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ABSTRACT

Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intra-
operative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current
study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac
imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a
robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-
correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler
for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the
cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US
sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences.
The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans.
The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal,
presenting a relative error of 1.6 ± 1.9% and 4.0 ± 4.2% for the MRI and US sequences, respectively, thus
supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the de-
synchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac
imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US
sequences of the same patient was introduced. This approach could be straightforwardly used for the correct
temporal alignment of pre-operative MRI information and intra-operative US images.
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1. INTRODUCTION

A significant amount of cardiovascular diseases, the world’s leading cause of death, require surgical or interven-
tional treatment. In recent years, the development of cardiac minimally invasive (MI) procedures has drastically
decreased the number of open-heart surgeries, which are related to complications such as embolism and stroke.
MI interventions are strictly connected to image guidance systems, which allow the physician to have a detailed
knowledge on both cardiac anatomy and the 3D position of surgical instrumentation. Recently, cardiac 3D
imaging modalities for interventional image guidance have been improved, introducing the ability for 4D (3D+t)
sequence acquisitions.1 Such 4D imaging allows to obtain real-time information of the beating heart, but also
improves the surgical view by depicting the 3D position of the surgical instruments in real-time. Among intra-
operative imaging modalities, real-time 3D echocardiography (RT3DE) offers important advantages in terms of
temporal resolution and portability,2 while remaining an approach free of ionizing radiation, thus being safe to
both the patient and the operating physician.3 Nevertheless, the self-standing use of RT3DE imaging is inad-
equate for guidance purpose, since it offers only moderate spatial resolution and signal to noise ratio (SNR),
impairing the identification of small anatomical details.1 A valid solution to such a problem consists in drawing
benefits from different image modalities introducing the superposition of high quality pre-operative models, such
as cine magnetic resonance imaging (MRI), onto real-time intra-operative images.4 Nonetheless, due to the
introduction of temporal variability between 4D sequences, image registration has proven to be a very complex
problem. Therefore, it is essential to perform a temporal alignment between sequences, synchronizing the main
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stages of the cardiac cycle, discerned through the identification of temporal landmarks. However, the different
modalities employed to acquire the sequences have different image appearance, introducing an additional obstacle
in identifying common temporal reference points.

Several authors approach the problem of cardiac temporal registration, handling the temporal variability of
the heart through an electrocardiography (ECG)-gated image acquisition. For instance, the classic cardiac cine-
MRI scan, is performed restricting the acquisition of the same 2D slice in a fixed number of time points of the
cycle, identified on the ECG signal. Small spatial increments in acquisition coordinates, orthogonally directed to
the image plane, allow to reconstruct the entire 3D volume.5 As a consequence, after several cycles, 3D images
at distinct time points are available, simplifying temporal alignment, but preventing the use of this protocol
for real-time applications. Peyrat et al.6 extended this process for real-time application, extracting 3D-CT
frames at a defined percentage of the cardiac cycle (R-R interval), identified through an ECG-gated acquisition.
Then, a characteristic blood volume curve allowed to identify time points associated to the mechanical state of
the heart, which led to a non-linear transformation, able to identify the optimal match between correspondent
frames. Nevertheless, in this framework, the temporal registration is strictly dependent on a controlled acquisition
protocol, likewise performed in both sequences. In absence of such protocol, the temporal match of cardiac phases
relies on a transformation able to warp sequences, pairing frames depicting consistent events in the two sequences.

In literature, many other frameworks also employ ECG-based strategies, ensuring that the acquisition includes
a complete cardiac cycle in which the first frame coincides with end-diastole. Huang et al.7 noticed that the
different acquisition rates of ECG-gated US and MRI/CT sequences was the main responsible for temporal
mismatching. Therefore, for each US image, the corresponding frame in MRI/CT was computed through linear
interpolation of this high quality sequence, obtaining a complete temporal correspondence between frames.
Nonetheless, their method does not provide a solution to the intrinsic variability between consecutive cardiac
cycles, associated to the constant adaptation of the heart to the varying physiological conditions of blood demand.
These variations in heart rate cannot be compensated by direct rescaling of the temporal space, since a higher
contracting rate is primarily associated to a decrease in the duration of the diastolic stage of the cycle and is
not uniformly changing the cardiac cycle. In other words, when a reduction of the pulsation occurs, there is a
larger reduction of the duration of diastole then of the systolic one.8 Shekar et al.9 proposed to compensate this
physiological effect by asking the user to manually indicate the end-diastolic (ED) and end-systolic (ES) timing
in pre- and post-stress ECG traces. This information was then used to apply independent piece-wise temporal
scaling to the systolic and diastolic phases of the image sequences. Nonetheless, this method guarantees the
alignment of only two time points (ES and ED) for each cycle, while the piece-wise scaling could introduce
undesired pairing of the remaining cardiac stages. Moreover, this approach remains user-dependent and the
accuracy of the key frame detection is intrinsically related to the user experience. Finally, the ECG trace can be
distorted between acquisitions for several reasons, including the strong MRI magnetic field.10

