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Abstract

Distributed sensing systems are complex integrations of constrained sensor
networks with additional commodity computing platforms. The realisation of
such systems requires significant effort in hardware deployment and software
development, resulting into a substantial investment to be made. The key
complexities that need to be dealt with include a large heterogeneity in hardware
and software, and the resource-constraints of wireless sensor networks. To deal
with these complexities, early deployments were based on highly optimised and
static single-purpose software solutions within the sensor network tier. Research
and industry, however, aim to improve the return on investment by shifting
towards open sensor networks that provide a reusable infrastructure on which
various stakeholders can independently deploy multiple applications, and, where
opportune, reuse the functionality provided by others.

The current state-of-the-art however fails to provide a full solution to the
open and multi-purpose use of sensor systems. Related work is available
on multi-application and -user support, dynamic software configuration, and
discovery of application logic; however, none of those technologies provide
a well-integrated solution with a high enough level of configurability and
openness to result in truly multi-purpose sensor systems. To realise the
open use of sensor system infrastructure, additional lightweight middleware
solutions are needed that together provide a common substrate across the sensor
system tiers, on top of which independently developed application logic can be
deployed and reused within various distributed sensing applications. A similar
strategy to improve application logic reuse has been put forward by service-
orientation; a software engineering paradigm commonly used to build software
solutions within corporate back-ends. Its principles and implementations need
to be reimagined, however, to be feasible and applicable within the resource
constrained environment of sensor networks.

This dissertation presents three contributions towards open and multi-purpose
sensor networks. The first contribution facilitates application building across
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heterogeneous sensor systems; LOOCI, or the Loosely-coupled Component
Infrastructure, provides run-time configurable abstractions for application
modularity and distributed interactions across a range of hardware and
software platforms. The other two contributions facilitate the run-time reuse
of application logic within open sensor systems. SDLITE provides a service
discovery solution that takes into account the environmental and operational
state of sensor nodes to diversify between the many functionally similar service
providers within a sensor network. Lastly, TALKSENS provides a framework that
facilitates the systematic definition of messages, their coordinated use among
multiple parties, and provides lightweight message subtyping support. This
improves reuse of third-party application logic and reduces configuration effort.
The combination of all contributions results in a highly configurable application
platform for open and multi-purpose sensor systems.

Prototype implementations of the presented contributions have been realised
on a range of platforms, with a focus on resource-constrained sensor nodes, but
including back-end platforms to support multi-tier integration. Evaluation, and
the application of these contributions within a smart office deployment, show
their feasibility and good performance on constrained sensor nodes. In sum,
this greatly advances the paradigmatic shift from static single-purpose sensor
systems to more cost-effective dynamic and multi-purpose alternatives.



Beknopte samenvatting

Gedistribueerde sensorsystemen zijn complexe integraties van sensornetwerken
met meer traditionele computerplatformen. De realisatie daarvan vereist echter
een significante inspanning in hardware installatie en software ontwikkeling,
hetgeen resulteert in een substanti€éle investering van tijd en geld. De
belangrijkste complexiteiten waarmee rekening dient gehouden te worden,
omvatten de grote heterogeniteit in hardware en software, en de beperkte
systeembronnen voorradig in draadloze sensornetwerken. Initi€le installaties van
sensornetwerken kwamen tegemoet aan deze problemen met behulp van sterk
geoptimaliseerde softwareoplossingen binnen het sensornetwerk die één enkele
statisch gedefinieerde toepassing ondersteunde. Binnen de onderzoekswereld
en in de industrie streeft men er momenteel echter naar om de gemaakte
investeringen versneld terug te verdienen door open sensornetwerken te voorzien.
Deze doen dienst als herbruikbare infrastructuur en laten verschillende partijen
toe om onafhankelijk meerdere toepassingen te installeren, en, indien opportuun,
elkaars functionaliteit te hergebruiken.

De huidige stand van zaken binnen het onderzoeksdomein van sensornetwerken
biedt echter geen complete oplossing tot dergelijk open gebruik van sensorsyste-
men. Hoewel gerelateerd werk beschikbaar is ter ondersteuning van meerdere
toepassingen en gebruikers, het dynamisch configureren van software, en het
zoeken naar herbruikbare applicatielogica, bieden geen van deze systemen
een volledig geintegreerde oplossing met een adequaat niveau van configu-
reerbaarheid en openheid. Om tot werkelijk open sensorsystemen te komen
die meerdere doeleinden dienen, zijn er aanvullende lichtgewicht middleware
oplossingen nodig die gezamenlijk een gemeenschappelijk substraat aanbieden
over de verschillende segmenten van een sensorsysteem. Hierbovenop kan
onafhankelijk ontwikkelde applicatielogica geinstalleerd worden en hergebruikt
in verschillende gedistribueerde sensortoepassingen. Een vergelijkbare strategie
tot hergebruik van applicatielogica wordt voorgesteld door service-orientation;
een paradigma binnen de softwareontwikkeling dat veelal toegepast wordt in
gedistribueerde systemen voor traditionele serveropstellingen. De voorgestelde
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principes van service-orientation, en de implementaties daarvan, moeten echter
geherinterpreteerd worden om haalbaar en toepasbaar te zijn met de beperkte
systeembronnen voorradig in sensornetwerken.

Dit proefschrift stelt drie bijdragen voor die het open gebruik van sensornet-
werken voor meerdere doeleinden toelaten. De eerste bijdrage vergemakkelijkt
het ontwikkelen van applicaties die gedistribueerd zijn over de verschillende
heterogene segmenten van een sensorsysteem. LOOCI, oftewel Loosely-coupled
Component Infrastructure, biedt dynamisch configureerbare abstracties aan
voor modulaire applicaties en gedistribueerde interacties voor verschillende
hardware en software platformen. De andere twee bijdragen vergemakkelijken
het hergebruik van applicatielogica binnen open sensorsystemen. SDLITE laat
toe om dynamisch sensorknopen te ontdekken die de gewenste applicatielogica
uitvoeren. Hierbij wordt er rekening gehouden met de omgevings- en operationele
toestand van de sensorknopen om een onderscheid te kunnen maken tussen
de typisch meerdere knopen die dezelfde applicatielogica uitvoeren binnen een
sensornetwerk. TALKSENS, tot slot, vergemakkelijkt het systematisch definiéren
van berichten, het gecodérdineerd gebruik ervan tussen verschillende partijen, en
voorziet lichtgewicht ondersteuning voor het subtyperen van berichten. Dit laat
eenvoudig hergebruik toe van de applicatielogica van een derde partij en verkleint
de vereiste configuratieinspanning voor gedistribueerde sensortoepassingen.
De combinatie van al deze bijdragen resulteert in een sterk configureerbaar
applicatieplatform voor open sensorsystemen die voor meerdere doeleinden
kunnen toegepast worden.

Prototypes van de voorgestelde bijdragen werden geimplementeerd voor
verschillende platformen, met een focus op beperkte sensorknopen, maar inclusief
krachtigere platformen om integratie te ondersteunen. De evaluatie en toepassing
van deze bijdragen in een slimme-kantooromgeving tonen de haalbaarheid aan
van de voorgestelde aanpak en de goede performantie op beperkte sensorknopen.
Dit levert een significante bijdrage aan de paradigmatische verschuiving van
een statisch gebruik van sensornetwerken voor een vooraf gedefinieerd doeleinde
naar een meer kosteneffectief dynamisch gebruik voor meerdere doeleinden.
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Chapter 1

Introduction

The continuing miniaturisation of computing platforms allows for monitoring of
our physical surroundings at an unprecedented scale. Small embedded devices,
ranging in size from a few cubic millimeters up to a few cubic centimeters, can
now be integrated with the environment and be programmed to monitor a wide
range of physical quantities. As monitoring data becomes available in real-time,
much more timely reaction becomes possible to events that previously went by
unnoticed or were only discovered post-factum.

This (r)evolution gives rise to emerging systems like wireless sensor networks
(WSNs), the Internet of Things (IoT) and cyber-physical systems (CPS) that
find applications in domains such as supply-chain logistics [13, 45], health-care
[4], smart environments [8, 160] and wildlife preservation [85, 112]. According
to recent data, the amount of applications and their scale is poised to explode:
research firm Gartner estimates that by 2020 the number of small monitoring
devices that will be connected to the Internet will increase to 25 billion [55].

This dissertation contributes novel solutions towards the open and multi-
purpose application of sensor networks. In this regard, these networks of
embedded devices are envisaged as generic computational infrastructure. Such
infrastructure hosts various independent applications that can be individually
deployed and executed concurrently. This contrasts greatly with the single-
purpose and static sensor networks that are typically deployed today.

In this chapter, Section 1.1 provides additional context within which the
presented research was performed. Section 1.2 continues with a problem
statement, and Section 1.3 introduces this dissertation’s key contributions.
Finally, Section 1.4 outlines the rest of this dissertation.



2 INTRODUCTION

1.1 Context

To scope the presented research, the following sections provide background
information on wireless sensor networks and their integration within larger
distributed computing systems. Section 1.1.3 then continues with a discussion
on the transition towards multi-purpose sensor networks and the challenges this
introduces. The industrial relevance of the presented research is discussed in
Section 1.1.4.

1.1.1 Wireless Sensor Networks

A wireless sensor network (WSN)! is a wireless network formed by a number
of sensor nodes. Sensor nodes are small computational devices that range in
size from a few cubic millimeters up to a few cubic centimeters. They are
typically equipped with a microcontroller, flash and RAM memory, a radio
transceiver and one or more sensors. The latter can be embedded or externally
connected and monitor physical quantities like temperature, light, COs, sound
level, etc. An important feature of most sensor nodes is their limited energy
budget. This is typically provided by batteries, although increasingly energy
harvesting technologies are also employed. Because of their small form factor
and limited energy budget, sensor nodes are considered to be constrained devices
with limited computational, communication and memory resources [16]; they
typically feature an 8-bit microcontroller, and only a few hundred of kilobytes
flash, a few tens of kilobytes of RAM and a networking bandwidth of less than
250 kilobits per second. To prolong their lifetime, efficient energy budgetting is
required by minimising computational and communication efforts.

By means of radio connectivity, a set of sensor nodes form a wireless sensor
network. The size of these networks can range from only a few up to hundreds,
and even thousands, of sensor nodes. They can either be formed in an ad-hoc
manner and constituted of sensor nodes only, or include additional infrastructure
in the form of a gateway and be connected to a more resource-rich back-end, or
even the Internet. Depending on their size, single-hop networks can be formed in
which all nodes directly communicate with each other, or multi-hop networks in
which intermediate nodes route messages between two interacting nodes that are
outside of each other’s radio range. Although previously proprietary and special-
purpose networking stacks were used, current WSNs typically use traditional
networking protocols like IPv6, ICMP and UDP, albeit in combination with
dedicated networking protocols for constrained devices like the IPv6 adaptation

1Hereafter often referred to as simply sensor network
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layer 6LOWPAN [123], the RPL [184] routing protocol and the CoAP [156]
application protocol.

Wireless sensor networks emerged in their current form in the late 1990’s
[67, 86, 143]. Since then mature solutions have been developed for most low-level
challenges in the operating systems and networking domains. Examples include
operating systems like TinyOS [106] and Contiki [38] and the aforementioned
dedicated networking protocols. Middleware for wireless sensor networks has
been an equally active research domain [61, 126, 176], but has yet to result in
widely used platforms and paradigms. Consequentially, application development
and management remain difficult and requires specialist skills in software
engineering, networking and embedded computing.

While application domains are plentiful, currently the wide-spread adoption
of sensor networks is inhibited by the large financial investment they require;
sensor network hardware remains expensive and application development and
management expertise further increase the necessary costs [118]. Opportunities
that can improve the return-on-investment can be found within (i) extended
integration of sensor networks with other computational infrastructure, (ii)
increased support for application dynamism, and (iii) the multi-purpose use
of individual sensor networks. These opportunities are further explored in the
following sections.

1.1.2 Integrating sensor networks with back-end systems

As mentioned in the previous section, wireless sensor networks are often not
treated as separate islands of networked embedded systems. Instead, their
potential is further exploited by integrating them with back-end servers and
personal computing devices. In this dissertation, such integrated systems
are referred to as sensor systems. The larger resources provided by servers
enable storage of the gathered environmental data and allow for higher-level
information to be derived from that data. Further integration with mobile apps
and web-based applications drastically increases the availability of the gathered
data to users. A second benefit of such extended integration, is that it also
enables the remote control of sensor networks from back-end and mobile devices.
This is a primary concern as sensor nodes are often installed in hard-to-reach
places; for instance in applications such as river flood detection [70] and volcano
monitoring [181].

A characteristic aspect of sensor systems is the large hardware and software
heterogeneity across the various tiers. An example thereof is depicted in Figure
1.1. Across the sensor, gateway, mobile and back-end tiers, different types of
devices are used with very diverse resources in terms of computation, memory,
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Figure 1.1 — An exemplary overview of the software and networking stacks used
in the various sensor system tiers.

communication and energy. While higher layer networking protocols typically
shield application developers from the heterogeneity at the lower layers, the
diversity in available resources, and the specific nature and behaviour of devices
at each tier (e.g. sleeping sensor nodes), result in various specialised software
and networking stacks employed across the entire sensor system. Developing
distributed applications that span the various tiers therefore requires the expert
knowledge of multiple platform specialists.

A number of commercially available solutions support such integration, yet, do
so within closed eco-systems only. These systems span all tiers of the sensor
system and leave little support for dynamism and flexibility within the sensor
network. Instead, sensor nodes simply forward any sensed data to back-end
servers, often over a single-hop link within the sensor network. The aim of these
systems is to collect huge amounts of data and utilise the powerful computation
available at the back-end to make value thereof. Sensolus?, for instance, employs
dedicated devices to track various types of assets (e.g. furniture, cattle, yachts)
and seamlessly connects them with cloud-based management support and
applications. Systems like IBM Watson IoT? and Waylay*, in turn, provide
Platform-as-a-Service (PaaS) solutions to extract higher-level information from
huge amounts of heterogeneous data by means of machine learning, and support
real-time decision making by feeding the collected data to a rules engine. As
discussed in the next section, this dissertation takes a fundamentally different
approach to increase the value of sensor networks; i.e. by exploring ways to make

2http://www.sensolus.com/
3http://www.ibm.com/internet—of—things/watson—iot.html
4http://www.waylay.io/
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more flexible use of the resource constrained sensor nodes themselves. While
on the one hand supporting use-cases that inherently require such complexity
within a sensor network (see Section 1.1.4), such support can additionally greatly
complement and further increase the commercial value of said available systems.

While integrating sensor networks with back-end and personal computing devices
thus greatly improves their usability, such integration is non-trivial as it results
in complex distributed systems. Additional development and infrastructural
support is required to facilitate and fully leverage this potential within the open
use of sensor systems.

1.1.3 Towards open and multi-purpose sensor networks

Early sensor network deployments featured static functionality optimised to
perform a single dedicated monitoring task. This fulfilled the initial research
purpose of evaluating the feasibility of environmental monitoring with widely
distributed and constrained computing devices. Dedicated application logic
executed on top of the operating system [125] and extensive care was taken
to limit the computation and communication overhead [85, 98, 112, 180, 186].
Software was deployed on nodes prior to their physical installation and remote
software deployment was either not possible [85, 180, 186] or only allowed for
the installation of complete software images on all nodes in the network [98].

Currently, sensor networks are increasingly envisaged as multi-purpose
infrastructures [32, 125, 144]. This is expected to improve the return-on-
investment as the cost of purchasing and installing hardware can be split
over multiple applications and users [102, 163]. Such shared use of sensor
infrastructure is however only interesting, and practically feasible, when the
various deployed applications can evolve independently. A change to one
application may not disturb other applications that are not affected by the
change. Therefore, support for dynamic system configuration is required, being
the ability to extend and modify a system while it is running [95]. Next to adding
new functionality, also the available functionality needs to be configurable. This
allows for the one-time development of reusable applications that can be adapted
to their local context after deployment. A simple example is a temperature
sensing application with a configurable sensing frequency to suit multiple use
cases. While solutions for dynamic configuration of sensor networks exist, the
overview in Chapter 2 shows that these are limited in flexibility.

Additionally, correct management and configuration can only be performed if
the initiating stakeholder’s view on the system’s state is accurate. In a multi-
purpose and multi-user environment, such dynamic changes to the system need
to be detectable by third-party stakeholders. Support should be provided to
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discover the functionality provided by a sensor node and inspect its configuration
settings. This allows for reuse of functionality, if suitable, and prevents duplicate
deployment of similar application logic to serve various stakeholders.

In conclusion, great opportunity towards an improved return-on-investment lies
in the use of sensor networks as multi-purpose infrastructure. Once sensor nodes
are physically installed, this allows for multiple applications to be individually
deployed, configured and reused for various purposes. Contemporary application
platforms for sensor networks however do not support such extensive flexibility.

1.1.4 Industrial impact

The research presented in this dissertation was driven by industrial needs and
evaluated in a number of research projects: MultiTr@ns [78], STADiUM [80],
AdMid [75] and COMACOD [76]. All projects featured use cases in the logistics
domain. The following section presents the fleet management use-case from
the COMACOD project. This is representational for the use-cases in the other
projects and clearly shows the need for open and reusable sensor networks as
introduced in the previous section.

Fleet management use-case

Today’s trucks and trailers are increasingly being equipped with embedded
devices to monitor transported goods. For instance, sensor nodes are installed
in cooled trailers to monitor the current temperature in the trailer and forward
the readings to an on-board unit (OBU) in the truck. An OBU is a small
embedded device equipped with an information screen that provides the driver
with information regarding its current shipment. It is connected to the transport
company’s fleet management system and provides the driver with details about
transportation tasks, for instance: type of product, pick-up and drop-off
locations and monitoring requirements. Additionally, next to forwarding the
temperature readings to the transportation company’s back-end for further
processing and logging purposes, it provides the driver with an overview of the
environmental conditions in the trailer.

Integration of the sensor network, OBU and back-end system is however not
trivial due to the high level of hardware and software heterogeneity. It is
furthermore complicated by application dynamism. After all, across various
transportation tasks, trucks connect with various trailers, causing OBUs to
interact with different sensor networks over time. Additionally, for each new
task, the OBU and sensor nodes need to be (re)configured to precisely monitor
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the transported goods as required by legislation and customer demands. As such,
the sensor network in the trailer functions as a computational infrastructure
that is frequently reconfigured to suit the monitoring requirements of each
current transportation task.

The dynamism of this use-case clearly shows the need for software evolution
in sensor systems as described in the previous section. The full end-to-end
monitoring provided by integration of sensor nodes, the OBU and the back-end
system, furthermore is a good example of the extreme heterogeneity that needs
to be dealt with in a lot of real-world monitoring applications. Specifically
to logistics, the systems described in [13, 45] confirm the requirements of the
presented use-case.

1.2 Problem statement

As mentioned in Section 1.1.1, the return-of-investment of sensor networks can
be increased by their employment as an open and multi-purpose infrastructure
that is integrated within a larger distributed environment. The problem that
this dissertation tries to solve is how such a multi-purpose sensor network can
be provided and made practical use of. This relates to the following set of
typical middleware problems projected on the WSN domain;

e How to deploy new application logic across a sensor system and build
distributed applications?

e How to discover available application logic in an open sensor network?

e How to interact with third-party application logic in an open sensor system?

Solving these problems is however not trivial due to the specific nature of wireless
sensor networks [32, 61, 125]. Features such as restricted resources, increased
node mobility, intermittent network connectivity, typical interaction patterns,
and limited variation in application functionality render the straight-forward
reuse of existing solutions sub-optimal. Most importantly, a balance should be
found in the sensor network between added functionality and flexibility on the
one hand, and lightweight solutions on the other hand.

In more technical terms, the following key issues need to be solved with the

mentioned specific features of sensor networks in mind;

1. Adequate abstractions are needed that provide application-level modular-
ity and support distributed interactions. These need to enable dynamic
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composition and configuration of distributed applications across the
various sensor system tiers. Hardware and software heterogeneity needs
to be abstracted away, as well as low-level system and networking issues.

2. Run-time support is needed to observe the current state of the sensor
system and the functionality it provides. This entails mechanisms
and abstractions to discover and inspect, possibly third-party deployed,
application logic and the context in which it operates.

3. Where application logic of different parties is to interact, additional
support is needed to facilitate correct and meaningful communication.

Additionally, the collective solutions to these key issues need to result into
an integrated application platform for the open use of multi-purpose sensor
systems.

1.3 Contributions

This dissertation presents three novel contributions to the current state-of-the-
art in wireless sensor network middleware. Each of them provides a specific
solution for one of the issues identified in realising open and multi-purpose
sensor systems. These contributions are:

1. Reconfigurable lightweight abstractions for application modularity and
distributed interactions provided by LOOCI, or the Loosely-coupled
Component Infrastructure [71, 72, 73].5

2. A status-aware service discovery mechanism provided by SDLITE [170, 169]
that takes additional non-functional criteria into account.

3. The TALKSENS framework, which coordinates the systematic definition of
messages, and provides lightweight message subtyping support.

LooClI provides application-level components as a modularisation abstraction
and features a distributed event bus that realises loosely-coupled interactions
between components. Run-time configuration is supported by means of
remote deployment of components, behavioural configuration of component
properties, and configuration of local and remote component interactions over

5The design and development of LoOCI was joint work with two colleagues. Personal
contributions focused on (i) LOoCI’s communication framework, (ii) the LooCI/Sun SPOT
implementation, and (iii) unification of configuration APIs in the second release.
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the event bus. Additionally, LOOCI supports full inspection of components and
their interactions, and its various its various implementations enable unified
application management across all tiers of a sensor system.

SDLITE provides status-aware service discovery that, besides service function-
ality, also takes the operational and environmental status of service-providing
sensor nodes into account. This allows to differentiate between the often multiple
sensor nodes providing the same functional service within a sensor network.
SDLITE features a lightweight mechanism that allows various middleware and
system services to share node status information with, amongst others, the
service discovery process.

TALKSENS is a message definition framework that supports explicit and
coordinated definition of messages to facilitate interactions with, possibly
run-time discovered, third-party application components. It enables multiple
parties to come to a shared agreement of message types and contents, and
provides associated development-time and run-time support in the form of
generation of message serialisation code, and run-time inspection for message
definitions. This facilitates meaningful and error-free interactions between
third-party application components. In addition, TALKSENS provides message
subtyping, which considerably reduces the configuration effort when building
distributed applications.

Together, these contributions realise an application platform for open and multi-
purpose sensor systems. This integrated solution results in a service-oriented
architecture [138] that facilitates development and run-time configuration of
multi-tiered sensor applications. The presented contributions are implemented
for a variety of hardware and software platforms and are validated through
theoretical analyses, quantitative evaluation of their implementations, and
practical application in a smart office use-case.

1.4 Overview

A structural overview of this dissertation is presented in Figure 1.2. The chapters
in this text are organised as follows:

Chapter 2 provides additional background information about the requirements
to the presented research and the selected approach to a solution.

Chapter 3 provides a short high-level overview of an integrated solution
provided by the contributions presented in the later chapters.
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Figure 1.2 — A structural overview of this dissertation; highlighting the various
contributions.

Chapter 4 describes the application and communication abstractions provided
by the LOOCI component infrastructure.

Chapter 5 presents the status-aware service discovery mechanism provided by
SDLITE.

Chapter 6 introduces TALKSENS, a message definition framework that
coordinates the systematic definition of messages, and provides lightweight
message subtyping.

Chapter 7 evaluates the design and implementations of the various contribu-
tions, and applies them in smart office use-case.

Chapter 8 concludes this dissertation with some notable observations, presents
opportunities for future work and provides an outlook on future sensor
Systems.



Chapter 2

Background

Provisioning support for the open and multi-purpose use of sensor systems
requires the integration of a range of software technologies. Features like
application modularity, run-time code deployment, remote inspection and
configuration, and discovery, all need to be catered for and tailored to the
properties of sensor networks. The research presented in this dissertation builds
upon the individual solutions to these problems that are presented in the
research literature. This chapter presents an overview of the related work in
both the WSN and the wider distributed systems domain.

The first part of this chapter surveys WSN-specific technologies that contribute
to open and multi-purpose sensor networks. Section 2.1 discusses existing
support to serve multiple applications and users, Section 2.2 presents various
application configuration approaches, and Section 2.3 overviews discovery
solutions. Section 2.4 wraps up and discusses how state-of-the-art application
platforms for wireless sensor networks apply these technologies and identifies
their shortcomings.

In the second part, Section 2.5 widens the scope and discusses service-orientation.
Often successfully applied in more traditional distributed system deployments,
it provides inherent support for application dynamism, abstract description
of computational logic, and the discovery thereof. Section 2.6 discusses
the application of service-orientation within the WSN domain and identifies
shortcomings of existing solutions with regard to application dynamism and
reuse in multi-purpose sensor networks.

11
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2.1 Enabling multi-purpose sensor networks

While sensor network deployments in the early 2000’s featured static and highly
optimised functionality [85, 112, 180], the benefits of multi-purpose sensor
networks rapidly became understood and explored [188]. This trend has only
increased in more recent WSN literature [32, 125] with the emergence of stable
solutions for low-level system issues.

This section provides an overview of state-of-the-art solutions that contribute to
multi-purpose sensor networks. As shown in Figure 2.1, this can be categorised
into multi-application support on the one hand, and multi-user support on
the other. The former allows for multiple functional tasks to be concurrently
assigned to a sensor network or sensor nodes, while the latter enables various
users to concurrently make use of the network. Although both might be
supported at the same time, this is not always the case. Section 2.1.1 discusses
multi-application support, and Section 2.1.2 presents multi-user solutions.

2.1.1 Multi-application support in sensor networks

Multi-application support in sensor networks can be provided at three levels;
the data level, the network level or the sensor node level. Data-level approaches
hide away the internals of the sensor network by collecting sensor data at the
gateway or back-end and allow multiple applications to make use thereof. At the
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Figure 2.1 — A categorisation of software and networking solutions that
contribute to multi-purpose wireless sensor networks.
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network level, multi-application support is realised by a differentiation among
nodes in the network. Node-level multi-application support, finally, allows a
single node to concurrently perform multiple functional tasks. More details,
and examples, are discussed in the rest of this section, with a greater focus on
the node-level support as it fits more within the scope of this dissertation.

Data-level multi-application support

In this category, the applications reside at the back-end and deal only with the
data that is collected at the gateway. In-network details are hidden away by
data sinks, edge servers or distributed database abstractions.

In the data sink approach, sensor nodes simply monitor their environment and
forward the gathered data to a database at the gateway, which can be queried
by multiple back-end applications. The seminal habitat monitoring deployment
on Great Duck Island [112] is a prime example of this approach. Edge server
approaches apply technologies such as RPC and Web Services to present various
back-end applications with a higher-level application interface. In addition to
provisioning raw sensor data, additional processing can be performed at the
gateway to present higher-level data to client applications. Examples of such
systems include Janus [37], Hourglass [158], Global Sensor Networks (GSN)
[1] and the Oracle [136] and IBM edge servers [153]. Distributed database
abstractions such as TinyDB [110], DSWare [108] and Cougar [185], on the
other hand, abstract away the complexities of the sensor network behind a
database querying interface. Various back-end applications can query the sensor
network via this gateway-based interface. Instead of pro-actively collecting data
at the gateway and processing the queries there, the queries are disseminated
into the network where the necessary processing and aggregation of data takes
place.

While these approaches enable multiple back-end applications to make use of
collected sensor data, this is in stark contrast with the limited functionality
provided by the sensor network itself; i.e. provide data to the gateway. Individual
sensor nodes cannot be directly interacted with and in-network reaction to
events is not supported. Furthermore, while back-end applications can be
dynamic, the functionality in the sensor network is rather static and leaves
little to no room for application specific requirements. When one back-end
application requires a change to the logic within the sensor network, this also
affects the other applications, with a substantial chance on disturbance. This is
not in accordance to the multi-purpose support envisaged in this dissertation.
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Network-level multi-application support

Multi-application support at the network level enables various nodes in a
sensor network to perform different tasks. An example is provided by a simple
wireless sensor and actuator network (WSANSs) in which some nodes sense the
environment, and upon some detected event trigger other nodes to perform
an action. This paragraph discusses routing, grouping, and role-assignment as
technologies in support of multi-purpose sensor networks.

In contrast to single-sink routing, unicast and multicast routing protocols allow
for communication between two or more arbitrary nodes in the network. This
supports more flexible interaction patterns that emerge once different nodes
perform different tasks. Although the presented contributions rely upon such
routing support to be available, a detailed survey of sensor network routing
is outside of the scope of this dissertation. The interested reader is instead
referred to the extensive surveys by Akkaya et al. [2], Al-Karaki et al. [3], and
more recently, Singh et al. [159] and Watteyne et al. [178].

At higher levels of abstraction, various networking and middleware solutions
exist that allow to group nodes together and abstract away the rest of the
network to facilitate communication. This allows various groups of nodes to
exist in the network, which all serve a different purpose. Overlay networks
[68, 102], for example, clearly delineate sets of nodes in a network. Virtual
links are established between the respective nodes to isolate network traffic per
application. At the middleware layer, neighbourhood programming abstractions
aim at simplifying sensor network programming by facilitating data sharing
among nodes. In Hood [182] and Abstract Regions [179], physically close-by
nodes form a neighbourhood within which data can be easily shared in support
of local applications. Logical Neighbourhoods [124] replaces these physical
neighbourhoods with a higher-level, application-defined notion of proximity
based on logical conditions.

More flexibility in terms of the actual identification of nodes and run-time
support therefor is provided by role specification languages and role assignment
algorithms [54, 114]. Predicates on node properties are used to describe roles,
using a high-level configuration language. Once disseminated into the network,
nodes that adhere to such a predicate take on the associated role in support of
a distributed application.

In contrast to the gateway systems discussed in the previous section, these
approaches bring multi-application support into the sensor network. Routing
protocols and communication abstractions allow the network infrastructure to
be used for multiple purposes. Crucially, for instance, this ensures that nodes
serving one application, can be relied upon to route network traffic of other
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applications. While such features are important, the scope of this dissertation
requires additional support for the multi-purpose use of the computational
resources on a single node.

Node-level multi-application support

The execution of multiple applications on a single sensor node requires dedicated
software for a variety of features; e.g. nodes need to be able to concurrently
execute various tasks, the various applications need to be separated from each
other and underlying system logic to enable their individual management, and
sensor node resources need to be fairly shared among the various applications.
The following paragraphs discuss the state-of-the-art in concurrency models and
software modularity within the WSN domain, and briefly touches upon resource
management.

Concurrency models. The concurrency support in WSN operating systems
can be categorised in event-based, thread-based, and hybrid approaches. In the
event-based model, programs are implemented as event handlers. These are
invoked in response to external or internal events and execute their logic to
completion. Event-based concurrency has two main advantages; it maps well
with the event-driven nature of environmental monitoring, and has a low memory
footprint as they use a single stack that is shared between all concurrent tasks.
Therefore, TinyOS [106] and Contiki [38], the most popular operating systems
in the WSN domain, in principle apply event-based concurrency. However, while
this allows for the easy development of tasks that perform short computations,
it is harder to develop long-running computations (e.g. encryption, network
packet processing), as those require manual partitioning to avoid missing events
[90]. To meet this short-coming, WSN operating systems like MantisOS [12] and
RETOS [23] apply a multi-thread-based execution model. However, this tends
to increase memory overhead [39, 90] as each thread requires its own, typically
over-provisioned, memory stack. Which concurrency model to apply, therefore
remains an application specific choice. To accomodate this, Contiki actually
uses a hybrid model with an event-driven kernel and an optional multi-threading
application library [38], or alternatively, the Protothreads [39, 40] programming
abstraction. TinyOS, on the other hand, is purely event-based, yet multiple
third-party add-ons have been proposed that provide thread-based support; e.g.
TinyThreads [116], TOSThreads [90] and Fibers [179].

Software modularity. The flexibility in application management is greatly
improved by the ability to delineate cohesive sets of logic into separately
manageable entities, called modules. This allows to manage applications
independently of each other and underlying system logic. The following
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paragraphs discuss the most prevalent software modularity solutions in the
WSN domain; native code modules, virtual machines and component models.
Their remote reprogramming features are discussed later in Section 2.2.1.

Native code modules provide modularisation that operates directly on top of the
operating system without providing any other additional abstractions. Modules
are written in native code (i.e. mostly C in practice), and are primarily used to
update sensor nodes with additional application logic. Contiki [36], for instance,
provides default support for dynamic loading of native code modules. TinyOS,
on the other hand, does not; yet, such support is added by FlexCup [113].
A special mention in this regard, is in place for the SOS operating system
[62], which uses modularity more extensively than the previous examples. SOS
provides a limited kernel, on top of which application and network protocol
implementations execute in individually deployable native-code modules.

Virtual machines (VM) fulfil a similar purpose as native code modules but at a
higher level of abstraction. Applications are typically written in a higher-level
programming language, and leverage abstractions for communication, sensing,
data processing, etc. provided by a middleware layer. This allows to express
similar logic more concisely than using native code. Additionally, the subsequent
translation into byte code contributes to more compact deployable software
modules. In this regard, VMs justify the computational overhead caused by
the extra indirection during byte code interpretation, by reduced module size
and energy cost for their remote deployment. An additional advantage is the
increased portability. By abstracting away the underlying platform, the VM
presents a standard programming interface across a range of target platforms.
Both generic Java VMs as well as application-specific script-based VMs have
been applied in sensor networks.

Sun SPOT [9, 135] and Darjeeling [19] are examples of the first category. Besides
the modularisation provided by object-orientation, they allow for applications
to be wrapped into loadable modules, respectively called Suites and Infusions.
Sun SPOT and Darjeeling are however targeted at different types of sensor
nodes, which influences their design. Sun SPOT runs a Java ME compliant
virtual machine directly on the processor of resource rich sensor devices (32-bit
180 MHz ARM processor, 512 KB RAM). Darjeeling, on the other hand,
supports a substantial subset of the Java language and is specifically designed
for 8- and 16-bit microcontrollers with 2-10 KB of RAM.

Script-based VMs aim to even further reduce code size. Applications are
implemented using a scripting language and are to a large extent reduced to a
composition of VM-provided services. Although this limits applications to the
functionality provided by these services, the latter are efficiently implemented
by the VM in native code. Examples of the script-based VM approach are Maté
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[104], DAVIM [120] and DVM [10]. In contrast to Maté, DVM and DAViIM
support the concurrent execution of multiple scripts.

Finally, component models provide modularity at a higher-level of abstraction
than the previous approaches, and aim to improve software reuse [165]. Software
components, often simply called components, are software modules that
encapsulate a set of semantically related functions and expose that functionality
via explicitly defined interfaces. The latter serve as the component’s signature
and facilitate (third-party) use of the component while encapsulating (i.e. hiding)
implementation details. This is in contrast to the previous approaches, which
either do not support interaction between software modules (i.e. script-based
VMs and Contiki modules) or only via implicit interfacing, requiring a-priori
detailed knowledge of the entry points to those modules (i.e. SOS modules and
Java VMs).

Component models specifically aimed at sensor networks include nesC [56],
Lorien [145], Remora [166], RemoWare [167], Runes [26, 25], and FiGaRo [127].
NesC and Lorien are used to compose the entire software stack of a sensor
node, including both system and application logic. NesC is the component
model used to develop TinyOS, while Lorien is a component-based operating
environment. All other component models are applied on top of an operating
system to facilitate development of middleware and application logic. Some
only support explicit modularisation at development-time and compile away
component boundaries for the sake of efficiency at run-time. Others retain
component boundaries and feature run-time component deployment. Runes, for
instance, therefor leverages Java class loading and Contiki’s support for native
code modules. The latter is also used by RemoWare and FiGaRo, while Lorien
provides a proprietary native code module format and loading mechanism.

Resource management. Shared use of a sensor node’s resources by multiple
applications requires vigilant management of those resources [103]. Important
shared resources include memory (RAM and ROM), sensor and actuator
hardware and the network. To some extent this is provided by WSN operating
systems (e.g. hardware virtualisation and memory allocation techniques) as
well as middleware solutions (e.g. resource aware programming models and
frameworks). Resource management is however considered outside of the scope
of this dissertation. The interested reader is referred to the complementary
research by our colleague Javier del Cid [33], which addresses this issue in detail.

In conclusion, concurrency models and modularisation are important enablers for
multi-application sensor nodes. Additionally, the explicit interfaces provided by
component models facilitate third-party use of software modules. The presented
solutions, however, mainly focus on the sensor network tier only and do not
provide unified modularity and communication abstractions across the various
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tiers of sensor systems. Furthermore, additional support is needed that improves
third-party use; e.g. run-time discovery of deployed software modules and how
to interact with them. The following sections address these issues.

2.1.2 Multi-user support in sensor networks

Wherever multiple users share distributed computational infrastructure,
interoperability and security concerns arise. The following sections first discuss
application level interoperability within the WSN domain, and then shortly
overview security issues before referencing to more specialised literature.

