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ABSTRACT

White wheat flour of a high and a low protein owdti were stored at 25 °C for 84 days to
study age-related changes in flour components asting properties. Both cultivars
showed similar increases in free fatty acid corgtamd slight but significant decreases in
extractable thiol contents. Rapid Visco Analysealkpaninimal and final viscosities as
well as breakdown and setback readings of the Ipigitein flour increased rather
gradually along the storage period, while the lowatgin flour showed more pronounced
increases of pasting profiles during the first 2yslof storage. Flour functionality is co-
determined by changes in extractable thiol contdatshg flour storage pointing to their
oxidation and the release of free fatty acids whiebults in additional formation of
amylose-lipid complexes and additional substratdipoxygenase action which can lead

to more extensive co-oxidation of gluten, thereffluencing rheological properties.
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ABBREVIATIONS

5,5’-dithio-bis(2-nitrobenzoic acid) (DTNB); amyledipid (AM-L); cultivar (cv.); diacyl

glycerol (DAG); differential scanning calorimetrp $C); dithiotreitol (DTT); dry matter
(dm); ethylene diamine tetra-acetate (EDTA); fredtyf acids(FFAs); free oxidized
glutathione (GSSG); free reduced glutathione (GStigh molecular weight glutenin

subunit (HMW-GS); moisture contents (mc); monoagyicerol (MAG); protein-



39 glutathione mixed disulfides (PSSG); Rapid Viscoalyser (RVA); room temperature

40 (RT); thiol (SH); triacyl glycerol (TAG).
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INTRODUCTION

Post-milling maturation of wheat flour is well-knowto millers and bakers. Freshly
milled flour often requires a resting period in @rdo acquire its optimal bread making
quality (Yoneyamaet al, 1970; Chen & Schofield, 1996; Wang & Flores, 1099
Conversely, prolonged storage can cause adversetefn processing and end product
characteristics (Tsen & Dempster, 1963; Wang & é3p1999).

As thiols are determining factors in the developtredrthe gluten network during dough
mixing (Wieser, 2007), changes in thiol (SH) comgeduring flour storage may explain
the above mentioned effects. However, contradictesylts have been described for the
changes in thiol content during flour storage. S@auhors note a decrease in SH content
(Tsen & Dempster, 1963; Yoneyaratal, 1970; Ewart, 1988; Chen & Schofield, 1996),
while others report an increase (Maenal, 2000; Tomicet al, 2013). Bellenger and
Godon (1972) noted a drastic increase in total S8htent during the first two weeks of
flour storage, after which a 2 week period of canstSH levels was followed by a
decrease in the next 9 weeks of storage.

Lipids can also contribute to the changes in qualfitaging flour. Clayton and Morrison
(1972) suggested the involvement of several enzyimeke hydrolysis of flour lipids
during flour storage. Although lipids are minor stituents of flour, they are important
determinants of bread making quality. During douagking, the majority of flour lipids
becomes bound to the gluten network (Geeitsal, 2013). Polar lipids are believed to
stabilize the gluten network through hydrophilicteiractions with gliadin and

hydrophobic interactions with glutenin (Hoseretyal, 1970).
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Although much research has been done concerning #8ging and its significance in
bread making, the (bio)chemical processes caugiagchanges in flour are still ill-
understood as are their implications for the progerof batters such as e.g. in pancake
systems. Batter models can be studied using thédR&pco Analyser (RVA). In the
instrument, the flour suspension is subjected tengperature—time profile (a controlled
heating phase to 95°C — a holding phase at 95°@entolled cooling phase to 50°C)
during which the viscosity of the system is morethrDue to starch gelatinization and
swelling of the granules, flour suspensions reapbak viscosity, followed by a viscosity
decrease caused by polymer alignment as well asr-giduced disintegration of the
swollen granules. “Breakdown” is the differencewvstn the peak viscosity and the
minimum or hot paste viscosity at 95°C. During ttwoling phase, leached amylose
molecules form a continuous three-dimensional nkwbhis increases the viscosity up
to what is referred to as “cold paste viscosityfieTdifference between the cold paste and
minimum viscosity at 95°C is defined as “setbadBélcour & Hoseney, 2010).