The methodologies mentioned so far require additional information (ECG, user steering, blood volume curve)
as reference for the alignment, which result in additional data, vulnerable to distortions, which is required to
be stored during acquisitions. Therefore, the introduction of completely image-based methodologies avoid to
acquire such additional data, since the information required for temporal alignment is included in the image
sequence itself.

In this direction, Perperidis et al.10 achieved the alignment of 4D cardiac MRI sequences applying a temporal
transformation, consisting in a global part and in a local part. Global features, such as difference in cycle length
or in frame rate of the acquisitions, were addressed by a global temporal transformation, while differences in the
length of each cardiac stage were corrected by local transformations. The local transformation, modeled using a
B-spline, relied on the identification, on both sequences, of four relevant cardiac cycle points: start of the cycle,
maximum contraction (end-systole), end-diastole and end of the cycle. These key stages were identified through
a completely image-based cross-correlation curve. In detail, the image cross-correlation was computed between
each 3D frame in the sequence with the first frame, which corresponds to the start of the cardiac cycle. The
resulting curve allowed to easily extract relevant points: the end-systolic and the end-diastolic time positions.
As a result, the two sequences were temporally aligned overlapping the first and last frame (start and end of
cardiac cycle) and the two extracted time landmarks.
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Zhang et al.11 used a similar approach to align 2D+t MRI and US sequences. The alignment process relied
initially on the identification of key-stages (initial time point, end-systolic volume time point, end-diastolic volume
time point and final time point) through the cross-correlation signal. Once this was achieved, it was ensured
that the two sequences contained the same number of frames, aligning the key-frames in the two sequences and
interpolating, if necessary, the shorter sequence between those points. As result, the two sequences have the
same amount of frames, generating complete temporal correspondence.

The main goal of the present study was to perform real-time alignment of dynamic pre-operative high quality
MR data with dynamic intra-operative real-time 3D echocardiography (RT3DE) volumetric images of the beating
heart. To this end, we aim to rely solely on image-based information to improve the robustness of the proposed
solution against variations in the surgical theater. Firstly, we extract the image-based cross-correlation curve,
whose trend marks the key-stages of heart activity, generating a modality-independent temporal reference. The
next step consists in identifying an algorithm to match the content of these curves obtaining the temporal
alignment of cardiac stages. To this end, instead of aligning a set of temporal landmarks, we will take the entire
cycle into consideration. Wang et al.12 adopted the Dynamic Time Warping (DTW) to align generic curves over
time. Raghavendra et al.13 introduced the algorithm in the biomedical field, as a distance measure to compare
arrhythmic beats in an ECG real-time acquisition with normal ECG beats. In this paper, we employ the DTW
to warp the correlation-based signals, finding the optimal alignment between them. Such temporal alignment
tool will allow not only synchronized visualization of pre and intra-operative data, which can be used as a first
step towards augmented reality frameworks where the high quality models derived from pre-operative data are
used, but it could be equally employed in the construction of 4D statistical shape and motion models, which
require a consistent temporal alignment of the organ undergoing a dynamic process.

2. METHODS

Since temporal alignment via traditional image registration methods is a computationally time-consuming strat-
egy,7 we have chosen to follow an alternative image-based strategy. First, we derive a robust, modality-
independent signal from each image sequence. Such curve replaces the need of segmenting any anatomical
structure, encoding the different phases of the cardiac cycle as temporal image decorrelation is associated with
motion of cardiac structures. Once such signal is available for both MRI and RT3DE sequences of the same
patient, we perform the temporal alignment of their content, synchronizing the key temporal moments of the
cardiac cycle. After its application, the last step consists in transferring the synchronization information from
the temporally aligned correlation curves to the original MR and RT3DE sequences, thus enabling their synchro-
nization.