Application-level interoperability

For multiple users to share sensor systems and bilaterally use each others
provided functionality, interoperability of application and configuration data is
required. This section discusses solutions that aim to (partially) provide such
support.

Back-end initiatives like SensorML [17] and the Semantic Sensor Network
(SSN) ontology [24] aim to improve the management of sensors and the
accompanying volume of generated data. Both provide standard models to
describe measurement processes by sensors, encode measurements and derive
higher-level information of observations. SensorML is an Open Geospatial
Consortium (OGC) initiative towards Sensor Web Enablement (SWE) which
facilitates the integration of sensing devices with Web service applications. It
defines data encodings that provide syntactic interoperability and Web services
that facilitate the storage and retrieval of sensor-related data. The SSN ontology
extends this with a semantic compatibility layer, allowing users to operate at
abstraction levels above the technical details of format and integration, instead
working with higher-level domain concepts and restrictions on quality. Their
reliance on XML and Web service technologies prevents to extend their use
within the sensor network.

Standardisation efforts have also been made to facilitate interactions between,
and with, third-party sensor nodes. ZigBee [191] was an early initiative in this
regard. Defined to operate on top of IEEE802.15.4, it proposes a number of
application profiles (e.g. home automation and industrial plant monitoring).
Each profile defines the devices (e.g. lights, switches, etc.) and functions (e.g.
on/off, dimmer, etc.) that are useful for that respective application, as well as
I/0O data formatting.
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To improve integration of constrained devices with back-end IP-based
applications, application level protocols such as CoAP [156] and MQTT-SN [162]
have been proposed. CoAP, or the Constrained Application Protocol, is specified
in IETF RFC 7252. Similar to HTTP, it uses a REST-like approach in which
resources, presented using URI’s, can be consumed or updated. MQTT-SN,
applies a more data-centric communication approach in an effort to overcome
the difference in addressing schemes applied between e.g. a ZigBee network
and an IP network. MQTT-SN is a variation of the OASIS MQTT (formerly
Message Queue Telemetry Transport) specification and defines a light-weight
publish-subscribe message protocol for constrained embedded devices.

While CoAP and MQTT-SN define application-level communication mechanisms,
they do not specify the contents or data that applications exchange using
these protocols. Recent initiatives toward this end include the Open Mobile
Application (OMA) Lightweight Machine-to-Machine (LWM2M) specification
[134], the Internet Protocol for Smart Objects (IPSO) Alliance SmartObject
Guideline [79] and Project Haystack [149]. While at its core a device management
protocol, OMA LWM2M defines an extensible object model in which an object
(e.g. location object) is a collection of CoAP Resources (e.g. latitude) with a
specified identifier, cardinality, type (e.g. decimal), units (e.g. degrees), etc.
The TIPSO SmartObject Guideline applies the LWM2M object model to describe
eighteen ’smart object’ types, including a temperature sensor, a light controller,
an accelerometer and a presence sensor. Project Haystack, in turn, is an open
source initiative to streamline working with data from the Internet of Things
(IoT). It proposes the pragmatic use of naming conventions and taxonomies to
make sense of [oT data and improve semantic meaning thereof. For a number
of applications, including automation, control, energy, HVAC and lighting, it
describes a set of IoT devices and the data they provide, including which data
values and units of measurement to use. While targeting IoT devices, Project
Haystack does not directly aim to be applied on constrained sensor nodes.

Compared to the proprietary application protocols used in early WSN research,
these solutions contribute substantially to interoperability in the WSN tier and
integration with back-end systems. A number of issues can be identified, however.
First, both CoAP and MQTT-SN are to a great extent developed to provide
standardised interactions between constrained devices and back-end applications,
and less with in-network interactions in mind. For instance, the centralised
message broker of MQTT-SN requires that all node-to-node interactions pass
by the gateway. Additionally, CoAP typically uses JSON to represent data,
which, while feasible, is a rather verbose format for use in a resource-constrained
environment. Second, OMA LWM2M, IPSO SmartObject, and Project Haystack
aim towards more interoperable data by providing message structures to which
applications should adhere. This however provides limited freedom or support
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to specify application-specific messages. Furthermore, additional support is
needed that facilitates compliance to these specifications at development-time.
Finally, the presented solutions are mostly recent initiatives and adequate
implementations were unavailable for the research presented here. For instance,
MQTT-SN and client-side support for CoAP Observe have only been added to
Contiki in February 2015.} Similarly, the IPSO Smart Objects and LWM2M
specifications date from late 2014.

Security support for shared sensor networks

A range of security issues need to be dealt with when supporting open use of
shared sensor network infrastructure. While a thorough discussion on security
is outside the scope of this dissertation, the following paragraph hints towards
existing solutions and refers the interested reader to more specialised literature.

When the sensor network is abstracted away from users and their back-end
applications only interact with shared databases or edge servers (see Section
2.1.1), traditional distributed systems security measures can be applied, such as
database security [11] and WS-Security [131]. In contrast, where multiple users
have direct access to shared sensor network infrastructure, dedicated security
mechanisms are needed that are tailored towards the resource constraints and
dynamic properties of sensor systems. Security solutions need to be in place
that ensure node availability and integrity. Each user must only be allowed to
configure and make use of the shared infrastructure up to the level for which it
was accredited. Deployment and configuration of functionality must be regulated
by security policies that ensure the stability of both the network and individual
nodes, in order to prevent disturbing the operation of other users’ applications.
Therefore node-level access control is required during configuration of the sensor
system. Also application data flows need to be secured to ensure integrity of
the collected data, prevent malicious actuation, and prohibit eaves-dropping.
The research by our colleague Jef Maerien [111] discusses these issues in more
depth and contributes to the secure sharing of sensor networks by providing a
key-sharing mechanism, secure configuration and application communication,
and access control.
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Figure 2.2 — Dynamic software reconfiguration approaches applied within the
WSN domain. (Adapted from [10])

2.2 Dynamic software configuration in sensor
networks

Using sensor networks as shared and reusable infrastructure requires the
individual management of the various applications that execute within the
network. This involves deployment of new applications to a sensor node and
adjusting their behaviour to the local context. Such changes need to be enacted
remotely and at run-time, as they are targeted at pre-deployed sensor nodes.

Support for remote and run-time software changes is provided by dynamic
software configuration. As shown in Figure 2.2, this can be partitioned in
behavioural configuration and structural configuration [95, 117]. Behavioural
configuration changes the behaviour of programs by modifying program variables.
It can direct an application to use a different existing strategy, but it cannot
add new strategies. Structural configuration, on the other hand, is more course-
grained and involves the addition and removal of software functionality. It allows
to adapt a system to address concerns that were unforeseen during development.

Similarly, dynamic software configuration in sensor networks ranges from simply
adjusting a parameter of prior deployed functionality, up to completely reflashing
a sensor node’s program memory with a new monolithic software image [10, 20,
63]. In the following sections, configuration strategies are evaluated in terms of
flexibility and update cost. Flexibility in this regard is defined as the level of

1https://github.com/contiki—os/contiki
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Figure 2.3 — Various structural reconfiguration approaches require varying
amounts of run-time system support.

freedom at which software can be reconfigured; e.g. monolithic images allow
arbitrary changes to the functionality, while parameters need to be explicitly
exposed to be configured. The update cost is defined as the total energy
needed to perform a configuration task; this includes both communication and
processing of the task.

Section 2.2.1 provides an overview of various structural configuration approaches
proposed within the related research literature. Section 2.2.2 does the same for
behavioural configuration. Section 2.2.3 discusses the various alternatives in
targeting configuration.

2.2.1 Structural reconfiguration

As shown in Figure 2.2, a range of structural reconfiguration approaches are
proposed. These provide various degrees of flexibility at various update costs
and, additionally, require different levels of run-time system support. An
overview of the latter is shown in Figure 2.3 and discussed in the following
paragraphs.

Monolithic images. The most flexible form of structural reconfiguration is
provided by flashing a sensor node’s program memory with a new software
image. Software images are monolithic and include both operating system
and application code. Consequentially, they are without external software
dependencies and thus allow for arbitrary changes. On-node support typically
involves algorithms and protocols to recompose the image from individually
received fragments and a bootloader to load the new image into program flash.
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Image-based software reconfiguration has three main disadvantages. First, they
provide an all-or-nothing solution in which a small change or update affects the
entire software stack on a node. Second, monolithic images are large in size
which incurs a high dissemination cost [150]. And third, data and software state
are not persisted across updates as a reboot is typically required. An image
update to fix, for instance, a routing bug, therefore not only causes the loss of
all routing table entries, but also all other state and application data.

The archetypal example of image-based software configuration in sensor networks
is Deluge [74]. While primarily a protocol that reliably disseminates TinyOS
images into a sensor network, its implementation enables multiple TinyOS
images to be stored on a node and loaded into program flash on demand. To
reduce the networking overhead incurred by image-based software configuration,
differential update mechanisms have been proposed that only propagate the
difference between the current and the new software image [83, 92, 151, 174].

Native code Modules. Module-based software configuration enables modules
of native code to be individually loaded on top of a static kernel at run-time.
Although some flexibility is lost compared to image-based configuration, the
functionality provided by the static kernel is typically limited to basic operating
system services like communication, memory management and I/0, leaving
great freedom for application functionality. Individual modules represent cleanly
separated coarse-grained units of functionality. They are deployed independently
and do not disrupt each others execution, nor require a reboot. Usually,
mechanisms like dynamic linking and code relocation are required to correctly
load a module into the local address space and enable interaction between
modules and the kernel. While this increases the complexity of loading a new
module, the overall update cost is small since less code needs to be transfered
over the network.

Module-based software configuration is by default supported by the SOS [62] and
Contiki [38] operating systems. Both use a proprietary compacted Executable
and Linkable Format (ELF) to transfer modules. A variant of module-based
software configuration is provided by Java virtual machines like Sun SPOT
[9, 135] and Darjeeling [19]. Here, optimised and byte-code-verified binary
bundles are loaded into a Java virtual machine instead of on top of an operating
system kernel.

Interpretable scripts. Interpretable scripts present the most cost-effective,
but least flexible type of structural reconfiguration. As discussed in Section 2.1.1,
such scripts merely invoke natively implemented services that are provided by a
virtual machine through a high-level API. While restricting application flexibility
to the functionality of the provided services, this is considered sufficient as
the application purpose of sensor networks in general is also limited in range.
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The resulting byte-code scripts can be very concise in contrast to native code
modules or images. While this decreases the communication overhead during
configuration, the added indirection during run-time interpretation requires
greater computational effort. Consequentially, this technique is primarily
suited when frequent reconfiguration is needed as in those cases the reduced
communication overhead is greater than the additional computation overhead.

Maté [104] first explored the use of virtual machines in sensor networks. By
providing a high-level interface, it simplifies programming and allows complex
programs to be very short (under 100 bytes). As programming against a fixed
high-level interface can be found restrictive, more flexibility is provided by
ASVM [105], DVM [10] and DAViM [120]. ASVM extends Maté with compile-
time customisation of the byte code instruction set, while DVM and DAViM
support run-time updates to the instruction set of their respective VMs.

Additional flexibility can be achieved through the combined application of
the above approaches. As mentioned, DVM and DAViM achieve this by
combining the modular and scripted approach. Similarly, Deluge can be applied
to dynamically alter the underlying kernel of modular systems.

2.2.2 Behavioural reconfiguration

The behaviour of functionality on a sensor node can be fine-tuned through the
reconfiguration of parameters. The level of flexibility is low and determined by
the parameters exposed by applications or system services. On the other
hand, such reconfiguration can be performed at a low cost, since it only
requires the dissemination of a new parameter value. Run-time parameter
configuration requires support thereto from supporting middleware or the
applications themselves (see Section 2.4.3). A few approaches however have
tried to provide parameter reconfiguration in a more generic manner.

The Sensor Network Management System (SNMS) [173] is a light-weight
application-agnostic management system that allows programmers to easily
expose attributes of TinyOS components over a multihop network. A
dissemination protocol allows to query and configure all exposed parameters,
while a collection protocol supports run-time state monitoring.

Marionette [183] provides the ability to call functions and read or write variables
of pre-compiled embedded programs at run-time. Based on annotated code, the
Marionette compiler generates both on-node code and a back-end Python client
tool. The client tool allows to peek and poke variables and invoke function calls
via an RPC interface. While primarily aimed at interactive development and
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debugging, Marionette can be used to remotely configure the entire software
stack.

In Chi [49], system configuration is separated from system logic by extracting
configuration parameters of different system services into a central registry,
called a blackboard. Configuration policies operate on the configuration data
on the blackboard to optimise system performance. While this allows for great
configuration flexibility across the software stack, Chi does not support remote
interaction with the blackboard.

2.2.3 Reconfiguration targeting

An orthogonal concern to the functional granularity of reconfiguration tasks, is
the dissemination thereof. Distinctive factors in this regard are target-selection,
reliability and efficiency. Within the application level scope of this dissertation,
primarily target-selection is of importance.

Target-selection defines which nodes are to be reconfigured. Existing
reconfiguration approaches either target (i) the entire network, (ii) a group of
nodes, or (iii) an individual sensor node. The functional variation within a
network often determines which targeting is the most suitable. Network-wide
reconfiguration, for instance, is more efficient in a functional homogeneous
network than sequential individual configuration of all nodes. Additionally, a
combination of targeting might be beneficial for different configuration tasks;
e.g. network wide code deployment and individual parametrisation. The multi-
purpose sensor networks envisaged in this dissertation require the possibility
to target individual sensor nodes for configuration. While WSN research often
favours network-wide reconfiguration [164, 177], also more finer-grained targeting
is supported.

Deluge [74], for instance, is used to reliably disseminate TinyOS images across
a sensor network. Other monolithic approaches such as XNP [84] and MNP
[96] support updating a single node or a group of nodes, respectively across a
single hop and multiple hops. Modular updates, on the other hand, are mostly
performed on more finer-grained targets. The native code modules of Contiki
and SOS, as well as the Java applications of Sun SPOT and Darjeeling are for
instance deployed in a unicast manner. FiGaRo [127], on the other hand, builds
upon a neighbourhood abstraction to disseminate Contiki modules to a group
of sensor nodes. Most VM approaches like Maté [104], DVM [10] and DAVIM
[120] use efficient code propagation mechanisms, like Trickle [107], to distribute
small-size scripts to all nodes in a network. SensorWare [18], on the other hand,
supports the deployment of scripts to individual nodes, or a group of nodes that
comply to an attribute-based description. Finally, Marionette [183] and SNMS
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[173] provide parameter configuration of all nodes in a sensor network, with the
former also supporting configuration of individual nodes.

2.2.4 Conclusion

Dynamic software configuration received substantial attention in the WSN
community. Various approaches thereto primarily aim at facilitating debugging,
adaptation to a local context, and repurposing of sensor nodes. Their application
in support of open and reusable sensor networks is less frequent, although,
the proposed solutions do provide contributions thereto. From the various
structural configuration methods discussed in this section, particularly native
code modules suit the requirements of multi-purpose sensor networks. They
provide greater flexibility than interpretable scripts, while having a lower update
cost than monolithic images [150]. Multiple modules can share underlying system
services and operating system functionality, yet these provisions do not impose
large restrictions on their own functionality and, for instance, allow low-level
interactions with sensor hardware. As discussed in Section 2.1.1, they can
be used to encapsulate components, which by means of exposed component
properties provide additional support for behavioural configuration. In short,
further integration of various approaches holds great promise of achieving the
flexible application configurability envisaged in this dissertation.

2.3 Discovery of application logic

Third-party use of application logic in a multi-purpose sensor network, requires
that logic to be discoverable at run-time. More precisely, the presence of that
logic needs to be determinable as well as the interface via which it can be invoked;
i.e. the provided functions or messages handled. Such application discovery
comprises two complementary features; (i) an abstract description that provides
details on both the semantics and interface of an application, and (ii) a discovery
mechanism that allows to query for such functional descriptions. This section
surveys functional representation and run-time discovery approaches proposed
in the relevant literature. How discovery requests are efficiently disseminated
into a sensor network and replied to, is considered outside the scope of this
dissertation. The interested reader is referred to the survey by Anwar et al. [5].

Static single-purpose deployments often lack the need for application discovery.
Additionally, low-level embedded programming and constrained resources
render the run-time availability of explicit functional descriptions to be less
important. Therefore, the only representations that are mostly available in WSN
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programming solely serve development time purposes. They are provided by
language-constructs, such as function definitions in Contiki and nesC component
interfaces in TinyOS. This prevents their run-time discovery and by consequence
third-party reuse of the represented logic.

Improved support thereto is provided by run-time configurable component
models. Examples include RemoWare [167], FiGaRo [127] and Lorien [145].
Components specify their provided interfaces and dependencies, which allows the
supporting run-time system to perform dependency resolution upon component
deployment. While in RemoWare and FiGaRo this is done merely based on
interface naming, Lorien provides more type-safety via hash-codes that are
based on the entire interface type including parameter types and return type
of all function prototypes. In effect, only semantic representations are thus
available at run-time and no complete interface descriptions.

Reflective component models like OpenCOM [27] and Runes [26] provide more
details. Full interface representations, including function name and parameter
and return types, are inspectable at runtime to allow dynamic invocations
of previously unknown, interfaces [27]. Reflection is however mostly applied
to provide self-adaptive systems that autonomously reconfigure themselves to
adapt to detected context-changes; for instance, switch to a more reliable and
performant network configuration upon disaster detection [70]. Such discovery
and representation of functionality are constrained to the local run-time and
not available to instructed reconfiguration by an external third party. As a
result, while more generic interface descriptions, for example using CORBA IDL
[133] in OpenCOM, might be available at development time, run-time available
interface representations are often much tied to the low-level details of the
implementation platform (represented as Java classes, C-structs, etc.) While
this allows the run-time system to reason over them, these interface descriptions
are (i) platform-specific and (ii) not externally available.

A more open, platform-independent description of functionality is provided by
the Constrained RESTful Environments (CoRE) IETF group in the context of
CoAP. The proposed Link Format [154] supports resource discovery of CoAP
resources. The main function of such a discovery mechanism is to provide
Universal Resource Identifiers (URIs, called links) for the resources hosted
by a sensor node, or server in their terminology. A well-known relative URI
/.well-known/core is defined as a default entry point for requesting the list of
links about resources hosted by a server (i.e. a CoAP enabled sensor node).
The link format provides a number of attributes that can semantically type a
resource and provide an interface description.

In addition to on-line discovery, CoRE also proposes off-line discovery in the
form of a Resource Directory [157]. Such a directory is a back-end service
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that hosts descriptions of CoAP resources held on sensor nodes. This supports
situations where direct discovery of resources is not practical due to sleeping
nodes or disperse networks. Sensor nodes are assumed to proactively register
and maintain resource directory entries on the Resource Directory, which are
soft state and need to be periodically refreshed.

In conclusion, some support for interface descriptions and their run-time
discovery has been presented within the context of wireless sensor networks.
These approaches however mainly support local adaptation and do not allow
for the remote discovery by a third party. A recent exception is provided by
CoAP, which however is only an application protocol that requires further
integration within an (existing) application framework. Discovery of application
logic within a service-orientated context is further discussed in Section 2.5.

2.4 State-of-the-art open and multi-purpose
support

The previous sections reviewed a range of operating system and middleware
solutions that can contribute to the concurrent execution, run-time configuration
and open use of applications in sensor networks. This section revisits the
requirements posed in Section 1.2 and critically evaluates how state-of-the-art
sensor network research provides support for their fulfilment. To provide a
clear overview, the discussion is limited to solutions that support multiple
concurrent applications and their run-time deployment. Besides a selection
of the previously discussed solutions, a number of representative application
frameworks are reviewed that integrate those solutions.

2.4.1 Evaluation criteria

Table 2.1 evaluates the selected approaches along a number of criteria that
reflect the requirements to open and multi-purpose sensor systems. These are
categorised as follows.

Run-time software configuration. Software configuration at the structural
and behavioural level is required at run-time. Structural configuration is
categorised in the provided modular abstraction and the type of interactions
between the latter. Modularity is either provided by native code modules (m,)
or interpretable scripts (s). Interactions between modules (i.e. either native
code modules or interpretable scripts) have a local scope (1) when allowed only
between modules on the same sensor node or a distributed scope (d) when



STATE-OF-THE-ART OPEN AND MULTI-PURPOSE SUPPORT 29

allowed between modules on different nodes. Run-time configuration of these
interactions is of importance for flexible reuse and is either (i) not supported
(0), allowing only static interactions at run-time, (ii) internally supported
(i), which allows only the underlying run-time environment to reconfigure
interactions in an automated manner, or (iii) externally supported (e), allowing
an external third party to reconfigure interactions. Behavioural configuration
allows for fine-tuning the deployed software modules to their run-time and
environmental context by means of changing fine-grained property values. This
is either not supported (o), allowed only internally (i) by the supporting run-
time environment, or ezternally (e) by a third party. The last criteria in terms
of configuration is targeting. This reflects whether configuration actions can be
performed on a single node (nd), a group of nodes (gr) or the entire network
(nw). Depending on the criteria that determine group membership, the amount
of nodes in a group can range from none up to all nodes in the network.

Run-time discovery. The run-time discovery of the deployed functionality
and its operational context is required to enable third-party reuse. This entails
both a representation thereof, as well as a mechanism that allows to retrieve said
representation. The functional representation might describe only the semantics
of the provided functionality or can provide more structural details with regards
to its interfaces and how to invoke them. These various representations are
either (i) not provided (o), (ii) provided in a simple or naive manner (s), or
(iii) provided in a coordinated manner (c) that facilitates third-party reuse.
Simple semantic descriptions are given by naive and ad-hoc naming, while a
coordinated approach provides a more reusable model-based solution. Simple
structural descriptions are low-level and platform-dependent, while coordinated
structural descriptions are independent of the implementation platform. Besides
such functional information, also operational and environmental information can
be included during discovery. Such context information is either not included
(0), or included (x). The final discovery criteria deals with the scope within
which functionality can be discovered. There is either (i) no support (o) for
discovery, (ii) only internal support (%) for local discovery within the underlying
run-time environment, or (iii) external support (e) that allows third party users
to discover the functionality provided by a sensor node.

Operating system heterogeneity. Sensor applications that span the sensor
network, mobile, and back-end tiers require an application platform that
abstracts away the different underlying operating systems. Such heterogeneity
is either (i) not provided (o), (ii) only provided within a single tier (z), or (iii)
provided across various tiers (+).
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Run-time software configuration Run-time discovery OS heterogeneity
Structural configuration Behavioural configuration Targeting Representation Discovery scope
Modularity Interactions Semantic Structure Context
Scope Configurable
o/m/s o/1/d ofi/e ofi/e nd/gr/nw o/s/c o/s/c o/x ofife o/x/+
Requirements m d e e nd c c X e +
Operating systems
Contiki [38] m o 0 o nd 0 o o o o
SOS [62] m 1 0 o nw o o o o o
Virtual machines
Sun SPOT [9] m 1 o o nd s o x e o
DVM [10] s/m 1 o i nw o o o 0 o
DAVIM [120] s/m 1 0 i nw 0 o o 0 o
Component models
Runes [26, 25] m 1 i i nd s s o i +
FiGaRo [127] m 1 i o gr s o X i o
Lorien [145] m 1 i o nd s s o i o
Remora/RemoWare [166, 167] m 1 i i nd,nw s o o i o
Integrated application frameworks
Melete [189] s o o o gr 0 o o 0 o
Agilla [50] s Ld 0 o gr o o X o o
SensorWare [18] s Ld 0 x nd,gr s o X 0 x
TinyCubus [114] m 1 i i gr ? ? X i o
SenShare [102] m d i o gr s o X o o
o/m/s: o = none, m = module, s = script - 0/1/d: 0o = none, 1 = local, d = distributed - o/i/e: 0 = none, i = internal, e = external - nd/gr/nw: nd = node, gr = group, nw = network -

o/s/c: o = none, s = simple, ¢ = coordinated - 0/x: 0 = no, x = yes - 0/x/+: 0 = none, x = within a single tier, + = across tiers

Table 2.1 — Overview of the support provided by state-of-the-art sensor network solutions towards the realisation of
open and reusable sensor systems. (Criteria evaluations that fulfil the proposed requirements are in bold.)
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2.4.2 Operating systems, virtual machines and component
models

The state-of-the-art overview commences with an evaluation of a number of
WSN operating systems, virtual machines and component models.

Contiki [38] and SOS [62] are the most prominent WSN operating systems
that provide inherent support for run-time configurable concurrent applications.
Both allow for run-time deployment of binary modules but provide no inherent
support for additional configuration, nor discovery. While Contiki modules
can only directly interact with the kernel, SOS modules can invoke functions
of each other or exchange events. As such, only local and static interactions
are supported. Being dedicated WSN operating systems, they do not support
heterogeneity across the multiple tiers of a sensor system.

The Sun SPOT [9] platform provides an operating environment by means
of a Java ME virtual machine that runs directly on the micro-controller of
a dedicated, resource rich sensor node. Multiple Java applications can be
individually deployed. They execute in isolation and interact locally via a
RPC-like mechanism. Local discovery of interfaces is supported based on
interface names, yet such discovery needs to be hardcoded in client applications.
Additionally, a back-end API allows the remote discovery of applications as well
as a set of system state variables. No interface representations are provided
during discovery, which limits third party reuse of deployed applications.

DVM [10] and DAVIM [120] are two SOS-based virtual machines. Both allow
multiple concurrent applications in the form of run-time deployable scripts, as
well as dynamic updates of the instruction set of the VM by means of binary
modules. Although scripts cannot directly interact, local interactions between
scripts and modules are supported. Amongst others, this allows for run-time
behavioural reconfiguration of deployed modules to better suit the application
context. Both scripts and modules can only be disseminated over the entire
network, which limits functional diversity across sensor nodes. No discovery
support is provided.

Representative run-time reconfigurable component models for sensor networks
include Runes [26, 25], FiGaRo [127], Lorien [145] and RemoWare [167]. All
four use dynamically loadable binary modules to implement components. Their
explicit component interface definitions allow for configuration of component
interactions. Only local interactions are supported, however, although remote
interactions can be implemented in a dedicated component. Runes provides the
most configuration flexibility via dedicated connectors that allow to explicitly
bind components together. These configurations can however only be actuated
from within other components. The same limitation holds for behavioural
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configuration. Component interactions in FiGaRo, Lorien and RemoWare, on
the other hand, can only be configured based on the dependencies they describe
and which are resolved upon component deployment. RemoWare applies the
same approach for behavioural configuration; component properties can be
configured only at deployment time, for instance to retain state during the
update of a component. While all four component models apply arbitrary
naming as a semantic representation of components or their interfaces, Runes
and Lorien additionally provide structural interface descriptions. In Runes this
is provided by language constructs (i.e. Java interfaces or C structures that
contain function pointers), while Lorien provides a hash value based on the
entire interface type, including parameter types and return type. RemoWare,
in turn, does provide a standardised XML-based SCA interface description,
however this is only a development time attribute. Discovery of functionality is
only supported locally, often in support of dependency resolution. A description
of the state and resources of a node is only provided by FiGaRo, where it is
used to determine whether a node belongs to the group of nodes to which a
component is being deployed. Component deployment to an individual node
and the entire network are also supported by the other component model
approaches. Finally, with implementations for Contiki, Java and C/Unix, only
Runes provides implementations that span across the various tiers of a complex
sensor system.

2.4.3 Integrated application frameworks

This section continues the state-of-the-art overview with an evaluation of a
number of integrated application frameworks. As they are first mentioned here,
these frameworks are described in more detail.

Melete [189] realises multi-application sensor networks by means of group-based
deployment of interpretable scripts. Each node provides an adapted Maté
virtual machine that supports the concurrent execution of multiple scripts.
An application corresponds with a group of sensor nodes that each individual
node can dynamically join and leave based on its contemporary local status
(i.e. sensed data, node properties). Scripts can not directly interact with each
other and only basic networking functionality is provided by the VM. They can
also not be individually configured and do not provide an externally available
representation.

Agilla [50] explores the benefits of using mobile agents and tuple spaces as a
foundation for multi-application sensor networks. Sensor networks are initially
deployed without an application installed, after which users reprogram the
network by injecting (diverse) agents into the network. Agents implement
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application behaviour in Maté-alike interpretable scripts. They interact locally
in a loosely-coupled manner via a tuple space. Additional support for distributed
querying of remote tuple spaces is also provided. These interactions are not
configurable however, nor is there support for the discovery of agents. The
context of each node is important and is available via the tuple space to guide
migration of agents across the network. Only TinyOS-based nodes are targeted
by the Agilla implementation.

SensorWare [18] aims at improving sensor network programming through
the automated dissemination of scripts into a network that together perform
distributed algorithms. Each node can run multiple scripts that make use of
sensing, communication and computation services provided by the middleware.
Additional supporting services can be deployed to a node at runtime in the form
of control scripts. Scripts are identified using simple naming and identifiers.
They can be parameterised to be tailored to the local context or to retain
their state when migrating between nodes. Interactions between scripts occur
both locally and remotely via a mailbox abstraction. Node-level configuration
targeting is supported, but configuration is to a large extent autonomous in
order to realise the distributed algorithm. SensorWare provides no support for
discovery of provided functionality, yet other node’s context can be retrieved
via mailbox interactions in support of script migration. Finally, while its Tcl
and Linux-based implementation theoretically allows it to be deployed on a
range of devices, only a PDA deployment is described. This is however not
suited for constrained sensor nodes.

TinyCubus [114] provides an adaptable software architecture in support of
heterogeneous applications and their dynamic requirements in TinyOS-based
sensor networks. It provides several implementations of system services and
based on provided meta-data selects the most appropriate one to serve the
current application(s). System services and applications can be deployed at
run-time using the FlexCup [113] mechanism. Local interactions take place via
a state repository to facilitate cross-layered sharing of data and via function
invocations. To facilitate the latter, local interface dependency resolution is
executed when new functionality is deployed. While the state repository allows
for flexible local parametrisation of components, such functionality is not offered
to external entities. Multi-application support at the network level is provided
by classifying nodes into different roles based on their state or context. These
roles also determine the targeting of component deployment. While it is unclear
how component and interface semantics and structure are represented, they are
required in some form for run-time dependency resolution.

SenShare [102] addresses the challenges of protecting and isolating multiple
applications both inside a node and a network. A hardware abstraction layer
enables multiple TinyOS images to operate on a single node, thus providing
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a modular reprogramming solution. Deployment targeting is performed via
SQL-like commands that identify the targets of a modified Deluge dissemination
action. SenShare applies overlay networks to isolate communication per
application. While this enables to dynamically determine the nodes that
together implement an application, it does not enable remote configuration of
those interactions. Numerical application identifiers determine overlay network
membership and a limited range of context variables (location, sensing modalities
and available resources) are taken into account during deployment target
selection. Dynamic discovery of applications is however not provided. SenShare
targets rather high-end sensor nodes that are able to concurrently execute
multiple TinyOS images. It is only implemented on top of an embedded Linux
version for the resource-rich iMote2.

2.4.4 Conclusion

The presented overview shows that many state-of-the-art WSN research efforts
partially share the requirements posed in this dissertation. The focus is
however often on a different need [122]; e.g. self-organisation (Melete, Agilla,
SensorWare), quality-of-service (TinyCubus, SenShare), context-awareness
(Melete, Agilla, TinyCubus), and programmability (Melete, Agilla, SensorWare).
Consequentially, support for configurability is only provided within closed sensor
systems.

Support for modularity seems to be well established, yet, the interactions
between deployed software modules are still often only locally defined, and
at times static. Additionally, the mostly single-platform implementations
complicate the integration of sensor networks within wider distributed sensing
applications. Furthermore, while behavioural configuration is provided by
a considerable number of platforms, this is mostly in support of automated
local adaptation. While certainly beneficial in the envisaged large-scale use
of sensor networks, such configuration support should also be provided in
an external manner so that third-party clients or software can aid in these
configurations. The same conclusion can be made with regards to the discovery
of deployed functionality. While a number of solutions provide simple functional
representations, and even contextual information, these are not detailed
enough and restricted to internal use in support of automated behaviour and
configuration. This limits the need for platform-independent representations
based on a commonly agreed upon model. Yet, such support is of great
importance for open sensor systems. While considerable key features of open
sensor networks have thus been realised, additional effort is needed to fine-tune
those features and improve their integration.
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The following section discusses service-orientation; a software engineering
paradigm that inherently supports loose-coupling of software modules and
discovery in a platform-neutral manner. This holds great promises to further
enable more openly usable and configurable sensor systems.

2.5 The Service-oriented approach

This section widens the scope to beyond dedicated WSN research, and
investigates the features of service-orientation [138]; a software engineering
paradigm that provides solutions that map well to the challenges defined in this
dissertation (see Section 1.2). The following sections shortly introduce the main
principles of service-orientation, and describe how these are influenced by the
specific context of sensor systems.

2.5.1 Service-orientation: Architecture and principles

Service-orientation emerged as a reaction to the shortcomings of the earlier
silo-based approach of (distributed) application building [42]. In the latter, all
functional requirements are straight-forwardly realised in solution logic. While
this can result in efficient solutions, across multiple applications it leads to
redundancy at both development-time and run-time; considerable amounts of
supporting functionality needs to be repeatedly implemented, and executed,
across those applications. Furthermore, as each application is build in isolation,
future integration is complicated and requires considerable development effort.

To alleviate these shortcomings, service-orientation builds upon the principles
of separation of concerns and encapsulation. As such, well-defined blocks of
functionality are implemented as services, which form the fundamental unit
of service-oriented logic. While each service deals with the requirements of
a specific piece of the application, they are intended to be implemented in a
generic and reusable manner. This allows to use them repeatedly across various
applications which compose multiple services together. To foster this reuse,
service descriptions provide an abstract description of the technical interface
of a service. Such a description provides details on how to invoke the service’s
functionality. As their interface descriptions are programmatically interpretable,
services can be discovered at run-time.

Service provisioning is organised via a service-oriented architecture (SOA) [138],
shown in Figure 2.4. Service providers publish their services to the service
registry by providing the service description and a link to a respective service
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Figure 2.4 — The basic service-oriented architecture [138].

instance. This allows a third party, the service client, to query the service
registry for a certain service and be informed on where it is available and how
to invoke it. As a result, instead of implementing applications entirely from
scratch, prior developed services are composed with application-specific ones, to
jointly provide the required functionality. Such late-binding of services provides
loose-coupling, which, in theory, allows independent adaptation of services
without disturbance of the others. Finally, service descriptions should provide
information on the functionality of a service, but not on its implementation and
underlying technology. As such, they are platform-independent and abstract
away underlying platform heterogeneity.

The sole application of a SOA, however, does not necessarily result in the
increased reuse of services. It only provides a setting in which such reuse can
be achieved. At design time, services should be envisaged as participating
in multiple run-time compositions, even when no immediate composition
requirements exist. This, however, requires fine balancing and one should
prevent to design overly generic and hard-to-use services [42]. While beneficial
in the long term, this tends to increase complexity, cost, effort and time to build
software at a short term.

Beyond the basics: Extended SOA

Additional concerns, not dealt with by the original basic SOA, discussed in the
previous section, have been dealt with in what is commonly referred to as the
extended SOA [139, 140]. This provides extensions that improve support for
composition and coordination of services, and conformance and quality-of-service
requirements. On the other hand, concerns such as efficiency, responsiveness and
reliability are dealt with to furnish business processes and enable cross-enterprise
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service compositions. While of great importance to the successful realisation of
service-orientation to automate business processes, this dissertation is mainly
concerned with the properties of the basic SOA. A number of publications from
our research group [33, 68] have however explored the opportunities of these
extensions in a WSN context.

2.5.2 A case study: Web services

Service-orientation is a technology-neutral paradigm and has been implemented
on top of several software technologies like Jini [7], CORBA [94], Apache
Thrift [6]. It is however often erroneously identified with its most common
implementation; i.e. Web services. A Web service is a network available service
that implements solution logic, is identified by a Uniform Resource Identifier
(URI) and accesible using Web technologies. The World Wide Web Consortium
(W3Q) identifies two major classes of Web services [15]: Arbitrary Web services
and REST-compliant Web services.

Arbitrary Web services expose an arbitrary set of operations and build
upon standard Internet protocols. The operations supported by such a
Web service are described using the Web Services Description Language
(WSDL). Service interaction typically occurs using SOAP (originally Simple
Object Access Protocol) messages over HTTP (HyperText Transfer Protocol).
These technologies rely upon the eXtended Markup Language (XML) to
standardise message contents. Further composition and management support
is provided by WS-* extensions for security (WS-Security), reliability (WS-
ReliableMessaging), trust (WS-Trust), policies (WS-Policy), etc. The WS-*
software stack is to a large extent standardised and provides good support
for complex operations. This, however, comes with a high-learning curve
to developers and heavyweight implementations. Its frequent application of
XML additionally causes communication and parsing overhead due to verbose
content formatting in exchanged messages. Although some implementations
exist for sensor networks (see Section 2.6.4), Arbitrary Web services are generally
considered to be too heavy-weight for constrained sensor networks [97, 101].

