of arrivals. Let G∗ = (V ∗, E∗) be the graph corresponding

10

to this instance, with E∗ = ES∗ ∪ EL∗ where ES∗ and EL∗ denote the set of
s-edges and l-edges respectively. The proof is organized as follows. First, we
show that G∗ must contain at least one potentially bad node. We then argue
that there cannot be a latest potentially bad node in G∗: a contradiction.

We claim that graph G∗ must satisfy the following properties:

Property 2.1. For each i ∈ V ∗, there exists a feasible solution in G∗ ∖ {i} with
distinct nodes js, jl ∈ V ∗ ∖ {i} such that (i, js) ∈ ES∗, (i, jl) ∈ EL∗ while js (jl)
is assigned to the short (long) chamber in that feasible solution.

Proof. Let i be an arbitrary node in G∗. Since G∗ is a counterexample with a
minimum number of nodes, and since no bad paths are introduced by removing
a node and its incident edges, it follows immediately that a feasible assignment
of chambers is possible in G∗ ∖ {i}. Consider an arbitrary feasible assignment in
G∗ ∖ {i} and let S and L be the set of nodes that are assigned to the short and
long chamber in this solution respectively; clearly, S ∩L = ∅. If, in G∗, none of
the nodes in S are connected to i by an s-edge, it is easily seen that node i can
be assigned to the short chamber, thus extending the solution in G∗ ∖ {i} to a
feasible solution in G∗. Since no feasible solution is possible in G∗, it follows
that a node js ∈ S must exist such that (i, js) ∈ ES∗. Repeating this reasoning
for the long chamber immediately implies that there exists a node jl ∈ L such
that (i, jl) ∈ EL∗.

Property 2.2. G∗ contains at least one potentially bad node.

Proof. Consider the earliest node, say i2, in G∗. Applying Property 2.1 to
this node, it follows that there must exist two additional nodes i1, i3 such that
(i2, i1) ∈ ES∗ and (i2, i3) ∈ EL∗. We select i1, i3 to be minimal, i.e. i1 is the
successor of i2 and i3 is the successor of i1. We obtain the structure shown
in Figure 3. Applying Property 2.1 to node i3 implies that there is an s-edge
incident to node i3. We can distinguish two possible cases:

1. The s-edge is incident to a node i4 > i3. Observe that i4 must the be the
successor of i3. We obtain the structure shown in Figure 5a. If G∗ consists
of four nodes, applying Property 2.1 to i1 implies that (i1, i4) ∈ EL∗.
Observe that i3 cannot be selected as node jl in the property, since i3
must not be assigned to the long chamber (Observation 2.5). Furthermore,
observe that (i1, i3) ∉ ES∗ (by our assumption that the structure from
Observation 2.4 is not present in an instance) and that (i2, i4) ∉ EL∗ (by
our assumption that the structure from Observation 2.3 is not present).
Then, however, G∗ corresponds to an instance that is feasible, which is
not the case. This is illustrated in Figure 5b. Thus, G∗ consists of at least
five nodes. Observation 2.1 implies that (i4, i5) ∈ EL∗, and thus i5 is a
potentially bad node.

2. The s-edge is incident to node i1. Observe that if G∗ consists of only 3
nodes, a feasible solution is easily found. Thus, there exists a fourth node
i4 in G∗. Since i2, i1, and i3 are the earliest nodes in the instance, i4

11

i1i2 i3 i4

(a)
i1i2 i3 i4

(b)

Figure 5: Structures described in case 1 in the proof. Note that, in (b), the
dotted edges are not present in G∗, and a feasible solution assigns i1 and i3 to
the short chamber and i2 and i4 to the long chamber.

i1i2 i3 i4

(a)
i1i2 i3 i4 i5 i6

(b)

Figure 6: Structures described in case 2 in the proof.

is the successor of i3. Applying Property 2.1 to node i1, it follows that
(i1, i4) ∈ EL∗. Observe that nodes i2 and i3 cannot be selected as node
jl in the property since they must not be assigned to the long chamber
(Observation 2.5). G∗ then contains the structure shown in Figure 6a. We
then apply Property 2.1 to node i4. Since we may assume that (i3, i4) ∉ ES∗

(otherwise the case described above applies), it follows that there exists
a node i5 > i4 with (i4, i5) ∈ ES∗. The resulting structure is shown in
Figure 6b. Finally, we apply Property 2.1 again, now to i5. It follows
that there is an l-edge incident to i5. As before, note that nodes i3 and
i4 cannot be chosen as node jl in the property since they must not be
assigned to the long chamber (Observation 2.5). Since the existence of the
l-edge (i1, i5), dotted in Figure 6b, implies a bad path, this l-edge cannot
be present and there thus exists a node i6 > i5 with (i5, i6) ∈ EL∗. Node
i6 is then a potentially bad node, with path (i3, i1, i4, i5, i6) satisfying the
definition above.

Thus, G∗ must contain at least one potentially bad node.

Property 2.2 implies that G∗ contains a latest potentially bad node. We
now show that this leads to a contradiction. Figure 7 illustrates the reasoning
below. Let ik be the latest potentially bad node in G∗. Applying Property 2.1
to ik implies that there exists an s-edge (ik, ik+1). Since ik is a potentially bad
node, ik+1 < ik would imply the existence of a bad path. Node ik+1 is thus the
successor of ik. Applying Property 2.1 again, now to ik+1, implies the existence
of an additional l-edge. Observe that the l-edge (ik−1, ik+1), illustrated by the
dotted l-edge in Figure 7, cannot be present because it implies the existence of
a bad path. Thus, there exists a node ik+2 > ik+1 with (ik+1, ik+2) ∈ EL∗. Note
that ik+2 is a potentially bad node and ik+2 > ik. This contradicts our choice of
ik as the latest potentially bad node.

Thus, the existence of G∗ leads to a contradiction, proving the theorem.

12

ik−1 ik ik+1 ik+2

Figure 7: Structure describing the latest potentially bad node in G. Observe
that the dotted l-edge cannot be present.

s

(a)
s

(b)

Figure 8: The nodes labeled s must be assigned to the short chamber.