2.1 Robust image-based surrogates for cardiac cycle characterization

Kachenoura et al.14 proposed an image-based technique to define a signal whose features allow to identify
essential events in the cardiac cycle. For each time sample (corresponding to a frame in the sequence), a scalar
is obtained by estimating the normalized cross-correlation coefficient (r) between two frames: one corresponding
to the time sample above-mentioned and the other corresponding to the end-diastolic frame, as:

r(t) =

∑
i

∑
j

∑
k[I(i, j, k, t)− Ī][IED(i, j, k)− ĪED]√∑

i

∑
j

∑
k[I(i, j, k, t)− Ī]2 ×

√∑
i

∑
j

∑
k[IED(i, j, k)− ĪED]2

(1)

where I(i, j, k, t) is the image intensity of the frame t at position (i, j, k), and IED(i, j, k) is the intensity of the
end-diastolic frame at the same position. Ī and ĪED are the mean intensity values of I and IED, respectively. The
correlation signal r can be thought as a surrogate for the volume curve of the LV cavity over time, whose variation
clearly indicates different temporal phases of the cardiac cycle, such as the diastasis period. Furthermore, its
minimum has been previously associated with the end-systolic frame.14 Moreover, the methodology remains
modality-independent, since its key characteristics do not depend on the underlying image appearance, as it can
be observed in Figure 1. Besides information regarding the end-systolic frame, and the extension towards its use
to temporally synchronize multimodal cardiac data described in the current work, this signal also encodes global
cardiac function information. Indeed, Afshin et al.15 showed that left ventricular ejection fraction in MRI data
can be accurately recovered from these correlation-based signals using neural networks.
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Figure 1: Correlation-based signals, r, obtained in four different patients for both 3D-US (red, left side) and MRI
(blue, right side). Note that not only the image sequences have different number of frames in both modalities,
but also the position of the end-systolic frame (red/blue dot) occurs at different relative instants between both
scans.

2.2 Temporal alignment of multimodal cardiac sequences

The two computed correlation signals are initially pre-processed to compensate for potential differences in ac-
quisition rate of both MRI and RT3DE sequences. As a consequence, the temporal axis is normalized employing
a linear interpolation algorithm, in order to define two signals characterized by the same amount of samples
(NS = 100), thus compensating the frame disparity. The correlation-based signals are then normalized between
0 and 1, which allows to compensate for different minimum values of r. An example of the resulting signals after
this initial normalization step are shown in Figure 2a.

The Dynamic Time Warping (DTW) is applied to match the two normalized correlation-based signals gen-
erated for the MRI and US sequences of the same patient, with the purpose of estimating the optimal temporal
alignment of these image sequences. DTW initially compares the paired differences between the correlation
signals, rMRI and rUS , which are discrete signals of same length NS due to the temporal axis normalization.
The result is a NS ×NS cost matrix (c) defined as:

c(tMRI , tUS) = [rMRI(tMRI)− rUS(tUS)]2 (2)

where rMRI(tMRI) and rUS(tUS) are the correlation-based signals of the two sequences (MRI and US) evaluated
respectively at tMRI and tUS . This matrix establish an index of similarity between samples belonging to different
sequences. The optimal alignment between rMRI and rUS can be recovered as finding an optimal path along
the cost matrix c(tMRI , tUS), as illustrated in Figure 2b. Consider a path w = (w1 . . . wl . . . wL), where wl =
(tMRIl , tUSl

) defines an element in c(tMRI , tUS). The path w represents a possible temporal alignment between
rMRI and rUS if it satisfies the following three conditions:
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Figure 2: (a) Correlation after normalization and interpolation, (b) cost matrix and optimal path (red line)
chosen by the algorithm, (c) cost cumulative matrix, (d) correlation after alignment algorithm. The root-mean
square errors (RMSE) prior and after temporal alignment are also reported.

• Boundary conditions: w1 = (1, 1) and wL = (NS , NS);

• Monotonicity condition: tMRI1 ≤ tMRI2 ≤ . . . ≤ tMRIL and tUS1
≤ tUS2

≤ . . . ≤ tUSL
;

• Step size conditions: (wl+1 − wl) ∈ (0, 1), (1, 0), (1, 1) for l = [1, ..., L− 1].

The boundary condition establishes the alignment of the first and the last frame of rUS respectively with the
first and last frame of rMRI . In this way, the DTW algorithm will be applied to the two entire sequences. The
monotonicity condition is necessary to maintain the chronological frame order in the two sequences. Finally, the
step size condition expresses a continuity condition: no frame can be omitted and the state should always result
in one-step time skip in, at least, one sequence.