Recently, more lightweight REST-compliant Web services have emerged. Unlike
their arbitrary counterparts, these do not build on top of a large set of standards
to provide uniformity, yet instead apply the REST architectural style [48]. Here,
a web services consist out of a collection of pieces of information, called resources,
that each are identified by a unique global identifier (i.e. URI). These resources
can be interacted with in a RESTful manner using a limited set of stateless
operations (i.e. GET, POST, PUT, DELETE). Message exchange occurs with
the use of XML or, alternatively, with the less verbose JSON (JavaScript Object
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Notation) format over HTTP. In general, REST-compliant Web services are
better suited for simple and lightweight applications. They do however require
additional effort to support more complex interactions, due to the absence
of supporting standards. RESTful communication has received considerable
attention in sensor networks through CoAP, as discussed earlier in Section 2.1.2,
and in Section 2.6.3.

2.5.3 Conclusion

Early static sensor network applications exhibit great similarities with the
silo-based applications that service-orientation tries to move away from.
Consequentially, service-orientation provides solutions that fit well with the
challenges identified in support of open multi-purpose sensor systems, discussed
in Section 1.2. These solutions include abstract service descriptions, service
discovery and loose-coupling. On the other hand, sensor systems exhibit a
number of characteristic features that diversify them from more traditional
distributed computing environments. Consequentially, the application of service-
orientation in sensor systems requires a re-evaluation of its concepts and
principles. The following section, revisits the fundamentals of service-orientation
in the light of sensor systems, and explores its application in WSN research.

2.6 Service-orientation and sensor networks

The application of service-orientation within a WSN context enables sensing
and data gathering functionality to be abstracted as reusable and platform-
independent services. Together with abstract service descriptions and service
discovery, this can greatly facilitate building distributed sensing applications.
The WSN research literature reports on a range of specific reasons for the
application of service-orientation; these include interoperability [152, 101, 47],
reuse [152], heterogeneity [51, 101, 89], adaptation [52, 101, 46, 47], ease of
development [46, 47, 97, 22], scalability [122] and automation [119].

However, while the concepts of service-orientation remain valid, their
implementation needs to be reimagined to suit the characteristics of sensor
networks. Section 2.6.1 enlists how these characteristics influence the service-
oriented architecture and its application. Section 2.6.2 discusses the various
logical entities in a sensor system that can be used as a service abstraction.
Section 2.6.3 discusses the problems of Web service support within sensor
networks. Finally, Section 2.6.4 discusses the state-of-the-art of service-
orientation support within the WSN research domain.
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2.6.1 Revisiting the service-orientation principles

A number of differentiating characteristics of sensor networks and systems need
to be taken into account when developing sensor applications in a service-oriented
manner [119, 122]. These are mainly related to the greater network dynamics,
limited application scope, unreliable networking and available resources. More
specifically:

o Spread of resources. While resources are scarce within a wireless sensor
network, they are more abundant within the gateway and back-end tiers.
This spread of resources needs to be leveraged to reduce the overhead
caused by the application of service-orientation.

o Simple(r) services. While sensor systems can contribute to a wide
variety of applications, the functionality that is therefor required within
a sensor network has limited diversity [119]. It primarily entails sensing,
actuation, and simple data processing. Consequentially, more simple
interactions take place in sensor networks, which in turn reduces the
complexity of service descriptions.

e Scale and redundancy. In contrast to traditional service-oriented
systems, in which mostly a single or a few computing nodes provide a
certain service, in sensor networks typically multiple nodes offer the same
service. Diversification during service discovery should therefore be based
on the context within which a service is provided [60]; i.e. physical context
like location, but also hardware and software state; e.g. remaining energy,
current memory use, available sensors, etc.

e Increased platform heterogeneity. Platform heterogeneity in sensor
systems is more extreme than in the traditional distributed environments.
Service-oriented solutions should operate comfortably on a wide range
of underlying hardware and software platforms across the various sensor
system tiers.

e Unreliable networking. Due to the application of low-power wireless
networking and the mobility of sensor nodes, network connections in
wireless sensor networks tend to be unreliable. Loose-coupling of services
should not only be supported to improve reuse, but also to gracefully deal
with intermittent connectivity.

e« Development-time vs run-time resources. Service-orientation
advocates for generic services that are build once and used in multiple
applications.  Its efforts are predominantly targeted at reducing
development overhead, while run-time resources are second. In sensor
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networks, the constrained resources increase the importance of reducing the
run-time overhead, yet this may not lead to an impoverished development
experience.

Finally, it is important to high-light a feature of service-orientation itself; i.e. it
being a technology-neutral paradigm. As discussed in Section 2.5.2; it does not
have to imply the use of Web services and, consequentially, verbose XML-based
communication. More efficient and tailored approaches must be explored.

2.6.2 Service abstractions in sensor network research

An important diversifying factor among service-oriented platforms for sensor
systems, is the logical entity that is considered as being a service. Similar to the
multi-application approaches discussed in Section 2.1.1, these range from the
entire network, over individual nodes, to software modules, and even individual
functions. A conceptual representation is shown in Figure 2.5.

Entire sensor networks are for instance abstracted away by a Web service in
the Oracle edge-server [136]. These Web services can then be used within
multiple back-end service compositions, as shown in Figure 2.5a. At a slightly
less coarse-grained level, individual sensor nodes can be represented as a service,
as shown in Figure 2.5b. Atlas [89], for instance, makes use of OSGi [137]
bundles that wrap entire sensor nodes and exposes them as device drivers on
a gateway. While both these approaches enable the use of service-orientation
in the back-end, they do not necessarily imply its application inside the sensor
network. To provide such support, additional middleware support is required
on sensor nodes that provide a run-time environment in which services can
operate and be discovered. One approach is to present software modules as
services, as shown in Figure 2.5c. This is for instance provided by pSMS [46]
and USEME [22] that apply component models to create a service abstraction.
Finally, individual functions provided by a middleware can be presented as
services, as shown in Figure 2.5d. In TinySOA [152], for instance, middleware
functions that perform sensing, actuation or control tasks are presented as
services and invoked by queries that are distributed in the network.

For individual sensor nodes to be considered a reusable asset that serves multiple
applications and users, the applied service concept might not abstract away
that infrastructure. In other words, the basic granularity of a service needs to
be smaller than that of a sensor node. This is either realised by using software
modules as a service abstraction, or individual functions. The following sections
therefore primarily deal with these forms of service abstractions.
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Figure 2.5 — The granularity of service abstractions in sensor systems ranges
from entire sensor networks to individual functions.

2.6.3 A note on Web services and sensor networks

As discussed in Section 2.5.2, the most common implementation of the service-
orientation paradigm is realised by the Web services stack, often referred to as
WS-*. In terms of development support and integration with enterprise services,
it would therefore make great sense to adopt WS-* in the sensor network as well.
The WS-* stack was however not defined with resource-constraints in mind
and its assumptions on available computational power, storage and bandwidth
do not hold in constrained sensor networks [97, 101]. Successful efforts have
however been made towards WS-* adoption, yet, at the cost of flexibility.

Tiny Web Services [148], for instance, (i) applies heavy optimisation of the
TCP/IP stack (persistent TCP connections, disabling delayed acknowledge-
ments, link layer retransmissions), (ii) supports only single-hop communication
between sensor nodes and the gateway, (iii) requires additional gateway
functionality in support of back-end/sensor node interactions, and (iv) only
supports limited and optimised XML-parsing. While this shows the feasibility
of WS-* adoption, it only offers a restricted mode-of-operation. One great
disadvantage is that sensor nodes cannot function as Web service clients
themselves, which eliminates in-network interactions. Furthermore, WSDL
descriptions provided by the sensor nodes are still a few kilobytes in size.
Together with the additional XML overhead during service invocations, the
communication overhead remains large.

To make Web services more feasible on embedded devices the Devices Profile for
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Web Services (DPWS) [130] was developed. DPWS supports a minimal subset of
WS-* standards that includes secure sending of messages, service discovery, and
eventing in support of machine-to-machine communication. While successfully
applied on gateway devices as a proxy for constrained sensor nodes [30, 172],
support for the latter themselves is limited. WS4D-uDPWS [190] provides
an implementation in Contiki, yet supports only a basic subset of the DPWS
functionality and features heavy compile-time optimisation by assuming the
capabilities of a node to be static.

The most promising Web services approach within the WSN domain is probably
by application of CoAP [156] together with OMA LWM2M [134] and IPSO
SmartObject [79] resource descriptions. As discussed previously in Section 2.1.2,
these are however only recent initiatives.

By consequence, numerous service-oriented platforms for sensor networks make
use of proprietary service abstractions and communication. The following
section provides an overview.

2.6.4 State-of-the-art service-orientation support

This section surveys a number of representational service-oriented application
frameworks. These are evaluated along the same set of criteria as previously
presented in Section 2.4.1. The sole exception is that the last column
in Table 2.2, OS heterogeneity, is evaluated slightly differently; inter-tier
interoperability is considered to be inherently provided in case a standardised
service abstraction (e.g. WS-*, DPWS, etc.) is supported. This can either be
realised on constrained nodes themselves, or by a translating proxy situated at
the gateway or back-end. Only application frameworks that provide a service
abstraction available within the sensor network tier are reviewed. This eliminates
frameworks that provide gateway or back-end services that abstract away or
wrap the sensor network tier.

TinySOA [152] applies a service-driven querying model, similar to the distributed
databases approach. Queries are disseminated into the network and invoke
services on targeted sensor nodes. Each service represents a single sensing,
actuation or control function and returns a single scalar value. The set of
services on a sensor node is statically defined and no modular configuration is
provided at run-time. Behavioural configuration of services can be performed by
means of their function parameters. Queries are specified in a event-condition-
action format that additionally includes spatial scoping to determine target
nodes. The event and condition statements allow to specify the context in which
the service needs to be executed, and the action statement defines the service
to invoke by means of a simple identifier. No structural representation of the
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service is available at run-time and an overview of the available services cannot
be retrieved via service discovery. TinySOA is implemented only on TinyOS.

Servilla [51] applies a similar approach as TinySOA, but supports remote
service invocations and provides a structural service interface representation.
Applications are implemented by means of tasks that are disseminated over the
entire network. Tasks are byte-code scripts that are interpreted by a virtual
machine provided by each sensor node and invoke local or remote services.
Services, in turn, are implemented by a compile-time defined set of modules.
Platform-independent service representations enlist the name of a service, a
list of functions with typed parameters and return values, and attributes that
can serve behavioural configuration of the invoked service. Although Servilla’s
task abstraction hides away hardware heterogeneity, it is only implemented for
TinyOS.

WSN-SOA [101] attempts to bridge the gap between high-end networked devices
and constrained sensor networks by applying service-orientation principles. It
integrates a light-weight proprietary protocol stack on constrained sensor nodes,
with DPWS on more resource-rich sensor nodes and a WS-* stack on high-end
nodes. On constrained sensor nodes, services are implemented as TinyOS
components that expose parameters for behavioural configuration. A follow-
up publication [99], however, reports that services can also be dynamically
deployed by means of scripts. On more resource-rich platforms, services are
implemented as dynamically deployable OSGi [137] bundles. Local and remote
interactions between services are supported via both a messaging abstraction
and a centralised topic-based publish/subscribe broker on a gateway. In
cooperation with service discovery, this allows dynamic interactions between
services, yet these are not externally controllable. While services provide a
semantic representation of themselves, it is unclear whether and to which extend
also a structural representation is provided.

nSMS [46] (micro-Subscription Management System) implements a service-
oriented infrastructure based on a component model, software agents and
publish /subscribe messaging. Services are implemented by component-based
agents that are remotely deployable, but offer no support for additional
behavioural configuration. Agents dynamically subscribe themselves to locally
and remotely produced events of interest. Subscriptions are based on a simple
numerical event type identifier, together with additional parameters such as
publishing service identifiers and content-based filtering. Implementations of
nSMS are available that operate on sensor nodes (TinyOS and Contiki), PDA’s
and laptops.

nSOM [47] (nano Service-Oriented Middleware) builds on pSMS and consequen-
tially provides similar functionality. Its main contribution is the realisation of
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interoperability with Internet-based applications. While in-network interactions
occur in a proprietary manner as in pSMS, services additionally provide RDF-
compliant SMD/JSON service definitions that are translated to WSDL2.0 on
dedicated broker nodes. This enables remote WS-* interactions and results
in better support for the discovery of services. Implementations are realised
for resource-rich Sun SPOT sensor nodes, Android smartphones and laptops.
Interestingly, this implicitly confirms that XML/JSON based technologies are
less suited for constrained sensor nodes, for which a prior pSMS implementation
was realised.

OASIS [97] (Object-centric Ambient-aware Service-oriented Sensornet) applies
an object-centric programming approach. It provides programming abstractions
that allow a monitored phenomenon (called object) to drive application
behaviour. Applications themselves take the form of a dynamic distributed
service graph. Primarily targeted applications are for instance vehicle tracking
and fire detection, in which over time the active service graph autonomously
‘moves’ throughout the network to follow the phenomenon. Nodes are pre-
loaded with services, yet, these are dynamically activated and included in
the service graph as the monitored phenomenon approaches the node. This
dynamism is served by run-time discovery of services. Although services
have well-defined interfaces consisting of typed input and output ports, such
descriptions are compile-time structures only, and discovery occurs based on
simple identifiers. Context parameters, such as location and energy level, are
taken into consideration during the service discovery process. Interactions
between services are dynamically established as the service graph evolves.
Additionally, back-end based Web Services can be accessed and included in the
service graph for greater computational resources. OASIS itself is however only
implemented on TinyOS.

USEME [22] is a service-oriented and component-based framework that aims
to facilitate WSN application development. It therefor combines macro-
programming with node-centric programming. With the aid of a visual tool,
a distributed service composition can be created that stores information of
services, their interfaces and dependencies, and which is used to (partly) generate
service code. It is unclear whether services can be individually deployed at
run-time or if a comprising static image is flashed to nodes. Local and remote
service dependencies do however get resolved at run-time to support node
mobility. This is realised by means of service discovery based on service
identifiers and additional context parameters. An API is provided to configure
service parameters, yet this is not externalised and only available from within
other services. USEME is implemented in Java and .NET, respectively for the
high-end Sun SPOT and iMote2 sensor nodes.

Dioptase [14] implements a light-weight data stream management system for
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the Web-of-Things. It allows developers to describe complex fully-distributed
stream-based mashups and to deploy them dynamically as task graphs in a
sensor network. Tasks are represented as Web services and provide sensing,
processing and actuating functionality. Tasks are either built into the middleware
or specified in run-time deployable scripts using a domain-specific language.
Task interactions are defined within the mashup and can be both local and
remote. Dioptase relies on third-party service discovery to realise the mashups
[60], yet an overview of streams and tasks is externally available in a RESTful
manner. Each stream adheres to a schema that defines the semantics, structure
and additional metadata (e.g. unit of measurement) of the exchanged data.
Although the Dioptase middleware can be deployed on devices ranging from
powerful sensor nodes to cloud servers, it is too resource-intensive for constrained
sensor devices.

2.6.5 Conclusion

Service-orientation presents a promising approach toward realising open multi-
purpose sensor systems. A common service abstraction across the sensor
system tiers, combined with a platform-independent interaction mechanism, can
abstract away the large heterogeneity in hardware and software. Additionally,
loose-coupling of services can facilitate application logic reuse and aids in dealing
with unreliable networking within sensor networks. Service descriptions and
discovery further improve third-party (re)use of deployed application logic.

Yet, while good examples are at hand, the surveyed service-oriented frameworks
do not provide adequate solutions to the challenges put forward within this
dissertation. Features such as structural configuration and external configuration
of interactions are not well supported. Instead, functionality and integration of
services is often determined at development time. Consequentially, run-time
available abstract descriptions are often simple and discovery of application
logic is only supported for internal dependency resolution. This restricts the
open use of the deployed services within various applications and reduces return-
on-investment of the available infrastructure. To fully realise the open and
multi-purpose use of sensor system infrastructure, various aspects of service-
orientation thus need to be further dealt with. The contributions in the following
chapters aim to do so.
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2.7 Summary

This chapter overviewed a selection of the state-of-the-art in WSN research
that is related to the specific problems dealt with in this dissertation; i.e. the
challenges to the realisation of open multi-purpose sensor networks. First,
WSN-specific solutions were presented that deal with multi-purpose sensor
networks, dynamic software configuration, and run-time discovery of application
logic. Second, the service-orientation paradigm was introduced as a promising
software engineering approach towards open reusable software systems. Its most
prominent features and characteristics were presented and reimagined within
the scope of wireless sensor networks. Throughout the chapter, a selection of
application frameworks were evaluated against the primary requirements that
this dissertation puts forward for open multi-purpose sensor systems. While
most of these frameworks share and acknowledge various requirements, none
of them provide a high enough level of configurability in an open manner
that allows for multiple users to manage various sensor applications on shared
sensor network infrastructure. The following chapters present contributions
that considerably improve the required support thereto.






Chapter 3

An application platform for
open and multi-purpose
sensor systems

This dissertation reports on three middleware contributions that together realise
an application platform for open and multi-purpose sensor systems. This chapter
shortly introduces these contributions and discusses at a high-level how they
jointly deal with the challenges identified in Chapter 1. The subsequent chapters
present the various contributions in more detail.

Figure 3.1 shows the three contributions of this dissertation; LooCI, SDLITE,
and TALKSENS. They primarily contribute at the middleware level, yet also
provide a suitable application programming abstraction. Furthermore, the node-
level solutions presented in the figure are completed with additional back-end
support that contributes to greater interoperability across the sensor system
tiers. The following paragraphs introduce the various contributions and discuss
how they jointly realise an application platform for open and multi-purpose
sensor systems.

The ability to individually manage multiple applications on a single node is
provided by LOOCT’s run-time configurable component infrastructure. LOOCI
allows for application components to be individually deployed and subsequently
configured to suit evolving application requirements and local context.
Application components expose event producing and consuming interfaces
via which they exchange events over an event bus in a publish/subscribe-based
manner. Within the work presented in this dissertation, these component
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Figure 3.1 — Conceptual diagram highlighting this dissertation’s middleware
contributions towards more open and reusable sensor systems.

interfaces function as the provided service abstraction.! Interfaces are identified
by the events they produce and consume, and as such are typed by event
identifiers. Components additionally expose a set of configurable properties
for behavioural configuration, and middleware support for configuration and
inspection is provided by the application manager.

Status-aware service discovery, provided by SDLITE, enables the discovery of
LooCI components that provide a specified service under particular conditions.
SDLITE therefor features a status registry that provides generic sharing of status
variables across software modules and layers on a sensor node. These can be
system variables like remaining energy and number of deployed components,
but also environmental variables such as position and temperature. To evaluate
the status description included within service request, the service discovery
mechanism operates in close relation with the status registry.

The last contribution, TALKSENS, is message definition framework that enables
multiple parties to come to a shared agreement of message types and contents,
and provides associated development-time and run-time support. TALKSENS
provides a registry of platform-neutral event definitions that developers can
use to select the events their LOOCI components will exchange and generate
specific serialisation code therefor. In addition, TALKSENS enables run-time
inspection of components for these event definitions.

In this dissertation, the terms application, component and service are closely related when
used in the context of the presented contributions. They are often used interchangeably, yet
fine differences in meaning exist: application is used to denote a piece of application level
logic; a component, or application component, is an individually managed unit-of-deployment
that implements such application logic; and a service presents the external interfaces that
components expose to their clients.
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The integration of the presented solutions effectively allows for a service-oriented
modus operandi in which multiple stakeholders make use of a shared sensor
system infrastructure. Figure 3.2 provides an exemplary storyboard diagram
of how this works. Consider a stakeholder who wants to provide a client
application with real-time temperature information at a certain location. To
realise this, the stakeholder uses the event definition repository (a) to look up
the temperature service identifier. Using this identifier, the stakeholder can
discover whether such a service is already provided by a, possible third-party,
sensor node deployed in the specified location (b). If that is the case (¢),
the provided service can be further inspected for details about the format in
which temperature data is provided, i.e. the event definition (d,e). Using this
information, a new back-end component can be developed (f), that includes
generated event serialisation code (g), and is thus fully interoperable with the
third-party temperature sensing service. Upon completion, this component can
be deployed (k) and configured to receive temperature data and forward it to
the client application (7). Such multi-tiered integration of application logic is
enabled by the common middleware (j) that is deployed on the heterogeneous
set of devices that constitute the sensor system. The result is a single, unified
manner of application development and management that is applied across
the entire sensor system. This enables multiple stakeholders to easily deploy
application components on shared infrastructure, and make them interact with
each other.

The following chapters present the various contributions in more detail. Chapter
4 presents LOOCI, Chapter 5 presents SDLITE, and Chapter 6 presents
TALKSENS.



Chapter 4

Run-time reconfigurable and
modular distributed
applications

This chapter presents the first contribution of this dissertation; the LooCI!
component infrastructure. LOOCI provides light-weight abstractions for
application-level modularity and distributed interactions, and supports run-
time reconfiguration of both. This breaks with the largely static and often
homogeneous implementations of distributed sensor system applications, and
enables more application dynamism, platform heterogeneity and reuse of
application logic in such systems.

LooOCI has been designed and implemented in collaboration with other members
of our research group. Personal contributions mainly focus on component
interaction and include the implementation for the Sun SPOT platform.
This chapter presents the second version of LOOCI, which adds a number
of features to the previous version. These include multi-instantiation of
components, component properties, and unified event-based management across
all implementations.

Within this chapter, Section 4.1 lists detailed requirements for application-
level modularity and distributed interactions within open multi-purpose sensor
systems. Section 4.2 explores the features of component-based software
engineering and the publish/subscribe communication paradigm, and discusses

Ipronounced ’Lucy’
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why these are well suited to fulfil said requirements. Section 4.3 introduces
LooCl itself, and Section 4.4 discusses its various implementations on a range
of software platforms.

4.1 Requirements

Using a sensor system deployment as an open and reusable infrastructure,
requires support for the independent run-time management of individual
application modules and the ability to create distributed applications with these
modules as building blocks. More specifically, modularity and communication
abstractions are needed that adhere to the following requirements:

1. Application-level modularity. = An abstraction is needed that
encapsulates independent units of application logic. Individual deployment
at run-time and concurrent operation of such units on a single (sensor)
node is essential.

2. Flexible distributed communication. A single communication
abstraction is required that facilitates interactions between application
units, both locally and remotely across all tiers in a sensor system.
Common interaction patterns, such as one-to-one, one-to-many and many-
to-one, need to be supported.

3. Loose-coupling. Relationships between application modules must be
loose-coupled to enable flexible reuse of those modules, and gracefully
deal with intermittent network connectivity and unpredictable behaviour
of third-party application logic.

4. Extensive reconfiguration and inspection at run-time. Run-time
reconfiguration and inspection of application modules, their behaviour,
and their relationships is needed to enable post-installation and third-party
use of sensor system infrastructure.

5. Platform and language independence. Both the modularisation
and communication abstractions need to be platform- and language-
independent to facilitate building distributed applications that operate
on heterogeneous platforms across the sensor system tiers.

6. Applicable on resource-constrained platforms. Implementations of
the presented solution must be feasible on Class 1 resource constrained
devices (~100kB Flash, ~10kB RAM) [16].
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4.2 A component- and event-based approach

To comply with the enlisted requirements, LOOCI applies two well-known soft-
ware engineering solutions: component-based software engineering (CBSE) and
the publish/subscribe (pub/sub) communication paradigm. Components serve
well as a modularity abstraction, while publish/subscribe-based communication
suits the posed communication requirements. Their combined application is
however extra powerful in terms of loose-coupling and reconfigurability. The
following two sections introduce both technologies and discuss their applicability
to meet the presented requirements.

4.2.1 Component-based software engineering

Component-based software engineering applies the principle of separation
of concerns to building software solutions. It promotes decomposing larger
problems into smaller sub-problems and solving the latter independently by
implementing a solution in a self-contained logical unit, called a component.
By composing together a set of such loosely-coupled components, a solution
to the original larger problem can be built. When designed in a generic
manner, individual components can furthermore be (re)used within multiple
compositions. Both independent development of simpler components, and their
reuse are expected to reduce overall development time [141].

The widely-accepted definition of a component, presented by Szyperski [165],
states:

"A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to
composition by third parties.”

A component can thus be regarded as an encapsulated unit of application logic
that enables developers to build applications at a higher level of abstraction; i.e.
by composing various, possible components together. While at times restricted to
development-time, in many cases composition is a run-time operation. Explicit
interface and dependency specifications, available either as meta-data or via
component inspection, thereby allow third-party use of deployed components.
These features satisfy to a large extent requirements one and four as stated in
Section 4.1.

Specifically in the context of sensor networks, component models have been
applied as a means to move away from early and impractical one-size-fits-all
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approaches [125]. This includes run-time evolution of software [32], both via fine-
grained reprogramming of sensor nodes [167, 127], and via self-adaptation [70].
Yet, component models have also been adopted to increase ease-of-programming
[31], provide language-independence [25] and share application logic [34].

Existing component models targeted at sensor networks, however, lack in
support of the posed requirements. NesC [56], which is used to implement
TinyOS [106], only provides a component model at development-time. During
compilation, component boundaries are removed to build a highly optimised
monolithic block of executable code. This prevents later run-time deployment of
individual application components. Runes [26, 25], FiGaRo [127], Lorien [145]
and RemoWare [167], are examples of run-time configurable component models.
Yet, they do not provide explicit, reconfigurable abstractions for distributed
interactions. While such interactions can be hard-coded or implemented in
dedicated components, this limits the extent to which distributed relationships
can be configured. Furthermore, configuration of local relationships is often
limited to automated dependency resolving [127, 145, 167], which limits the
freedom of configuration. Finally, with Runes being a notable exception, most
WSN component models are implemented only for specific WSN platforms, and
are not available for mobile and back-end devices (see Table 2.1, page 30). This
limits their applicability in multi-tier sensor systems.

4.2.2 The publish/subscribe communication paradigm

The publish/subscribe communication paradigm [44] is a loosely-coupled form
of event-based interaction that is often applied in large-scale and widely
distributed environments. It provides indirect communication between publishers
and subscribers. Subscribers express their interest in a certain event at an
intermediate entity, at times referred to as an event service. Subsequently, when
a publisher publishes an event to the event service, all subscribers with matching
interests are notified thereof. The strength of the publish/subscribe paradigm
lies in the flexibility that comes with the full decoupling that it realises between
publishers and subscribers.

Decoupling is primarily the result of the indirection introduced by the event
service and takes place along three dimensions. First, interacting parties are
decoupled in space as they do not hold any reference to each other. Such
information is only held at the event service, resulting in interacting parties
that are unaware of each other. Second, interacting parties are decoupled in
time. Both need not actively participate in the interaction at the same time as
the event service can serve as a buffer. Events can be published at a time that
a subscriber is disconnected, yet delivered when the latter reconnects. Third,
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synchronisation decoupling is realised by asynchronous communication between
interacting parties. Publishers are not blocked during event publication until all
subscribers are notified, and subscribers can get notified asynchronously about
any new event while performing some other activity.

The publish/subscribe paradigm allows to build distributed applications that
are less rigid and static in nature than when more traditional one-to-one
synchronous interaction styles are used. The extra indirection allows to establish
late bindings between publishers and subscribers, which can thus come and
go on an individual basis. Additionally, decoupling allows to gracefully deal
with intermittent network connectivity and unpredictable third-party behaviour.
While such situations may still result in events not being published or delivered,
this does not further impact the operation of an interacting partner. Finally, the
publish/subscribe paradigm inherently provides a many-to-many communication
model. These features correspond well with requirements two, three and four,
as stated in Section 4.1.

The publish/subscribe paradigm has been widely applied in sensor networks
as it fits well with their data collection and event-based nature. Additionally,
loose-coupling aids in dealing with the wide distribution and lossy network
connectivity. TinyCOPS [66] and Mires [161], for example, provide dedicated
publish/subscribe implementations for sensor networks. As discussed in Section
2.6.4, WSN-SOA [101], pnSMS [46] and nSOM [47] apply it as the communication
mechanism of choice in their service-oriented frameworks. Also more industry-
minded standardisation efforts like MQTT-SN [162] acknowledge the strengths
of this interaction style. What is largely missing in the current state-of-the-art
is the combination of support for (i) run-time configurable subscriptions, and
(ii) an integration with a run-time configurable component model. For example,
TinyCOPS and Mires only support the former, while WSN-SOA, nSMS and
nSOM only support the latter.

4.3 The LooCl component infrastructure

LooClI, or the Loosely-coupled Component Infrastructure, is a platform-
independent component infrastructure that defines an application-level compo-
nent model and supporting middleware for configuration and communication
purposes. An overview of LOOCI’s node-level architecture is shown in Figure 4.1.
A pre-deployed middleware layer enables run-time deployment of application
components and further configuration and inspection of their properties and
relationships. Communication between components is provided via a fully
distributed version of the publish/subscribe communication paradigm, which
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Figure 4.1 — Architectural diagram of the LOOCI component infrastructure.

is implemented by the event manager. Configuration and inspection of both
components and middleware is supported by means of the configuration engine.
Loo0CI is defined independently from underlying platforms, yet relies on the
network stack and dynamic code deployment provided by these platforms.

The following sections highlight the various features of LOOCI and describe
how these meet the requirements posed in Section 4.1. Full technical details are
available at the LOOCT website [77].

4.3.1 An application-level component model

The LooCI component model provides an application-level abstraction for
building distributed applications within a sensor system. A LOOCI component,
as depicted in Figure 4.2, encapsulates application logic into an individually
manageable entity. Components interact with each other only by exchanging
events; they receive events via their required interfaces and publish events
via their provided interfaces. Interfaces are typed and can only receive or
publish events of the same type (see Section 4.3.2). Required interfaces thus
explicitly specify a component’s dependencies on the types of events it consumes,
while provided interfaces explicitly define which type of events it produces.
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Figure 4.2 — Conceptual diagram of a LOOCI component.

Components can have zero or more required /provided interfaces. The behaviour
of a component is implemented in its application logic, which is configurable
at run-time via component properties. While the component name provides a
descriptive identifier, each component is uniquely identified by the combination
of the locally unique numerical component identifier, and the network address
of the node on which it executes.

LooCI components expose two management interfaces to the underlying
middleware; i.e. a configuration interface and an inspection interface (shown
in Figure 4.1). Both are locally accessible by the configuration engine, which
in turn can be remotely accessed via the event bus. Via the configuration
interface, components can be (de)activated and have their properties updated.
The inspection interface enables inspection of a component’s identifier, its state,
provided and required interfaces, and properties. More details on component
configuration and inspection are presented in Section 4.3.3.

Within LooCI, a component is both a unit-of-development as well as a unit-
of-execution. Compiling a component results into a codebase, which functions
as LooCTI’s unit-of-deployment.? Figure 4.3 depicts a LooCI component’s life
cycle. After deployment, codebases can be instantiated one or more time(s),
with each new instance being a component of the codebase’s type. Such multiple

2As explained in the text, a clear distinction exists between the notion of a codebase and
a component. However, while a codebase is the unit-of-deployment, this text often uses the
phrase ’deploy a component’ for brevity reasons. This implies that a codebase is deployed
that implements that component.
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Figure 4.3 — State diagram of the LoOCI component life cycle.
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instantiation allows for codebases to be deployed once, yet instantiated multiple
times with different behaviour based on their property configuration. This
greatly reduces expensive over-the-air deployment, mostly of generic components
(e.g. data filter). Upon instantiation, a component identifier is assigned a node-
local value and the component holds an inactive state. Inactive components
do not execute their logic and cannot produce or consume events, but can be
further configured and inspected. After activation, a component becomes fully
operative; they execute their logic, can produce and consume events and remain
configurable and inspectable. Active components can be deactivated again and
inactive components can be destroyed. This results in the removal of their
run-time instance and all associated data from memory. In case all component
instances of a codebase are destroyed, the codebase itself can be removed from
the node’s memory.

4.3.2 Loose-coupling: the distributed event bus

As briefly mentioned in the previous section, LOOCI components only interact
with each other via the event bus. This bus provides a fully distributed version
of the publish/subscribe communication paradigm. A graphical presentation
is provided in Figure 4.4. Each LOOCI node implements its own local part
of the bus within its event manager. Event managers administer only locally
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Figure 4.5 — The LooCI event format.

relevant event subscriptions and perform event dispatching towards local and
remote components based on these descriptions. This decentralised approach
allows for direct exchange of events between interacting nodes, which reduces
network traffic and results in faster and more efficient event dispatching [44].
By publishing events to the event manager, components place events on the
distributed event bus; conversely, components receive subscribed-to events from
the event manager (see Figure 4.1).

Component interaction can thus be described on three levels of abstraction,
of which two are depicted in Figure 4.4. Conceptually, components exchange
events directly with each other via binding of their interfaces. Logically, this
is implemented by means of the distributed event bus, which provides loose-
coupling between the communicating components. And physically, exchanged
events are encapsulated in network packets and routed over whichever network
is provided between the communicating nodes. The latter is omitted from the
figure for the sake of clarity.

Events and their types

LooCI provides a topic-based version of the publish/subscribe paradigm, in
which subscriptions occur based on the subject, or topic, of events [44]. Within
LooClI, these topics are identified by event types. In contrast to most other
publish/subscribe systems, event types are not only represented by a descriptive
human-readable name, but also by a more compact numeric identifier. The
latter are sequentially assigned to the set of event types, resulting in a very
compact format. During event exchange, only the numeric identifiers are used,
which reduces communication and storage overhead. Real-world deployments
[34, 72, 168], however, later showed that such naive numbering leads to extensive
configuration overhead. Chapter 6, therefore presents a novel event typing
system that incorporates more rich semantic information in the event type
identifiers, with a limited size overhead.

LooCI events are formatted as shown in Figure 4.5. A small header consists out
of a two-byte event type identifier followed by a single byte source component



62___ RUN-TIME RECONFIGURABLE AND MODULAR DISTRIBUTED APPLICATIONS

identifier. These provide the event manager with enough details to perform
event dispatching, where needed together with a source node address provided
by the underlying network stack. After the header, the event’s payload consists
out of an arbitrary array of bytes that represent data related to the event’s

type.

Event dispatching

Dispatching of events to local and/or remote components is based on the entries
stored in subscription tables (see Figure 4.4). Each event manager implements
three such tables:

¢ Local subscription table: used to dispatch events between two local
components based on entries in the following format:

(event type, source component ID) — (destination component ID)

¢ Remote-to subscription table: used to dispatch locally published
events to remote nodes based on entries in the following format:

(event type, source component ID) — (destination node address)

e Remote-from subscription table: used to dispatch incoming remote
events to locally subscribed components based on entries in the following
format:

(event type, source component ID, source node address) — (destination
component ID)

When events enter the event manager, either from publishing components or
from the network, the event manager compares the incoming event with the
entries in the respective tables. For any matching entry, the incoming event is
copied and the copy dispatched according to the subscription entry.

Based on subscriptions, bindings between two components can be created, as
shown in Figure 4.4. A local binding between components on the same node
only requires an entry in the local subscription table. A remote binding between
components on different nodes requires entries in both remote subscription
tables. On the event producing side of the binding, an entry in the remote-to
subscription table forwards any matching locally produced event to the specified
destination node. At the event consuming side, an entry in the remote-from
subscription table dispatches any matching events received over the network to
the locally subscribed component.
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Figure 4.6 — LooCI’s binding model allows for a wide range of interaction
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to-many.

LooCTI’s binding model allows for various interaction modalities; one-to-one,
one-to-many, many-to-one, and many-to-many, as shown in Figure 4.6. These
are further facilitated by means of wildcards that can be used instead of specific
values for event types, component identifiers and node addresses. Such use
of wildcards facilitates (i) more rich event dispatching and (ii) opportunistic
bindings. For instance, the event type wildcard enables forwarding of all locally
published events to a logger-component with a single subscription, while the
node address wildcard enables broadcasting of events to the dynamic set of
nodes within range.

The use of subscription tables to store binding information, effectively decouples
components. Components merely publish and receive events and are unaware
of what happens during event dispatching. As components do not store any
information concerning their interaction partners, components are decoupled in
space. With regards to time decoupling, LOOCI does not persist events that
cannot be delivered instantaneously. Instead, LOOCI provides a best-effort
service during event dispatching; if a subscriber cannot be reached, the event is
dropped and normal operation continues. This strategy is most often permitted
as in sensor network applications a loss of (a few) events in a monitoring stream
is considered tolerable. Finally, synchronisation decoupling is achieved by the
use of event queues. Upon publication, a component places its event in a queue
towards the event manager, which allows the latter to process the event in
an asynchronous manner and prevents the component from blocking during
event dispatching. Additionally, queues toward the network and event receiving
components prevent the event manager from blocking on long-lasting component
and network operations.
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In support of those cases where a synchronous request /reply-style communication
is needed, LOOCI provides directed events. These are for instance used to target
management events to a specific component or node. Upon event publication,
the source component specifies the targeted destination component and node.
This makes the event bypass the subscription tables and be directly sent to its
destination component. Usage of directed events is however discouraged for
application components, as it breaks loose-coupling of components.