2.1.3 An O(n) algorithm for deciding feasibility and constructing a
solution

Notice that Theorem 1 characterizes feasibility of an instance. We now present an
O(n) algorithm that actually recognizes whether G contains a bad path. We start
with the arrival times ti for i ∈ {1, . . . , n} in sorted order, and avoid explicitly
constructing G, which may contain up to O(n2) l-edges. Since (V, EL) is a unit
interval graph, we can avoid checking each of the l-edges explicitly. Instead of
constructing all edges in graph G, we will check for the existence of edges, using
their definition, only when needed. For example, when we write “if (vi, vj) ∈ EL”
for nodes vi, vj ∈ V in what follows, this equals the expression “if tj − ti < 2T2”,
corresponding to the definition of an l-edge. For any given pair of nodes, this
is easily checked in constant time. In addition to recognizing feasibility, the
algorithm assigns each node to a chamber such that the corresponding solution
is a no-wait solution, provided that no bad path exists.

Recall that in Figure 8a and Figure 8b, each of the nodes labeled s must be as-
signed to the short chamber in any feasible solution, as argued in Observation 2.5.

The outline of the procedure is as follows. We first identify all nodes that
must be assigned to the short chamber due to the structures shown in Figure 8a
and Figure 8b. We then use implications from these assignments to assign other
nodes to the chambers. In this way, all ‘forced’ assignments are handled. Finally,
we apply a simple greedy procedure to assign the remaining nodes to chambers.
In the remainder of this section, we will show that if no bad paths are present,
the greedy procedure always yields a feasible assignment of lock chambers (i.e.
correctness of the algorithm), and that each of these steps can be performed in
linear time (i.e. complexity of the algorithm).

We will call any node that must be assigned to the same chamber in all
feasible solutions due to the implications mentioned above, a fixed node. We
distinguish s-fixed and l-fixed nodes for nodes that must be assigned to the short
and long chambers respectively. As argued in Observation 2.5, the nodes labeled
s in Figure 8 are s-fixed nodes. We start by identifying all occurrences of these

13

i i + 1
(a)

i i + 1
(b)

Figure 9: Assigning i+ 1 to a chamber has no implications for nodes earlier than
i.

structures in G. Observe that these structures correspond to the ‘beginning’
(i.e. the first three nodes) and the ‘end’ (i.e. the last three nodes) of a bad path.
Finding these structures is easily done in linear time by considering each node
once and checking for the presence of the edges shown in the figures. We obtain
an initial set of s-fixed nodes. Initially, no nodes are l-fixed.

Observe that any node connected to an s-fixed node by an s-edge is necessarily
l-fixed, and any node connected to an l-fixed node by an l-edge is necessarily
s-fixed. The following step is to identify all remaining nodes that can be fixed
using these observations. We first consider all nodes in order; let i be the current
node. If i is s-fixed and (i, i+ 1) ∈ ES , add i+ 1 to the set of l-fixed nodes. If i is
l-fixed, add all j > i for which (i, j) ∈ EL to the set of s-fixed nodes. Next, we
repeat this for all nodes in reverse order; again let i be the current node. If i is
s-fixed and (i, i − 1) ∈ ES , add i − 1 to the set of l-fixed nodes. If i is l-fixed, add
all j < i for which (i, j) ∈ EL to the set of s-fixed nodes. Clearly, when a node is
both s-fixed and l-fixed, no feasible solution exists. Observe that such a conflict
is only possible if a path starting from the ‘beginning’ of a bad path is extended
to a node where it meets the ‘end’ of a bad path.

It is important to note that nodes fixed by considering all nodes in order do
not in turn fix any earlier nodes. Similarly, nodes fixed by considering all nodes
in reverse order have no impact on later nodes. This is illustrated in Figure 9.
In Figure 9a, assume that i is an s-fixed node. Adding i + 1 to the set of l-fixed
nodes then has no new implications for any nodes earlier than i because if an
l-edge (j, i+ 1) exists with j < i, the initial set of s-fixed nodes already contained
node j. In the rightmost figure, assume that i is an l-fixed node. Adding i + 1
to the set of s-fixed nodes then has no implications for any nodes earlier than i
since the existence of an s-edge (j, i + 1) with j < i implies a triangle of s-edges,
which is not present due to Observation 2.2. The similar statement where nodes
are considered in reverse order follows immediately from symmetry.

It follows that after considering all nodes once in order and once in reverse
order, no new nodes can be fixed. As noted above, if a bad path exists, at least
one node must be both s-fixed and l-fixed. If no such contradiction is found,
the instance is thus feasible. In the corresponding solution, all s-fixed nodes
are assigned to the short chamber and all l-fixed nodes are assigned to the long
chamber. Upon completing this step, there may remain nodes with no chamber
assignment. Note that none of the fixed nodes has any implications for any of the
remaining nodes, since this would imply that additional nodes should be fixed
nodes. We describe a straightforward greedy rule that assigns the remaining
nodes to the chambers and show that applying this rule to a node does not

14

i i + 1 j

Figure 10: Illustration of the assignment rule for remaining nodes. Note that
only one of the dashed edges may be present for any j > i + 1.

prevent us from applying it to any later node, thus yielding a feasible solution.
The greedy procedure considers all nodes in order. Let i be the current node to
be labeled: if (i−1, i) ∈ ES and i−1 is assigned to the short chamber, assign i to
the long chamber; otherwise assign i to the short chamber. To see that applying
this rule does not prevent us from applying it to any later node, consider node
i in Figure 10. If (i, i + 1) ∈ ES , then node i + 1 must be assigned to the long
chamber only if i is assigned to the short chamber; this is consistent with the
rule. If there exists a j > i + 1 for which (i, j) ∈ EL, no s-edges may be incident
to any nodes k with i < k < j because this would imply that either i or j is a
fixed node and hence is already assigned to a chamber. All such nodes k, as
well as node j can thus be assigned to the short chamber, which is consistent
with the rule. Note that it cannot be the case that both (i, i+ 1) ∈ ES and there
exists a j > i + 1 with (i, j) ∈ EL since this would imply that j is a fixed node.

After applying the greedy rule, all nodes have been assigned to a chamber; if
no bad path was identified, we have thus obtained a feasible solution. A pseudo-
code of this procedure is presented in Algorithm 1. Note that the algorithm
assumes that n ≥ 3; instances with n < 3 can be solved trivially. The discussion
above establishes correctness of the algorithm.