The optimal temporal alignment is given as an optimal path in c(tMRI , tUS). Intuitively, such an optimal
alignment runs along a “valley” within the cost matrix c(tMRI , tUS) and can be found through the estimation
of a cumulative cost matrix D(tMRI , tUS) recursively defined from c(tMRI , tUS). Using as a start point the
condition D(tMRI1 , tUS1

) = c(tMRI1 , tUS1
) is possible to define D as:

D(tMRIl , tUSl
) = c(tMRI1 , tUS1

) + min(D(tMRIl−1
, tUSl

), D(tMRIl , tUSl−1
), D(tMRIl−1

, tUSl−1
)); (3)
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As shown in Figure 2c, the matrix D lead to the optimal path w that allows the best alignment between the two
sequences. More details on the estimation of the DTW optimal path are omitted in the current manuscript, and
the reader referred to Muller et al.16 for further details. Once the optimal path has been defined, the matching
between rMRI and rUS can be used to temporally align the underlying MRI and US sequences from where the
correlation-based signals r were generated.

3. EXPERIMENTS

The proposed framework was evaluated using image data from 98 patients, which have undergone both 3D+t
MRI and 3D-US trans-thoracic scans. The data used in the present study has been acquired at the enrollment
of patients in a large ongoing multi-center clinical study (DOPPLER-CIP).17

We carried an initial validation experiment in order to verify if the information within the correlation-based
signal r was indeed consistent with the underlying temporal location of the key moments in the cardiac cycle. To
this end, we have evaluated the accuracy of automatic end-systolic frame detection, estimated as the minimum
of the correlation-based signal r, versus the end-systolic instant manually annotated by the clinical expert. The
correspondence of the aligned sequences was visually confirmed and quantitatively assessed by calculating the
root mean square error (RMSE) between the aligned correlation-based signals, rMRI and rUS , from the respective
MRI and RT3DE sequences. In order to provide a baseline for comparison, the RMSE was equally estimated
prior to the temporal re-alignment of both signals.

4. RESULTS

Table 1 summarizes the results concerning the identification of the end-systolic frame detection on MRI and US
sequences, obtained comparing the minimum of the correlation sequence with expert identification.

An average RMSE of 0.035± 0.025 was found after temporal synchronization of both rMRI and rUS , which
is statistically significantly lower than the 0.14± 0.05 estimated prior to the temporal re-alignment. An example
of the values for the RMSE prior and after temporal alignment is given in Figure 2a and 2d, respectively. The
average computational time necessary to compute the image-based correlation signal was 0.0421 ± 0.0085s for
each 3D US frame and 0.0037 ± 0.0022s for each MRI frame, while the mean computational time necessary to
apply DTW algorithm was 0.0088± 0.0003s.

Table 1: End-systolic (ES) frame detection as the minimum of the correlation based signal r. Both absolute and
relative ES detection errors (mean ± standard deviation) were used as metric. Nframes is the total number of
frames in each sequence.

Absolute ES detection error (frames)
| fED −min(r) |

Relative ES detection error (%)
| (fED −min(r))/Nframes |

MRI 0.55± 0.54 1.60± 1.89

US 1.29± 1.73 4.03± 4.23

5. DISCUSSION

In this paper, we presented an image-based framework for temporal synchronization of multimodality cardiac
4D image sequences. In first instance, we define the correlation curve employing exclusively image features.
Several authors in previous works10,14 have noticed a relationship between this curve and the LV volume over
time for US and MRI data, respectively. The pattern followed by the curves defined is similar: initially, there
is a gradual decrease of the correlation coefficients during LV contraction, ending as a minimum near the end-
systolic instant. After systole, the coefficients begin progressively to increase during LV relaxation. At the end
of the ventricular diastole, the value of the correlation reaches the initial value and the pattern restarts. We
apply this algorithm in 4D MRI and RT3DE to have an image-based, temporally continuous descriptor of the
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cardiac deformation, which can be used to retrieve temporal landmarks for temporal alignment. The result is
a fast and reliable framework to identify these features, whose outcome is a starting point for the application
of the DTW algorithm. The precise end-systolic frame detection in MRI and US 4D sequences was the chosen
target in order to properly verify the consistency of the correlation-based signal with the underlying cardiac
deformation. Following the indication of Kachenoura et al.,14 this particular frame should be identified as the
minimum of the correlation function. As shown in Table 1, the algorithm is more reliable in MRI than in US
images, in which the end-systolic frame detection was, in some cases, missed by 3 frames. Different reasons might
exist for these sub-optimal detections. Above all, the RT3DE sequences show a lower image quality, compared
to MRI. The introduction of unexpected interferences in the field of view (body tissues) as much as random
noise, which usually affects this image modality, induces a decorrelation responsible for the misdetection of the
end-systolic frame. Moreover, the motion of the heart valves, clearly depicted in US while barely visible on
MR imaging, represents another undesired source of decorrelation. Note that the algorithm could be improved
by pre-processing each 3D image through a spatial smoothing filter. Such solution would decrease the random
noise’s influence, at the cost of additional computational load.