Finally, the event manager provides configuration and inspection interfaces to
remotely manage component bindings, or event subscriptions (shown in Figure
4.1). These interfaces respectively allow to create and remove subscriptions,
and get an overview of existing subscriptions. More details on configuration
and inspection are presented in the following Section.

4.3.3 Run-time reconfiguration and inspection

Management of a LOOCI node occurs via the configuration engine, which is
part of the LOOCI middleware, as shown in Figure 4.1. It implements two
management APIs, the configuration API and the inspection API, that can be
interacted with both locally and remotely. Local interaction occurs by means of
direct method invocation from within other middleware modules or application
components. Remote interaction occurs by means of events. Therefor, a set
of predefined configuration and inspection events are defined that invoke the
respective configuration and inspection methods upon event reception. Besides
providing these management interfaces, the configuration engine stores a list
of all deployed codebases, and maintains references to the configuration and
inspection interfaces of all instantiated components and the event manager.

The configuration API, shown in Listing 4.1 allows for structural and behavioural
configuration of the application logic (i.e. components) on a node, as well as
configuration of application-level relationships (i.e. subscriptions). This API
allows for the deployment and removal of codebases (lines 2 - 3), instantiation
of codebases and destruction of components (lines 4 - 5), (de)activation of
components (lines 6 - 7), the configuration of property values (line 10), and the
creation and removal of subscriptions (lines 13 - 19).

A close look at the API reveals that parameters related to the configuration
commands are primarily based upon the numerical identifiers of event types,
codebases, components and properties. This elimination of human-readable
string based identifiers (i.e. names) significantly reduces the payload sizes of
configuration and inspection events. This does however give rise to a number of
additional inspection commands that allow to retrieve a more human-readable
description of codebases, components and properties based on their numerical
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(ResultCode, CodebaseID) deployCodebase(NodeAddress node, String
codebaseName)
3 ResultCode removeCodebase(NodeAddress node, uint8 codebaselD)

4  (ResultCode, ComponentID) instantiateCodebase(NodeAddress node, uint8
codebaselID)

5 ResultCode destroyComponent(NodeAddress node, uint8 componentID)

6 ResultCode activateComponent(NodeAddress node, uint8 componentID)

7 ResultCode deactivateComponent(NodeAddress node, uint8 componentID)

8

9

10 ResultCode setProperty(NodeAddress node, uint8 componentID, uintl6
propertyID, uint8 size, uint8[] value)

11

12

13 ResultCode wireLocal(NodeAddress node, uintl6 eventType, uint8
srcComponentID, uint8 dstComponentID)

14 ResultCode wireRemoteTo(NodeAddress node, uintl6 eventType, uint8
srcComponentID, NodeAddress dstNode)

15 ResultCode wireRemoteFrom(NodeAddress node, uintl6 eventType, NodeAddress
srcNode, uint8 srcComponentID, uint8 dstComponentID)

16 ResultCode resetWires(NodeAddress node, uint8 componentID)

17 ResultCode unwireLocal(NodeAddress node, uintlé eventType, uint8
srcComponentID, uint8 dstComponentID)

18 ResultCode unwireRemoteTo(NodeAddress node, uintl6 eventType, uint8
srcComponentID, NodeAddress dstNode)

19 ResultCode unwireRemoteFrom(NodeAddress node, uintl6 eventType, NodeAddress
srcNode, uint8 srcComponentID, uint8 dstComponentID)

Listing 4.1 — The LooCI configuration API.

identifiers. Furthermore, each configuration (and inspection) command returns
a result code. This code informs the application manager whether the command
was successful, or in the other case, the cause of error (e.g. codebase not found,
wire already exists, insufficient memory).

The inspection API, shown in Listing 4.2, can be used to retrieve information
about the current configuration of a node. It provides access to run-time
information on deployed codebases and their component instances; i.e. a list of
all deployed codebases (line 2) and their ID or name (line 3 - 4), all components
that are instances of a certain codebase (line 5) and their matching codebase
name or ID (line 6 - 7), the set of all components (line 8), and the state of a
component (line 9). Component properties can also be inspected by means of
commands that retrieve all property IDs of a component (line 12), the configured
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(ResultCode, Collection<CodebaseID>) getAllCodebaseIDs(NodeAddress node)

(ResultCode, CodebaseName) getCodebaseNameByID(NodeAddress node, uint8
codebaselD)

(ResultCode, Collection<CodebaseID>) getCodebaseIDsByName(NodeAddress node,
String codebaseName)

(ResultCode, Collection<ComponentID>) getComponentIDsByCodebaselID (
NodeAddress node, uint8 codebaselD)

(ResultCode, CodebaseID) getCodebaseIDByComponentID(NodeAddress node, uint8

componentID)

(ResultCode, CodebaseName) getCodebaseNameByComponentID(NodeAddress node,
uint8 componentID)

(ResultCode, Collection<ComponentID>) getAllComponentIDs(NodeAddress node)

(ResultCode, ComponentState) getComponentState(NodeAddress node, uint8
componentID)

(ResultCode, Collection<PropertyID>) getPropertyIDs(NodeAddress node, uint8
componentID)

(ResultCode, PropertyValue) getPropertyValue(NodeAddress node, uint8
componentID, uintl6 propertyID)

(ResultCode, PropertyType, PropertyName) getPropertyInfo(NodeAddress node,
uint8 componentID, uintl6 propertyID)

(ResultCode, Collection<EventType>) getRequiredInterfaces(NodeAddress node,
uint8 componentID)

(ResultCode, Collection<EventType>) getProvidedInterfaces(NodeAddress node,
uint8 componentID)

(ResultCode, Collection<EventType, ComponentID, ComponentID>) getLocalWires
(NodeAddress node, uintl6 eventType, uint8 srcComponentID, uint8
dstComponentID)

(ResultCode, Collection<EventType, ComponentID, NodeAddress>)
getRemoteToWires (NodeAddress node, uintl6 eventType, uint8
srcComponentID, NodeAddress dstNode)

(ResultCode, Collection<EventType, ComponentID, NodeAddress, ComponentID>)
getRemoteFromWires (NodeAddress node, uintl6 eventType, uint8
srcComponentID, NodeAddress srcNode, uint8 dstComponentID)

(ResultCode, PlatformType) getPlatformType(NodeAddress node)

Listing 4.2 — The LooClI inspection API.
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value of a property (line 13), and a full property description (line 14), which
includes the data type and name of the property. Furthermore, a component
can be inspected for its required (line 17) and provided (line 18) interfaces,
while the event manager can be inspected for the configured local (line 21) and
remote (lines 22 - 23) subscriptions. Finally, a node can be inspected for its
platform type (line 26), which specifies the underlying software platform.

Most commonly, the management APIs are interacted with remotely. LooCI
therefor provides the management client; a shell-like configuration tool that
supports a set of commands to disseminate configuration and inspection events
into the sensor network. This tool is further demonstrated in the following
section.

4.3.4 LooCl configuration in practice

This section presents the practicalities of configuring a distributed sensing
application with LOOCI. The temperature monitoring application depicted
in Figure 4.4 is used as a practical example. The basic composition consists
of a TemperatureSensor component and TemperatureFilter component on a
constrained sensor node (i.e. node_A), and a TemperatureDisplay component
on a more resource-rich back-end node (i.e. node_B). The behaviour of these
components adhere to the following:

TemperatureSensor. This component measures the environmental tempera-
ture every 10 seconds, wraps this data in a raw_temperature_event, and
publishes these events on the event bus. It provides a sample_frequency
property via which the measurement frequency can be configured, and
has one provided interface of type raw_temperature_event.

TemperatureFilter. This component filters out temperature readings that
only differ marginally from prior readings, and thus limits the number
of events that need to be transmitted to the back-end. It provides two
properties; a temperature_delta which specifies the minimum delta that
needs to be exceeded in successive temperature measurements to forward
a new measurement, and a refresh_rate that specifies the minimum
frequency at which a new temperature event should be forwarded. The
component has one required interface of type raw_temperature_event, and
one provided interface of type filtered_temperature_event.

TemperatureDisplay. This component displays the temperature information
it receives. It has a single required interface of type filtered_temperature_
event.
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Welcome to the LooCI management client.

Type 'help’ if you need any.

>> getComponentIDs node_A

[1,10]

>> getCodebaseNameOfComponent 10 node_A
TemperatureSensor

>> getState 10 node_A

1

>> getProperties 10 node_A

[1]

>> getPropertyInfo 1 10 node_A

type: short, name: sample_frequency

>> getProperty 1 10 node_A short

10

>> deploy temperature_filter.comp node_A zigduino
11

>> deploy temperature_display.jar node_B osgi
10

>> instantiate 11 node_A

11

>> instantiate 10 node_B

10

>> getProvidedInterfaces 10 node_A
[raw_temperature_event]

>> wireLocal raw_temperature_event 10 11 node_A
success

>> wireTo filtered_temperature_event 11 node_A node_B
success

>> wireFrom filtered_temperature_event 11 node_A 12 node_B
success

>> getProperties 11 node_A

[1,2]

>> getPropertyInfo 1 11 node_A

type: byte, name: temperature_delta

>> setProperty 1 11 node_A 1 byte

success

>> getPropertyInfo 2 11 node_A

type: byte, name: refresh_rate

>> setProperty 2 11 node_A 30 byte

success

>> activate 11 node_A

success

>> activate 12 node_B

success

Listing 4.3 — A print-out of the L0OOCI management -client

configuration of the temperature monitoring application.

during
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A precondition to the configuration of the presented composition is that a third-
party has already deployed, instantiated and activated the TemperatureSensor
component on node_A.

Listing 4.3 provides a print-out of the configuration actions that are
performed using the LOOCI management client. First, node_A is inspected
to determine which components are instantiated (lines 3 - 6) and whether
the TemperatureSensor component is active (lines 7 - 8).3 Once an active
TemperatureSensor component is detected, it is inspected for its properties,
more precisely the currently configured sample_frequency value. This current
value corresponds with the configuration requirements, and the component can
thus be reused. This reuse is independent from any other compositions of which
this component is a part. Configuration continues with the deployment of the
TemperatureFilter codebase on node_A and the TemperatureDisplay codebase on
node_B (lines 15 - 18). This results in their respective codebase identifiers being
returned. Using these codebase identifiers, the codebases can be instantiated,
which returns the respective component identifiers (lines 19 - 22). To be able
to correctly configure the appropriate component bindings, first the provided
interfaces of the TemperatureSensor component are inspected (lines 23 - 24).
As there is only one, which is of the expected type, the components can be
wired.* A local binding between the TemperatureSensor and TemperatureFilter
components is established (lines 25 - 26), as well as a remote binding between
the TemperatureFilter and the TemperatureDisplay components (lines 27 - 30).
Then, the TemperatureFilter component is inspected for its properties (lines
31 - 32). Two property identifiers are returned and both properties are further
inspected for additional information to allow their correct configuration (lines 33
- 40). The temperature_delta is set to 1° Celsius, and the refresh_rate to 30
to make sure that new temperature data is received at the TemperatureDisplay
component at least every 5 minutes, or when the temperature has changed more
than 1° Celsius since the last reported value. Finally, both the TemperatureFilter
and TemperatureDisplay components are activated at the respective nodes, after
which temperature data will be displayed at the back-end node as required.

Although the LooCI management client provides an application manager
with great control over a sensor system, its low-level interface can quickly
render sensor system management into a complex task. The small configuration
example discussed here, for instance, already requires more than 20 management
commands to complete. More high-level management abstractions are a natural

3Component identifier 1 is reserved within LooCI for the configuration engine. User
components are numbered starting from 10.

4For clarity reasons, the LoOCI management client can be configured to resolve event type
identifiers to human-readable names. This is strictly a back-end process; under the hood,
event type identifiers are used during configuration and inspection.
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Sensor network tier Gateway tier Back-end tier
Software platform Contiki Sun SPOT OSGi
Programming language ANSI C Java ME CLDC1.1 Java SE
Hardware platform Zigduino/ Sun SPOT e.g. RaspBerry Pi B+ e.g. Dell OptiPlex 780
AVR Raven
Processor speed 16 MHz/8 MHz(#) 180 MHz 700 MHz 2,83 GHz
Storage (Flash) 128 kB/128 kB 4 MB ~MB - GB 250 GB
Memory (RAM) 16 kB/16 kB 512 kB 512 MB 8 GB

#) The AVR Raven has a theoretical maximum clock speed of 20 MHz, but is clocked to 8 MHz by default.

Table 4.1 — An overview of the computational and memory resources that are
provided by the platforms for which LOOCI has been implemented.

complement and have consequentially been developed within our research
group [35, 69].

4.4 LooCl ports across the sensor system tiers

Easy development and configuration of multi-tier sensor applications demands
a unified approach thereto across the various tiers. LOOCI has therefore been
implemented on three well-selected software platforms that operate on a range of
hardware devices. Table 4.1 provides an overview of the hardware and software
platforms for which LOOCI was implemented. The three LOOCI ports are:

LooCI/Contiki. The Contiki [38] port provides an ANSI C implementation of
LooCI. It enables support for constrained sensor nodes like the Zigduino®
or AVR Raven®. Both operate at a processor speed in the lower MHz
range and have limited amounts of storage and memory, respectively
128kB and 16kB.

LooCI/SunSPOT. The Sun SPOT [9] port provides a Java ME CLDC1.1
implementation, which supports a more resource-rich type of sensor nodes.
The Sun SPOT platform comes with dedicated hardware that features
processing speed, storage and memory at an order of magnitude larger
than the typical Contiki-based sensor nodes.

LooCI/OSGi. The OSGi [137] port provides a standard Java SE implementa-
tion and brings LOOCI support to both the gateway and the back-end tier.
Gateway devices, such as the RaspBerry Pi”, operate at processor speeds

5http ://www.logos-electro.com/zigduino/
6'http://www.atmel .com/tools/avrraven.aspx
7https://www. raspberrypi.org/
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around the 1Ghz frontier, and their memory and storage capacity is a
few orders of magnitude larger than sensor nodes. Back-end devices are
typically desktop machines or full-fledged servers that operate at processor
speeds of a few GHz, and have a storage and memory capacity of well
into the GB range.

All LooClI ports were realised in collaboration with other members of our
research team. They are available online [77], together with additional
documentation for installation and development. Personal contributions include
the implementation of the LooCI/SunSPOT port.

The rest of this section further introduces the prototype implementations of
LooClI. For each platform, Sections 4.4.1 and 4.4.2 respectively discuss how the
LooCI middleware and LOOCI components are implemented. Finally, Section
4.4.3 discusses component development.

4.4.1 LooCl middleware implementations

For each supported platform, an implementation is realised of the LoOCI
middleware, which includes the configuration engine and event manager.
Implemented in each platform’s native language, these implementations provide
platform-specific, yet, uniform interfaces for component management and event
interactions. The configuration engines furthermore implement the event-based
management APIs, which results in platform-neutral management via the
LooCI management client (see Section 4.3.4). The sole exception to this is
component deployment. This requires a specification of the underlying platform
of the targeted node, as dynamic code deployment is platform-dependent (see
Lines 15 and 17 in Listing 4.3).

Across all implementations, the event bus abstracts away the lower-level details
of the networking stack, and is implemented on top of UDP and IPv6. UDP
employs a connectionless transmission model that is well suited for loosely-
coupled interactions. It furthermore provides a best-effort service that introduces
limited overhead, which fits well with the resource constraints within sensor
networks. IPv6 in turn facilitates network-level integration between the various
tiers that are typically made up out of different IP networks. Within the
sensor network tier, IEEE802.15.4 is used at the physical layer and 6LoWPAN
provides IPv6 adaptability. While 6LoWPAN and IPv6 provide fragmentation
support, LOOCI event payloads are typically kept small to fit within a single 127
byte long IEEE802.15.4 frame. Depending on low-level network configuration
parameters, such as the 6LoWPAN compression in use, etc., this allows for up
to 86 bytes per event.
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4.4.2 LooCl component implementations

LooCI does not introduce a new programming language or model for
component implementation, but instead reuses those of the respective underlying
platforms. As such, LOOCI component implementations are platform-dependent.
LooCI/Contiki components are implemented in C along Contiki’s event-based
programming model, while LoOOCI/SunSPOT and LooCI/OSGi components
are implemented in an object-oriented manner using Java. While this limits reuse
of a component implementation to a specific platform, it allows to implement
LoOCIT itself as a thin middleware layer. Furthermore, it enables LOOCI
components to make optimal use of the hardware and software resources
provided by the underlying platform. Besides having to adhere to the
LooCI communication and configuration APIs, component implementations
are essentially free to use whatever functionality is provided by the underlying
platforms. This includes software sensor abstractions, digital and analog 1/0,
timer functionality, data storage, etc.

By consequence also the compilation and dynamic loading of components
is platform-specific. However, LOOCI puts no additional requirements on
the compilation and dynamic loading support of underlying platforms. A
prerequisite to successful component deployment across all platforms is however
the presence of an operational instance of the LOOCI middleware on the targeted
node. Compilation of components is performed with standard compilers; AVR-
GCC for the Contiki platforms and a standard Java compiler for Sun SPOT
and OSGi. Once compiled, a LooCI/Contiki component is encapsulated
into a custom binary .comp file that adheres to the Executable and Linkable
Format (ELF) specification. Run-time dynamic linking and loading of ELF
object files is by default supported by Contiki [36]. While this standard ELF
support can be used, LOOCI/Contiki also offers the possibility to use a more
compact, yet proprietary, version. As the supporting AVR platforms are 16-
bit platforms, Contiki’s default support for the 32-bit ELF variant is rather
wasteful. A proprietary 16-bit ELF variant yields a significant 20-30% reduction
in component size. LOOCI/SunSPOT components are compiled into a .jar
(Java Archive) file and then further optimised and verified into a deployable
binary bundle suited for the Sun SPOT platform. Once deployed, these
bundles are executed within Isolates, which allow for the simultaneous execution
of multiple applications (i.e. components) on a Sun SPOT node. Finally,
LooCI/OSGi components are compiled into .jar files that form standard
dynamically deployable OSGi-bundles.
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1 public class ComponentName extends LooCIComponent {
2

3 public ComponentName() {

4 super(new short[]{ },
5 new short[]{ });
6

7 }

8

9 public void start() {

10

11 }

12

13 public void stop() {

14

15 }

16

17

18 }

Listing 4.4 — Definition of a LooCI/SunSPOT component

4.4.3 LooCl component development

Although component implementations are platform-specific, the broad lines
of component development are largely similar between the various LooCI
implementations. Each component definition declares a component type (i.e.
name), a set of required and provided interfaces, and a set of properties.
Additional application logic is mostly implemented as reactions to event
reception, component lifecycle changes, property configuration, or system
events like expiring timers, etc. The rest of this section presents more
details on component development for LOOCI/SunSPOT. Further details on
LooCI/Contiki and LooCI/OSGi component development are deferred to
Appendix A.

For the Sun SPOT platform, the LOOCI component model is mapped
to the Java language and component definition thus occurs in an object-
oriented manner. As shown in Listing 4.4, LoOCI/SunSPOT components
are implemented by extending the LooCIComponent base class. This base class
is part of the LOOCI middleware and provides support for component lifecycle
management. Additionally, it implements methods for event publication and
reception, property management, etc. Component definition is performed by
the component’s class constructor, shown in lines 3 - 7. A super-call to the
LooCIComponent class constructor, passes two arrays of event type identifiers.
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Property p = new IntegerProperty(short id, String name, int value);

void addProperty(Property property);

boolean updateProperty(Property property);
void propertyUpdated(Property property);

Listing 4.5 — The LooCI/SunSPOT properties API
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void publish(short eventType, byte[] data);

TR W N

void receive(short eventType, byte[] payload);

Listing 4.6 — The LooCI/SunSPOT event bus API

These respectively enlist the provided and required interfaces of the component.
Further implementation of the component is realised by overriding abstract
methods provided by the LooCIComponent base class; e.g. the start() and stop()
methods in lines 9 - 15 allow for implementing specific behaviour at component
(de)activation.

Listing 4.5 shows the properties API for LooCI/SunSPOT. Properties are
defined as class variables of data type dependent sub-types of the Property class
(line 2). They are defined by an identifier and a name, and can contain values
of the following types: byte, short, int, long, string, and byte array. Properties
are exposed for external configuration via the addProperty() method provided
by the LooCIComponent base class (line 5). This is typically done from within
a component’s constructor (line 6 in Listing 4.4). Specific logic that needs
to be performed before or after updating a property can be implemented by
respectively overriding the updateProperty() and propertyUpdated() methods.

Finally, interaction with the event-bus is implemented by means of the event bus
API in Listing 4.6. Publishing an event is done by invocation of the publish()
method, while event reception is implemented by overriding the receive()
method. Both are provided by the LooCIComponent base class.

A full component implementation is provided in Listing 4.7, which represents
the TemperatureSensor component described earlier in Section 4.3.4.
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1 package looci.sunspot.components;
2
3 dimport com.sun.spot.x;
4 import java.io.IOException;
5 import looci.sunspot.sx;
6
7 public class TemperatureSensor extends LooCIComponent implements Runnable {
8
9 private ITemperatureInput tempSensor = EDemoBoard.getInstance().
getADCTemperature();
10 private Thread thread;
11
12 private short SAMPLE_FREQUENCY_ID = 1;
13 private ByteProperty sampleFrequency = new ByteProperty(
SAMPLE_FREQUENCY_ID, "sample frequency", (byte)10);
14
15 public TemperatureSensor() {
16 super(new short[]{EventTypes.RAW_TEMPERATURE_READING},
17 null);
18 addProperty(sampleFrequency);
19 }
20
21 public void start() {
22 thread = new Thread(this);
23 thread.start();
24 }
25
26 public void run() {
27 Thread thisThread = Thread.currentThread();
28 while (thisThread == thread) {
29 try {
30 int temperature = tempSensor.getValue();
31 temperature = (temperature < 512) ? (temperature / 4)
((temperature - 1024) / 4);
32 PayloadBuilder pb = new PayloadBuilder();
33 pb.addShort((short)temperature);
34 publish(EventTypes.RAW_TEMPERATURE_READING, pb.getPayload());
35 Utils.sleep(sampleFrequency.getValue());
36 } catch (IOException ex) {
37 ex.printStackTrace();
38 }
39 }
40 }
41
42 public void stop() {
43 thread = null;
44 }
45 }
Listing 4.7 — The TemperatureSensor component implementation in

LooCI/SunSPOT.
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4.5 Discussion

As stated in Section 4.2, LOOCI combines the principles of component-based
software engineering and the publish-subscribe communication paradigm. Both
technologies are applied in a complementary manner to realise a run-time
configurable component model with explicit support for distributed interactions.
This section reflects on LOOCI within the larger scope of this dissertation, and
points out how it contributes to greater flexibility with regards to building
applications for sensor systems.

First, LOOCI’s component model allows for run-time deployment of application
components on sensor nodes in the field. Explicitly defined component interfaces
and inspection support, enable third-party users to identify prior deployed
components and reuse them within new compositions. Furthermore, the
behaviour of components can be adapted to the local context or application
requirements by means of configurable properties.

Second, in contrast to the state-of-the-art, LOOCI comes with support for
distributed interactions that is embedded within the component model. By
means of the distributed event bus, components can not only interact locally,
but just as easily with components on other nodes. This is realised without any
centralised event broker, which reduces network traffic. The publish/subscribe-
based operation furthermore enables loose-coupling between components, which
is of great value in sensor system environments where network connectivity is
uncertain, and third-party behaviour unpredictable.

Third, the combination of deployable components and the distributed event
bus is very powerful in terms of configurability. LOOCI allows external parties
to configure individual bindings between specific components. This is a great
improvement over state-of-the-art WSN component models that, in the best
case, only support local dependency resolution during component deployment.
Such fine-grained control brings great freedom and flexibility in specifying which
components, interfaces and nodes should interact within a composition.

Fourth, LOOCT is defined in a platform- and language-agnostic manner, and has
been implemented for several underlying platforms. Additionally, component
development in LOOCI requires little adaptation by developers that are familiar
with those underlying platforms. Consequentially, while component development
remains close to the procedural and object-oriented programming paradigms
adopted from the respective underlying platforms, the semantics of component
implementation are common across all platforms. This greatly facilitates
development of cross-platform applications, as described in the evaluation
in Chapter 7.
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In terms of the service-oriented approach that this dissertation aims to adopt,
LooCI provides a light-weight service abstraction in the form of component
interfaces. Both provided and required interfaces can be envisaged as the
provided and required services of a component. In line with the service-oriented
principles, these are furthermore platform- and implementation independent.

To realise fully open sensor systems, LOOCI does however have a number of
short-comings. First, while inspection support is provided by LooOCI, this
requires a-priori information about which component or node to inspect. In
a large scale deployment, this can be laborious to find out, and more efficient
discovery support is required. Furthermore, only component-related information
can be inspected for, while additional context related information, like node
position and remaining energy, is of equal importance. The contributions in the
following chapter provide such apt support.

Second, while component interfaces are typed and only exchange events of
equal types, this is only based on simple semantic identification of those
interfaces/events. No support is provided to event payload definition, which
by consequence is typically realised in an ad-hoc manner, without coordination
between various partners. TALKSENS, as introduced in the Chapter 6, greatly
improves upon this practice.

4.6 Summary

This chapter presented the first contribution of this dissertation; i.e. LOOCI,
or the Loosely-coupled Component Infrastructure. LOOCI features lightweight
abstractions for application-level modularity and distributed interactions, which
can be inspected and configured at run-time. Its various implementations
enables developers to use the same set of abstractions and management APIs
to build distributed applications across all tiers of a sensor system.

Section 4.1 provided a detailed list of requirements towards application-level
modularity and distributed interactions within open multi-purpose sensor
systems. Section 4.2 discussed how component-based software engineering
and the publish/subscribe communication paradigm greatly contribute towards
meeting those requirements. Section 4.3 presented LOOCI itself and discussed
its component model, its distributed event bus, and its extensive support for run-
time configuration and inspection. Additionally, a short example showed how
configuration of a distributed sensor system is performed when using LOOCI.
Section 4.4 continued with a description of the various implementations of
LooCI and presented how components are implemented for LooCI/SunSPOT.
Finally, Section 4.5 highlighted some of LOOCT’s features within the greater
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scope of this dissertation and pointed out some shortcomings that will be
addressed in the following chapters.



Chapter 5

Discovery of application
services in open sensor
networks

This chapter presents the second contribution of this dissertation; SDLITE, a
lightweight status-aware service discovery solution, which adapts the service
discovery process to dynamic sensor network systems. To diversify between
the multitude of nodes that provide identical services within a sensor network,
SDLITE takes their operational and environmental status into account during
the service discovery process. In realisation thereof, SDLITE provides a reusable
lightweight solution for sharing status information across software components
and layers.

Section 5.1 describes the problem that SDLITE solves and highlights
shortcomings of existing solutions. Section 5.2 presents the specific requirements
on service discovery in open sensor systems. Section 5.3 describes SDLITE itself,
and 5.4 presents a proof-of-concept implementation.
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5.1 Including node status information in the
discovery process

Run-time deployable application logic, as proposed in the previous chapter, and
the possible introduction of new nodes within a sensor system, create a need
for application-level service discovery. This enables possible future clients to
become aware of newly available third-party services, which greatly improves
the possibility of reusing those services.

Discovery of services based solely on their functional semantics (e.g. providing
a temperature sensing service) is however insufficient in typical sensor networks.
After all, due to the nature of sensing applications, and the limited diversity in
functionality they exhibit, often a multitude of nodes provide a similar service.
To diversify between those nodes, their current operational and environmental
status needs to be taken into account. By including parameters such as location,
remaining energy, provided sensors, etc., within the service discovery process,
more practically useful discovery results can be obtained.

While many status parameters are already monitored by various software
modules on a sensor node, they are typically not shared across module
boundaries. For instance, while application components read out sensors
and determine the node’s position, middleware and operating system services
maintain overviews of neighbouring nodes, and memory and energy use; yet,
each module collects this data for its own purposes, and sharing of data is
either not catered for, or provided by module specific APIs. While the first
prevents external access to this data, the second results in explicit inter-module
dependencies, often across various layers. To facilitate sharing of operational and
environmental status information across software modules and layers, central
and generic access is needed. This enables not only service discovery, but also a
range of other services, such as group management and policy enforcement, to
leverage the shared data.

As discussed in Chapter 2, the service-orientation paradigm has been widely
applied within sensor networks. Prior service discovery solutions however often
do not consider the operational and environmental conditions in which a service
operates (1SMS [46], nSOM [47], Servilla [51], WSN-SOA [101]). Others, on the
other hand, do take such information into account (Dioptase [14], USEME [22],
OASIS [97], TinySOA [152]), but gather it for discovery purposes only. The
current state-of-the-art in WSN research, however, acknowledges the benefits of
incorporating status information into other system services; examples include
application and system management (Chi [49], QARI [69], PMA [115], FiGaRo
[127]) and group communication (Logical Neighbourhoods [124], Hood [182]).
Yet also here, status information is mostly collected on an individual basis,
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not shared with other services [49, 69, 115, 124, 127, 182], and only supports a
limited or compile-time defined set of parameters [124, 127, 182].

The goal of the research presented in this chapter is to combine the best of
the previously mentioned approaches; (i) easy sharing of status information
across software modules in a generic manner, and (ii) incorporating this into a
lightweight status-aware service discovery solution.

5.2 Service discovery and status sharing
requirements

To fulfil the goal stated in the previous section, the proposed solution has to
meet the following requirements:

1. Shared representation of services and status parameters. A
representation needs to be defined that allows developers to specify
extensible sets of services and status parameters and present them in a
compact format. This must result in a shared namespace that enables all
parties to refer to each other’s services and status parameters.

2. Status information sharing across software modules and layers.
A mechanism needs to be provided that allows software modules to share
their status data, and to query similar data from others. To limit inter-
module dependencies and accomodate run-time software deployment,
providers and clients of this data need to be decoupled. Finally, data
providers need to retain control of their data.

3. Status-aware service discovery mechanism. Based on the solutions
to the previous requirements, a service discovery mechanism must be
developed that takes into account both service and status specifications.
This includes the definition of service discovery message structures and
an accompanying query resolution process.

To be applicable within a resource-constrained sensor network environment,
these solutions must furthermore take into account the cross-cutting requirement
of being lightweight in terms of memory, communication and processing overhead.
The following section discusses how SDLITE meets these requirements.
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Figure 5.1 — SDLITE interacts with the present application service platform
(i.e. LooCI) and a local status repository to provide status-aware service
discovery.

5.3 SDlite: status-aware service discovery

SDLITE provides on-demand status-aware service discovery within open sensor
networks. A fully distributed architecture is provided in which each sensor
node serves as its own service and status registry. The node-local architecture
of SDLITE is shown in Figure 5.1. This distributed solution is favoured over
a service registry that is positioned at a central location in the network, and
proactively gathers service and status information of all nodes. After all, the
variable nature of status data prevents the economic updating of a central
registry. Although no messages are pro-actively exchanged to keep the central
registry up-to-date, each service discovery action does require dissemination of
service requests across the network in search of service providers. As this takes
place in an on-demand fashion, the exchange of messages is more valuable than
potentially unnecessary pro-active updates of a central registry.

While conceptually SDLITE provides a platform independent solution, it makes
some assumptions in terms of service provisioning. Primarily it assumes an
application service platform to be at hand that identifies services in one way or
another, and provides access to an overview of the available services at a sensor
node. To fit within the larger scope of this dissertation, SDLITE is presented
here in a version integrated with LOOCI. The interfaces of LOOCI components
hereby function as the service abstraction, and services are thus identified by
the event types they produce or consume. Additionally, the service discovery
module interacts with the LOOCI configuration engine to retrieve information
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regarding the available services via component inspection.

Status information is shared in SDLITE via the status management API, as
shown in the figure. This provides centralised access to the registered status
information that is shared by various software modules across all layers of the
software stack. Typically, operating system and middleware modules provide
operational data like node hardware and software details, energy and memory
statistics, and networking information. Environmental data like sensor readings
and location data can be provided by system modules or application components,
while the latter can also share more application specific data.

The following sections discuss SDLITE in more detail. Section 5.3.1 describes the
employed service and status parameter representation. Section 5.3.2 presents
the architecture of the status information registry and its API. Section 5.3.3
describes the service discovery process.

5.3.1 Service and status parameter representation

For multiple parties to be able to reason over the same set of services and
status parameters, a shared namespace is needed. SDLITE defines the necessary
primitives to specify such a namespace and represent it in a compact manner.

An SDLITE namespace is fully defined within the resource-rich back-end and
specifies the set of services and the set of status parameters that are used within
a system, together with lists of supported data types and operators. Services
are identified by a name and have a more compact numerical encoding. As
mentioned earlier, LOOCI component interfaces serve as the service abstraction.
Consequentially, the SDLITE namespace contains a list of human-readable event
type identifiers with their numerical 2-byte encoding.

Status parameters are organised in a hierarchical manner as shown in Figure
5.2. The tree structure allows for (i) intuitive organising of status parameters,
(ii) dynamic addition of new status parameters, and (iii) fast retrieval of data by
hierarchical search. Internal nodes in the tree represent a set of related status
parameters, which are individually represented by its respective leaf nodes; e.g.
the energy node groups all energy related parameters, such as energy source,
vce, ete. Internal nodes therefore typically refer to a specific software service,
as shown in Figure 5.1, however, they can also be virtual (i.e. not linked to a
specific status provider) with the intent of improving the structure of the tree.

FEach status parameter within the tree contains a human-readable name, an
encoding that represents its hierarchical position, and an associated data
type. For example, the light status parameter is uniquely identified by
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Figure 5.2 — The SDLITE status parameter tree is a back-end representation of
all status parameters that are known within a sensor system.

/node/sensors/light, which in encoded form is 021. The hierarchical encoding
format utilises a single byte per level of the tree. Per parent node, this allows
for up to 256 child nodes per parent node. Such numerical encoding reduces
overhead in three ways; i.e. communication, memory and processing. Sensor
nodes are not user-centric devices (e.g. no visual display) and thus typically rely
on a more resource-rich back-end for user interaction. As such, communication,
memory and processing overhead can be reduced by replacing human-readable
strings with more compact numerical identifiers to exchange and store status
parameter information. For user-friendly interaction, back-end tools can resolve
the numerical identifiers to their human-readable counterparts. Furthermore,
traversing the status tree can be performed more efficiently in terms of processing
when it involves single-byte comparisons instead of string comparisons.

The lists of data types, and relational and logical operators supported in SDLITE
are shown in Table 5.1. The data types are used to uniquely format status
parameter values, which allows for their correct interpretation by clients. The
operators allow for specification of constraints on status parameters by means
of status predicates that are included in service requests; e.g. /node/node_type
= spot & /node/memory/free > 3000. To do so compactly, both data types
and operators are encoded into a numerical representation, which is simply a
sequentially assigned integer value.
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Data types Operators

Data type Encoding Size (bytes) Operator Encoding
undefined 0 n/a undefined 0

byte 1 1 > 1

int32 2 4 < 2

float 3 4 = 3

bool 4 1 #* 4

string 5 n/a & 5

array 100 n/a | 6

Table 5.1 — SDLITE specifies lists of data types and operators that are used to
specify parameter values and status predicates.

On-node awareness of the namespace

Instead of the entire namespace, as it is defined in the back-end, individual
sensor nodes are only aware of services and status parameters provided by
locally running software. The available services are specified by the deployed
application components, while the status parameters are specified by the locally
available status providers. As shown in Figure 5.1, services are determined via
component inspection, and each sensor node maintains an individual data tree
that references the status providers on that node. Each status provider itself, in
turn, maintains a list of status parameters it shares, yet only in their compact
numerical encoded format. The operational details of status provisioning are
discussed later in Section 5.3.2.

Extending the namespace

Both the set of services and the status parameter tree can be extended to
include new items. Adding services is straightforward and involves adding the
new service to the existing list of services and assigning it an unused numerical
identifier. Within LooCI, this means specifying a new event type. Adding a
status parameter involves inserting a new node in the status parameter tree.
This can be done at all levels but the root level, as long as the number of existing
nodes on that level does not exceed the maximum number of 256. Any unused
encoding at the respective level can be assigned as the new status parameter’s
numerical encoding.

To avoid encoding inconsistencies, an append-only policy is applied to the status
parameter tree. This means that numerical encodings can only be used once
per set of siblings, and that even when their respective node is no longer in use,
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Figure 5.3 — Architecture of the SDLITE status registry.

they cannot be reused. Unneeded nodes are therefore never removed from the
tree, rather they are marked as obsolete. This append-only policy is needed
as (old) encodings might still be in use by deployed software. Any reuse of an
encoding will thus result in that encoding no longer referencing a unique status
parameter.