We here set up a flour aging experiment taking axtoount different aspects related to
flour quality with a main focus on changes in prateand lipids. Both a high protein
[cultivar (cv.) Akteur; 14.6% protein in flour dmnatter (dm)] and a low protein (cv.
Apache; 9.9% protein, dm base) wheat were usetlitty lifferences in aging behavior

of flour and its implications for flour pasting grerties.
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MATERIALSAND METHODS

Materials

Wheat from cvs. Akteur and Apache was from Dosddlies (Deinze, Belgium) and
Ceres (Brussels, Belgium), respectively. Both wiwgat were stored at room temperature
(RT) and milled 140 days after harvest. All reagemsolvents and chemicals were of
analytical grade and obtained from Sigma-Aldriche@@m, Belgium) unless indicated

otherwise.

Standard Analyses

Moisture contents (mc) of flour samples were deieeoh according to Approved Method
44-19.01 (AACC International, 1999). Those of whsamples were determined by
drying whole wheat kernels (2.00 g) at 130 °C férhl Ash contents were determined
according to Approved Method 08-01.01 (AACC Inteior@al, 1999). Protein contents
(N x 5.7) of the samples were determined usingdaptation of Approved Method 46-
30.01 (AACC International, 1999) to an automatedri2aa protein analysis system (EAS

VarioMax N/CN, Elt, Gouda, The Netherlands).
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Wheat milling and flour storage

Prior to milling, wheat samples were conditioned 600% mc for 24 h at RT. Additional
water was added 60 min before milling to reachnalfmc of 16.5%. The samples were
milled at 100 g/min on a Buhler (Uzwil, SwitzerlgndLU-202 laboratory mill with a
diagram as in Delcour et al. (1989) and accordingApproved Method 26-21.02
(AACC International, 1999). The gaps between raiése set to 0.50 mm (B1), 0.10 mm
(left side of B2) and 0.08 mm (right side of B3} fbe break rolls and 0.07 mm (left side
of C1) and 0.03 mm (right side of C3) for the regut rolls. Bran and shorts are
discarded. The six flour streams (three break areketreduction) are blended and called
“flour”. Freshly milled flour was put in airtightl@stic containers. A portion was stored
at -20 °C to serve as reference samples (day @lifanalyses. The remaining containers
were stored at 25 °C for 7, 14, 21, 28, 42, 56 &hdlays and then kept at -20 °C until

analysis.

Freefatty acid content

Free fatty acid{FFAs) were extracted from flour with n-hexane usaig ASE 200
device (Dionex, Amsterdam, The Netherlands). Ptioextraction, flour (8.00 g) was
mixed with 14.0 g of pure sand and put into a 22 ABE extraction cell. Extraction
proceeded at 69 bar and 40 °C and included a lgestap of 5 min followed by 10 min
static extraction, a cycle that was repeated ttirees before the ASE cell was purged.
Hexane was then evaporated under nitrogen andpidgs Wwere redissolved in 4.00 mL
isooctane. FFA contents were determined using aptation of the copper soap assay of

Kwon and Rhee (1986). An aliquot (1.00 mL) of 5.08%6v) cupric acetate adjusted to
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pH 6.1 with pyridine was added to the extractseAftigorous shaking for 1 min to allow
the FFAs to complex with the copper ions, the nmeguvere allowed to separate into two
layers. The extinction of the upper layer (isooetamith copper soaps) was read at

715 nm. A standard curve of oleic acid in isooctghB-5.0 mM) was constructed.

Extractable and available thiol content

Extractable and available thiol contents of floamples were analyzed essentially as in
Veraverbeke et al (2000) and determined coloriroaitsi after reaction with 5,5’-dithio-
bis(2-nitrobenzoic acid) (DTNB) at RT. An adaptatiof the method consisted of the use
of ethylene diamine tetra-acetate jJNBTA (Stevenset al, 1983)] to prevent oxidation
by oxygen during analysis. Its use reduced dayatp-dariation of the extinctions of
standard solutions to less than 2%. Under suchitons, there was no significant
difference between the measurements performedrimraunder nitrogen atmosphere
(data not shown).