While previous works focused on the use of the correlation-based signal r to detect temporal landmarks,
such as the end-systolic instant, we rather use it as a temporally continuous descriptor of the underlying cardiac
deformation process. We thus employed the DTW algorithm to find the optimal superposition between the entire
image-based correlation curves. The algorithm warps the two sequences to minimize the differences between
them, resulting in an overlap of key stages of the cardiac cycle. The outcomes, reported in Table 1, show a
noticeable reduction concerning the curve’s difference RMSE, thus pointing towards potential improvements in
temporal alignment of the underlying cardiac deformation. Nevertheless, the overall footages alignment could
exhibit some imperfection, since it relies on the cross-correlation function, whose computation could be impaired
by images artifact. In precedent works, as Perperidis et al.,10 a 4D transformation model is suggested for
spatial and temporal alignment between two cardiac datasets. The (local) temporal synchronization relies on
the identification of specific temporal points of the cardiac cycle. The alignment occurs, initially, by temporally
overlapping these points and, subsequently, warping the two curves in the space between them. Therefore, the
main novelty introduced by this work is the employment of the entire correlation curves in order to align the two
sequences. This means that not only the relevant points of both sequences are overlapped, but also all the curves
trend are taken into account for optimal alignment purpose. Once the algorithm has computed the optimal
frame succession, the real alignment could occur, transferring the new frame chronology to the 4D sequences.
Moreover, the reduced computational burden of the proposed approach allows its real-time application while
intra-operatively scanning the patient. The 3D-US sequences mentioned on experiments section were acquired
in a trans-thoracic apical view altough, in fact, the realization of whole this project was conducted aiming to
temporally register pre-operative cine-MRI with 4D intra-operative transesophageal echocardiography (TEE)
images. Even so, since the TEE usually exceeds trans-thoracic ultrasound image quality, whilst keeping the
same intensity behavior over time, the key findings of the study will likely translate to consistent algorithm
behavior in both modalities.

The independence of the method towards different modalities remains still an assumption that require further
and thorough examination. Nonetheless, the results obtained in this initial approach are promising, giving
credence to the abovementioned assumption, while opening the possibilities for further developments.

It must be stressed that an overall quantitative validation of the temporal alignment is not possible since
there is no absolute ground truth. Alternatively, we performed a qualitative evaluation of the result analyzing the
synchronized data, highlighting the end-systolic frames. Upon visual inspection, it was found that the temporal
matching of the end-systolic moment could be improved after the proposed temporal alignment. Therefore, we
have visually validated the method and its applicability in temporal synchronization of multimodal cardiac 4D
sequences. The application of the framework here described provides the opportunity to apply a subsequent
real-time spatial registration between images acquired in the same stage of the cardiac cycle, improving the
fusion of pre-operative and intra-operative sequences, mandatory for image-guided applications.

Proc. of SPIE Vol. 9413  94131K-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/31/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



6. CONCLUSIONS

In this paper, we present a method to temporally synchronize multimodal cardiac sequences through the use
of robust, image-derived signals which encode the temporal key moments of the cardiac cycle. The proposed
method was found to be accurate and computationally fast, allowing the synchronization of MRI and RT3DE
sequences of the same patient in intra-operative scenarios. Nonetheless, the method remains generic and could be
applied to other modalities, such as computed tomography or single-photon emission computed tomography, or
to inter-patient temporal alignment, which could be then employed on the construction of temporally consistent
statistical shape and motion models. We did not verify our framework on intra-operative scenarios in which the
computational time is a crucial factor. Moreover, the presence of surgical tools in the image might introduce
an unforeseen variation on the correlation curve. For this reason, future work will involve further validation on
intra-operative TEE images, verifying both the robustness of the method and its real-time applicability.
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