To eliminate obsolete status parameter encodings, a full re-encoding of the
tree can be performed. This is however only rarely advisable as it requires
all software with references to existing status parameters to be refactored and
redeployed. This includes all status providers and clients, which might be
over-the-air deployable (e.g. LOOCI components), but might also be part of
pre-deployed middleware or operating system services. This needs to be avoided
as much as possible within operational sensor systems as it is a highly disruptive
action that consumes considerable resources within the sensor network.

5.3.2 A central status registry

Sharing status information across software layers, while decoupling status
providers and clients, demands a central service in the software stack. Such a
service can mediate between status providers and clients and eliminates not
only direct dependencies between them, but also their need to implement data
sharing mechanisms of their own.

SDLITE provides a central status registry that implements the registry pattern
[59]. While this pattern is often applied in object-oriented programming to
store objects for later reuse, it is applied here to store cross-layered references
to software modules that act as status providers. It therefor maintains a
hierarchical data structure as shown in Figure 5.1. Within this tree structure,
each node contains a numeric identifier that ties it to the status parameter
namespace, and when applicable a reference to a status provider that shares the
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public interface IStatusProvider {
public Object getStatus(byte parameter);

public interface IStatusRegistry {
public void register(byte[] path, byte name, IStatusProvider provider);
public void unregister(IStatusProvider provider);

public interface IStatusQuery {

public Object getStatusParameter(byte[] path);

public boolean boolResolve(byte[] predicate);

public Result resolve(byte[] predicate);

public void registerStatusListener(byte[] path, long interval,
IStatusListener listener);

public void unregisterStatusListener(byte[] path,IStatusListener
listener);

public interface IStatusListener {
public void statusUpdate(byte parameter, Object value);
}

Listing 5.1 — Definition of the IStatusProvider, IStatusRegistry,

© 00~ O Utk W
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IStatusQuery and IStatusListener interfaces of SDLITE in Java.

statusRepository.register(new byte[] {NODE}, ENERGY, new Energy());

public class Energy implements IStatusProvider {
public Object getStatus(byte parameter) {
switch (parameter) {
case BATT_LEVEL :
return Integer.valueOf(Battery.getBatteryLevel());

Listing 5.2 — SDLITE status provisioning on Sun SPOT.
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respective status parameter(s). This results in a very compact representation
with minimal memory overhead.

The status registry interfaces support three types of interaction; registration of
status providers, status provisioning and status querying. Dedicated interfaces
support these interactions between status providers, the status registry and its
clients, and are depicted in Figure 5.3 and Listing 5.1. To be incorporated in
the status tree, status providers implement the IStatusProvider interface and
register a reference to it via the IStatusRegistry interface of the registry (see
Listing 5.2). This makes their status parameters available to the status registry,
and hence its clients. The IStatusQuery interface allows clients to retrieve that
status data. This can either be a one-time operation or periodic updates can
be retrieved by means of a registered IStatusListener interface. Additionally,
more elaborate status predicates can be resolved to be true or not, optionally
also returning the actual status parameter values specified in the predicate.

Knowing only the encoding of a status parameter and unaware of its provider,
clients can thus use the status registry to retrieve that parameter’s value. In turn,
the registry looks up the registered pointer to the respective status provider,
retrieves the current value of the status parameter therefrom, and passes that
value to the requesting client. This separation of interactions through an
intermediary status registry decouples status providers and clients. Additionally,
status parameter values are only retrieved on-demand and are not pro-actively
duplicated. While the status parameters are thus globally retrievable, each
status provider remains in control of its own data and direct access to it is
restricted to the status registry only.

The status registry as an added platform abstraction

Orthogonal to the posed requirements, the SDLITE status registry can be
applied as an additional abstraction over heterogeneous hardware platforms.
It hides platform and implementation differences behind its unifying API and
namespace, which allows for more generic and reusable applications and services
to be developed. For instance, instead of using hardware specific sensor drivers,
a LoOCI temperature sensing component can retrieve temperature data via
the status registry API. This allows the same temperature sensing component
to be deployed on various sensor nodes with different hardware sensors and
accompanying drivers. Similarly, differences in energy, memory and even network
APIs can be abstracted away. This can substantially reduce the development
overhead and management complexity in a multi-platform sensor system.
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5.3.3 The SDlite service discovery process

The SDLITE service discovery process involves direct interaction between clients
and service providers. Clients express their interest in a service by broadcasting
a service request message into the sensor network. Upon arrival, each node
evaluates the request and, if it can be complied, sends back a service reply
message. A number of options enables the clients to influence the discovery
process; e.g. in terms of strictness and redundancy. This section shortly
describes the service discovery process; the associated service request and reply
message formats are described in detail in Appendix B.

An SDLITE service request specifies the service that is being discovered in the
form of a numerical service type identifier (i.e. a LOOCI event type) and a
status predicate that describes the operational and environmental status that a
suitable provider needs to adhere to. It furthermore specifies whether all status
parameters in the predicate need to be evaluated, or whether those that are
unknown at a resolving sensor node can be ignored. This accommodates for
platform differences, and increases the number of nodes that can (partially)
fulfil the disseminated request. Finally, the request specifies whether a single
suitable provider is sought for or all such providers in the network. This reduces
the networking overhead by not forwarding the request when only a single
service instance is required and has beeen found. As such, a variety of possible
discovery results can be retrieved, ranging from all partially complying services
in the network, up to a single fully compliant service.

Upon reception of a service request, the SDLITE process on a node first evaluates
whether the requested service is provided by any of the local (LOOCT) application
components. This takes place by means of inspection of the locally available
components. Only if a service of the specified type is available, an evaluation of
the status predicate follows. Status parameter resolution involves retrieval of
the current values of the status parameters specified in the status predicate, and
evaluation of those values with their counterparts in the predicate according to
the associated operators. In case the status predicate is positively evaluated, a
service reply message is returned to the originating client. This contains the
list of matching components and, optionally, a list of the status parameters
specified in the respective request, and their actual current values.

Further details with regards to the service discovery resolution process
are discussed in the following section, which presents a proof-of-concept
implementation of SDLITE.
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5.4 Proof-of-concept implementation

Proof-of-concept implementations of both the service discovery part [170] and
the status registry part [169] of SDLITE were realised to demonstrate their
feasibility. They were implemented on the Sun SPOT platform [135] and
integrated with the respective LOOCI port.

To limit networking overhead, SDLITE service discovery was additionally
integrated with the Sun SPOT provided implementation of the Ad hoc On-
Demand Distance Vector (AODV) routing protocol [142]. This combines the
service and route discovery processes into a single discovery round to leverage
the fact that once a service is discovered, the potential client will also need
a route towards the service provider. The integration of service and route
discovery has previously been proposed in the related literature [28, 53, 91].

The rest of this section first shortly introduces AODV and then presents the
SDLITE/AODV integration.

AODV operation

AODV is a MANET (Mobile Ad hoc Network) routing protocol mostly applied
in wireless networks with volatile and short-lived routes due to node mobility
and intermittent wireless connections. When a route to a certain destination
is needed, a route request indicating that destination’s address is broadcasted
over the network. Any node that either has this address configured as his own
or that has an active route to such a node replies to this request. It creates a
route reply packet and unicasts it back hop-by-hop to the requesting node. As
a result, all intermediate nodes know via which neighbouring node they can
reach the required destination, hereby creating a route to it. Hence, the SDLITE
service discovery process is similar to the AODV route discovery process with
the difference that instead of looking for a route to a node, it looks for a node
providing a specified service.

Service and Route Discovery Integration

The SDLITE/AODV integration mainly involves piggy-backing of service
discovery messages on their route discovery counterparts and added middleware
logic to resolve status-aware service requests. Practically, SDLITE service
discovery happens as follows.
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Figure 5.4 — The integrated service and route resolution decision tree.

Clients requiring a service piggyback an SDLITE service request to an AODV
route request, which doesn’t specify a destination address as at this stage it
(i.e. service provider) is still unknown. This request is broadcast into the
sensor network, and when received, sensor nodes execute the service and route
resolution decision tree as shown in Figure 5.4.

As at this stage no destination address is specified, the left part of the decision
tree is evaluated. This part essentially performs service discovery to locate
complying nodes. It first checks whether a suitable service (including status
description) is locally available. If so, the All-flag in the service request is
checked, which specifies whether all possible providers in the network are to
be discovered. If set, two actions take place. First, a reply is sent hop-by-hop
to the originator of the service request, i.e. the service discovery client, with
the respective service provider’s address specified in the route reply. This reply
additionally specifies all local LOOCI components that provide the requested
service, and, optionally, a list of respective status parameters and their current
values. Every intermediate node receiving the reply processes the contained
service and route information. The service-related information in the service
reply is stored in a service table and the routing information in the AODV
routing table. This information is optionally cached during the specified TTL
in the reply and is used to resolve future service and routing requests. The
second action that takes place when the All-flag is set, rebroadcasts the request
so that additional services can be found. If the All-flag is not set, only the reply
is sent to the service discovery client. In case a service is not locally found, a
locally cached service table is checked for matching entries of remotely provided
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services. If a remote service is found, and a route is available to it, a reply is
send back to the client, and the request forwarded depending on the All-flag.
In case a route is not known, the destination address is filled in into the request,
and the latter is forwarded in search of a route. In case no matching remote
service is known, the request is simply forwarded.

Re-broadcasted requests with a specified destination field, trigger complementary
AODV route discovery. This involves the evaluation of the right side of the
decision tree. If a node has a route available to the specified address, a reply
is sent back to the client, hereby completing the end-to-end route. If a route
is not available, but the processing node is aware of another compliant service
provider, a reply is transmitted pointing at this alternative node. Otherwise,
the request is rebroadcasted as it was.

Once a service reply reaches back to the requesting client, its service discovery
process takes act of the discovered service. If in the respective request the
All-flag was set, the process waits until a timer elapses to allow other replies to
arrive before notifying the discovery initiating process of all discovered providers.
In case the All-flag wasn’t set, the service reply is immediately reported to the
initiating process and the associated timer is cancelled. It is possible however
that no replies are received in which case the initiating process is notified hereof
after the timer elapses.

5.5 Discussion

This section critically reflects on SDLITE and its implementation within the
larger scope of this dissertation.

First, SDLITE complements LOOCTI’s run-time inspection of known application
components with critical support for the discovery of unknown application
components. Within an open sensor system in which multiple parties manage
various components, network managers must be able to keep an overview of
which applications are operating where, how, and under which conditions. The
combination of discovery and inspection greatly contributes to obtaining such
an overview.

Second, while status sharing was presented in this chapter in support of service
discovery, the SDLITE status registry provides a generic and centralised API.
This allows for status sharing to be applied also within other supporting services
such as group management, policy enforcement, resource management, node
discovery, etc. Such a shared supporting service reduces resource consumption
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with respect to otherwise duplicate implementations, and stimulates further
integration with other supporting services by means of the open namespace.

However, while the presented discovery solution enables the localisation of
services, it does not provide additional information on how to use those services;
i.e. how to correctly interpret or structure the respective event contents. In
realising a lightweight solution, SDLITE makes use of very basic service identifiers
in the form of event type identifiers. While they provide a notion of the event’s
semantics, they provide no information with regards to their payload contents.
The following chapter discusses TALKSENS, which moves away from the opaque
event payloads in LOOCI and provides support for the explicit definition of
event payloads and run-time retrieval thereof via component inspection.

Finally, while resulting in a lightweight representation, the numerical encoding
of status parameters is rather naive. Disadvantages of the proposed encoding
include (i) a 1-byte overhead per ancestor in the status tree, (ii) an inherent limit
of 256 nodes per parent, (iii) sequential byte-per-byte parsing of the encoding
to determine the actual parameter being identified. TALKSENS provides a more
compact and clever encoding of such hierarchical information.

5.6 Summary

This chapter presented SDLITE; a status-aware service discovery solution for
open sensor networks. SDLITE facilitates discovery of application services based
not only on a specification of service functionality, but also takes into account
the operational and environmental conditions in which these services operate.
In support thereof, a status registry provides consistent sharing of status data
across software modules and layers on a sensor node.

Section 5.1 presented the problem of service discovery in sensor networks and
highlighted that operational and environmental status information needs to be
included to diversify between the many providers of similar functionality. Section
5.2 continued with a detailed list of requirements to such service discovery
support. Section 5.3 presented the solution put forward by SDLITE. This
included a description of the service and status parameter namespace, the node-
local status registry with centralised generic access, and the service discovery
process. Section 5.4 presented a proof-of-concept implementation of SDLITE in
which service discovery is integrated with the route discovery process to reduce
networking overhead. Lastly, Section 5.5 discussed SDLITE’s position within the
larger scope of this dissertation, and highlighted some additional concerns with
regards to service descriptions and the compact representation of hierarchical
information.






Chapter 6

Coordinated messaging in
sensor systems

This chapter presents the third contribution of this dissertation; the TALKSENS
message definition framework. TALKSENS provides a systematic approach to
message definition that results in improved coordination among the various
parties involved within a sensor system. Development-time features such
as a message description language and message-specific serialisation code
generation encourages its use to developers, while subtyping reduces the data
flow configuration overhead. Additionally, run-time inspection of components
for message descriptions facilitates third-party (re)use of those components.

Within this chapter, Section 6.1 introduces the problems that TALKSENS
solves and discusses the general principles behind its solutions. Section 6.2
reports on TALKSENS’s message subtyping support, and Section 6.3 discusses
its development-time and run-time support for coordinated message definition.

6.1 Introduction

The correct exchange of meaningful messages is a vital element of distributed
applications. Realising this within an open system with multiple parties involved,
requires a non-trivial coordination effort to define the various types of messages
that are known within the system, and enforce their consistent use.

The contributions presented in this chapter focus on two problems associated

95
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with message exchange within open sensor systems. On the one hand, message
flows within such systems can quickly become complex as an extensive set
of software modules that are deployed on various sensor nodes, exchange a
multitude of different message types. Management thereof is challenging, as
maintaining a clear overview of message flows is difficult when details about
individual interconnections cannot be abstracted away.

On the other hand, the open use of the sensor system infrastructure and re-
use of third-party application logic requires a systematic approach to message
definition. Ad-hoc message definition, as is largely the state-of-the-art in
WSN systems, is no longer feasible and a coordinated approach is required to
uniformly define message types and contents. Such support needs to account
for the involvement of multiple parties, their varying preferences for data
representation, and diverse hardware and software platforms. Furthermore,
changing application requirements and software evolution can over time change
the contents, and even types, of messages that are exchanged within a sensor
system. Dedicated development-time and run-time support for this coordinated
message definition is required.

This chapter presents TALKSENS, a message definition framework that brings
such support to sensor systems.

On the level of message semantics, TALKSENS provides support for message
subtyping. Message types can be organised into a hierarchy, which allows for
reasoning in terms of a group of related message types on a more abstract level.
This way, the full details of complex data flows can be abstracted away to more
clearly reveal the general principles and goals of the distributed application.

On the level of message contents, TALKSENS provides a systematic and
coordinated approach to explicitly define message contents. Development
tools encourage the use of such a systematic approach, which is extended to
the run-time by supporting component inspection for message descriptions.
In support of application evolution and heterogeneity in users and platforms,
TALKSENS allows for well-defined variations of message contents in terms of
included data values, data types and units of measurement. This improves
reuse of application logic across an open sensor system, yet, without obligating
developers to adhere to fixed standardised messages.

The rest of this chapter provides a detailed overview of TALKSENS and discusses
requirements, solutions and related work. Section 6.2 focusses on subtyping and
presents an encoding function that incorporates hierarchical information into
compact numerical message type identifiers. Section 6.3 presents the message
definition framework and its development and run-time support.
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6.2 Subtyping of messages

Within a typical sensor system, a large number of communication relationships
can exist that relate to various types of information (e.g. application data,
system management). For instance, in the smart office deployment [34] at
DistriNet, further discussed in the evaluation in Chapter 7, each single office
features 101 relationships between 37 software components that run on 8 nodes.
These relationships correspond with 31 different types of messages.

Such complex interaction graphs require considerable configuration effort to
establish. Within LooClI, for instance, such relationships are created by binding
specific interfaces of components together, which results in an extensive list
of binding actions to be executed. Within the smart office deployment, for
example, 107 LooCI binding actions are needed per monitored office.

One manner of reducing this effort is by grouping relationships. Grouping
can be based on the end-points involved, or on the type of information that
is exchanged. An example of the first approach, is LOOCI’s wildcard support
for interfaces, components and nodes, which allows to establish one-to-many,
many-to-one, and many-to-many relationships, as discussed in Section 4.3.2.

The subtyping approach presented in this section, aims at grouping relationships
based on the type of information that is exchanged; or in other words, based on
message types. By arranging message types into a hierarchy that specifies is-a

e Srerenene

(a)
Temperature TemperatureMsg | SensorMsg '
Sensor |
— Comfort
_)_ level app
Light [TemperatureMsg] [ LightMsg ]
Sensor LightMsg
Sensor node Smartphone
(b) (c)

Figure 6.1 — Composition diagrams of a basic smart office application that
show various levels of abstraction in data flow (a,b), and the accompanying
message type hierarchy (¢).
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relationships (i.e. subsumption) between its constituent elements, one can reason
over groups of elements, called subtypes, which are collectively represented by a
more abstract element, called a supertype. Consider for example the basic smart
office application shown in Figure 6.1. Within the message hierarchy shown in
Figure 6.1c, SensorMsg subsumes all messages that transport basic sensor data;
i.e. TemperatureMsg and LightMsg. This enables reasoning over the application
composition on different levels of abstraction. On a higher-level of abstraction,
as shown in Figure 6.1a, all sensor data of the sensor node is forwarded to the
smartphone, which concisely represents the overall goal of the application. On
a more specific level, shown in Figure 6.1b, individual components and bindings
appear, which concretely show the existing data flows. This also facilitates
application configuration and inspection. For instance, both bindings between
the sensor components and the comfort level app, can be configured by a single
action; i.e. all messages of abstract type SensorMsg must be forwarded to the
comfort level app. In conclusion, message subtyping can relieve the developer
from dealing with the full details of a complex data flow and more clearly reveal
the general principles and goals of the application.

Subtyping has been well applied in message-oriented middlewares. Examples
include type-based publish/subscribe systems [43] that rely on the subtyping
support of object-oriented languages, and WS-Topics [132] in the Web Services
sphere. Both however leverage on technologies that introduce too much
overhead to be comfortably applied within constrained sensor nodes; i.e. object-
orientation and the Web Services stack. The current state-of-the-art of message
typing in constrained environments often provides no support for sub-typing.
Examples include TinyOS’ default messaging system (Active Messages [21]),
publish/subscribe-based systems for WSNs (Mires [161] and TinyCOPS [66]), as
well as LoOCI [71]. Where subtyping is supported within sensor networks, this is
realised in sub-optimal manner by means of verbose textual identifiers or simple
numerical encoding techniques. Within CoAP [156], for instance, resources are
ordered in a hierarchy and are addressed using human-readable resource-paths;
e.g. /sensor/temperature, which is slightly improved by the IPSO application
framework [155], which proposes shortened path templates (e.g. /sen/temp).
The OMA Lightweight Machine to Machine specification [134] further compacts
CoAP resource paths into a numerical representation (e.g. /4/0/2). Both the
IPSO and OMA approaches however limit human-readability, while not offering
great compaction. NanoSD [93] on the other hand, provides a more compact
encoding and makes use of bitstreams, like 01001, which is parsed into 0.1.0.01
and maps to a Sensors.Ambient.Weather.Temperature service identifier. Each
sensor node is however required to know the full details of the service tree
structure (e.g. amount of children per parent) to be able to correctly parse
the bitstream. In conclusion, compact encoding of hierachical information in
support of subtyping is missing within the WSN state-of-the-art research.
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The rest of this section presents the subtyping support of TALKSENS. Section
6.2.1 lists the requirements for subtyping within the resource constraints of
sensor nodes. Section 6.2.2 introduces an adapted encoding function for
including hierarchical information within numeric identifiers. Finally, Section
6.2.3 discusses how these numeric identifiers are applied within LOOCI to enable
event subtyping.

6.2.1 Subtyping requirements and approach

The goal of the research presented in this section is to provide nominal subtyping
of messages within resource constrained sensor networks. In general, messages
have a type, and type-related contents. A message type is defined as the
external meaning of a message (e.g. temperature message); it gives meaning to
the otherwise arbitrary set of bytes that make up the message’s payload. Within
nominal subtyping, an explicitly declared link exists between types and their
subtypes. This in contrast to structural subtyping, in which the structure, i.e.
message payload contents, (implicitely) defines whether one type is a subtype
of another. The nominal subtyping discussed in the rest of Section 6.2 only
relates to message types. The contents of message payloads, and more precisely
the definition thereof, is the topic of Section 6.3.

To limit the communication and storage overhead, message types are commonly
identified within sensor networks by means of a numeric representation, e.g.
Active Messages [21] applies a one-byte handler identifier to dispatch messages
of a certain type to a fitting message handler. To realise subtyping support
within these constraint environments, hierarchical information thus needs to
be encoded within those numeric identifiers. Such encoding should ultimately
enable testing whether one type is a subtype of another within the respective
hierarchy.

A hierarchy encoding function must meet the following requirements to suit
application within constrained sensor networks:

« Compact representation. A compact representation means that an
identifier must contain all necessary sub-typing information in an encoding
that uses a minimum amount of bytes.

o Efficient subsumption testing. Subsumption testing should require
(i) minimal computation and (ii) minimal input of hierarchy information.

¢ Conflict-free incremental encoding. Incremental encoding allows the
addition of new entries into the hierarchy at any time without requiring
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the recomputation of existing identifiers and consequential updates of
software that uses the old identifiers.

To meet these requirements, we build-upon a prime number-based encoding
function as developed by Preuveneers et al. [146, 147]. The presented adaptation
optimises the original function for constrained sensor networks by imposing a
single-inheritance restriction upon hierarchies. Previous experiences in building
sensor network applications [72, 168], have shown such single-inheritance
hierarchies to be sufficiently expressive. Through further clever adjustment of
the original encoding function, this results in a drastic increase in compaction
of the encoded identifiers.

6.2.2 Prime-based hierarchy encoding function

The presented encoding function is based upon the fundamental theorem of
arithmetic, also called the unique prime factorisation theorem [64] which states
the following:

Every natural number, different from one, is either prime or, if it is
composite, can be represented by a product of prime numbers, which
is unique up to the order of factors.

Less formally, this means that every positive integer greater than one has a
unique prime factorization. From this it can be derived that a product of prime
numbers is only divisible by those prime numbers. It is this property of prime
number theory that is applied within the presented encoding function, both in
its original and adapted form.

Principles of prime-based encoding

The principle workings of the prime-based encoding function is visualised in
Figure 6.2. While the original function supported encoding of multi-inheritance
hierarchies, the figure presents a single-inheritance hierarchy as it suffices to
explain the encoding function within the scope of this dissertation. Prime-based
encoding consists out of three steps; (i) creating a hierarchy of message types,
(ii) prime number assignment, (iii) identifier calculation.

Within the first step, message types are organised in a hierarchical tree structure.
Each node in the tree represents a single message type. Leaf nodes represent
specific message types, while internal nodes represent abstract message types.
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Figure 6.2 — An example hierarchy encoded with the original encoding function.

In the second step, prime numbers are assigned to all nodes in the tree. In the
original encoding function, each node is assigned a unique prime number. The
sequence of assigning primes influences the overall compactness, or size, of the
resulting identifiers. Within the example, a breadth-first prime assignment is
applied, which overall results in the smallest identifiers.

Finally, within the third step, the values of the message type identifiers are
calculated. For each node, this is equal to the product of its own prime with the
primes of all of its ancestors; or consequentially, the product of its own prime
with the identifier of its parent. More formal, with 7" being a node in the tree,
pr its assigned prime number, and idp its identifier:

. 2 if T is root
ZdT = . . . (61)
pr *idp:  where T’ is the direct supertype of T

Subsumption test

The subsumption test determines whether one node is an ancestor of another.
Whether or not this is the case is encoded within the values of their identifiers.
Following from the properties of prime numbers, the encoding function causes
identifiers to be divisible (i.e. without remainder) only by the identifiers of their
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ancestors, and no other identifiers. To test whether node A subsumes node B
(B <: A), the modulo operation can thus be used as follows:

B<: A& idpmodidsya =0

A proof of the correctness of the subsumption test is given by Preuveneers et
al. [146].

Adapted prime number assignment and encoding

Closer inspection of the resulting identifiers in Figure 6.2, reveals that they
form a very sparse set of integers. One obvious example thereof is that all odd
numbers are omitted from the set. The reason of this sparsity is two-fold; (i)
identifier values are the result of a multiplication operation, and (ii) the factors
of these multiplications are primes, which themselves form a sparse integer set.
Consequentially, the values of the identifiers rise fast with an increasing number
of nodes, which critically results in a larger number of bytes needed to represent
these values. This contrasts with the compactness requirement stated before.

To reduce the growth in size, a number of optimisations can be introduced to
the prime number assignment strategy, under the premise that the hierarchy is
restricted to a single-inheritance structure. First, as this results in a tree with a
single root, the root can be assigned 1 as its 'prime’ value. Although not a prime
number by definition, this has no influence on the correctness of the encoding
function within a single-inheritance structure. Second, single-inheritance allows
for reusing prime numbers in the various sub-trees of the hierarchy. This means
that more often identifiers are a product of the lower-value prime numbers and
consequentially have a lower value themselves.

To still guarantee correct subsumption testing, the reuse of prime numbers
needs to adhere to the following rule. The prime number to be assigned to a
node must be different from:

1. the prime numbers assigned to the node’s ancestors and their direct
siblings,

2. the prime numbers assigned to the node’s siblings,

3. the prime numbers assigned to the offspring of the node’s siblings, and

4. the prime numbers assigned to the node’s offspring.
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Figure 6.3 — The example hierarchy encoded with the adapted encoding
function.

The last requirement is typically inherently met when prime number assignment
occurs in a top-down, breadth-first manner. Figure 6.3, provides a concrete
example of the prime number reuse and the increased compactness of the
resulting identifiers. Notice for instance how 7 is reused as prime number for
nodes F, H and L

For the adapted encoding function, Equation (6.1) can thus be adapted
correspondingly to the following. With T being a node in the tree, pr its
assigned prime number, and idy its identifier:

. 1 if T is root
ZdT = . . . (62)
pr *idpr  where T’ is the direct supertype of T

To prove that the subsumption relationships are preserved by the reuse of prime
numbers, this can be restated as follows. Assume a set of nodes in a tree
x ={C1,Cs,...,C,}. We define T'(C;) as the union of C;’s assigned prime and
the set of primes of its ancestors. The encoding function that determines a
node’s identifier can then be written as:
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ide, = [ [ p; with p; € T(C3) (6.3)
J

By definition of subsumption; C; can only subsume C5 if there is a subtree
rooted at C7 which contains Cy (possibly as root). This means that:

I(Cy) C T(Cy) (6.4)

By definition of the encoding function (6.3), each node’s identifier is the product
of its own prime and the set of primes it inherits. Under single inheritance
and reuse of primes, the subsumption test thus remains correct as it will only
succeed in case the set of primes of vertex Cs is a superset of the set of primes
of the more abstract vertex C1, as reversely stated in (6.4). By the rules of our
prime number assignment strategy, this can only be the case when C; is an
ancestor of Cs.

For completeness, the multi-inheritance example in Figure 6.4 shows that the
subsumption test is no longer valid when reusing prime numbers. In that case
the set of primes of a multiple inheriting vertex can also be a superset of a vertex
that only inherits from some of its ancestors. For instance, I'(E) = {1,2,3,7}
is a superset of I'(H) = {1, 3,7}, yet, no subsumption relation exists between E
and H in the given hierarchy.
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[Qgend: X =node name p =prime number id = identifier ]

Figure 6.4 — Reuse of primes under multi-inheritance breaks the correctness of
the subsumption test, as shown by the identifiers of nodes F and H.
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Incremental encoding of late additions to the hierarchy

New message types can be added to an existing hierarchy at all levels, but the
root level. By applying the prime number assignment rules stated previously in
Section 6.2.2, such addition can be performed without changing the identifiers
of the existing message types. An example is shown in Figure 6.5 in which
nodes X and Y are added to the hierarchy shown in Figure 6.3.

In contrast, existing nodes should not be removed from the hierarchy. The
primary reason for this is that it releases their assigned prime. Subsequent reuse
of those primes for the later addition of a new node could lead to errors. False
positives during subsumption testing can occur when running applications still
refer to the message types of the removed node. In case a message type should
no longer be used, the proposed intermediary solution is to retain its node, and
possible offspring, as placeholders of the previously used primes and identifiers.

To eliminate deprecated message types and improve compaction of the remaining
message type identifiers, a hierarchy can always be fully re-encoded. This
includes new prime number assignment and identifier calculation. While
this might be beneficial, it should be prevented within operational settings
as it changes the identifiers of existing message types within the hierarchy.
Consequentially, all software that refers to the old identifiers needs to be
updated to refer to the new identifiers.

non e

ao
g

x
/

B c D
p=2 p=3 p=5
id =2 id=3 id=5
B N A
E E G H 1 g Y
p=7 p=11 p=13 p=7 p=7 p=11 |l p=19
id=14 || id=22 || id=26 id = 21 id=35 | id=55J!id=95 |
/V?V\\ /\ /\
K L " x5 [ N o P
p=17 p=19 | p=23 p=11 p=13 p=13 p=17
id=238 J( id=266 ! id=322 | (_id=231 id = 273 id=715 || id=935

[ggend: X =node name p =prime number id = identifier ]

Figure 6.5 — Late addition of nodes X and Y to the example hierarchy.
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Impact of the adaptation

The increased compaction of the adapted encoding function results in reduced
communication and storage overhead, since shorter message type identifiers need
to be included in messages and stored in memory. Importantly however, the
extent of the achieved compaction additionally results in reduced computation
overhead.

As discussed in the evaluation in Chapter 7, the presented adaptations allow for
identifiers in sufficiently large hierarchies to be encoded within less than 8 bytes.
This is in contrast with the original encoding function, which quickly results
in identifiers of larger size. Consequentially, standard-size integers (i.e. up to
8 bytes) and a standard modulo operation can be used on most platforms to
respectively represent message type identifiers and perform subsumption testing.
The original encoding function, on the other hand, requires custom integer
representations to be implemented and features an extensive subsumption test,
involving both the primes and identifiers; it quickly tries to rule out subsumption
by means of a number of theorems before applying a more computation intensive
custom modulo operation [146]. Because of the presented adaptation, no
such custom support has to be implemented and subsumption testing can be
performed efficiently using only the identifiers. Within the resource constraints
of sensor nodes, this is of great importance.

6.2.3 Event subtyping in LooCl

This section reports on the practical application of subtyping within LooCI
based on the presented encoding function. Within the following, first the
required implementation changes to LOOCI are discussed, followed by a number
of guidelines on how to practically use subtyping during component development
and application management.

Implementation changes

Minimal changes to the LOOCI middleware are needed to add subtyping to
its binding model. These changes are needed to allow for larger event type
identifiers and to enable subsumption testing during event dispatching.

The use of larger event type identifiers affects (i) the serialised event format, (ii)
the subscription tables, and (iii) the component interfaces. As they can grow
reasonably large, and to avoid unnecessary transmission of leading zero-bytes,
a variable size integer encoding is used within the serialised events that are
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level app
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Figure 6.6 — Within LooCI, organising events in a hierarchy (a) allows for
establishing more intuitive bindings on a higher level of abstraction with
fewer entries in the respective subscription tables (b).

exchanged between components. Within this encoding, a first byte specifies the
number of bytes that follow to represent the actual value of the identifier. This
allows for identifiers to be represented with a maximum length of 255 bytes,
which is more than sufficient. Changes to the subscription tables and component
interfaces, merely involve refactoring to use adequate data types to represent
the larger identifier values. In the current implementations, this is realised by
applying the largest size integer data type offered by the underlying platforms.
This is typically an 8-byte integer format, which in practice is sufficient, as
shown in the evaluation in Chapter 7.

Additionally, LOOCTI’s event dispatching process needs to be adapted to not only
dispatch events based on equality of event types but also based on subtyping
relations. As the subsumption test merely involves a modulo operation, this
requires minimal changes to the existing implementations.

Subtyping in practice: a discussion

Practical use of event subtyping in LOOCI is shown in Figure 6.6. Based on the
(partially shown) event hierarchy, the earlier presented smart office application
is created. As a result of the added subtyping support, the connections between
both sensor components and the comfort level app, can be created with a single
binding, which states that all Sensor events from any (*) components on node
A need to be forwarded to the comfort level app component (10) on node B.
Additionally, by placing all configuration and inspection events underneath the
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management supertype (i.e. Mgmt), these can dispatched to the configuration
engine with a single entry in the remote-from subscription table, as shown for
node B. This contrasts greatly with the otherwise 31 individual entries needed
to dispatch all incoming LOOCI management events. Finally, as can be seen in
the figure, only the locally needed identifiers are used within the components
and subscription tables. The full event hierarchy, which includes additional
subtyping information and prime numbers, is not needed on the constrained
sensor nodes.

As discussed in Section 6.2.2, fully re-encoding an event hierarchy necessitates
an update of all software that refers that hierarchy’s identifiers. Figure 6.6
indicates the impact thereof within LoOCI, which involves (i) refactoring and
redeploying the LOOCI middleware, as the configuration engine refers to LOOCI
management events; (ii) refactoring and redeploying all application components,
as their interfaces refer to event type identifiers; and (iii) reconfiguration of all
bindings with the new event type identifiers. Even for small sensor systems can
this be a disruptive and expensive operation.

Finally, while event subtyping within LoOCI provides configuration benefits,
it can also introduce some complexities and errors. One major reason for
this is that only nominal subtyping is provided, with no additional support for
inheritance of event contents. More practically, although Temperature and Light
are both of type Sensor, the presented subtyping support does not specify that
they share a (partial) common payload structure; both event types may contain
different sets of values, in different sequences, and expressed in different data
types. A solution to some of these shortcomings is presented in the subsequent
section, however, additional guidelines are presented here with regards to the
use of subtyping within LOOCI. These are the following:

o Serialised events should always be of a specific (i.e. leaf) event type.
It is only at that level that payload contents is specified and can thus
be correctly parsed by subscribed components. Furthermore, as abstract
(non-leaf) event types have no specific meaning, it makes little sense to
instantiate events of those types.

¢ Component interfaces (both provided and required) should be of a
specific (i.e. leaf) event type for the same reasons. One exception exists
however for components that do not require to parse the event payload.
An example is a logging component that simply stores the serialised
payload of incoming events. In these cases, the component can include
an encompassing generic required interface, which eliminates the need to
specify within the component’s code all specific event types the component
is able to process.
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e Bindings, or subscriptions, can be made using both abstract and specific
event types, which can substantially reduce configuration overhead.

6.2.4 Conclusion

This section presented the first contribution of the TALKSENS framework;
a hierarchy encoding function that results in compact node identifiers and
an associated lightweight subsumption test. This has been applied within
LooCI to provide event subtyping on resource constrained sensor nodes. The
changes needed therefor were minimal, yet, result in a considerable reduction in
management overhead due to the grouping of event types within single binding
configuration commands. This will be practically shown in the evaluation
in Chapter 7. The following section reports on TALKSENS’ support for the
systematic and coordinated definition of message contents.

6.3 Message content definition

In addition to defining the semantics of messages by means of identifiers,
TALKSENS provides support for defining message payloads; i.e. the contained
values and their format. A strict definition thereof is of great importance within
open sensor systems to allow for the correct and meaningful exchange of data
between components of various stakeholders. This however requires a systematic
approach that enforces developers to describe the contents of the messages and
facilitates the consistent use thereof among the various parties involved. Such
coordination of message definitions has received surprisingly little attention by
the WSN research community. Within the state-of-the-art of sensor network
programming, the following set of related problems can be identified.