It remains to show that the procedure described above runs in linear time.
As argued above, finding the initial set of s-fixed nodes takes at most O(n) time.
Finding all additional s-fixed nodes is also possible in linear time. Indeed, each
node has at most two s-edges incident to it and each node is considered only
once in order, and once in reverse order. Graph G contains up to O(n2) l-edges;
to see that finding all additional l-fixed nodes takes only O(n) time, we make
use of the fact that (V, EL) is an interval graph. By definition, it follows that if
l-edge (u, v) exists, all l-edges (u, w) with u < w < v must also exist. Thus, when
traversing the nodes in order, if a node was labeled as s-fixed due to the presence
of an l-edge, no nodes earlier than this fixed node need to be checked at a later
time, since such nodes are already s-fixed. Thus, it suffices to remember the
latest node that was s-fixed to avoid checking all possible l-edges for each of the
nodes. In Algorithm 1, this is achieved by keeping track of j, which represents
the next node to be checked for the existence of an l-edge. The same argument
applies when considering nodes in reverse order, where it suffices to start from
the earliest s-fixed node. Since in each iteration either i or j increases and no
nodes earlier than j are checked, finding the s-fixed nodes completes in O(n)
time.

Finally, we note that recognizing the structures described in Observations 2.1
to 2.4, which were assumed not to be present in the graph, can be achieved in

15

// input: arrival times t1 < t2 < . . . < tn and lockage durations T1 < T2
vi ← node corresponding to the arrival at time ti, for all i ∈ {1, . . . , n}
s-fixed ← ∅
l-fixed ← ∅
// identify initial s-fixed nodes:
for i = 1 to ∣V ∣ do

j ←max(i + 2, j)
if (vi, vi+1) ∈ ES then

while (vi, vj) ∈ EL do
s-fixed ← s-fixed ∪ {vj}
j ← j + 1

j = ∣V ∣
for i = ∣V ∣ to 1 do

j ←min(i − 2, j)
if (vi−1, vi) ∈ ES then

while (vj , vi) ∈ EL do
s-fixed ← s-fixed ∪ {vj}
j ← j − 1

// extend implications of fixed nodes:
for i = 1 to ∣V ∣ do

if vi ∈ s-fixed and (vi, vi+1) ∈ ES then l-fixed ← l-fixed ∪ {vi+1}
j ← i + 2
if vi ∈ l-fixed then

while (vi, vj) ∈ EL do
s-fixed ← s-fixed ∪ {vj}
j ← j + 1

for i = ∣V ∣ to 1 do
if vi ∈ s-fixed and (vi−1, vi) ∈ ES then l-fixed ← l-fixed ∪ {vi−1}
j ← i − 2
if vi ∈ l-fixed then

while (vj , vi) ∈ EL do
s-fixed ← s-fixed ∪ {vj}
j ← j − 1

// check for conflicts:
if s-fixed ∩ l-fixed ≠ ∅ then return ‘not feasible’
// assign nodes to chambers using a greedy rule for non-fixed nodes:
for i = 1 to ∣V ∣ do

if vi ∈ s-fixed then chambersi ← ‘short’
else if vi ∈ l-fixed then chambersi ← ‘long’
else if (vi−1, vi) ∈ ES and chambersi−1 = ‘short’ then chambersi ← ‘long’
else chambersi ← ‘short’

return chambers
Algorithm 1: Pseudo-code for the uni-directional problem with two arbi-
trary chambers and distinct arrival times. Note: n ≥ 3 is assumed for the
input.

16

linear time. This is easily seen for Observations 2.1, 2.2 and 2.4, which deal
only with adjacent nodes. To recognize these structures, it suffices to traverse
each of the nodes and check for the existence of the incident edges described
in the observations. For Observation 2.3, we use the interval graph structure
in the same was as when recognizing the s-fixed nodes in Algorithm 1. That
is, we remember the latest node that was s-fixed in order to avoid checking
earlier nodes which are already known to be s-fixed. If any of these structures is
identified, it immediately follows that no feasible solution exists.

2.2 Fixed chamber assignments
We describe here how the algorithm can be extended to the case where some
nodes are pre-assigned to a specific chamber. Note that when specific chamber
assignments are imposed, an instance may not have a feasible solution while its
corresponding graph does not contain a bad path. Our algorithm, however, is
able to take these given assignments into account.

If a given subset of the nodes, say S ⊆ V , is pre-assigned to the short chamber,
we initialize, in Algorithm 1, the set of s-fixed nodes to this set S. Similarly,
if a given subset of nodes, say L ⊆ V , is pre-assigned to the long chamber, we
initialize, in Algorithm 1, the set of l-fixed nodes to this set L. Clearly, when
a node is both s-fixed and l-fixed, the instance is not feasible. Once the sets
of fixed nodes are initialized, the initial sets of fixed nodes are extended as in
Algorithm 1. The analysis of the assignment rule for all nodes that are not fixed
remains valid. Note that feasibility is still identified by verifying for each node
whether it is both s-fixed and l-fixed. These adjustments suffice to solve the
generalization with fixed chamber assignments. The computational complexity
remains unchanged.

2.3 Simultaneous arrivals
In this section, we will consider the generalization where simultaneous arrivals
can occur, i.e. where arrival times need not be distinct. Since a chamber may
then simultaneously serve more than one ship in a no-wait solution, we need to
take the capacity of the chambers into account. Let Csmall = min(C1, C2) and
Clarge = max(C1, C2). Note that Csmall does not necessarily correspond to the
chamber with the shortest lockage duration. We now show how to modify graph
G and Algorithm 1 in order to determine whether a feasible solution exists in
this setting with simultaneous arrivals.

For each time t ∈ T , let kt be the number of ships arriving at time t. Clearly,
if there exists a t with kt > Csmall + Clarge, the instance is not feasible since
the number of arriving ships at time t exceeds the combined capacity of both
chambers. Let us thus assume that the instance has kt ≤ Csmall +Clarge for all
t ∈ T . For each t ∈ T , we distinguish three cases:

1. Case 1: 2 ≤ kt ≤ Csmall. We modify graph G as follow: we let a single node
represent all the simultaneous arrivals at time t. Either chamber is a valid

17

assignment to simultaneously serve all kt ships; we may thus treat these
simultaneous arrivals as a single ship.

2. Case 2: Csmall < kt ≤ Clarge. As in the case above, let a single node
represent all simultaneous arrivals at time t. In addition, we impose that
this node must be assigned to the large chamber. Recall that the large
chamber may be either the short or the long chamber, depending on the
values of T1, T2, C1, C2. It is easily seen that it is never required to use
both chambers to serve these kt ships, since the the large chamber must be
used regardless, and this chamber suffices to serve all ships simultaneously.