First, message semantics and contents are often defined in an implicit and ad-hoc
manner within source code. This hampers interaction between independently
developed application components. Within Contiki, for instance, message
payloads are typically created by means of byte array filling, as shown in
Listing 6.1. Besides possible documentation, message contents is thereby
implicitly defined through implementation. Furthermore, (de)serialisation
is done manually, which is particularly tedious and error-prone, and leaves
substantial scope for logic errors due to incorrect (de)serialisation. Better
serialisation support is provided by Active Messages [21] within TinyOS, as
shown in Listing 6.2. Here, custom C-structures are applied to specify message
contents and automate serialisation. This is however a platform-specific solution,
which cannot be reused across an entire multi-platform sensor system. A
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uintl6_t temperature = read_temperature();
uintl6_t timestamp = clock_time();

uint8_t buffer[4];

buffer[0] = (uint8_t) (temperature >> 8);
buffer[1] = (uint8_t)temperature;
buffer[2] = (uint8_t) (timestamp >> 8);
buffer[3] = (uint8_t)timestamp;

simple_udp_sendto(&connection, buffer, sizeof(buffer), &address);

Listing 6.1 — Pseudo-code example of the typical byte-array filling approach
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to message serialisation in embedded systems development, e.g as used
in Contiki.

typedef nx_struct TemperatureMsg {
nx_uintl6_t temperature;
nx_uintl6_t timestamp;

} TemperatureMsg;

TemperatureMsg* tmppkt = (TemperatureMsgx)(call Packet.getPayload(&pkt,
sizeof (TemperatureMsg)));

tmppkt->temperature = temperature_value;

tmppkt->timestamp = time_value;

AMSend . send (AM_BROADCAST_ADDR, &pkt, sizeof(TemperatureMsg));

Listing 6.2 — Pseudo-code example of the C-struct definition approach to

message serialisation in embedded systems development, e.g as shown
here in the Active Messages approach within TinyOS.

final issue in this regard is that developers often have limited or no access to
third-party source code, or documentation thereof. While this prevents easy
third-party interaction on its own, it also leaves great space for developers to
(re)define messages with conflicting identifiers and contents.

Second, in the face of multiple stakeholders, various incompatible content
variations of semantically equivalent messages are bound to exist. Such variations



MESSAGE CONTENT DEFINITION 111

can be the result of cultural preferences, e.g. °C vs. °F; practical reasons, e.g.
no floating-point support on constrained embedded devices; and changing
application requirements, e.g. adding timing information to previously non-
timed sensor readings. Where meaningful, well-defined variation in message
contents should be supported to improve (re)use of application components.

Third, within open sensor systems, interactions are often established with
software that is only discovered at run-time. The ability to retrieve message
definitions directly from the item of interest, i.e. the running software component,
would greatly facilitate such interactions as it removes the requirement to study
third-party source code or documentation.

To address these problems, TALKSENS provides a message definition framework.
This comes with development support to define message contents in a platform-
neutral manner, and with accompanying generation of message serialisation
code. Central administration of message definitions furthermore contributes to
the necessary coordination among various stakeholders in an open sensor system.
And lastly, run-time retrievable message definitions facilitate interaction with
newly discovered software. For the latter, TALKSENS is integrated with LooCI,
which results in runtime inspection of component interfaces for respective
message (i.e. event) descriptions.

The rest of this section presents the TALKSENS message definition framework
in greater detail. Section 6.3.1 lists the requirements to a message definition
framework for sensor systems and provides an overview of the distributed
TALKSENS framework. Section 6.3.2 presents the TALKSENS data model, which
underpins message definition support as explained in Section 6.3.3. Section
6.3.4 discusses the TALKSENS serialisation format, and Section 6.3.5 presents
additional development support. Section 6.3.6 reports on the integration of
TALKSENS and LoOCI, and finally, Section 6.3.7 discusses related work.

6.3.1 Message definition requirements and approach

The overall goal is to provide a framework that facilitates interactions between
independently developed application components within sensor systems. Specific
requirements to such a framework are the following.

e Message definition support. A mechanism is required for the
specification of message types and their payloads in terms of values,
data types, and where applicable, units of measurement. This mechanism
should support well-defined adaptations to deal with changing application
requirements; e.g. adding new message types, changing the content of a
message, and adding newly supported units of measurement.
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o Development support. Systematic use of (pre-)defined messages needs
to be encouraged at development-time to facilitate the development of
correctly interoperable application components. Developers need to be
able to conveniently consult the set of defined messages, apply changes
when necessary, and be assisted with message serialisation.

¢ Run-time inspection support. Message definitions need to be
retrievable directly from run-time components to facilitate third-party
interactions.

o Lightweight sensor network solution. The proposed solution should
consume a minimal amount of sensor network resources, and leverage the
available resources at the back-end.

The overall approach of TALKSENS to satisfying these requirements is to provide
a distributed framework for message definition, as depicted in Figure 6.7.
In the resource-rich back-end environment, a data model is maintained that
represents the currently supported message types, message contents, data types,
units of measurement, and language mappings. This data model underpins
a message description language, that is systematically used at development-
time to define message contents. For this, TALKSENS draws inspiration from
interface description languages (IDL) like Protocol Buffers [57] and Thrift [6].
To suit the WSN-specific needs, support is added for units of measurements
and run-time available lightweight message definitions. Additional development
support is provided by means of an IDE plugin that provides access to a message
definition repository and features generation of message-specific serialisation
code. As such, TALKSENS provides a define-once/use-multiple-times mode of
operation. The resulting code is to be included in the source code of software
that produces/consumes these messages, which simplifies error-free message
(de)serialisation. Next to the serialisation code, also a lightweight version of
the respective message definitions is embedded within components. These are

Developer A

IDE
----- TalkSens | ---
-7 plugin TalkSens data model

message types

- application logic
- TS serial. code O
- TS msg. descr.

TalkSens middleware <

- message definitions

—_
-~ IDE - data types
D I TalkSens | - --| - units of measurement

plugin - language mappings

Developer B

Figure 6.7 — Conceptual diagram showing the distributed architecture of the
TALKSENS framework.
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retrievable at run-time by using the inspection features of run-time configurable
component models like LOOCI. In support thereof, a small middleware service
is provided on TALKSENS enabled nodes. As such, the TALKSENS solution
maximally leverages the distributed environment; full message definitions are
specified and available only in the back-end, while in the sensor network the
available information is limited to the minimum that is required by the local
software for serialisation and runtime inspection.

6.3.2 The TalkSens data model

The core of TALKSENS is formed by its data model that specifies a generic
message structure, the data types and units of measurement used to format
the data inside message payloads, language mappings and ultimately a set of
message definitions. This section discusses the data model, with a description
of the generic message structure being deferred to the following section.

The data model provides a number of primitives that are used for message
definition; data types with accompanying language mappings, and units of
measurement. These are arranged in extensible sets, as partially shown in
Table 6.1. The data type list specifies the language-independent primitive data
types that can be used within TALKSENS to represent values in a message.
Except for strings, these are fixed-size data types, which are associated with
language-specific primitive data types for each of the supported underlying
languages (currently C and Java). Similarly, the units list specifies the units
of measurement that can be used to express values that represent a physical
quantity. Elements in both lists are mapped to a numeric encoding for compact
serialisation.

Table 6.1 — A partial overview of the extensible data type and unit of
measurement lists in the TalkSens data model. (n/a means 'not applicable’)

Data types Units
Data type Enc. Size C type Java type Unit Enc.

undefined 0 n/a n/a n/a none 0
int8 1 1 int8_t byte °C 1
int16 2 2 intle t short °F 2
int32 3 4 int32_t int cd 10
int64 4 8 int64_t long bar 10
string 5 n/a  char[] String Pa 11
float 6 4 float float ppm 30
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Besides these primitives, the data model contains a set of currently defined
message types and associated payload descriptions. A message type defines the
semantic meaning of a message (e.g. a temperature message), and is mapped
to a numeric identifier for compactness. Within the integrated solution of this
dissertation, this set of message types takes the form of a hierarchy of LOOCI
events, as presented in Section 6.2. Furthermore, for each message type, a
content definition is specified that defines which data values are part of the
message’s payload, and which data types and units of measurement are used to
represent them.

The TALKSENS data model is designed to support extension. Message types,
data types and units of measurement can be added to the respective lists and
are numerically encoded. An append-only strategy is enforced to prevent hard
to detect errors caused by reuse of previously removed encodings. Additionally,
language mappings need to be added to fully integrate new data types into the
data model, or even to add support for new underlying platforms or languages.
Finally, changes to the data model can require a corresponding update of the
serialisation code generator (see Section 6.3.5).

6.3.3 Message definitions

Within TALKSENS, message contents is defined by means of a message description
language (MDL). The TALKSENS MDL is a minimal declarative language that
allows for the platform-neutral definition of such message contents. Its grammar,
as presented in Listing 6.3, enables the intuitive specification of correctly
structured message definitions. Examples are shown in Listings 6.4 - 6.7. The
inclusion of data types and units of measurement in the syntax forces developers
to only use those that are specified within the data model. By means of the
language mappings, this provides run-time type correctness during message
exchange. Correct use of units is however not enforced, as by default, this is
not supported by the underlying languages (i.e. C, Java).

Message definitions contain (i) a human-readable name; (ii) a message type
that semantically defines the message; and (iii) a data record that specifies the
message contents. The message type relates to those defined in the data model.
Data records are composed of a set of data elements and/or nested data records.
Data elements, in turn, are atomic and represent a data value with a certain
data type and unit of measurement. Both data records and elements are given
a human-readable name and sequence number. The former serves to generate
intuitive serialisation APIs, the latter is used under the hood for element /record
identification. Finally, both data elements and records can contain single values
or an array of values, as is indicated by the repeated keyword (see Listing 6.3).
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1 message = "message" name "{" messageType dataRecord "}" ;
2 messageType = "messageType" name ;
3 element = dataRecord | dataElement ;
4 dataRecord = "dataRecord" name seqno ["repeated"] "{" {element} "}"
5 dataElement = "dataElement" name seqno ["repeated"] "{" "dataType"
dataType "unit" unit "}" ;
6 dataType = "undefined" | "int8" | "intl16" | "int32" | "int64" | "float"
| "string" ;
7 unit = "undefined" | "celsius" | "fahrenheit" | ...
Listing 6.3 — Extended Backus-Naur Form (EBNF) representation of the
TALKSENS MDL grammar.
1 message abstr_temperature_msg { message simple_temperature_msg { 1
2 messageType temperature messageType temperature 2
3 dataRecord temperature_rd 0 { dataRecord temperature_rd 0 { 3
4 dataElement temperature_el 0 { dataElement temperature_el 0 { 4
5 dataType undefined dataType intl6 5
6 unit undefined unit celsius 6
7 } } 7
g8 } } 8
9} } 9
Listing 6.4 — An abstract message Listing 6.5 - A message variant
definition specifies the message definition completes the
type and contents. definition with specific data
types and units.
message timed_temperature_msg { 1
messageType temperature 2
dataRecord temperature_rd 0 { 3
dataElement temperature_el 0 { 4
1 message another_temperature_msg { dataType float 5
2 messageType temperature unit fahrenheit 6
3 dataRecord temperature_rd 0 { } 7
4 dataElement temperature_el 0 { dataElement timestamp 1 { 8
5 dataType float dataType int64 9
6 unit fahrenheit unit ms 10
7 } } 11
g8 } } 12
9 } } 13

Listing 6.6 — Message variants can
specify different data types and
units.

Listing 6.7 — New content can be
added to abstract message
definitions, and further defined
in a variant definition.
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Variation within message contents

To account for cultural differences, changing application requirements, and
practical limitations, TALKSENS supports well-delimited variations between
messages of the same type. Therefore, messages can be defined on two levels of
detail.

Abstract message definitions describe basic message content, i.e. the
required data records and data elements that correspond with the message’s
semantics. Data types and units are typically not specified, as shown in
Listing 6.4.

Message variant definitions are fully specified instances of a corresponding
abstract message definition. They are typically used to describe the specific
message contents an application component produces or consumes. Multiple
variants may exist, as shown in Listings 6.5 and 6.7.

On addition of a new message variant definition, the latter is checked against its
respective abstract counterpart for compliance. These different levels of detail
allow for messages to vary in terms of content and representation.

Variation in contents, i.e. the set of data elements and records of a message, is
allowed in support of changing application requirements; e.g. new regulations
might cause a timestamp to be added to a temperature message, as shown
in Listing 6.7. Such variation can only be introduced at the level of abstract
message definitions and only allows for addition of new data elements and records,
not removal. This ensures consistency of their sequence numbers. Forward
compatibility is provided by ignoring message contents that is not expected
at the receiving end. Any expected content that is missing however, raises a
warning; either at message reception or during message flow configuration.

Variation in representation is enabled by message variant definitions of which
examples are shown in Listings 6.5 and 6.6. Such variation is allowed to support
differences in platform APIs and cultural preferences. It enables multiple
variants of a single message type (and the same content) to exist with different
data types and units for the contained data elements. Conversions between
such variants of a message type are typically rather straightforward. They can
be implemented within dedicated software components that can be inserted
into the message flow. By means of a formal specification of conversion rules,
such conversion components can be automatically generated upon binding
two varying, yet compatible components. Such automated mediation however
remains an item of future work.
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6.3.4 Serialising messages and message definitions

TALKSENS defines a lightweight serialisation format for messages and their
run-time retrievable definitions. This format closely resembles the structure
of MDL message definitions, but eliminates all elements that are not needed
for run-time machine interpretation. To improve the development experience,
the details of the serialisation format are hidden from developers by generated
message-specific serialisation code (see Section 6.3.5).

To contribute to its compactness, serialisation uses numerical encoding and
omits redundant human-readable naming. Message type identifiers are serialised
in a variable size integer encoding, that omits leading zeros and supports large
integers. Data types and units are encoded as shown in Table 6.1, and all
serialisation is done in network byte order.

Figure 6.8 shows the message definition serialisation format. A serialised message
type identifier is followed by a set of data records and elements. Serialisation
of both elements and records starts with a sequence number (i.e. seqno in
the figure) and a flag. The sequence number specifies which data element or
record is being serialised. The flag indicates whether a data element or record
is described and whether it contains a single value or an array. Data elements
further specify the data type and unit of measurement used, while nested data
records recursively specify the set of data elements they contain.

A serialised data message is a concatenation of serialised elements and /or records,
shown in Figure 6.9, prepended by a message type identifier. Serialisation of
elements and records is done in a type-length-value format. The sequence

Hommm B o o o
. -7 Data Element |
I fommmm - fommmm - fommmm o Fommm - oo
o ommm e e w | seqgno | flag | d.type | wunit |
AN pm—mmm o B Fommmm - o +
| Message type | Data Record 0 | Y 1 byte 1 byte 1 byte 1 byte
o R fomm o + PEge
| #bytes | ID value | seqno | flag | -~ B P, [P, o
o it et A oo * | Data Record
1 byte # bytes 1 byte 1 byte N fommmm R O,
\\\ | seqno | flag | Data Elements/Records
po—mmm oo fommmm - e et L.
1 byte 1 byte
Figure 6.8 — The message definition serialisation format.
tommm— - o o= e + Fommm— - oo e e e e e e e
| Data Element | | Data Record
B Fommm - o B + Fo—mmm——— Fommm - Bttt .
| seqno | length | value (s) | | seqno | length | (serialised elements/records)
EEET eSS Fommmm o feamm——— + EEET L LTS o e L L L LT C.
1 byte 1 byte length bytes 1 byte 1 byte length bytes

Figure 6.9 — The data element and record serialisation format.
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numbers function as the type indicator and identify data elements and records
within a message. The length indicator specifies the number of bytes that are
needed to serialise the value at hand. For a data element, this depends on
(i) the specific data type specified (See Table 6.1), (ii) whether it is a single or
repeated data element, and (iii) on the value itself in case of a string. Data
records, are internally serialised into string format and included as a string data
element in their containing data record. Specific data types and units are not
specified within the serialisation of data messages, as they are fully embedded
within the generated serialisation code, as described in the following section.

6.3.5 Development support

The TALKSENS framework includes an IDE (Integrated Development Environ-
ment) plugin to encourage the systematic use of previously defined messages
during application development. As shown in Figure 6.10, the plugin allows
developers to browse a central message definition repository and edit message
definitions in the MDL format. Based on the chosen message definition, it
furthermore allows to generate message-specific serialisation code in C or Java.
This code can conveniently be included within the software project under
development, where its API constraints the developer’s interaction with the
message payload and ensures correct writing and reading of contained values,
respectively through mutator (i.e. set) and accessor (i.e. get) methods. The use
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Figure 6.10 — The TalkSens IDE plugin.
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of such message-specific serialisation code is shown later in Listing 6.9 (Lines
45 - 46), and constrasts significantly with the ad-hoc approach in Listing 6.1.

An important design feature within TALKSENS serialisation support is the split
between message-specific and generic serialisation code. While the former is
part of deployable application logic, the latter is included in the pre-deployed
middleware. The generated serialisation code contains all, and only, message-
specific serialisation logic. It only deals with a specific message’s contents,
data types and units of measurement. The additional middleware support
complements this with generic functionality that allows to write/read a specified
number of bytes to/from a message buffer. The result is that any data types
and units of measurement that are not in use by deployed application logic, have
no references within the software on a node. Consequentially, the TALKSENS
data model at the back-end can be extended with additional data types and
units of measurement without the need to update any serialisation code already
deployed within a sensor system. New application logic can however freely make
use of those new primitives.

6.3.6 Implementation and integration with LooCl

The implementation of the TALKSENS framework includes a library of tools to
build and use the data model, the IDE plugin for development support, and an
integration with LooCI.

The TALKSENS library provides back-end support to instantiate a run-time
version of the data model, and perform equality and compatibility checking of
message definitions. The data model itself is externally specified using XML,
which enables various instances of the TALKSENS framework, that serve various
sensor network deployments, to easily specify their own set of messages, data
types, and units of measurement.

The TALKSENS IDE-plugin is implemented for Eclipse Kepler and provides
functionality as discussed earlier in Section 6.3.5.

The integration of TALKSENS within LOOCI, brings explicit event definition
support to the latter. Instead of arbitrary lists of event types in source code,
and tedious manual event serialisation, TALKSENS brings more coordinated and
less error-prone support for event definition and serialisation. In practice,
the integration required small changes to component interfaces and the
underlying middleware. The interfaces of LOOCI components were adapted
to make use of TALKSENS-defined events, which includes both application of
generated serialisation code, and support for the inspection of event definitions.
The LooCI middleware was extended with generic TALKSENS serialisation
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InteroperabilityReport ts_interoperable(EventType event, uint8
srcComponentID, NodeAddress srcNode, uint8 dstComponentID, NodeAddress
dstNode)

3 ResultCode ts_wire(EventType event, uint8 srcComponentID, NodeAddress

srcNode, uint8 dstComponentID, NodeAddress dstNode)

6 (ResultCode, uint8[] description) getProvidedInterfaceDescription(uint8
componentID, EventType event, NodeAddress node)

7 (ResultCode, uint8[] description) getRequiredInterfaceDescription(uint8
componentID, EventType event, NodeAddress node)

Listing 6.8 — Additional commands to the LOOCI configuration and
inspection APIs due to the integration of TALKSENS support.

functionality, as well as underlying middleware support for the inspection of event
definitions. LOOCT’s publish/subscribe event bus remains topic-based, with
event dispatching based on event types only. However, additional TALKSENS
commands are added to the LOOCI configuration and inspection APIs, discussed
earlier in Section 4.3.3. The new commands are shown in Listing 6.8 and are used
to check whether two interfaces (i.e. a provided and a required interface) are
interoperable (Line 2), to wire two interfaces with an integrated interoperability
check (Line 3), and to inspect interfaces for event descriptions (Lines 6 - 7).
The integration was realised for two LOOCI implementations; the C-based
Contiki version for constrained sensor nodes like Zigduino and the Java-based
OSGi version for more powerful mobile and back-end devices. These were
selected to showcase TALKSENS’ cross-platform support, and its feasibility
within constrained environments.

Listing 6.9 shows the TALKSENS version of a LoOCI/Contiki TemperatureSensor
component, with TALKSENS-specific lines of code highlighted in grey. For
comparison, the plain LOOCI version is shown in Listing A.6 in Appendix A.
Most common code between both implementations is omitted and adaptations
include the following. Two header files are included to respectively access the
generic and message-specific serialisation support (Lines 6 - 7). The provided
temperature interface is part of the component’s state (Line 13) and must be
initialised (Line 24) and closed (Line 29), respectively at the beginning and
ending of the component’s lifetime. Finally, by means of the message-specific
serialisation code (Lines 41 - 43) a published event is intuitively constructed
and published.

The resulting practical use of LOOCI/TALKSENS is depicted in Figure 6.11.
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#include "contiki.h"

#include "looci.h"

#include <stdint.h>

#include <avr/pgmspace.h>
#include "adc.h"

#include "talksens.h"

#include "ts_if_temperature_out.h"

#define TEMPERATURE_EVENT_TYPE 8246
#define ADC_CHANNEL 1

struct state{
struct ts_interfacex if_temperature_out;

};
static const struct state init_state PROGMEM = { 1

#define LOOCI_COMPONENT_NAME temperature_sensor
COMPONENT_NO_RECEPTACLES() ;

COMPONENT_INTERFACES (TEMPERATURE_EVENT_TYPE) ;
LOOCI_COMPONENT_INIT("temperature_sensor",struct state, &init_state);

static uint8_t init(struct statex compState, voidx data){
if_temperature_out_init(&(compState->if_temperature_out));
return 1;

static uint8_t destroy(struct statex compState, void* data){
ts_if _close(&(compState->if_temperature_out));
return 1;

static uint8_t time(struct statex compState, struct etimerx data){
uintl6_t adc_value = (uintl16_t)readADC(ADC_CHANNEL) ;
uintl6_t temperature = (uintl6_t)((adc_value * 167) / 1024) - 54;
clock_time_t timestamp = (clock_time_t)clock_time();

if (compState->if_temperature_out != NULL) {
dr_temperature_out_set_timestamp(compState->if_temperature_out->
data_record, timestamp);
dr_temperature_out_set_temperature(compState->if_temperature_out->
data_record, temperature);
if_temperature_out_publish(compState->if_temperature_out);

}

Listing 6.9 — The TemperatureSensor component implementation in

LooCI/Contiki with TALKSENS support. Lines of code that are specific
for TALKSENS are highlighted in grey.



122 COORDINATED MESSAGING IN SENSOR SYSTEMS

TalkSens message
definition

(source files) %
i 5
» query TalkSens
(TalkSens cecs & --e> message
MDL) edit -
Developers repository
Serialisation R
code develop inspect
generation , R
¥ S

.
1 1

1 1

) . ) . | LooCl/TalkSens !
Inva — include —» ava —— compile =% | 10110... | — deploy —, component '
. ) !
: 1

, |

! ,

1 1

1 1

LooCl component

TalkSens message LooCl component (binary files)

serialisation code (source files)
(source files)

Figure 6.11 — Practical use of the TALKSENS framework during LOOCI
component development.

Based on inspection of running components or querying of the message repository,
developers decide which message (or event) definition to use in their LooCI
component under development. From the TALKSENS MDL description of the
selected event, the corresponding serialisation code is generated for the platform
of choice; i.e. OSGi or Contiki, and included into the component’s source
code. After compilation and deployment, the component can be wired to other
components and inspected for event descriptions.

6.3.7 Related work

The WSN research literature does not report on similar integrated approaches
to coordinated message definition as is provided by TALKSENS. Yet, some
alternatives for a number of its concepts have been presented.

The need for more formal interaction with explicitly specified structure of
exchanged data has been identified by a number of recent efforts. These include
open source initiatives like Project Haystack [149], and industrial consortium
proposals like the IPSO SmartObject Guideline [79]. Both propose sets of
message specifications that WSN integrators can decide to comply to, without
any additional support. They apply a more strict data model than TALKSENS,
which either limits their use to specific applications like building monitoring
[149], or prevents application-specific tailoring of messages [79].



MESSAGE CONTENT DEFINITION 123

Research efforts like SONGS [109] and Dioptase [14] provide development
support for building distributed stream-based application compositions for
sensor systems. They explicitly define the semantics and contents of data
streams in a well-structured manner. SONGS, however, aims at building back-
end applications that share sensor data. To this end, data that originates from
various types of sensor devices in platform-specific formats is converted into an
open and reusable format, such as XML. Dioptase, on the other hand, while
including units of measurements into its data stream specifications, relies on
JSON and (Web service) ontologies. By consequence, both efforts have been
realised only for more powerful infrastructure, either gateways and servers [109]
or less-resource constrained sensor nodes [14].

Within the scope of type-safe interactions, Lorien [145] argues with the use
of opaque memory blocks with assumed internal structure for interactions
between components in production-class environments. It provides a component-
based modular operating environment that provides safety with strongly-typed
interfaces by means of (i) formal interfaces for compile-time checking of type
compliance, and (ii) hash-codes for composition-time (i.e. run-time) verification
of type equivalence. This is a platform-specific and procedural solution, however,
that only supports node-local interactions.

State-of-the-art serialisation support in sensor networks is provided for instance
by Active Messages [21] for nesC/TinyOS, as shown earlier in Listing 6.2.
Message definitions are specified using dedicated nesC-structs that offer
serialisation support. Additionally, TinyOS comes with the mig (message
interface generator) [121] tool that generates Java message objects from nesC
packet descriptions. While this facilitates integration of TinyOS and Java
applications, this solution is still platform-specific. Message definitions are
still specified in source code and no additional coordination support for their
use is provided. Dedicated serialisation within more powerful distributed
systems is provided in a platform-independent manner by for instance Protocol
Buffers [57] and Thrift [6]. Both provide a message definition language
and generation of message-specific serialisation code for C++4, Java, Python,
etc. Although originally designed for back-end applications, more lightweight
prototype implementations are also available; for instance nanoPB [128] for C
and embedded devices, and a JavaNano version [81] for Android devices. These
systems however do not deal with units of measurement, provide no light-weight
run-time retrievable message descriptions, and include no coordination support
to administer message definitions.

Finally, the explicit use of units of measurement in type systems has been
investigated within the programming languages domain [87, 88, 175]. These
efforts aim to guarantee scientifically correct calculations in terms of dimensions
by incorporating units into language data types and the arithmetic applied on
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them. This extents TALKSENS’ aim to increase data interoperability. While
such language support is currently not widely supported, nor available on sensor
platforms, it would enable to enforce the correct use of units (see Section 6.3.3).
Within sensor systems research, SpatialViews [129] mentions the use of units of
measurement within the high-level programming language it provides to build
distributed sensor applications. Also there, however, this remains an item of
future work.

6.3.8 Conclusion

This section presented the second contribution of the TALKSENS framework;
coordinated definition of message types and contents. TALKSENS thereto
features a distributed architecture that provides development-time and run-
time solutions to facilitate the use of (pre)defined messages. A message
description language enables developers to define message contents in a platform-
neutral manner, and an IDE plugin enables browsing of a collection of
message definitions, and generating message-specific serialisation code that
can be included in application components. Run-time support includes
inspection of components for content definitions of the messages they exchange.
This facilitates development of new components that can directly interact
with running third-party components, or easy mediation between component
interfaces that exchange semantically compatible messages with differences in
content.

6.4 Discussion

This section reflects on TALKSENS’ subtyping and message definition support
and places it within the larger scope of this dissertation.

First, while the proposed hierarchy encoding function was developed for
subtyping, it can also be applied for other purposes. Two examples include (i)
encoding CoAP resource paths, as presented in [171]; and (ii) SDLITE status
parameters, in contrast to the more naive and verbose method of encoding
applied in Chapter 5. Furthermore, while this chapter primarily discussed the
advantages of subtyping with regards to configuration, it also leads to increased
flexibility during service discovery. Subtyping allows for a single query to be
used to discover all components that feature an interface that is a subtype of
the specified service (i.e. event type).
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Second, the TALKSENS message definition support improves run-time reuse of
independently developed components. It does not, however, aim to establish
global interoperability between software of fully independent stakeholders, as for
instance initiatives like IPSO SmartObject Guideline [79] aspire to. Instead, it
provides a framework in which a group of stakeholders can come to a semantic
agreement of messages that are exchanged between their software components,
yet, provide some flexibility in their contents for practical purposes; cultural
differences, changing application requirements, and platform-specific issues in
data representation. In addition with run-time retrievable message definitions
from application components themselves, this improves the opportunities for
reuse of application components across various compositions.

Third, TALKSENS provides nominal subtyping of messages, but does not
provide any inheritance support. Subtype relations are based only on the
respective position of messages in a message hierarchy, and their resulting
message type identifiers. Message contents is not inherited from supertypes, and
only leaf types are expected to have their contents described within message
definitions. Inheritance is omitted based on the practical consideration that only
locally relevant message definitions and accompanying serialisation code should
be stored on a node. Possibly unused supertype definitions and associated
serialisation code is thus not pre-installed on sensor nodes. With this being
the case, inheritance might only be of interest during the message definition
phase to reduce the developer overhead; i.e. one message definition in the MDL
format might automatically inherit the contents of the respective definitions
of parent types. As this was not one of the primary research interests of the
presented work, this was not further investigated.

Finally, the additional expressivity and flexibility in component bindings that
is provided by TALKSENS needs to be used in a responsible manner to avoid
unwanted behaviour and misinterpretations during message exchange. For
instance, in a dynamic setting in which new application components of multiple
stakeholders are frequently deployed, abstract bindings should be created with
caution. On the one hand, because existing bindings can affect the distribution
of events related to those new components. This might be unwanted, and might
easily go unnoticed by the new component’s stakeholder. On the other hand,
variations in message definitions are more likely to be present in these situations,
which makes ensuring correctness of data exchange among all components
involved in an abstract binding more complex. Consequentially, in such settings,
one-to-one bindings of specific types are more favorable as possible compatibility
issues can be detected by the TALKSENS-specific LOOCI wire command (see
Listing 6.8). Nonetheless, subtyping can still be used during inspection and
discovery.
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6.5 Summary

This chapter presented TALKSENS; a message definition framework for open
sensor systems. TALKSENS moves away from the ad-hoc and arbitrary definition
of messages types and contents, as is common in many reported sensor system
deployments. Instead, TALKSENS promotes a more systematic and coordinated
approach of defining messages as necessitated by more open use of application
components in sensor systems.

Section 6.1 introduced the subtyping and message definition problems that
TALKSENS deals with. Section 6.2 presented an optimised hierarchy encoding
function, which is based on the properties of prime numbers. The optimisation
includes reuse of prime numbers across the hierarchy, and results in far more
compact node identifiers. This enables the use of those identifiers and an
accompanying subsumption test with integer representations and arithmetic
that is standard available on sensor node platforms. The hierarchy encoding
was applied within LOOCI in support of event subtyping, which drastically
reduces management overhead, as will be further shown in the evaluation in
Chapter 7. Section 6.3 presented TALKSENS’ message definition support. It
first discussed the state-of-the-art in the WSN domain and the short-comings
thereof, and continued with presenting the TALKSENS data model, development
tools, and its integration with LOOCI. The main benefit of TALKSENS is that it
facilitates interactions between independently developed application components
and consequentially the reuse of these components across multiple compositions.
Lastly, Section 6.4 reflected on the contributions of TALKSENS and highlighted
some attention points with regards to its practical application.



Chapter 7

Evaluation and practical
application

This chapter evaluates the contributions presented in this dissertation and
validates their applicability. All implementations of LooCI, SDLITE, and
TALKSENS are quantitatively analysed in terms of performance, and a smart
office deployment is used to evaluate their practical applicability.

In the following, Section 7.1 discusses the criteria against which the contributions
are evaluated and Section 7.2 introduces the smart office use case. Section 7.3
provides a feasibility study of the integration of all contributions on constrained
devices. Sections 7.4, 7.5, and 7.6 respectively evaluate LOOCI, SDLITE, and
TALKSENS in depth.

7.1 Evaluation criteria

In general, wireless sensor networks have hard restrictions on the available
processing power, memory and bandwidth. Consumption of these resources
furthermore has an impact on the available energy budget. To prolong sensor
node lifetime, all the presented solutions therefore need to be lightweight in
their computation, memory use, and communication. In relation thereto, the
evaluation in this chapter primarily focuses on three criteria; middleware memory
consumption, component sizes, and message sizes. These are important for the
following reasons:
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« Middleware memory consumption. The ROM and RAM consump-
tion of the presented middleware solutions is of importance as together
with the consumption of the operating system and other middleware
services it determines the amount of memory that remains available for
applications.

e Component sizes. The size of a component can be defined both as the
amount of memory it consumes and the size of the deployable binary file
that represents the component. Broadly speaking, the first determines the
amount of components that can concurrently execute on a device, while
the second determines whether a component can be dynamically deployed
and the amount of energy this requires.

e Message sizes. As radio communication heavily impacts the energy
budget within wireless sensor networks, any interaction should be
minimised in terms of amount of data exchanged. When communication
is needed, an effort should be made to prevent fragmentation and keep
message sizes small enough to fit within a single radio packet’s payload.

Additional evaluation within the chapter analyses the processing overhead and
development effort of specific contributions.

7.2 The SmartOffice use-case

To evaluate the impact of the presented contributions in a practical setting, these
were applied within a smart office deployment. Referred to as the SmartOffice,
this has been installed within the offices of the DistriNet research group at
KU Leuven. This section shortly describes its main features, and refers to
Appendix C for a list of event descriptions, the event hierarchy, and an overview
of the application composition. Additional details are presented in the doctoral
dissertation of our colleague Javier del Cid [33].

The SmartOffice provides three services; (i) a comfort service that assesses
the comfort level of office workers, (ii) a hazard service that detects fire, and
(iii) a security service that detects unauthorised presence in the office and
unattended open doors and windows. Additionally, on the non-functional level,
network monitoring and data logging provides application status information
and historic overviews of all gathered data. This is realised in a distributed
setting in which application logic is deployed over various sensor system tiers; a
sensor network for each office, a back-end server, and multiple clients. Figure
7.1 shows a simplified deployment diagram of the SmartOffice and illustrates
where application logic for each service is deployed.
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Figure 7.1 — Deployment diagram of the SmartOffice sensor system.

Each participating office is equipped with the following set of sensor nodes. Two
nodes are installed in a central position within the office; the first one monitors
the air quality (i.e. CO2 and CHy levels), and the second one monitors the
sound level and provides IR motion detection. Each desk within the office is also
equipped with two nodes; one to monitor temperature and light, the other to
activate a lamp and fan. These primarily relate to the environment of individual
employees. Additionally, each window and door in the office is equipped with
one node that uses a contact sensor to detect whether the window/door is
open/closed, and in case of the door also detects whether a person enters/leaves
the office. A typical office features six desks, two doors and two windows.

Besides LOOCI components that detect these environmental conditions,
additional components are deployed on the respective nodes that filter and
average the temperature, light, COs and CH, sensor readings before being
forwarded to the back-end. A final component is deployed on each sensor node
that provides the back-end with energy and node lifetime information.

At the back-end, the collected data is processed by hazard, comfort, security
and network monitoring components and stored by a logging component. Two
client application components are available to users to visualise the perceived
comfort and potential security risks. These components are therefore subscribed
to the back-end components that provide this data for each individual desk/user
in an office.
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ROM RAM ROM RAM ROM RAM

Hardware platform Zigduino-rl Sun SPOT Dell OptiPlex 780
Provided memory 128 kB 16 kB 4 MB 512 kB 250 GB 8 GB

Software platform Contiki Sun SPOT OSGi

Memory consumption 38,8 kB 99kB 704 kB 47,7kB 690 kB 321 kB
(30%) (62%) (17%) (9%) (<0,1%) (<0,1%)

LooCI 178kB 16kB 621kB 320kB 1020kB 11,3kB
(14%) (10%) (1,5%) (6,3%) (<0,1%) (<0,1%)

SDlite - - 50,2 kB 1,8 kB - -

(1,2%) (0,4%)

TalkSens 4,5 kB 12B - - 3,2 kB 431 B

(3,5%)  (<0,1%) (<0,1%) (<0,1%)

Table 7.1 — An overview of the memory footprint of the various LOOCI, SDLITE
and TALKSENS implementations on a heterogenous selection of platforms.

7.3 Feasibility study of the integrated approach

The combination of all contributions presented in this dissertation provides an
application platform for open and multi-purpose sensor systems. This section
evaluates the memory consumption of such an integrated effort for a number of
hardware platforms that span the diverse sensor system tiers. More detailed
evaluation for all of the contributions is provided in the following sections.

Table 7.1 lists the chosen hardware and software platforms and specifies the
amount of ROM and RAM memory they respectively provide and consume.
The Zigduino (revision 1) was selected as a constrained sensor node, the Sun
SPOT as a more powerful sensor node, and the Dell OptiPlex 780 as a back-
end server/client device. The respective underlying software platforms are
the Contiki operating system, the Sun SPOT SDK and the OSGi framework.
The rest of the table provides an overview of the memory consumption of the
middleware contributions of this dissertation. This includes absolute values,
and relative values in comparison to the amount of memory provided by each
respective hardware platform.

With regards to LOOCI, the specified memory consumption applies to the second
version of LOOCI.! For historic reasons, SDLITE has only been implemented for,
and integrated with, the LOOCI-v1 version for Sun SPOT. On the other hand,
TALKSENS has been implemented for and integrated with the LOOCI-v2 versions
for Contiki and OSGi. From Table 7.1, it can be seen that all implementations

n the rest of this chapter, unless stated otherwise, all references to LooCI imply its
second version.
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are small and consume little memory in comparison to the respective underlying
software platforms.

It can thus be concluded that an integration of the application modularity of
LooCI, the status-aware service discovery of SDLITE, and the coordinated
messaging approach of TALKSENS is feasible and fits comfortably within the
memory of the selected range of devices. Importantly, these lightweight
implementations leave considerable memory available for the additional
deployment of application components. For instance, in the worst case, presented
by the Zigduino, an estimated guess is that a full integration of LOOCI, SDLITE
and TALKSENS would leave up to 40% of ROM and 25% of RAM available for
application components. Evaluation in the following sections shows that this is
sufficient to comfortably use sensor systems as multi-purpose infrastructure.

7.4 Quantitative evaluation of the application
platform

As discussed in Chapter 4, LOOCI provides two abstractions; individually
deployable application components enable modular application building, and
the distributed event bus allows for loosely-coupled interactions between those
components. In support of these abstractions, LOOCI provides a thin middleware
layer that is pre-installed on all nodes in a LOOCI sensor system.

This section evaluates the overhead of the LOOCI abstractions in comparison
with the bare underlying software platforms. First, the static overhead
introduced by the LOOCI middleware is evaluated in terms of memory
consumption. Second, the more dynamic overhead introduced by deployable
components and event subscriptions are evaluated in terms of memory
consumption and lines-of-code, and processing overhead respectively.

7.4.1 Quantifying the static memory consumption of LooCl

The following paragraphs evaluate the memory footprint of the various
LooCI implementations, and quantify the memory requirements of the LOOCI
middleware, bare LOOCI components, and SmartOffice LOOCI components.
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ROM RAM Binary Lines-of-Code
(bytes) (bytes) (bytes) LooCI rest
LooCI/Contiki (Zigduino-r1) 95 (0,07%) 35 (0,21%) 687 12 1
LooCI/SunSPOT (Sun SPOT) 1800  (0.04%) 13669  (2.6%) 1800 5 3
LooCI/OSGi (Dell OptiPlex 780) 1545  (<0,001%) 768 (<0,001%) 1545 9 10

Table 7.2 — Static memory consumption, binary file sizes, and a lines-of-code
analysis of bare LOOCI components for the various supported platforms.

LooCl middleware

The LooOCI middleware enables the remote deployment and management of
individual application components and implements the distributed event bus.
It is pre-installed together with the underlying software platform on each node
in a LOOCI sensor system.

Both the ROM and RAM memory consumption of all LOOCI middleware
implementations were presented earlier in Table 7.1. As can be seen from
the table, LOOCI runs comfortably on all selected platforms. LooCI/Contiki
introduces the largest relative memory overhead; i.e. 14% of provided ROM and
10% of provided RAM on the Zigduino-rl. As the other hardware platforms
are more powerful, the respective implementations consume at least an order of
magnitude less memory. Across all implementations, the LOOCI middleware
can thus be considered lightweight in terms of memory consumption.

Bare LooCl components

With regards to LOOCI components, two size-related criteria are of importance;
(i) their static memory footprint determines whether they can comfortably
operate on top of the LOOCI middleware and underlying software platform,
and (ii) the size of their binary files represents the number of bytes that need
to be transmitted during deployment of the component and impacts the energy
budget of the sensor node and network.

To establish a baseline for these criteria, Table 7.2 presents the static memory
consumption and binary file size of bare LOOCI components; i.e. minimal
functional LOOCI components that do not include any application code. Both
absolute and relative ROM and RAM consumption are presented. The relative
values are in relation to the total ROM and RAM provided by the respective
hardware platforms.

Across all implementations and platforms, the memory consumption of bare
LooCI components is low; at the maximum less than one per mille of the
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available ROM, and 2,6% of the available RAM. Consequentially, application
code can be encapsulated into individually manageable LOOCI components
with minimal additional memory overhead.

While the static memory footprint of a C-based LooCI/Contiki component is
very low, the respective component binary file is an order of magnitude larger.
This is caused by the ELF-file format that is used to encapsulate component
code in support of dynamic linking. LooCI/Contiki, however, already provides
an optimisation to the standard ELF overhead by making use of a custom
ELF-format, called Compact ELF (CELF) [36], in which 32-bit data types are
replaced by 16-bit or 8-bit data types. This optimisation reduces the binary file
size from 1075 bytes to the 687 bytes presented in the table.

LooCI/SunSPOT components are compiled to jar-files, which are optimised
and byte-code verified into a binary bundle prior to deployment. These
bundles, called suites determine the amount of bytes to be transmitted during
deployment, as well as the ROM consumption. While the latter is small, the
RAM consumption of LOOCI/SunSPOT components is considerably larger.
This is caused by the Sun SPOT Isolate mechanism, which enables run-time
deployment, and concurrent and isolated execution of multiple applications
(i.e. components in the case of LOOCI) on a node. This overhead is however
acceptable for the memory-rich Sun SPOT nodes and only results in a RAM
consumption of 2,6% for a bare application component.

LooCI/OSGi components are compiled to .jar-files, called bundles, and deployed
as is to devices that operate in the back-end, such as desktop machines and
servers. The sizes of these components are minimal in relation to the available
memory resources and bandwidth.

The memory footprints specified in Table 7.2 imply that a large number of
components can be deployed on individual sensor nodes. In practice, this is
however typically constrained to a hand-full of components for technical reasons.
Such reasons include the available memory to store component binary files, and
the amount of dynamic memory a component is allowed to use. LoOCI/Contiki,
for instance, specifies a number of slots to which components can be deployed.
The number of slots is a trade-off between the amount of components that can
be deployed and the amount of memory available to each component. While
the number of slots is configurable, by default it is set to eight. Where this
should not be sufficient, either less memory can be attributed to individual
components or additional nodes need to be deployed.
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Component ROM RAM Binary Lines-of-Code
(bytes) (bytes)  (bytes) LooCI rest

LooCI/Contiki
temperature sensor 284 45 998 19 21
light sensor 285 45 1000 19 21
COg sensor 283 45 996 19 21
CH, sensor 284 45 997 19 21
sound sensor 285 45 1000 19 22
IR motion sensor 556 63 1400 28 45
contact sensor 317 46 1071 19 27
door access sensor 438 60 1218 21 53
temperature filter 314 44 969 20 16
light filter 315 44 971 20 16
CO. filter 313 44 967 20 16
CH, filter 313 44 967 20 16
temperature averager 310 42 1012 19 21
light averager 311 42 1014 19 21
CO, averager 309 42 1010 19 21
CH, averager 309 42 1010 19 21
lamp actuator 162 36 794 19 23
fan actuator 161 36 792 19 23
system monitoring 735 61 1581 21 39
RFID reader 253 40 976 21 22
Average: 327 46 1037 20 24

LooCI/OSGi

presence 1976 1228 1976 13 28
hazard 2248 1236 2248 14 52
comfort 2789 1218 2789 13 111
security 2498 1182 2498 13 72
network monitoring 2201 1252 2201 12 37
logging 1913 1239 1913 12 13
Average: 2271 1226 2271 13 52

Table 7.3 — Static memory consumption, binary file sizes, and a lines-of-code
analysis of the SmartOffice LOOCI components.
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SmartOffice components

In addition to the baseline memory and binary file size evaluation of bare
LooCI components, an evaluation of typical application components provides
additional insight into the practical applicability of the LOOCI component
model. Therefore, Table 7.3 presents the memory footprint and binary file
size of the SmartOffice application components. With averages of 327 bytes of
ROM consumption and 35 bytes of RAM consumption for the LooCI/Contiki
components, and 2270 bytes of ROM consumption and 1226 bytes of RAM
consumption for the LOOCI/OSGi components, confirm the small footprint
of LOOCI components on all platforms. The memory footprints remain well
within scope of provided memory by the respective hardware platforms, and
binary file sizes remain sufficiently small to be over-the-air deployable.

In conclusion, it can be stated that the added advantages of LOOCI, i.e.
application modularity, remote application management, and distributed
interaction, are realised with acceptable memory consumption of both the
middleware and components.

7.4.2 LooCl component development overhead

Component development within LOOCI comprises (i) encapsulation of
application logic into an individually deployable and configurable component,
and (ii) adaptation of the application logic to the LOOCI API for life-cycle
management and event-based communication. While encapsulation requires
additional code to explicitly define the externally accessible attributes of
components (provided interfaces, required interfaces, properties, component
name, etc.), adaptation to the LOOCI API typically reduces the amount of
code needed for life-cycle management and communication. For instance, only
a single line of code is needed to publish an event (see Listings 4.6 and 4.7),
which eliminates the otherwise needed code for e.g. socket management.

Table 7.2 presents a lines-of-code analysis of bare components for the various
LooCI implementations. The LooCI lines-of-code represent the source code lines
specifically related to LOOCI, while the rest lines-of-code represent additional
lines of code required by the underlying platform. The proportions of both
vary as in the various implementations the LOOCI API either wraps, and thus
replaces, functionality of the underlying platform, or adds additional functions
to convert native application modules into LOOCI components. On average,
developing an individually manageable bare LOOCI component requires about
15 lines of code, of which 9 are LOOCI specific.
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Type of subscription size contents

(bytes)
local 4 event type, src comp. id, dst comp. id
remote-from 5 event type, src comp. id, src node id, dst comp. id
remote-to 4 event type, src comp. id, dst node id

(event type = 2 bytes, comp. id = 1 byte, node id = 1 byte)

Table 7.4 — Memory consumption of subscription entries in LoOCI/Contiki.

This number changes with the amount of provided interfaces, required interfaces,
properties, etc. that are exposed for configuration and inspection. Table 7.3,
however, indicates that for a real-world application, like the SmartOffice, the
LooCl-specific lines-of-code remain fairly stable across a range of components.
The rest lines-of-code in Table 7.3 include actual application code, in addition
to lines of code required by the underlying platform.

In conclusion, LOOCI component development does not negatively impact
application development effort. While some effort is needed to convert opaque
native application code into an individually manageable LOOCI component,
the application code itself is typically reduced by means of the communication
and management abstractions provided by LoOOCI.

7.4.3 Performance of the event bus

The event bus abstraction of LOOCI enables late binding of components.
This section assesses the scalability of the event bus under a growing
number of subscriptions, and evaluates the impact of the extra indirection
it introduces. Important considerations in this regard are (i) the dynamic
memory consumption per event subscription, and (ii) the delay introduced by
the indirect communication between components.

Memory consumption of event subscriptions

The dynamic memory overhead of maintaining subscription tables can be
expressed by the amount of information that is needed per subscription. This
information is presented in Table 7.4 for the LooCI/Contiki implementation,
which operates on the most constrained hardware platform supported, i.e.
Zigduino. For all three types of subscriptions, only a handful of bytes is required.
This low overhead is partially realised by locally maintaining mappings between
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Figure 7.2 — Processing time required by the LooCI/Contiki implementation
to dispatch events based on an increasing number of wires.

a 1-byte node identifier and the IPv6 address of nodes that participate in any
remote subscriptions.

To evaluate the impact of this memory overhead, the presented numbers are
applied to the SmartOffice sensor system. In that deployment, the node with the
highest number of subscriptions contains 4 local subscriptions, 0 remote-from
subscriptions, and 7 remote-to subscriptions. This results in a dynamic memory
consumption of 44 bytes for the subscriptions, and 9 bytes for the IPv6 address
mapping of the only remote node that is interacted with, i.e. the back-end.

Dispatch time of the event bus

The indirect style of communication provided by LooCI’s publish/subscribe
event bus, introduces a delay in component interactions. This delay is caused
by (i) the evaluation of the current subscription entries, and (ii) the dispatching
of events to all currently subscribed components. The graphs in Figure 7.2
visualise this delay for all three types of subscriptions; i.e. local subscriptions,
remote-from subscriptions to dispatch events coming from the network to local
components, and remote-to subscriptions to dispatch locally produced events
to remote components. The graphs present a worst-case scenario in which all
subscriptions are for the event type under consideration, and thus cause a copy
of the event being dispatched. The time measurements were performed on a
Zigduino-r1 clocked at 16MHz.

Event dispatching was timed between the moment the event enters the event
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manager and the moment its copy for the last subscription leaves the event
manager; either towards a local component or towards the network stack. For
local subscriptions this starts when the publishing component hands the event
to the event manager and lasts until it is delivered to all subscribed local
components. This includes retrieval of references to the destination component,
copying the event, and passing the copy to the destination component’s process.
Similar measurements were taken for remote-from subscriptions, only there
the event is passed to the event manager by the underlying network stack.
For remote-to subscriptions, the measured interval lasts from the moment the
publishing component passes the event to the event manager until it is passed
to the underlying network stack. In this case, no hand-off reference needs
to be dynamically retrieved, as their is only one network stack, and copying
of the event occurs later when creating the respective event-wrapping UDP
packet. Therefore the delay is considerably lower in the remote-to case. In
terms of end-to-end communication also the transmission delay is of importance.
This, however, depends greatly on underlying network protocols and their
configuration and is therefore not considered here.

The presented graphs show that the delay caused by event dispatching grows
linearly for an increasing number of subscriptions. Furthermore, the introduced
delay remains below 10 ms for up to 20 subscriptions, which is almost twice
the amount of subscriptions than needed for the sensor node with the most
subscriptions in the SmartOffice deployment.

In conclusion, it can be stated that the performance of the distributed event
bus scales well with a growing number of subscriptions, both in memory
consumptions and added delay. A final remark to be made is that assuring this
scalability is also a responsibility of the application manager. While the number
of nodes in a network will typically increase the total amount of subscriptions in
the network, it indicates bad design when this also directly impacts the amount
of subscriptions per individual node.

7.4.4 Conclusion

LooCT’s configurable abstractions for application modularity and distributed
interactions make it a great enabler of multi-purpose sensor systems. The
evaluation in this section shows that these features can be realised in a lightweight
manner across all tiers of a sensor system, including resource constrained sensor
nodes. LoOCT’s middleware and component memory consumption is sufficiently
low to allow multiple application components to operate concurrently on a sensor
node, and its event bus scales well in terms of added communication delay and
memory consumption. Additionally, in terms of development effort, LooCI
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ROM RAM

Sun SPOT 4 MB 512 kB
Sun SPOT VM 704 kB (17,2%) 47,7 kB (9,3%)
LooCI/SunSPOT 62,1 kB (1,5%) 32,0 kB (6,3%)

SDlite 50,2 kB  (1,2%) 1,8 kB (0,4%)

Status registry 20,9 kB (0,5%) 332 B (0,1%)
Status provider 145 B (0,005%) 17 B (0,008%)

Service discovery 29,3 kB (0,7%) 1,5 kB (0,3%)

Table 7.5 — Detailed memory consumption overview of SDLITE.

components are on par with native applications. In combination with LOoCI’s
unified management APIs, this greatly facilitates development of distributed
sensing applications across the various tiers of a sensor system.

7.5 Quantitative evaluation of the status-aware
service discovery solution

As presented in Chapter 5, SDLITE provides a status-aware service discovery
solution that is tailored to sensor systems. It enables discovery of LOOCI
components with a specified provided or required interface on nodes that adhere
to certain operational and environmental conditions. It therefor provides both a
node-local registry that allows for sharing of status data across software modules
and layers, and a service discovery protocol that makes use of this status data.

This section evaluates the status registry and service discovery solutions in
terms of resource consumption and ease of use. It does so by quantifying
(i) the middleware memory consumption, (ii) the programming and memory
overhead for status sharing, (iii) the expressiveness of service queries in relation
to message sizes, and (iv) the processing overhead of service query resolution.

7.5.1 Memory requirements of the SDlite middleware

The memory consumption of SDLITE comprises that of the middleware
support for both status sharing and service discovery, as well as the additional
consumption by software components because of status sharing. The rest of
this section discusses the middleware memory requirements, while the impact



140 EVALUATION AND PRACTICAL APPLICATION

of status sharing is discussed in the following section. Table 7.5 provides an
overview.

The first three lines in the table provide a reference and present the amounts of
ROM and RAM memory that are available on a Sun SPOT, and used by the
Sun SPOT VM and the LooCI/SunSPOT implementation. Besides absolute
numbers, the table also presents the percentual memory consumption relative
to the amount of ROM and RAM provided by the Sun SPOT hardware.

Both the status registry and the service discovery middleware are lightweight
and together only consume a tiny fraction of the ROM and RAM available
on the Sun SPOTs. This low memory consumption is primarily caused by a
number of design decisions such as; (i) the integration of the service discovery
mechanism with AODV and thereby leveraging its route discovery mechanism,
and (ii) the design of the status registry, which simply provides references to
where status parameters are locally available. A fully integrated implementation
of both solutions, is furthermore believed to consume even less memory as some
functionality is provided by both implementations; e.g. message parsing, request
resolving, etc. This low consumption in memory leads to a firm belief that the
same functionality can be implemented for even more constrained sensor node
platforms than Sun SPOT.

7.5.2 Status provisioning overhead

To share status information, existing software components need to be
transformed into status providers. This section discusses both the development
overhead and the memory consumption of transforming an existing software
component into a status provider.

In terms of development, to make a software service share status information
it needs to implement and register the IStatusProvider interface. An example
is shown in Listing 5.2 in Chapter 5. As shown in the listing, registration of
a status provider requires a single line-of-code to call the register()-method.
Additionally, to make the status parameters available to the registry, and its
users, the IStatusProvider interface needs to be implemented. This interface
provides a single method, getStatus(), of which the implementation needs to
return the value of every status parameter shared. This is typically realised
using a switch statement, resulting in about 2 lines-of-code per parameter. The
programming overhead of status provisioning thus includes a fixed overhead of
3 lines of code, and increases linearly by 2 lines per shared parameter. Most
status providers are furthermore expected to be middleware and system level
software services; application developers will only rarely need to deal with status
provisioning.
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Figure 7.3 — ROM and RAM consumption of status parameter sharing.

As is to be expected, the impact of this added logic on memory consumption
is low. Table 7.5 presents the memory consumption per status provider.
Transforming an existing software component into a status provider, causes
an average increase of 145 bytes in ROM consumption and 17 bytes in
RAM consumption. While the ROM consumption can be attributed to
the implementation of the getStatus() method (see Listing 5.2), the RAM
consumption is caused by creating a new node in the tree data structure. This
encompasses the status provider’s encoded identification, a reference to the
status provider itself, and a list of its child nodes. This is depicted as well in
Figure 7.3, which additionally shows the average increase of memory use per
status parameter provided. This is 8 bytes on average for ROM consumption,
while RAM consumption remains constant. The latter is the result of the tree
data structure only containing nodes for the status providers themselves and
not for their status parameters. These parameters are already contained in the
software service becoming a status provider and, by consequence, do not add
additional dynamic memory overhead.

7.5.3 Evaluating service query expressiveness

Service querying enables the discovery of services (i.e. LOOCI component
interfaces) in a sensor network by disseminating a service request packet into
the network (see Section 5.3.3). Besides the component interface type, the
service query can include a status predicate that allows for the providing sensor
node’s environmental and operational status to be taken into account.
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Figure 7.4 — Cumulative header and status predicate sizes in comparison to the
total size of a single IEEE 802.15.4 packet.

The expressiveness of the service queries is demonstrated by the amount of status
parameters that can be specified within such a query. While in theory SDLITE
supports an infinite amount of status parameters, in the best case, a service
request should fit into a single network packet, hereby avoiding fragmentation.
Figure 7.4 presents the service request (SREQ) size in relation to the total
available packet size within a Sun SPOT network?. The Sun SPOT platform
utilises IEEE 802.15.4 which allows for radio packets with a total size of 127
bytes. Lower layer networking headers of the Sun SPOT networking stack
consume 42 bytes. AODV headers, which are needed because of SDLITE’s
integration with AODV, consume an additional 24 bytes. On top of that,
SDLITE adds a lightweight service request header of 3 bytes, which leaves 58
bytes for the status predicate.

The size of a status predicate® depends on (i) the amount of status parameters
it contains, (ii) the size of their encodings, (iii) the data types and size of
the values they are expected to have, and (iv) the amount of operators in the
predicate. Figure 7.4 presents an impression of the total size of a status predicate
for an increasing amount of status parameters and average sizes of parameter
encodings and values. Based on the status parameter tree in Figure 5.2, status
parameter encodings with a size of 3 bytes are applied as a representative
average. Parameter values, on the other hand, can range in size from one byte
(i.e. small number) up to tens of bytes (i.e. a string literal) per status parameter.
An average of 4 bytes is therefore considered to be representative for practical

2A full description of the SDLITE packet formats is presented in Appendix B.
3A full description of the SDLITE status predicate format is presented in Appendix B.
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purposes. Given these sizes, a status predicate with up to 3 parameters can
be specified to fill the remaining payload of a single radio packet. Additional
parameters can be specified as well, but will require fragmentation into multiple
radio packets.

While SDLITE thus provides an appropriate level of expressiveness at reasonable
cost, regular fragmentation of service queries is expected within the presented
implementation. Some small refactoring can however prevent this. On the
one hand, more extensive compression of the status predicate can be achieved
by applying varint encoding for values and the TALKSENS sub-type encoding
scheme to represent status parameter identifiers. On the other hand, in networks
that use non-ad hoc routing protocols, like e.g. RPL [184], integration with
routing has no added value. This frees up the 24 bytes needed for the AODV
header.

7.5.4 Processing overhead of service query resolution

Service queries need to be resolved at all receiving sensor nodes, which should
consume a minimal amount of processing to limit energy consumption. This
section evaluates the time that is needed by the Sun SPOT implementation to
retrieve a status parameter value and to resolve a status predicate. The first
quantifies the additional processing caused by the extra indirection added by
the central status registry for easy sharing. The second quantifies the time
needed to parse the byte-array representation of a status predicate and the
subsequent evaluation of that status predicate.

For an extended version of the parameter list shown in Figure 5.2, retrieving
status parameters provided by middleware services takes on average 1,4 ms.
When provided by LOOCI components, this increases to 6 ms on average due
to the inter-isolate communication between the middleware and system services,
and the components. Variations in these timings are caused by the depth of
the status parameter path within the status tree, the time needed to traverse
the status tree to find the respective status provider, and possibly converting
the retrieved value to a user-friendly format.

The time needed to resolve a status predicate depends on the amount of
parameters it contains and the time needed to retrieve each of these parameters.
As an indication, the average time to resolve the fairly complex predicate
((node/node_type = spot OR node/energy/vec > 2500) & (node/memory/free
> 200000)) was 87 ms. Thereof 80 ms was needed to parse the byte-array
representation of the status predicate, including retrieval of the parameter
values, and 7 ms for the stack-based evaluation of the reverse-polish predicate.
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Both status parameter retrieval and status predicate evaluation remain within
the lower milliseconds range, which is considered acceptable for practical
purposes.

7.5.5 Conclusion

SDLITE allows for the run-time discovery of services within a sensor network
based on descriptions of both functionality and sensor node status. Evaluation
shows that both service discovery and status sharing can be implemented in a
lightweight manner; SDLITE has a small memory footprint, status sharing only
requires a few lines of code, and expressive service queries are resolved with
low processing overhead. All these make SDLITE an extremely valuable and
efficient tool to more open use of sensor networks.

7.6 Quantitative evaluation of the message defini-
tion framework

As presented in Chapter 6, the TALKSENS message definition framework provides
support for event subtyping and explicit message definition. Section 7.6.1
evaluates the benefits of subtyping and quantifies at what cost this is achieved.
Section 7.6.2 evaluates the impact of adding explicit message definition support
to LooCIL.

7.6.1 Subtype encoding and its impact

The adapted subtype encoding function is quantitatively evaluated in the
following manners. First, the extra compactness realised by reuse of prime
numbers is investigated. Second, the processing cost of subsumption testing
is quantified. And third, the impact of subtyping on the configuration of the
SmartOffice deployment is discussed.

Compactness of subtype encoding with reuse of prime numbers

The adapted encoding function, presented in Section 6.2.2, reuses prime numbers
during the process of encoding event type identifiers. This results into lower
values of the latter, which can be represented using less number of bytes.
This is an important improvement as it reduces the amount of bytes needed
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Nb of Nb of Largest id Avg nb of Density
vertices primes bytes per id of ids
Original 112 112 19.376.940 3 0,0006%
Adapted 112 24 30.914 2 0,36%

Table 7.6 — Comparison of the original and adapted encoding functions for the
SmartOffice event hierarchy.

during communication, but also facilitates less complex subsumption testing on
constrained sensor nodes.

Table 7.6 compares the original and adapted encoding function when applied to
the SmartOffice event hierarchy (see Appendix C). This is a medium size event
hierarchy that contains 112 event types. Consequentially, the original encoding
function uses 112 prime numbers, while the adapted encoding function uses
only about a fifth of those. This results in a much lower value of the largest
event type identifier, which can be encoded using 3 bytes instead of 2 bytes
for the original encoding function. Furthermore, the higher density, i.e. the
percentage of integers used as identifiers up to the largest identifier, shows the
more economic use of available integer values. While the byte-size reduction for
the SmartOffice is limited, it does show that hierarchical information can be
included within the event type identifiers in a very compact manner.

To evaluate the compactness of the adapted encoding function on larger event
hierarchies, a set of artificial hierarchies were generated that range from 0 up
to 8 levels, with each vertex having 0 up to 8 children. Figure 7.5 compares the
original and adapted encoding function in terms of compaction; i.e. the number

Nr of Bytes
Nr of Bytes

Nr of Levels Nr of Levels

(a) Original encoding function (b) Adapted encoding function

Figure 7.5 — Evaluation of the compaction of the original and adapted encoding
functions for a set of differently shaped hierarchies.
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of bytes needed to encode event type identifiers. The graphs show the byte-size
of the largest identifier within the set of hierarchies.

The lower inclination of the graphs in Figure 7.5b clearly shows that the
adapted encoding function results in more compact identifiers. While the
original encoding requires up to 14 bytes, the reuse of prime numbers reduces
this to only 6 bytes at the most. The adaptation thus keeps the byte-size well
below 8 bytes for a wide range of event hierarchies; which can differ in shape
(wide vs. narrow hierarchies, shallow vs. deep hierarchies) and size. As discussed
in Section 6.2.2, this enables the use of standard integer representations on most
(embedded) platforms, and eliminates the need for custom representations for
large integers and accompanying arithmetic for subsumption testing. Practically,
this means that event hierarchies can be comfortably designed without risking
the requirement of such additional support.

Finally, it is important to highlight the trade-off between the total compaction
of an event hierarchy and its overall shape. For instance, while reducing the
number of levels within a hierarchy for the same amount of event types will lead
to greater compaction, it will reduce the expressivity of the hierarchy; i.e. the
flexibility of grouping various subsets of event types by one of their parent types.
This trade-off should be well evaluated during design of the event hierarchy.

Performance evaluation of subsumption testing

Within LooCI, subsumption testing is performed to determine whether a
published event needs to be dispatched according to an entry in one of the
subscription tables. As this test is executed to evaluate every published event
against all entries in the respective subscription tables, it needs to be performed
with little processing overhead.

To quantify this overhead, an experiment was set up in which pair-wise
subsumption testing was performed among all identifiers in the SmartOffice event
type hierarchy. This evaluation was performed on Zigduino sensor nodes, which
were clocked at 16MHz. The evaluated implementation of the subsumption
test was optimised to first check whether the given parent identifier is not
larger than the child identifier. If so, this rules out subsumption and the more
expensive modulo operation does not need to be executed. The timing of this
experiment showed an average of 19,7 ps per test. In comparison, pair-wise
equality testing, as would be performed using a flat-list ordering, resulted in
an average of 1,3 ps per test. Clearly, the subsumption test is a more complex
operation to be performed in comparison to a simple equality test; yet, the
required time for subsumption testing remains well within the acceptable lower
microsecond range.
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Location Number of wire commands
Without subtyping With subtyping
back-end 24 11

office 6 4 (#rooms * 16) 2 + (#rooms * 8)
desk 8 + (#desks * 21) 4 4 (#desks * 13)
window 14 (#windows * 4) 1 4 (#windows * 2)
door 1+ (#doors * 5) 1 + (#doors * 2)
client #clients * 21 #clients * 7

Table 7.7 — Breakdown of the wire commands needed to configure the sensor
nodes at various locations in the SmartOffice deployment.

Impact of subtyping on SmartOffice configuration

The goal of event subtyping within this dissertation is to reduce the management
effort and accompanying dissemination of commands into a sensor network.
As mentioned in Section 4.3.3, LOOCI supports the late binding of, possibly
remote, components by means of sending wire commands to the node(s) hosting
those components. These commands result in respective entries in the various
subscription tables of the targeted node’s event manager. By using subtyping,
individual subscription table entries can be used to dispatch multiple subtypes
of events to a common destination. The end result is a reduction in management
effort to define bindings, and in number of message transmissions to realise
these bindings.

The reduction of wire commands is evaluated for the SmartOffice deployment.
As discussed in Section 7.2, this deployment consists out of a back-end system
that receives sensor readings from a set of sensor nodes monitoring desks,
windows, doors and offices in general. After processing these sensor readings,
comfort and security information is forwarded to a number of subscribed client
applications.

Table 7.7 presents the amount of wire commands that are required to set up
such a deployment; both without and with subtyping support. For each location
within an office that is to be monitored, the amount of wire commands are
presented; this amount consists out of a fixed base-line number of commands
to prepare the back-end, and a variable number of commands per office, desk,
window or door that is to be monitored.

For each monitored location, a clear reduction in wire commands is obtained
through subtyping support. For instance, per sensor node that monitors a
door, only a single wire command is needed to forward both the contact_switch
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Figure 7.6 — The number of wire commands needed to establish communication
in the SmartOffice deployment without and with subtyping support.

and door_access events to the security component in the back-end. In total,
subtyping leads to a reduction from 107 to 51 in needed wire commands when
configuring an example office with one desk, one window, one door and one
client (see Figure 7.6). This corresponds to a substantial 52% reduction of
respective messages that need to be disseminated into the sensor network. This
reduction will further increase when additional offices, desks, windows and doors
are added to the deployment.

As the sensor systems under scope in this dissertation are expected to be
reconfigured over time due to changing application requirements, this reduction
is additionally subject to a multiplication effect. On the other hand, this result
is application specific and to a large extent depends on the structure of the
event type hierarchy. However, sub-typing will never increase the number of
binding commands required and when applied sensibly can reduce the amount
of wire commands extensively. Additionally, similar savings can be expected
when performing inspection or service discovery on a configured sensor system.
In the SmartOffice for instance, a single service request for an abstract actuator
service (i.e. event) can be used to discover all components that consume either
lamp or fan actuation events.

7.6.2 Evaluating message definition overhead

As presented in Section 6.3, TALKSENS makes message definitions more explicit
at both development-time and run-time. Its purpose is to improve application
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reuse by facilitating interaction with third-party software. To determine the
cost of this qualitative benefit, the following sections provide a quantitative
evaluation of TALKSENS’ message definition support; specifically in terms of
middleware memory use, deployable component sizes, and message sizes.

Part of the evaluation compares TALKSENS serialisation support with Protocol
Bulffers [57]; a state-of-the-art serialisation mechanism that aims at being smaller
and faster than XML. The functionality provided by TALKSENS, however, does
not fully cover that of Protocol Buffers, and vice versa. Compared to Protocol
Buffers, TALKSENS provides additional features such as message definition
inspection support and specification of units of measurements. On the other
hand, Protocol Buffers provides more extensive features to optimise and control
message serialisation and exchange, which are not considered within TALKSENS.
Yet, the presented comparison indicates how the overhead of TALKSENS relates
to that of a closely-related state-of-the-art solution. In the following, the
standard Java implementation of Protocol Buffers from Google [57], and the
NanoPb [128] C-implementation are used, respectively to compare with the
TALKSENS implementations for LooCI/OSGi and LooCI/Contiki.

Memory overhead of the TalkSens middleware

TALKSENS middleware functionality adds support for efficient message
serialisation and inspection for message definitions to existing LoOOCI
middleware implementations. A primary implementation concern was to realise
this in a manner that is agnostic of the TALKSENS data model (i.e. supported
data types and units of measurement). This to prevent expensive middleware
updates when changes to the data model occur. Table 7.8 presents the memory
consumption of the TALKSENS middleware in comparison to the respective
LooClI implementations, and compares with Protocol Buffer alternatives.

ROM RAM

LooCI/Contiki 17,8 kB 1,6 kB
LooCI/Contiki - TalkSens 22,2 kB (+24,7%) 1,6 kB (+0,1%)
LooCI/Contiki - Protocol Buffers 29,6 kB (+66,3%) 2,1 kB (+31,3%)

LooCI/OSGi 102,0 kB 11,3 kB
LooCI/OSGi - TalkSens 105,2 kB (+3%) 11,7 kB (+4%)
LooCI/OSGi - Protocol Buffers 596 kB (+484%) 11,3 kB (+0%)

Table 7.8 — Overview of the memory consumption of the TALKSENS middleware
and a comparison with related technologies.
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In the case of LOOCI/Contiki, TALKSENS adds 4,4 kB of ROM consumption
and virtually no RAM consumption. Both are well within the limits of the
targeted constrained platforms and small when compared to the Protocol
Buffers alternative. LooCI/OSGi-TALKSENS performs even better with a 3%
increase in ROM consumption and a 4% increase in RAM consumption. This is
much smaller than the Protocol Buffers alternative. However, as mentioned,
the Google Protocol Buffers implementation has more extensive serialisation
support, and presumably was not implemented with memory constraints in
mind.

Impact on component sizes

This section evaluates the combined effect on component sizes of (i) including
message-specific serialisation code into LOOCI components, and (ii) adding
TALKSENS inspection support to LOOCI component interfaces.

Figures 7.7 and 7.8 provide an overview of the SmartOffice component
sizes implemented for LOOCI, LoOCI-TalkSens and LoOCI-Protocol Buffers,
respectively for Contiki and OSGi.

In the Contiki case, component size refers to the size of an ELF-formatted
run-time deployable component file. Figure 7.7 shows an average increase in
component size of 1193 bytes by adding TALKSENS support. Adding Protocol
Buffer support, only results in a average increase of 411 bytes. The larger
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Figure 7.7 — Component sizes of SmartOffice Contiki components.
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overhead of TALKSENS can partially be attributed to the previously discussed
reduced functionality offered by Protocol Buffers. Furthermore, TALKSENS
makes component interfaces a self-contained entity that provides serialisation
and inspection of message definition. The implementation thereof is of the
same order of complexity as the typical application functionality of a LOOCI
component; e.g. read out a sensor value and publish an event. Finally, it is
important to notice that while for TALKSENS the memory overhead is relatively
larger for components, it is relatively smaller for the middleware (see Table
7.8). These proportions are reversed in case of Protocol Buffer support for
LooCI/Contiki.

In the OSGi case, shown in Figure 7.8, component size refers to the size of a
run-time deployable OSGi bundle in the form of a .jar-file. The figure shows an
average increase in component size of 13,6 kB by adding TALKSENS support.
The relatively large increase of component sizes is expected as TALKSENS
interfaces introduce additional Java classes to LooCI components that otherwise
typically consist of 2 classes only. Adding Protocol Buffer support, however
results in a much larger average increase of 40,03 kB.*

To more objectively evaluate the component size growth introduced by
TALKSENS, Figure 7.9 shows the size of LooCI/Contiki and LooCI/OSGi
components with an increasingly complex TALKSENS interface. Complexity in
this case is defined as the number of data elements in the interface’s message, as

4The logging component forms an exception. It provides a generic interface and merely
logs the byte-level representation of all incoming messages. Deserialisation is thus not strictly
required for Protocol Buffers. In TALKSENS however, by implementation choice, such support
is fully integrated with a component interface and thus cannot be omitted.
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Figure 7.9 — Component size increase per added data element.

shown on the horizontal axis. The first data point on the graphs relates to bare
components without interfaces. The next data points indicate the size of the
same components with a respectively incoming or outgoing TALKSENS interface
without any data elements. This shows the boilerplate overhead of a TALKSENS
interface. With 475 bytes and 317 bytes on Contiki, and 1938 bytes and 1472
bytes on OSGi, respectively for outgoing and incoming interfaces, this is in
agreement with the previous findings concerning the SmartOffice components.
Further along the graphs, per data element the component sizes increase slightly
with 146 bytes and 135 bytes on Contiki, and 45 bytes and 33 bytes on OSGi,
again respectively for outgoing and incoming interfaces.

In conclusion, it can be stated that providing TALKSENS support introduces
a non-negligible overhead on component sizes on all platforms. Yet, in the
Contiki case, components remain well within the scope of provided memory,
allowing over-the-air component deployment and concurrent operation of
multiple components on constrained sensor nodes. In the OSGi case, TALKSENS
components remain considerably smaller than their Protocol Buffer alternatives.

TalkSens data message and message definition sizes

To enable flexible serialisation, TALKSENS adds meta-data to messages. This
section evaluates the impact of the TALKSENS serialisation format on message
sizes and the size of serialised message definitions in support of inspection.