3. Case 3: Clarge < kt ≤ Csmall + Clarge. Again, let a single node represent
all simultaneous arrivals at time t. It follows that since kt > Clarge, both
chambers must be used simultaneously to transfer all ships without intro-
ducing waiting time. We add this node to the set B designated to identify
all nodes that must be assigned to both chambers. We argue below that,
after modifying the graph for all t ∈ T , the algorithm is easily adjusted to
enforce this assignment for each node in B.

After graph G has been modified, we take B into account by initializing the
algorithm as follows. For each node i ∈ B, we add all implications that follow
from imposing that i is assigned to both chambers: for all j ∈ V with (i, j) ∈ ES ,
add j to the set l-fixed; for all j ∈ V with (i, j) ∈ EL, add j to the set s-fixed. It
is easily argued that each of the added implications must hold in any feasible
solution. When assigning the nodes to chambers, we set chambersi = ‘short +
long’ for all i ∈ B. Furthermore, for a feasible solution to exist, it must hold
that none of the nodes in B are fixed when running the algorithm. Indeed, if a
node k ∈ B with corresponding time tk would be fixed, this implies that at least
one chamber is unavailable at time tk, so that there is no feasible assignment
for k. In addition to modifying the initialization of sets s-fixed and l-fixed, we
thus extend the check for conflicts in the algorithm to “if s-fixed ∩ l-fixed ≠ ∅ or
s-fixed ∩ B ≠ ∅ or l-fixed ∩ B ≠ ∅”.

Using the result for fixed chamber assignments described in Section 2.2, and
by modifying Algorithm 1 as outlined above, it follows that we can solve the
resulting instance in O(n) time. The following theorem concludes this discussion.

Theorem 2. If a no-wait solution exists for the uni-directional lock scheduling
problem with two chambers it can be found, i.e. problem NLS-uni-2 can be solved,
in O(n) time.

3 Two arbitrary chambers
We now focus on the more general setting with two lock chambers, where ships
may travel in both directions. Böhmová et al. (2013) mention a reduction to
2-SAT for an interval scheduling problem which generalizes the uni-directional
setting. The well-known 2-SAT problem can be solved in a number of operations
which is linear in the number of clauses, see Even et al. (1976) and Aspvall et al.

18

(1979). We show here that the same applies to the bi-directional two-chamber
setting and describe the reduction explicitly.

Lemma 1. An instance of NLS-2 can be modeled as an instance of 2-SAT using
O(n) variables and O(n2) clauses.

Proof. In the NLS-2 setting ships may arrive simultaneously. To take this into
account, we first describe how each instance of NLS-2 can be transformed into
an equivalent instance where C1 = C2 = 1 and where some ships are pre-assigned
to chambers. We then provide a reduction to 2-SAT for the setting with two
unit-capacity chambers and pre-assigned ships.

Similar to the approach discussed in Section 2.3, we distinguish multiple
cases when constructing the instance with unit capacity. For each time t ∈ T ,
let kt,d be the number of ships arriving at time t and traveling in direction d.
Clearly, the instance is not feasible if there exist a t and d such that kt,d > C1+C2.
Since this can be easily verified, we assume that kt,d ≤ C1 + C2 for all t ∈ T ,
d ∈ {upstream, downstream}.

Consider a given instance I of NLS-2. As in Section 2.3, let Csmall =
min(C1, C2) and Clarge = max(C1, C2). We construct an instance Iunit, where
CIunit

1 = CIunit
2 = 1, leaving the lockage times and the set of arrival times

unaltered. The set of arriving ships is constructed as follows. For each t ∈ T and
d ∈ {upstream, downstream}:

1. If kt,d ≤ Csmall, replace these kt,d ships by a single ship traveling in direction
d, arriving at time t. It is immediately clear that either lock chamber suffices
to handle all kd,t ships, so that we effectively ignore these simultaneous
arrivals.

2. If Csmall < kt,d ≤ Clarge, replace all these ships by a single ship traveling in
direction d, arriving at time t, and additionally impose that this ship must
be assigned to the large chamber (i.e. the second chamber if C1 ≤ C2, the
first chamber otherwise). To serve all ships without introducing waiting
time, the large chamber must be used to serve at least one ship arriving at
time t and traveling in direction d. By pre-assigning the ship to the large
chamber, it follows that this chamber must be available at time t to serve
ships traveling in direction d. In fact, the capacity of the large chamber
suffices to serve all ships arriving at time t and traveling in direction d.
Consequently, we can ignore the simultaneously arriving ships in what
follows.

3. If Clarge < kt,d, replace all these ships by two ships traveling in direction d,
arriving at time t. Further, pre-assign the first ship to the first chamber
and the second ship to the second chamber. It follows that both chambers
must be available at time t to serve ships traveling in direction d.

The resulting instance is called Iunit. Finding a no-wait schedule for Iunit
with pre-assigned ships thus yields a no-wait solution for the original instance I
of NLS-2. We now describe a reduction to 2-SAT for the problem of finding a

19

no-wait solution for instances with two unit-capacity chambers and pre-assigned
ships.

Recall that a no-wait schedule exists if and only if each ship can be assigned
to either the short or the long chamber such that, for each chamber, lockages
do not overlap. For lock chamber j ∈ {1, 2}, it is easily seen that there is no
overlap if and only if ∣ti − ti′ ∣ ≥ Tj for each pair of ships i and i′ that are assigned
to chamber j, and in addition ∣ti − ti′ ∣ ≥ 2Tj if ships i and i′ travel in the same
direction, as argued in Section 1. We create the following instance of 2-SAT: for
each ship i ∈ {1, . . . , n}, define a literal xi. We will argue later that xi = false
corresponds to assigning ship i to the short chamber, and xi = true corresponds to
assigning ship i to the long chamber. Let the Boolean expression in conjunctive
normal form consist of clauses described as follows. For each pair of ships i, i′

∈ {1, . . . , n}:

1. if the ships travel in opposite direction and ∣ti − ti′ ∣ < T1, add the clause
(xi ∨ xi′),

2. if the ships travel in the same direction and ∣ti − ti′ ∣ < 2T1, add the clause
(xi ∨ xi′),

3. if the ships travel in opposite direction and ∣ti − ti′ ∣ < T2, add the clause
(¬xi ∨ ¬xi′),

4. if the ships travel in the same direction and ∣ti − ti′ ∣ < 2T2, add the clause
(¬xi ∨ ¬xi′).

Observe that, if xi = false where ship i is assigned to the short chamber and
xi = true where it is assigned to the long chamber, (¬xi∨¬xi′) suffices to prevent
overlapping lockages for the long chamber whereas (xi ∨ xi′) ensures that there
is no overlap for the short chamber.

In addition, to enforce that all pre-assignments are respected, we add a clause
containing only the literal xi for all ships i that are pre-assigned to the long
chamber, and a clause consisting of ¬xi for all ships i that are pre-assigned to
the short chamber.

We claim that the existence of a truth assignment satisfying the Boolean
formula is equivalent to the existence of a no-wait schedule. Indeed, given a truth
assignment, we assign ship i to the short chamber if xi = false and to the long
chamber if xi = true. The definition of the clauses implies that no overlapping
lockages exist for either chamber while each ship is assigned to a chamber, and
hence we found a no-wait schedule. Also, the existence of a no-wait schedule
immediately translates into a satisfying truth assignment.

Note that the number of clauses in the 2-SAT instance described above, as
well as the time needed to construct this instance, is quadratic in the number of
ships. To find a no-wait solution for the NLS-2 problem, it follows that we can
construct an instance of 2-SAT as described above, and use any algorithm for
2-SAT with a running time linear in the number of clauses. We can summarize
this in the following theorem:

20

Theorem 3. The bi-directional case for two arbitrary chambers, i.e. problem
NLS-2, can be solved in O(n2) time.

4 Identical chambers
We now focus on problem NLS-id, i.e. Cj = C and Tj = T for each j ∈ {1, . . . , m}.
Again we assume that arrival times are given in sorted order (Section 1.5). In
fact, we consider a more general optimization version of NLS-id, where we aim
at finding the minimum number of chambers allowing a no-wait solution. We
first show that this problem is a special case of coloring trapezoid graphs. In
Section 4.2, we provide a description of a greedy procedure and argue that it
always finds a no-wait schedule while using a minimum number of chambers.
We then prove in Section 4.3 that this procedure can be implemented with an
O(n) running time for both the uni-directional as well as the bi-directional case.

4.1 Coloring trapezoid graphs
For the definition of trapezoid graphs we consider a pair of parallel lines, labeled
up and down. A trapezoid between these lines is defined by two points per line.
Let this construction of lines and trapezoids be called the trapezoid instance. A
graph G = (V, E) is called a trapezoid graph if there exists a trapezoid instance
with ∣V ∣ trapezoids, each corresponding to a node in V , such that there is an
edge in E connecting nodes u and v if and only if the trapezoids corresponding
to u and v intersect. See Figures 11 and 12 for an example illustrating this
definition. Felsner et al. (1997) discuss the coloring of trapezoid graphs and
show that a proper coloring with minimum number of colors can be found in
O(n log n) time.

The special case of this trapezoid graph coloring problem that we consider
is the following: given a trapezoid instance where all trapezoids are identical
isosceles triangles, find a proper coloring with a minimum number of colors. We
denote this problem by TC. Notice that while the triangles are identical, their
orientation may differ depending on which of the parallel lines contains a single
point. In a trapezoid coloring instance, we say that a triangle is up-oriented if
this triangle has a single point on the up line and two points on the down line; a
triangle is down-oriented if it has a single point on the down line and two points
on the up line.

We argue that we can reduce NLS-id to TC, and vice versa. As in Section 3,
let kt,d denote the number of ships arriving at time t and traveling in direction
d; we first argue that we can deal with simultaneous arrivals by transforming
each instance I of NLS-id into an equivalent instance Iunit with unit capacity.
In the remainder of Section 4, we can then restrict ourselves to instances where
C = 1. Given I, we construct Iunit as follows. For each t ∈ T , replace the kt,d

arrivals by ⌈kt,d/C⌉ arrivals at time t and traveling in direction d. Clearly, in I,
at least ⌈kt,d/C⌉ chambers are needed to serve these kt,d ships. It is also clear
that any remaining capacity in the chosen lock chambers cannot be used to serve

21

X
1

t = 10
X
2

t = 25
X
4

t = 42
X
6

t = 54

X
3

t = 30

X
5

t = 50

Figure 11: Example instance illustrating the definition of the corresponding
trapezoids.

other ships without introducing waiting time. Consequently, a solution in Iunit
corresponds directly to a solution in I. Observe that constructing Iunit can be
done in O(n) time.

We thus turn our attention to the case with unit capacity. Given an instance
of NLS-id where C = 1, we specify a set of identical isosceles triangles between
parallel lines up and down as follows. For each downstream traveling ship i we
construct a triangle with a point on the up line at ti and points on the down line
at ti − T and ti + T ; for each upstream traveling ship i we construct a triangle
with a point on the down line at ti and points on the up line at ti −T and ti +T .
From this construction, we can derive two fundamental properties:

1. The triangles corresponding to two ships i and i′ traveling in the same
direction intersect if and only if ∣ti − ti′ ∣ < 2T .

2. The triangles corresponding to two ships i and i′ traveling in opposite
directions intersect if and only if ∣ti − ti′ ∣ < T .

Note that in either case, ships i and i′ cannot be served by the same cham-
ber. Concluding, ships can be assigned to the same chamber if and only if
the corresponding triangles do not intersect. Hence, a proper coloring of the
corresponding graph represents a no-wait schedule where a color refers to a
chamber. The chromatic number of the trapezoid graph, then, represents the
minimum number of chambers allowing a no wait schedule. Each instance of
NLS-id can thus be modeled as an instance of TC. Similarly, it is easily seen
that each instance of TC can be modeled as an instance of NLS-id.

In order to illustrate this reduction we provide an example instance in
Figure 11. We have downstream-traveling ships 1, 2, 4, and 6, arriving at times
10, 25, 42, and 54, and upstream-traveling ships 3 and 5, arriving at times 30 and
50. The lockage time is T = 10. Consequently, the pairs of ships that cannot both
be served by a single chamber are (1,2), (2,3), (2,4), (4,5), (4,6), and (5,6). This
is represented by intersections of triangles accurately. The graph corresponding
to this instance is shown in Figure 12. It is immediately seen that at least three
colors are required to color the graph since it contains a clique on nodes 4, 5,
and 6. One feasible solution could consist of assigning ships 1 and 4 to the first
chamber, ships 2 and 5 to the second chamber, and ships 3 and 6 to the third
chamber.

22

1

2

3

4

5

6

Figure 12: Trapezoid graph corresponding to the example instance of Figure 11.