Figure 7.10 and Table 7.9 compare the payload sizes of the SmartOffice
deployment’s messages when serialised in three different formats; (i) a plain
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Message types Data message size (bytes) TalkSens
description
Data only TalkSens Protocol Buffers
(min) (max)

raw temperature 5 11 6 11 17
raw light 5 11 6 11 17

raw CO» 5 11 6 11 17

raw CHy 5 11 6 11 17

raw humidity 5 11 6 11 17
average temperature 5 11 6 11 17
average light 5 11 6 11 17
average CO, 5 11 6 11 17
average CH, 5 11 6 11 17
average humidity 5 11 6 11 17
filtered temperature 5 11 6 11 17
filtered light 5 11 6 11 17
filtered CO, 5 11 6 11 17
filtered CH4 5 11 6 11 17
filtered humidity 5 11 6 11 17
sound level 5 11 6 11 17

ir motion 5 11 6 11 17

contact switch 4 10 6 10 17
door access 4 10 6 10 17

rfid 15 21 6 21 17

heartbeat 2 4 2 4 9

battery level 4 8 4 8 13

up time 10 14 4 14 13

lamp on/off 1 3 2 3 9

fan on/off 1 3 2 3 9
presence 8 14 6 14 17

risk of fire 4 10 6 10 17

comfort report 14 32 18 32 41
comfort advice 16 20 4 20 13
security report 27 46 24 51 37
open door/window alert 3 7 4 7 13
Average: 6,4 12,5 6,3 12,7 17,1

Table 7.9 — Overview of sizes of data messages in various formats and message
descriptions of the SmartOffice deployment.
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data-only format, (ii) the TALKSENS format and (iii) the Protocol Buffers
format.

As previously shown in Figure 6.9, the TALKSENS format introduces a 2-byte
overhead for each data element/record within a message. This causes the
SmartOffice message payloads to grow from an average size of 6,4 bytes in
the data-only format, to about 12,5 bytes in the TALKSENS format. Although
doubling in size, this needs to be placed into perspective. Most messages, both
in the SmartOffice and generally in sensor network deployments, contain only
a few data elements that additionally are often only a few bytes in size. This
causes the 2-byte overhead per data element/record to significantly influence
the message sizes. Furthermore, the resulting message sizes remain well within
the bounds of the available payload sizes in wireless sensor networks. In Contiki
for instance, which operates on top of IEEE802.15.4, 6LoWPAN and IPv6,
payloads of up to 86 bytes are allowed.

To account for Protocol Buffers’ use of value-dependent varint encoding, a
comparison is made against both its minimum and maximum payload sizes.
Minimum payload sizes correspond with all values having a value of 0 or having
zero length, while maximum payload sizes correspond with all values having their
maximum value or a length that is representative within the application context.
On average, the minimum and maximum payload sizes of SmartOffice messages
in the Protocol Buffers format are between 6,3 and 12,7 bytes. This means that
TALKSENS serialisation is on par with Protocol Buffers maximum payload sizes.
While this shows that additional compaction is possible, TALKSENS does not
require the more heavy-weight serialisation logic of Protocol Buffers, discussed
in Section 7.6.2., This provides a good balance between serialisation complexity
on the one hand, and message sizes on the other, which fits well with both the
processing and energy constraints at hand.

Table 7.9 additionally presents the sizes of the SmartOffice serialised message
definitions. The average size of 17,1 bytes shows that these are very compact
and fit comfortably within the available message payloads.

7.6.3 Conclusion

TALKSENS subtyping and message definition support respectively enable more
expressive binding and improved reuse of application components. Evaluation
of the adapted encoding function shows that it realises subtyping with a greater
compaction of event identifiers and a less complex subsumption test than the
original encoding function. The promised reduction in management overhead
due to subtyping, is thus achieved with an additional reduction in communication
and processing overhead. Second, evaluation of TALKSENS’ coordinated message
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definition support shows that its serialisation and inspection features require
lightweight middleware support. Components and messages are, however,
subject to a considerable increase in size, yet in typical cases, components
remain over-the-air deployable and messages still fit within a single packet.

7.7 Summary

This chapter evaluated the contributions presented in this dissertation. In aid
thereof, the SmartOffice deployment at DistriNet was introduced, which served
as a practical application to evaluate their impact on a real-world deployment.
Quantitative evaluation of LOOCI, SDLITE and TALKSENS proved the feasibility
of providing a run-time configurable application framework in support of open
and multi-purpose sensor systems. Their combined middleware support is
lightweight in terms of memory consumption and leaves sufficient memory
available for applications on all selected platforms. Individually manageable
and inspectable application components are small enough in size to be run-
time deployable and allow for multiple components to execute concurrently
on a single node. In terms of communication, the various messages defined
by the contributions typically remain small enough to prevent fragmentation.
These include application and management events, run-time retrievable event
descriptions, and service discovery messages. Finally, event dispatching, subtype
testing and service query resolution were shown to be performant on constrained
sensor nodes. As such, run-time configurability, multi-purpose support, and
extensive inspection and discovery of application logic are shown to be features
that are feasible within the resource constraints of wireless sensor networks.
This enables building distributed sensing applications that span the various tiers
of a sensor system and support open use of third-party functionality. Yet, while
considered feasible, all this does come at a cost. However, where application
flexibility is of good use, this cost is considered to be well worth the investment.



Chapter 8

Conclusion

This chapter concludes the dissertation. Section 8.1 first summarises the
presented contributions and highlights their main features. Section 8.2 then
reflects on those contributions to highlight some important observations with
regards to their use and applicability. Next, Section 8.3 identifies opportunities
for future work. Lastly, Section 8.4 takes a step back and positions the presented
work within an outlook on future sensor systems.

8.1 Contributions

Driven by the intent to improve the return-on-investment of sensor network
infrastructure and development, this dissertation explored the feasibility of
sensor networks as open and multi-purpose infrastructure. Such application-
agnostic infrastructure can serve various stakeholders, who can independently
deploy their applications and, where opportune, reuse the functionality provided
by others. Several key features were identified to realise such a shared sensor
network infrastructure. These include (i) the independent development and run-
time management of individual modules of application logic, (ii) composition of
such modules into distributed applications that span the various tiers of a sensor
system, (iii) fine-grained discovery of application logic, and (iv) the availability
of abstract descriptions of the messages exchanged by application modules.
The contributions presented in this dissertation implement these features and
together provide an application platform for multi-purpose sensor systems.

A related work study in Chapter 2 presented state-of-the-art solutions in support
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of open and multi-purpose sensor networks. Along with an overview of specific
WSN technologies and the application of service-orientation within sensor
networks, a survey of integrated application frameworks was presented. This
showed that point solutions to specific problems are reported on, yet, to the
best of our knowledge, no well-integrated solution exists that provides a high
enough level of configurability and openness to result in truly multi-purpose
sensor systems.

Chapter 3 introduced all contributions presented in this dissertation and
illustrated how they collectively enable a service-oriented modus operandi in
which multiple stakeholders make use of a shared sensor system infrastructure.

Chapter 4 presented important abstractions for application modularity and
distributed interactions that facilitate the development and management of
distributed applications. These abstractions are provided by LOOCI, the Loosely-
coupled Component Infrastructure, in the form of a run-time configurable
component model and distributed event-bus. LOOCI has been implemented on
a range of hardware and software platforms, which enable developers to use the
same set of abstractions to build applications that span the various tiers of a
sensor system.

Chapter 5 presented a service discovery solution that takes the environmental
and operational state of sensor nodes into account during the discovery of
functionality. In support thereof, a status registry is provided that enables
consistent and generic sharing of status data across software modules and layers
on a sensor node. The integration of status sharing with service discovery results
in fine-grained discovery of third-party application components within sensor
networks.

Chapter 6 presented a solution for explicit and coordinated definition of
messages to facilitate interactions with, possibly run-time discovered, third-party
application components. The TALKSENS message definition framework enables
multiple parties to come to a shared agreement on message types and contents,
and provides associated development and run-time support. Its subtyping
support considerably reduces configuration effort when building distributed
applications, and its message definition framework facilitates meaningful and
error-free interactions between third-party application components.

Finally, Chapter 7 evaluated the prototype implementations of all presented
contributions and their application within a smart office case-study. Evaluation
showed that open and multi-purpose use of sensor systems can be established
with acceptable cost in terms of memory, performance, communication, and
development overhead.
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8.2 Observations

When looking back over the presented research, a number of observations can
be made on the use and applicability of open and multi-purpose sensor systems.
This section shortly describes the most important ones.

A first observation is that application modularity and run-time configuration
are extremely valuable within sensor networks. In our experience, these have
not only proven their worth during the final deployment of distributed sensing
applications, but during the entire lifecycle thereof. During initial development,
for instance, incremental adaptations can be easily made to independent software
modules without affecting other parts of a prototype system. This greatly
increases development speed. Additionally, inspection and discovery support
are extremely valuable tools to maintain a clear overview of the deployed
applications and their configuration. These features are also of great value during
final deployment of applications on operational sensor system infrastructure.
Within sensor systems, the actual environment often has a significant influence
on application behaviour. The ability to perform last-minute fine-grained
reconfigurations, or even component deployments, is of great value. The cost
that this flexibility inherently introduces largely disappears once the sensor
system goes into stable operational use.

Second, while the presented research aims to improve the reuse of application
logic within sensor systems, it still remains the responsibility of the developer to
fully realise that potential. In relation to the presented solutions, this includes
well-thought of (i) decomposition of distributed application logic into simple,
yet generic, application components, (ii) arrangement of an event hierarchy that
results in practical subtyping opportunities, and (iii) definition of application-
independent and reusable message contents. Historically, attaining effective
reuse has been shown to be a difficult task throughout the distributed systems
domain [41]. Opportunities might however be presented by the more restricted
nature of the WSN domain; i.e. the variety of application functionality of a
sensor network is basically limited to sensing, processing and actuation. This
reduced scope might proof to facilitate better reuse of application logic.

Third, the research presented in this dissertation predominantly focused on
facilitating application development for open multi-purpose sensor systems.
Other orthogonal concerns are however of great importance as well in such
dynamic environments. A number of these have been the topic of investigation
within our research group; (i) additional security support is needed to provide
access-control and ensure system integrity [111], (ii) resource management is
required to provide fair and controlled access to sensor node resources [33], (iii)
high-level application management is needed that abstracts away the details
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exposed by the LOOCI management API [68], (iv) application behaviour of
components needs to be coordinated across various compositions [29], and (v)
proper understanding is needed of the impact of dynamic component-based
configuration on the energy budget of sensor networks [150]. The contributions
of this dissertation therefore need to be integrated with these systems to provide
complete support for open multi-purpose sensor networks within industrial
settings.

And finally, the presented contributions only practically support the reuse
of previously unknown third-party application logic where an acquaintance
relationship exists between those parties. For instance, a-priori agreements must
be made on the SDLITE and TALKSENS data models for various parties to be
able to correctly discover and interact with each others application components.
While in many use-cases this is not an immediate constraint, it does impose
a non-trivial limitation on the applicability of the presented solutions. The
following section elaborates on this observation with regards to future work.

In addition to these observations, a number of recurring ideas deserve a second
thought and merit further research as they may be even more widely applicable.

One technique that has been repeatedly applied throughout the presented
research, is numerical encodings. These have been used to represent event types
in LOOCI, status parameters, data types and operators in SDLITE, and data
types and units of measurement in TALKSENS. The main reason thereto is to
reduce communication, memory, and even processing overhead within the sensor
network in comparison with alternative human-readable string representations.
This approach exploits the fact that, most often, sensor nodes are not user-
centric devices; e.g. they lack a visual display. Instead, they typically rely on
the more resource-rich back-end for user interaction. This feature is leveraged
to apply lightweight numerical encodings within the resource-constrained sensor
networks and only resolve them into their human-readable counterparts where
user interaction occurs; i.e. at the more resource-rich back-end. A similar
approach is for instance taken by OMA LWM2M [134], which replaces string-
based CoAP resource paths by encoded variants.

A related concept is the append-only policy that has been imposed on the
SDLITE status parameter tree, and TALKSENS event hierarchy and data model.
The primary purpose for this constraint is to deal with the concurrency in
development and run-time operation exhibited by sensor systems. As there is no
strict temporal boundary between the two, optimisations such as full re-encoding
of data representations cannot be performed, as it would require the entire
infrastructure to be reprogrammed to reflect the new encodings and prevent
encoding inconsistencies. The append-only policy avoids such invalidation, and
therefore trades-off the reduction in compactness with avoiding network-wide
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reprogramming. TALKSENS, however, partially circumvents this trade-off by
making its node-local middleware agnostic of its data model, hereby restricting
data model references to within deployable components. Up to an extent, this
allows the data model to evolve without requiring middleware updates.

8.3 Future work

This dissertation presented three important contributions towards the open
and multi-purpose use of sensor systems. It however does not mark a complete
accomplishment of that vision. Additional effort needs to be invested to further
complete and improve the presented contributions, and adapt them to parallel
evolutions within the general WSN domain. This section discusses five points
of possible future work.

Large-scale validation. The presented research started from practical
problems experienced during application development for distributed sensor
systems. Extensive effort was invested to build performant and easily usable
solutions, which were positively evaluated within a set of prototype sensor
systems for smart environments and logistics. Additional validation of the
presented contributions within larger-scale real-world settings will however be
beneficial, as it is likely to provide greater insight in the dynamics and behaviour
of such systems and the applicability of the presented solutions.

Standards adoption. Recent standardisation of network and application
protocols has resulted in more open and interoperable sensor networks. As more
robust implementations thereof become available, an integration of application
modularity and dynamic management with those standards will be a valuable
next step towards the open use of sensor systems. Concrete examples include
replacing the proprietary LooCI event bus with CoAP [156], CoAP Observe
[65] or MQTT-SN [162] alternatives, and integration of TALKSENS with recent
standardisation efforts for data representations, for instance OMA LWM2M
[134], IPSO Smart Object guideline [79], or SenML [82].

Improved tool support. Distributed sensor systems remain complex setups
that continue to require a lot of expertise in terms of embedded development,
networking and distributed computing. To relieve developers of some of those
complexities, additional development and management tools can be devised. For
instance, an on-line compilation and deployment service can off-load platform-
dependent compilation and deployment to a back-end service, and shield
developers from a heterogeneous set of tool-chains that are required across
various sensor system platforms. Other tool support might include graphical
application management, which abstracts away platform-specific and low-level
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management commands. Dedicated IDE plugins can for instance provide such
an improved developer experience.

In-network mediation. Where application components interact directly
within a sensor system, TALKSENS can detect message content variations. This
can be leveraged to provide fully automated run-time mediation in which
dedicated conversion components are generated, based on the inspected abstract
message descriptions, and deployed where needed. This would require an
extension of the data model with conversion rules, and a more formal approach
to ensure type safe operation. Exploring the features and possibilities of, for
instance, process calculus might show to be beneficial in this regard.

Remove acquaintance assumption. Additional research is needed to further
improve the open use of third-party application logic within sensor networks with
reduced prior agreements between the various parties involved. Based on the
principles and solutions put forward within the Semantic Web [100] domain, more
extensive descriptions of functionality, data, and non-functional concerns can be
realised. This may ultimately lead to fully automated node-to-node interactions
across organisational boundaries. Such integration of sensor networks with
the Semantic Web has already been the topic of investigation, yet this is
either restricted to back-end representations of sensor network functionality
and data [24, 109, 187], or requires relatively powerful nodes [60]. In-network
use of Semantic Web concepts under the present resource constraints remains a
big challenge. Yet, the recent standardisation of application level networking
protocols and the practice of off-loading complexity to the back-end can proof
to be important enablers in this regard.

8.4 Outlook

Wireless sensor networks have shown great potential to improve many of the
processes that we rely on in our daily lives. They enable us to extensively
monitor the physical world around us and act upon the knowledge thus retrieved.
Despite this large potential, current sensor network research finds itself in an
interesting state of flux. Up to a few years ago, a lot of effort was spent to
develop useful abstractions closely related to the specifics of sensor networks.
While this resulted in novel and valuable solutions, the industrial adoption of
sensor networks stalled and never really took off as envisaged in the research
literature.

Lately, however, one of the most exciting and attention-grabbing developments
within computer science is the Internet-of-Things (IoT). Also relying on
embedded sensing technology and wireless communication, the IoT aims to
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augment everyday objects, named Things, and integrate them with the digital
world and the Internet. It hereby benefits extensively from the ongoing
standardisation efforts in networking and application protocols for constrained
devices as triggered by WSN research.

Compared to sensor networks, the IoT however typically exhibits less complexity
in terms of distribution of application logic; Things sense one or more
environmental quantities and send this data in a direct manner to cloud-
based applications. It are the latter that deal with most of the complexity
within the system. Furthermore, current IoT applications are predominantly
static in terms of software deployed on Things. Increased customer satisfaction
is, however, likely to be a drive for more flexibility and customisation. One
straight-forward evolution that can be envisaged, is more extensive distribution
of application logic and increased direct interaction between Things. WSN
research in general, and more specifically the contributions presented in this
dissertation, can considerably contribute to that evolution.

Interestingly, more and more IoT applications are commercially available, and
while arguably still perceived as technology gadgets, the increased insights they
provide us with are impacting our daily habits. So, while the IoT momentum
has shifted away considerable attention from the more complex in-network WSN
problems, it will be interesting to see whether the innovations triggered by
further IoT adoption can in turn spark a new interest into, and provide some
much needed solutions for complex sensor network problems.






Appendix A

Component development in
LooCl/Contiki and
LooCI/OSGi

This appendix presents additional details on component development for
LooCI/Contiki and LooCI/OSGi.

A.1 LooCl/Contiki

LooCI/Contiki components are implemented using the C-macro-based
development style of Contiki for component definition, and an event-driven
approach to implement additional component behaviour. In the following, first
a number of generic code snippets for component definition and implementation
are discussed. Afterwards, a full component implementation is provided for
clarity and completeness.

Component definition starts by the definition of a component’s state variables.
Such explicit definition is needed to support multiple instantiation and is done
by means of the C-struct shown in Listing A.1. Amongst other variables, a
component’s state constitutes its reconfigurable properties. Each component
(i.e. codebase instance) holds a reference to its individual state struct instance
stored in dynamic memory. Optionally, this state struct can be initialised with
default values as shown in line 4. Default values of the state struct are stored
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1 struct state{

2

3}

4 static const struct state init_state PROGMEM = {
I

Listing A.1 — Component state definition in LoOCI/Contiki

1 #define LOOCI_NR_PROPERTIES 1

2 static const char property_name[] PROGMEM = "property_name";

3  LOOCI_PROPERTIES({ , , offsetof(struct
state, ), , property_name});

Listing A.2 — Component property definition in LOOCI/Contiki.

COMPONENT_NO_INTERFACES() ;
COMPONENT_INTERFACES ( )
COMPONENT_NO_RECEPTACLES() ;
COMPONENT_RECEPTACLES ( )

NN U O

Listing A.3 — Definition of a component’s provided and required interfaces
in LooCI/Contiki.

1 LOOCI_COMPONENT("temperature_sensor", struct state);
2 LOOCI_COMPONENT_INIT("temperature_sensor", struct state, &init_state);

Listing A.4 — Component declaration in LooCI/Contiki

COMP_FUNCS_INIT
COMP_FUNC_INIT(function)
COMP_FUNC_DESTROY (function)
COMP_FUNC_ACTIVATE(function)
COMP_FUNC_DEACTIVATE(function)
COMP_FUNC_EVENT (function)
COMP_FUNC_SET_PROPERTY (function)
COMP_FUNC_PROPERTY_IS_SET(function)
COMP_FUNC_TIMER(function)
COMP_FUNCS_END (NULL)

© 00~ O U bk W N
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uint8_t function(struct state comp_state, void data);

Listing A.5 — Mapping component behaviour to system events in
LooCI/Contiki.
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in program memory (cfr. PROGMEM) to reduce run-time memory overhead of
components.

State variables can be explicitly exposed as component properties as shown in
Listing A.2. This allows for external reconfiguration of the component’s state
variables. Based on the number of properties defined in line 1, and the property
names defined as in line 2, the list of component properties is specified as in
line 3. Each property is defined by an identifier, a data type and its name.
Additional information contains a reference to the respective state variable and
the expected size. Properties in LOOCI can be of types: byte, short, int, long,
string, and byte array.

Next, the component’s provided and required interfaces need to be defined
(respectively also named interfaces and receptacles). Listing A.3 presents two
macros for interface and receptacle definition each. One of these needs to be
used to declare the component’s interfaces and receptacles; either no interfaces
or receptacles are offered (lines 1 and 3), or a list of matching event type
identifiers is provided (lines 2 and 4).

The actual component declaration in LooCI/Contiki occurs via one of the two
macros shown in Listing A.4. Both specify the component’s name and refer to
the state struct of the respective component. In case default values should be
given to any of the state variables, a reference to the initialising state struct
variable must be passed as in line 2.

The functional behaviour of a component in LooCI/Contiki is implemented in
an event-based approach. Therefor a list of possible system events is mapped to
respective event-handler functions that can be implemented by the component.
These mappings are specified via a number of macros, as shown in Listing
A.5, which under the hood create an array of function pointers. Possible
events include the initialisation, destruction, activation and deactivation of the
component, the reception of a LOOCT event, the update of a property (before
and after), and an expiring timer. The generic signature of the event handler
functions that the component needs to implement is presented in line 12. Each
event-handler function takes the function name as specified in the mapping and
passes the component’s state struct and function-specific data as parameters.
Depending on the actual event being handled, the data that is passed can be a
pointer to an expired timer, a pointer to a LOOCI event, etc.

A full component implementation is provided in Listing A.6, which represents
the TemperatureSensor component described earlier in Section 4.3.4.
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#include "contiki.h"
#include "looci.h"
#include <stdint.h>
#include <avr/pgmspace.h>
#include "adc.h"

#define RAW_TEMPERATURE_EVENT 44
#define ADC_CHANNEL 1

© 00 N O Ul W N
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struct state{
struct etimer et;
uint8_t sample_frequency;
+
static const struct state init_state PROGMEM = {.sample_frequency=10};

e el e
DU R W N

#define LOOCI_COMPONENT_NAME temperature_sensor

_
o

COMPONENT_NO_RECEPTACLES() ;
COMPONENT_INTERFACES (RAW_TEMPERATURE_EVENT) ;

NN
= O ©

#define LOOCI_NR_PROPERTIES 1

static const char sample_frequency_name[] PROGMEM = "sample_frequency";

LOOCI_PROPERTIES({1, DATATYPE_BYTE, offsetof(struct state, sample_frequency
), 1, sample_frequency_name});

NN
w N

24

25 LOOCI_COMPONENT_INIT("temperature_sensor", struct state, &init_state);
26

27 static uint8_t activate(struct statex comp_state, voidx data){

28 ETIMER_SET (&comp_state->et, CLOCK_SECOND * comp_state->sample_frequency);
29

30 return 1;

31 }

32

33 static uint8_t time(struct statex comp_state, struct etimerx data){

34 uintl6_t adc_value = (uintl16_t)readADC(ADC_CHANNEL) ;

35 uintl6_t temperature = (uintl6_t)((adc_value x 167) / 1024) - 54;

36

37 PUBLISH_EVENT (RAW_TEMPERATURE_EVENT, &temperature, sizeof(uintl6_t));
38 ETIMER_SET(&comp_state->et, CLOCK_SECOND * comp_state->sample_frequency);
39

40 return 1;

41 }

42

43  COMP_FUNCS_INIT

44  COMP_FUNC_ACTIVATE(activate)

45 COMP_FUNC_TIMER(time)

46  COMP_FUNCS_END(NULL)

Listing A.6 — The TemperatureSensor component implementation in
LooCI/Contiki.
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A.2 LooCl/OSGi

Component development in LooCI/OSGi is very similar to LooCI/SunSPOT.
Therefore, detailed code listings specifically for LooCI/OSGi are omitted from
this text and only an implementation example of the TemperatureDisplay
component (see Section 4.3.4) is provided.

As shown in Listings A.7 and A.8, one notable difference in LooCI/OSGi
is the split of the component definition into an explicit codebase class and a
component class. As shown in Listing A.7, the codebase class specifies the
common elements of all codebase instances, such as the code base name (line 10)
and lists of provided and required interfaces (lines 11 - 12). Additionally, the
factory-method createLoociComponent() needs to be overridden that creates
new instances of the associated component class (lines 15 - 18), shown in Listing

A8.

1 package looci.osgi.app.temperatureDisplay;

2

3 import looci.osgi.serv.constants.EventTypes;

4 import looci.osgi.serv.impl.LoociCodebase;

5 import looci.osgi.serv.interfaces.ILoociComponent;
6

7

8

9

public class TemperatureDisplayCodebase extends LoociCodebase {

public TemperatureDisplayCodebase() {

10 super("Temperature display",

11 new short[]{},

12 new short[]{EventTypes.FILTERED_TEMPERATURE_READING});
13 }

14

15 @Override

16 protected ILoociComponent createLoociComponent() {

17 return new TemperatureDisplayComponent();

18 }

19 1}

Listing A.7 — The TemperatureDisplay codebase implementation in
LooCI/OSGi.
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COMPONENT DEVELOPMENT IN LOOCI/CONTIKI AND LOOCI/OSGlI

package looci.osgi.app.temperatureDisplay;

import looci.osgi.serv.constants.EventTypes;
import looci.osgi.serv.impl.LoociComponent;

public class TemperatureDisplayComponent extends LoociComponent{

public TemperatureDisplayComponent() {

@Override
protected void componentStart(){

@Override
protected void componentStop(){

@Override
public void receive(short eventType, byte[] payload) {
if (eventType == EventTypes.FILTERED_TEMPERATURE_READING) {
PayloadBuilder pb = new PayloadBuilder(payload);
short value = pb.getShortAt(0);
System.out.println("[TemperatureDisplay] The current temperature
is " + value + " degrees Celsius.");

}

Listing A.8 — The TemperatureDisplay component implementation in

LooCI/OSGi.
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SDlite message formats

This appendix provides additional details of the message formats used in SDLITE.

Figure B.1 presents the service request format, with further details of the status
predicate field presented in Figure B.2. A status predicate is formatted using
reverse-polish notation in which operators follow, rather than precede, their
operands. Within SDLITE, the operands consist out of a datatype - parameter -
value triplet, in which the datatype element is needed to correctly parse the value.
This triplet is followed by an operator element, which specifies the relational or
logical conditions that should exist between the parameter’s actual and specified
value. This completes a single parameter description within the predicate; e.g.
one that expresses /node/memory/free > 3000. Additional operator elements
can furthermore be used to combine various parameter descriptions into a more
complex status predicate; e.g. one that expresses (/node/node_type = spot
& /node/memory/free > 3000). Finally, Figure B.3 presents the service reply
format. Its status description field has a similar format as the status predicate
field in a service request. The only exception is that the operators are omitted
since the actual values of the parameters are presented.
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0 1 2
012345678901234567890123
tot—t—t—t—f—t—F—t -ttt -ttt —+—+—+

|T|IT|AIS|V] res | service type
B R s e e e s Ak el S

status predicate

s T e e L e St S T s

T (message type bit): indicates whether the respective message is a request
(= 0) or a reply (= 1)
I (interface type bit): indicates whether this request concerns a provided
interface (= 0) or a required interface (= 1)

A (all-flag): indicates whether only one (= 0) or all (= 1) services
that comply with the request are searched for in the
network

S (strict-flag): indicates whether all status parameters have to be
complied with (= 1), or whether locally non-available
status parameters can be ignored (= 0)

V (values-flag): indicates whether the actual values of the status

parameters specified in the status predicate need to
be included in the service reply

res: reserved
service type: a 2-byte service/event type identifier
status predicate: a variable length, byte encoded status predicate in

reverse-polish notation

Figure B.1 — The SDLITE service request message format.
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Figure B.2 — The constituent elements of an SDLITE status predicate.
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012345678901234567890123
e s St B e R et

[TITIV]

res [H| TTL I

B T S R K e s

service type | nr of comps |

B e T S T T s A

component list
+
status description

B R R s et

T (message type bit):
I (interface type bit):
V (values-flag):

res:
H:

TTL:

service type:
nr of comps:

component list:

status description:

indicates whether the respective message is a request
(= 0) or a reply (= 1)

indicates whether this request concerns a provided
interface (= 0) or a required interface (= 1)
indicates whether this reply contains a status
description field

reserved

indicates whether the time in the TTL field is
specified in hours (= 1) rather than seconds (= 0)
optional time-to-live of the service and status
related information in support of caching

a 2-byte service/event type identifier

the number of components specified in the component
list field

list of 1l-byte identifiers of components that satisfy
the respective service request on the replying node
list of status parameters that were included in the
status predicate of the respective request, and their
actual values

Figure B.3 — The SDLITE service reply message format.
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The SmartOffice sensor
system

This appendix provides additional details with regards to the SmartOffice sensor
system that was used throughout the evaluation in Chapter 7.

Section C.1 lists the events that are used within the SmartOffice and presents
the respective event hierarchy. Section C.2 presents a detailed overview of the
application composition.

C.1 Event list and hierarchy

The SmartOffice deployment specifies a set of LOOCI event types that carry
application data. Table C.1 lists these application event types and specifies
their associated event type identifiers.

Alternatively, in support of subtyping, Figures C.1, C.2, and C.3 present
the hierarchical ordering of these application event types and the LoOOCI
management event types as used within the SmartOffice deployment. For
each event type, the figures also specify the associated prime number and
hierarchy-encoding event type identifier.
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ID Event type | Contents

1 raw temperature | uintl6 timestamp, uint8 location_ id, uint16 value

2 raw light | uint1l6 timestamp, uint8 location_ id, uint16 value

3 raw COy | uintl6 timestamp, uint8 location_ id, uint16 value

4 raw CHy | uintl6 timestamp, uint8 location_id, uint16 value

5 raw humidity | uint1l6 timestamp, uint8 location_ id, uint16 value

11 avg temperature | uintl6 timestamp, uint8 location_id, uint16 value

12 avg light | uint1l6 timestamp, uint8 location_ id, uint16 value

13 avg COq | uintl6 timestamp, uint8 location_id, uint16 value

14 avg CHy | uintl6 timestamp, uint8 location_id, uint16 value

15 avg humidity | uintl6 timestamp, uint8 location_ id, uint16 value

21 fit temperature | uintl6 timestamp, uint8 location_id, uint16 value

22 fit light | uint16 timestamp, uint8 location_ id, uint16 value

23 fit CO2 | uintl6 timestamp, uint8 location_ id, uint16 value

24 filt CHy | uintl6 timestamp, uint8 location_ id, uint16 value

25 flt humidity | uint1l6 timestamp, uint8 location_ id, uint16 value

31 sound level | uintl6 timestamp, uint8 location_ id, uint16 value

32 ir motion | uintl6 timestamp, uint8 location_ id, uint16 timeout

33 contact switch | uintl6 timestamp, uint8 switch_id, uintl6
switch state

34 door access | uint16 timestamp, uint8 switch_ id, uint16 direction

41 rfid | uintl6 timestamp, uint8 location_id, uint8[12]
rfid identifier

42 heartbeat | uint16 timestamp

43 battery level | uintl6 timestamp, uint16 voltage level

44 uptime | uintl6 timestamp, uint64 uptime

51 lamp on/off | uint8 state

52 fan on/off | uint8 state

61 presence | uintl6 timestamp, uint8 location_id, char|]
user_ name

62 risk of fire | uint16 timestamp, uint8 location_id, uint8 risk_ level

63 comfort report | uintl6 timestamp, uint8 location_ id, uint16 temper-
ature, uint16 light, uint16 COs, uint1l6 CH,4, uint8
fan, uint8 lamp, uint8 comfort_ level

64 comfort advice | uintl6 timestamp, char[] advice

65 security report | uintl6 timestamp, uint8 risk level, char[][]
user_names, uint8[] door, uint8[] window, uintl6
nb_ people, uint8 movement, uint16 sound_ level

66 | open door/window alert | uintl6 timestamp, uint8 switch_ id

Table C.1 — Application events of the SmartOffice sensor system.
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ir motion p=19 id=190

contact switch p=23 id=230

door access p=29 id=290

raw p=19 id=266

temperature p=31 id=8246

light p=37 id=9842

detector p=5 id=10

CH4 p=41 id=10906

CO2 p=43 id=11438

humidity p=47 id=12502

sound level p=53 id=14098
fit temperature p=31 id=9982

fit light p=37 id=11914

fit CH4 p=41 id=13202

filter p=23 id=322

fit CO2 p=43 id=13846

fit humidity p=47 id=15134

sensor p=7 id=14

avg temperature p=31 id=12586

average p=29 id=406 avg light

lamp

—
[aclua(or p=11 \d=22
heartbeat p=19 id=646

(banery level p=23 id:782] (open door/window alarm p=41 id=30914j

avg CH4 p=41 id=16646

p=2 id=2)

avg CO2 p=43 id=17458

event p=1 id=1

avg humidity p=47 id=19082
application data p=13 id=26

security p=29 id=754

application control p=17 id=34

uptime p=29 id=986

Figure C.1 — Partial SmartOffice event hierarch showing the application events.
(Management events are further detailed in Figures C.2 and C.3.)
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deactivate component p=37 id=6105
(conhgura(ion request p=11 id=165)—(wire remote to p=43 id=7095]
wire remote from p=47 id=7755

unwire remote to p=61 id=10065

unwire remote from p=67 id=11055

deployed code base p=17 id=3315
instantiated component p=23 id=4485
destroyed component p=29 id=5655
activated component p=31 id=6045
deactivated component p=37 id=7215
(conflguration reply p=13 id=195)—(wired local p=41 \d:7995]

wired remote to p=43 id=8385

p=5id=15

wired remote from p=47 id=9165

wirings reset p=53 id=10335

unwired local p=59 id=11505
unwired remote to p=61 id=11895
unwired remote from p=67 id=13065

property set p=71 id=13845

i

Figure C.2 — Partial SmartOffice event hierarch showing the configuration
events. (Application and inspection events are further detailed in Figures
C.1 and C.3 respectively.)
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get all code base ids p=17 id=3927
get code base name by id p=19 id=4389
get code base id by name p=23 id=5313

[get component ids by code base id p=29 .u:ssge]

[gsl code base id by component id p=31 \a:ne\j

[get code base name by component id p=37 \dﬂ547)

get all component ids p=41id=9471

get component state p=43 id=9933
I get properties p=47 id=10857

inspection request
‘
get property info p=59 id=13629
\

get platiorm type p=83 id=19173

all code base ids p=17 id=4641

code base name by id p=19 id=5187

inspection p=7 id=21

code base id by name p=23 id=6279

component ids by code base id p=29 id=7917

code base id by component id p=31 id=8463

[code base name by component id p=37 |d=|010|j

all component ids p=41 id=11193

component state p=43 id=11739

properties p=47 id=12831

property value p=53 id=14469

inspection reply p=13 id=273

property info p=59 id=16107
required interfaces p=61 id=16653
provided interfaces p=67 id=18291
local wires p=71 id=19383
remote to wires p=73 id=19929
remote from wires p=79 id=21567

platiorm type p=83 id=22659

Figure C.3 — Partial SmartOffice event hierarch showing the inspection events.
(Application and configuration events are further detailed in Figures C.1
and C.2 respectively.)
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C.2 Application compositions

The SmartOffice deployment features a set of sensor nodes that monitor offices,
a back-end server and a set of client devices. The sets of components deployed

on each node and the application compositions are presented in Figures C.4,
C.5, C.6, C.7, C8, C.9.

Notes:

1. Network monitoring, as shown in Figure C.9, is performed at each sensor
node in the deployment.

2. All events that arrive at the back-end server or are locally produced there,
are logged by a logging component that is deployed on that server. This
logging component and the respective compositions are omitted from the
figures for clarity purposes.

Desk a Back-end

)—| temp filter |,=c

light fiter |0
)—| light avg \—A,_\,

YY

temp sensor

hazard —o

desk
stub 1
comfort

o
o

light sensor

YYYYY YYY

IV

Desk b

()-{Iampac\ua\or] ()-{ fan actuator ]
{ (

Figure C.4 — Partial application composition diagram of the SmartOffice
deployment showing the LOOCI wires between components on the desk
monitoring sensor nodes and the back-end.
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Back-end

o
contact sensor ,|=Cc
o

Window

security |0

Figure C.5 — Partial application composition diagram of the SmartOffice
deployment showing the LOOCI wires between components on the window
monitoring sensor nodes and the back-end.

Door Back-end

e
=

security

Figure C.6 — Partial application composition diagram of the SmartOffice
deployment showing the LOOCI wires between components on the door
monitoring sensor nodes and the back-end.

Back-end
Room a )_
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= 3
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q e
comfort o
. e 5
)—( CH4 avg % H
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Room b H ©
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—
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Figure C.7 — Partial application composition diagram of the SmartOffice
deployment showing the LOOCI wires between components on the office
monitoring sensor nodes and the back-end.
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Back-end

H
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d cli
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ba H comfort H

)  comfort H stubt H cg‘rg&n
H H M

H

L
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Figure C.8 — Partial application composition diagram of the SmartOffice
deployment showing the LOOCI wires between components on the back-end
and client devices.

Desk a, Desk b, Window, Door, Room a, Room b Back-end

system )_ network
monitoring monitoring

Figure C.9 — Partial application composition diagram of the SmartOffice
deployment showing the system monitoring wires between all sensor nodes
and the back-end.
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