Since the chromatic number of a trapezoid graph can be found in O(n log n)
time, it immediately follows that an O(n log n) algorithm exists that solves
NLS-id. In the remainder of this section, we improve this result to yield an O(n)
algorithm.

4.2 Correctness of a greedy procedure for NLS-id
We argued in Section 4.1 that we can reduce each instance of NLS-id to an
equivalent instance with C = 1. We thus restrict ourselves to the setting with
C = 1. We say that a chamber is available at time t for direction d if the last
ship handled by this chamber (say ship i) traveled in direction d and arrived at
time ti ≤ t − 2T , or traveled in the direction opposite to d and arrived at time
ti ≤ t − T . In the former case, we say that the availability period of the chamber
equals t− ti − 2T ; in the latter case, the availability period of the chamber equals
t − ti − T . The solution procedure is as follows. Initially, let the number of
chambers be zero. Consider all arrival ships in order, let ti and di be the arrival
time and direction of ship i being considered. If no chambers are available at
time ti for direction di, add an additional chamber and assign ship i to this
chamber; otherwise, assign ship i to the chamber with the largest availability
period for direction di at time ti.

We argue that this greedy procedure yields a solution with a minimum
number of chambers. Whenever a chamber is added to serve ship i, there is no
possible assignment of ships 1, . . . , i− 1 to chambers so that any of the chambers
is available at time ti. Indeed, since all chambers are identical, the choice of
which preceding ship is assigned to which chamber is in fact irrelevant. Thus,
after considering a ship i, a chamber is added if and only if the current number
of chambers is not sufficient to serve ships 1, . . . , i without waiting time. It
follows that after considering all ships, we have a no-wait solution which uses a
minimum number of lock chambers.

4.3 An O(n) algorithm for NLS-id
To see that the procedure from Section 4.2 can be implemented to run in linear
time, we first briefly discuss the uni-directional setting before extending the
implementation to the bi-directional case. When all ships travel in the upstream
direction, it is easily seen that there is an optimal solution where a chamber, after

23

transferring a ship, immediately returns to the downstream side. A chamber
that serves a ship is then always unavailable for 2T time units, starting from the
arrival time of that ship. Solving this problem corresponds to a basic interval
scheduling problem, for which Ford and Fulkerson (1962) describe a ‘staircase
rule’ based on Dilworth’s chain decomposition theorem. Gupta et al. (1979)
provide a more efficient algorithm, which runs in O(n) time when the intervals
have equal length and are sorted by starting time. Applying this algorithm thus
immediately yields a solution to NLS-uni-id.

While this approach is straightforward for NLS-uni-id, the time at which a
chamber becomes available depends on the direction of travel in the more general
NLS-id. Indeed, a chamber that finishes an upwards lockage is immediately
available to serve a downstream traveling ship; the next upstream traveling ship,
however, can only be served after an additional T time units needed to return to
the downstream side. As a result, for a given time t and direction d, a chamber
which started a lock movement at time t1 may not be available while a different
chamber which started a lock movement at time t2 > t1 is available. The main
challenge of implementing our greedy rule is thus to efficiently keep track of the
different chambers, and the moments in time at which they are available to serve
ships depending on their direction.

To achieve this, we maintain the following lists throughout the solution
procedure. Each of the entries that will be added to these lists consists of a pair
(t, i), where t specifies the time at which the chamber that serves ship i becomes
available for a given direction.

1. list AUU : availability for upstream, ship i is upstream-traveling.

2. list AUD: availability for upstream, ship i is downstream-traveling.

3. list ADU : availability for downstream, ship i is upstream-traveling.

4. list ADD: availability for downstream, ship i is downstream-traveling.

As outlined in the description in Section 4.2, we keep track of the required
number of chambers m. Additionally, we follow up whether each chamber
remains available as the algorithm runs. Throughout the algorithm, Ri are
Boolean values indicating whether, after serving ship i, a chamber has been used
to serve another ship (1 ≤ i ≤ n).

A pseudo-code for the algorithm is provided in Algorithm 2. In words: we
consider each ship in order and first verify whether one of the existing chambers
is available at the position where the ship arrives. Let i be the ship under
consideration. If a chamber j is available, it contains an entry in two of the lists.
Upon assigning a ship to j we update Ri so that the second entry corresponding
to j becomes invalid. We update the times at which j becomes available for each
direction. If no chamber is available, we update m and proceed as above.

To see that Algorithm 2 runs in linear time, note the following. Each ship
is considered only once, in the given input order. New entries in the lists AUU ,
AUD, ADU , and ADD are always added to the end of the list. Furthermore, the
time value of newly inserted entries is non-decreasing with i since the increment

24

input: arrival times t1 ≤ t2 ≤ . . . < tn, directions d1, d2, . . . , dn, lockage duration T
AUU ← ∅, AUD ← ∅, ADU ← ∅, ADD ← ∅
Ri ← false, for all i ∈ {1, . . . , n}
m← 0
for i = 1 to n do

reUsed = false
if di == downstream then

(t∗, i∗) ← earliest entry in ADU ∪ADD

while t∗ < ti and reUsed == false do
if Ri == false then

reUsed = true
Ri∗ ← true

delete entry (t∗, i∗) from the list in which it is contained
(t∗, i∗) ← earliest entry in ADU ∪ADD

else
(t∗, i∗) ← earliest entry in AUU ∪AUD

while t∗ < ti and reUsed == false do
if Ri == false then

reUsed = true
Ri∗ ← true

delete entry (t∗, i∗) from the list in which it is contained
(t∗, i∗) ← earliest entry in AUU ∪AUD

if reUsed == false then
m←m + 1

if di == downstream then
add entry (ti + T , i) to the back of list AUD

add entry (ti + 2T , i) to the back of list ADD

else
add entry (ti + T , i) to the back of list ADU

add entry (ti + 2T , i) to the back of list AUU

return m

Algorithm 2: Pseudo-code for identical chambers, i.e. NLS-id, with unit
capacity.

25

when constructing the entry is the same for all entries within each of the lists; for
example, all entries inserted in list AUU have a time value of ti + 2T for some ti,
and all entries inserted in list AUD have a time value of ti + T for some ti. Each
of the lists thus remains sorted by the time value of the contained entries at all
times. Finding the earliest entry in two of the lists is then easily performed in
constant time by comparing the first entry of each of the lists. Deleting the first
entry as well as adding a new entry to the back of a list also require only constant
time. Whenever an entry of one of the lists is iterated over, it is deleted. Since
only O(n) entries are added to lists throughout the procedure, iterating through
the lists thus also takes O(n) time in total. It follows that the entire procedure
runs in linear time. We can summarize the discussion above as follows:

Theorem 4. For the setting with identical chambers, a no-wait schedule can be
found or shown not to exist, i.e. problem NLS-id can be solved, in O(n) time.

Corollary 1. Finding the chromatic number of a trapezoid graph where the
trapezoids are identical up- or down-oriented isosceles triangles can be done in
O(n) time.

5 A dynamic programming algorithm for arbi-
trary m

In the following, we propose a dynamic programming (DP) approach that solves
the general problem NLS, stated in Section 1. That is, we consider an arbitrary
number of chambers m, with non-identical lockage times Tj and capacities Cj for
j = 1, . . . , m. The proposed approach is similar to an O(mnm+1) DP algorithm
presented by Sung and Vlach (2005) for a parallel machine scheduling problem
with deadlines and just-in-time jobs.

We assume ships to be numbered in non-decreasing order of arrival times.
Ties are broken by letting ships arriving downstream have lower numbers than
ships arriving upstream. Remaining ties are broken arbitrarily. Our DP approach
assigns ships to chambers in increasing order of these numbers. We consider
states (i1, . . . , im) where ij represents the last ship 1 ≤ ij ≤ n that has been
assigned to chamber j (1 ≤ j ≤ m). Furthermore, we restrict ourselves to states
where a ship is assigned to a chamber only if all earlier ships have also been
assigned. Thus, in a given state (i1, . . . , im), the first maxj∈{1,...,m} ij ships
have been assigned to chambers. We consider a transition from (i1, . . . , im) to
(i′1, . . . , i′m) if there is a j∗ ∈ {1, . . . , m} such that:

1. i′j∗ > ij∗ and i′j = ij for each j ∈ {1, . . . , m} with j ≠ j∗,

2. ships (maxj ij) + 1, . . . , i′j∗ travel in the same direction and arrive at the
same time,

3. i′j∗ arrives at least Tj∗ time units later than ij∗ if both travel in opposite
direction and i′j∗ arrives at least 2Tj∗ time units later than ij∗ otherwise,
and

26

4. i′j − (maxj ij) ≤ Cj∗ .

This transition represents assigning ships (maxj ij) + 1, . . . , i′j∗ to chamber
j∗. This is allowed only if chamber j∗ is available after handling ship ij∗ . If
more than one ship is assigned to chamber j∗, then these ships must arrive
simultaneously, travel in the same direction, and the chamber’s capacity must
not be exceeded. We consider an initial state (0, . . . , 0) representing that no
ships are assigned to any chambers yet. The question is whether we can reach a
state (i1, . . . , im) with max {ij ∣ j = 1, . . . , m} = n by any sequence of transitions.

In this DP we use O(nm) states and O(mnm+1) transitions. However, we can
further restrict the set of transitions by always assigning the maximum number
of ships (up to the chamber’s capacity) which travel in the same direction and
arrive at the same time as ship ij∗ + 1. Each state then has m transitions: one
per chamber. This leaves us with O(mnm) transitions, which also constitutes
the runtime complexity. Note that the complexity is polynomially bounded if
the number of chambers is fixed. We can conclude with the following theorem:

Theorem 5. The problem setting with a fixed number of arbitrary chambers,
i.e. problem NLS-m, can be solved in O(mnm) time.

6 Number of chambers m part of the input
We prove here that problem NLS is NP-complete.

Theorem 6. Deciding whether a no-wait solution exists for an arbitrary number
of chambers, even when all ships travel in the same direction and arrival times
are distinct, i.e. problem NLS-uni-distinct, is strongly NP-complete.

Proof. We prove the theorem by a reduction from numerical matching with target
sums where all given integers are distinct. We will denote this problem as dNMTS.
Hulett et al. (2008) showed that this special case of the classical NMTS problem is
strongly NP-complete. In an instance of dNMTS we are given 3n pairwise distinct
positive integers ai, bi, ci (1 ≤ i ≤ n) with ∑n

i ci = ∑n
i (ai + bi). The question is

whether there exists a collection of n triples (i, j, k) such that, for each triple,
ai+bj = ck, and such that each integer in the input occurs in exactly one triple. We
show that we may impose, without loss of generality, two additional constraints
on the instances of dNMTS. Our assumptions are (i) maxi ai −mini ai < mini bi,
and (ii) maxi ci − mini ci < mini bi. Assumption (i) is immediately seen to
hold since the instances in the proof provided by Hulett et al. (2008) satisfy
maxi ai < mini bi. For assumption (ii), observe that we may transform any
instance into an equivalent instance where maxi ci −mini ci < mini bi by adding
an arbitrary positive K to all bi and ci of the original instance. This does not
change the answer to the decision question; also note that by adding any K > 0, all
resulting values remain distinct, and assumption (i) remains valid. Since the left-
hand side of the inequality in assumption (ii) does not change by this operation,
we obtain the desired result by choosing any K > maxi ci −mini ci −mini bi.

27

downstream

upstream

X X X X X X X X

Figure 13: Graphical representation of the instance for the proof. Ship arrivals
are marked with ‘X’, time passes from left to right. The tilted lines correspond
to lock movements of the different chambers in a no-wait solution.

For any instance of dNMTS satisfying the two assumptions specified above, we
now construct an instance of the lock scheduling problem with parallel chambers
as follows. There are 2n ships arriving on the downstream side: n ships arrive
at times ti = ai and n ships arrive at times tn+k = ck, with i, k ∈ {1, . . . , n}. For
convenience, we will refer to the first n arrivals as the set of ships A, and the last
n arrivals as the set of ships C. There are m = n chambers, each with a lockage
time equal to Tj = bj/2 for j ∈ {1, . . . , m}. The question remains whether a no-wait
solution exists for this instance. Figure 13 shows a graphical representation.
Next, we show that the given instance of dNMTS is a ‘yes’ instance if and only
if there exists a no-wait solution to the constructed lock scheduling instance.

If there is a solution to the instance of dNMTS, each triple (ai, bj , ck)
corresponds to a combination of a chamber with one ship from the set A, and
one ship from the set C. If the ship in A enters the chamber with lockage time
bj/2 at time ai, the ship in C can enter the same chamber at time ck = ai+2 (bj/2).
Neither ship incurs any waiting time. Since each ship in A and C corresponds
to exactly one such triple, there exists a no-wait solution.

On the other hand, we argue that if a no-wait solution exists, there must also
exist a corresponding set of triples that satisfies the requirement of the dNMTS
problem. We first observe that in all no-wait solutions, each chamber handles
exactly one ship from A, and one ship from C. Indeed, since all arrival times are
distinct, a chamber cannot simultaneously transfer more than one ship without
introducing waiting time. Further, it follows from maxi ai − mini ai < mini bi

that no chamber can serve two ships from A so that no ships incur waiting
time. Similarly, it holds that no chamber can serve two ships from C without
introducing waiting time. Thus, in a given no-wait solution, each chamber
transfers exactly one ship from A and one ship from C. For each chamber j,
let i(j) be the index of the ship from A and k(j) the index of the ship in C
that is handled by chamber j. We thus obtain n triples (ai(j), bj , ck(j)). Since
the solution is no-wait, we have ai(j) + bj ≤ ck(j) for all j. Finally, because
∑n

i (ai + bi) = ∑n
i ci, it is clear that if ai(j) + bj < ck(j) for any j, there must exist

a j′ such that ai(j′) + bj′ > ck(j′), which would mean that at least one ship incurs
waiting time. It follows that ai(j) + bj = ck(j) for all j ∈ {1, . . . , n}, and there
thus exists a set of triples that identifies the given instance of NMTS as a ’yes’
instance. This concludes the proof.

As mentioned in the introduction, when viewing a chamber as a machine
and an arrival as a job represented by m intervals (one for each machine, each

28

starting at the same moment ti), the above reduction shows that the problem
considered by Böhmová et al. (2013) (called Interval Selection with cores) remains
NP-complete even when all intervals that correspond to the same machine have
the same length.

Acknowledgment
This research has been supported by the Interuniversity Attraction Poles Pro-
gramme initiated by the Belgian Science Policy Office.

References
Aspvall, B., Plass, M. F., and Tarjan, R. E. (1979). A linear-time algorithm

for testing the truth of certain quantified boolean formulas. Information
Processing Letters, 8(3):121 – 123.

Böhmová, K., Disser, Y., Mihalák, M., and Widmayer, P. (2013). Interval
selection with machine-dependent intervals. In WADS’13, pages 170–181.

Disser, Y., Klimm, M., and Lübbecke, E. (2015). Scheduling bidirectional traffic
on a path. In Halldórsson, M. M., Iwama, K., Kobayashi, N., and Speckmann,
B., editors, Automata, Languages, and Programming, volume 9134 of Lecture
Notes in Computer Science, pages 406–418. Springer Berlin Heidelberg.

Even, S., Itai, A., and Shamir, A. (1976). On the complexity of timetable and
multicommodity flow problems. SIAM Journal on Computing, 5(4):691–703.

Felsner, S., Müller, R., and Wernisch, L. (1997). Trapezoid graphs and general-
izations, geometry and algorithms. Discrete Applied Mathematics, 74:13–32.

Ford, L. R. and Fulkerson, D. R. (1962). Flows in Networks. Princeton University
Press.

Gupta, U., Lee, D., and Leung, J.-T. (1979). An optimal solution for the channel-
assignment problem. Computers, IEEE Transactions on, C-28(11):807–810.

Hermans, J. (2014). Optimization of inland shipping - a polynomial time
algorithm for the single ship single lock optimization problem. Journal of
Scheduling, 17:305–319.

Hulett, H., Will, T. G., and Woeginger, G. J. (2008). Multigraph realizations
of degree sequences: Maximization is easy, minimization is hard. Operations
Research Letters, 36:594–596.

Kolen, A. W., Lenstra, J. K., Papadimitriou, C. H., and Spieksma, F. C. (2007).
Interval scheduling: A survey. Naval Research Logistics (NRL), 54(5):530–543.

Krumke, S. O., Thielen, C., and Westphal, S. (2011). Interval scheduling on
related machines. Comput. Oper. Res., 38(12):1836–1844.

29

Passchyn, W., Briskorn, D., and Spieksma, F. C. R. (2016). Mathematical
programming models for lock scheduling with an emission objective. European
Journal of Operational Research, 248(3):802 – 814.

Passchyn, W., Coene, S., Briskorn, D., Hurink, J., Spieksma, F. C. R., and
Vanden Berghe, G. (2015). The lockmaster’s problem. European Journal of
Operational Research.

Prandtstetter, M., Ritzinger, U., Schmidt, P., and Ruthmair, M. (2015). A
variable neighborhood search approach for the interdependent lock scheduling
problem. In Ochoa, G. and Chicano, F., editors, Evolutionary Computation
in Combinatorial Optimization, volume 9026 of Lecture Notes in Computer
Science, pages 36–47. Springer International Publishing.

Smith, L. D., Nauss, R. M., Mattfeld, D. C., Li, J., Ehmke, J. F., and Reindl, M.
(2011). Scheduling operations at system choke points with sequence-dependent
delays and processing times. Transportation Research Part E, 47:669–680.

Sung, S. C. and Vlach, M. (2005). Maximizing weighted number of just-in-time
jobs on unrelated parallel machines. J. of Scheduling, 8(5):453–460.

Ting, C. and Schonfeld, P. (2001). Control alternatives at a waterway lock.
Journal of Waterway, Port, Coastal, and Ocean Engineering, 127:89–96.

Verstichel, J. (2013). The Lock Scheduling Problem. PhD thesis, KU Leuven.

Verstichel, J., De Causmaecker, P., Spieksma, F., and Vanden Berghe, G. (2014).
The generalized lock scheduling problem: An exact approach. Transportation
Research E, Logistics and Transportation Review, 65:16–34.

Waterwegen en Zeekanaal NV and nv De Scheepvaart (2014). Masterplan voor
binnenvaart op de Vlaamse waterwegen - Horizon 2020 [Master plan for inland
shipping on the Flemish waterways - Horizon 2020]. Willebroek: Waterwegen
en Zeekanaal NV, Hasselt: nv De Scheepvaart. (in Dutch).

30

FACULTY OF ECONOMICS AND BUSINESS
Naamsestraat 69 bus 3500

3000 LEUVEN, BELGIË
tel. + 32 16 32 66 12
fax + 32 16 32 67 91

info@econ.kuleuven.be
www.econ.kuleuven.be

	KBI_1604
	NLS_preprint_03 16