For extractable thiol contents, samples (0.80 grjlavere shaken (150 times/min) for
20 min at RT in 6.00 mL 50 mM sodium phosphate d&ufpH 8.0) containing 1.0 mM
NaEDTA (hereafter referred to as sample buffer). Attentrifugation (4100 g, 15 min,
20 °C) and filtration (0.45 um), 1.00 mL of the rdt was mixed with 100 pl 0.1% (w/v)
DTNB in sample buffer (further referred to as DTKEagent). Exactly 70 min later, the
extinction at 412 nm was determined. Extinctioruesal were corrected for readings with
appropriate control samples and converted to ttooltents using a calibration curve of

reduced glutathione (0.01-0.10 mM) in sample buffer
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Available thiol contents were measured on flourpsnsions. DTNB reagent (100 pl)
was added to flour samples (0.80 g) suspendedbhr6L sample buffer. The suspension
was shaken (150 spm) for 20 min at RT. After cé&mgation (4100 g, 15 min, 20 °C) and
filtration (0.45 pum), the extinction at 412 nm betsupernatant was measured exactly 70
min after addition of DTNB reagent. A calibratioaree of reduced glutathione was used

as described above.

Rapid Visco Analysis

The rheological behavior of flour was studied wattRapid Visco Analyzer (RVA-4D;
Newport Scientific, Sydney, Australia). It convetise current required to maintain
constant mixing speed (160 rpm) of a paddle indyr@amic viscosity value in centiPoise
(1 cP = 0.1 kg M s™). Flour suspensions [25.00 g, 12.0% dm (w/w)] werepared in
100 mM Tris-HCI buffer (pH 7.0). The samples werxed at 900 rpm for 20 s at RT to
homogenize the suspension and then submitted émperature profile consisting of a
holding step at 50 °C (1 min), a linear temperataerease to 95 °C at 7.5 °C/min, a
holding step at 95 °C (7 min), a cooling step wathlinear temperature decrease of
7.5 °C/min to 50 °C, and a final holding step at°60(10 min). ‘Bump’ area was
calculated using a linear baseline with Origin @0iginLab Corporation, Northampton,

MA, USA).

a-Amylase activity
a-Amylase activity was assayed using the AmylazynitgMegazyme, Bray, Ireland) as

in Approved Method 22-05.01 (AACC International 999.
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Differential scanning calorimetry

Differential scanning calorimetry (DSC) measurersewere performed with a Q1000
DSC (TA Instruments, New Castle, DE, USA). Flourswaccurately weighed (3.0-4.5
mg) in aluminum pans and deionized water addedratia of 1:3 (w/w) dm flour:water.
The pans were hermetically sealed and equilibratel°C before heating from 0 to 140
°C at 3 °C/min). The system was calibrated withundand an empty pan was used as
reference for the measurements. The peak (Tp) teyes and the endotherm
enthalpies AH; expressed in J/g dm flour) of phase transitiwaese determined using TA

Universal Analysis software.

Statistical analysis
Significant differencesa<0.05) based on at least three individual measuresneere
determined with the ANOVA procedure using the Statal Analysis System

software 9.2 (SAS Institute, Cary, NC, USA).

10
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RESULTS AND DISCUSSION
Flour yields were 76.3% (cv. Akteur) and 73.8% (é&pache) with respective ash,
protein and moisture contents of 0.48% and 0.43%,18.6% and 9.9%, and 14.3% and

14.6% respectively.

Freefatty acid contents

Flour from both cultivars showed strong increaseBee fatty acid (FFA) contents upon
storage (Fig. 1). Both freshly milled flour samplesd similar initial levels of FFAs. The
increase during the full storage period was moomgunced for cv. Akteur (1.73 to 4.80
pmol FFA/g dm flour) than for cv. Apache (1.92 t6 Bumol FFA/g dm flour).

These results are in line with Maraschin et al @00ho found FFA level increases from
ca. 2 to ca. 6 umol/g dm flour when flour (14.0%) was stored for 16 weeks at 22 °C.
In their study, lower flour mcs and storage tempees resulted in less pronounced
increases. Clayton and Morrison (1972) reported ERA contents of flours at least
doubled when high- and low-grade flour was stor@d4 months at 25 °C and for 3
months at 37 °C, respectively.

During storage, FFAs are presumably released lagdiaction. In wheat kernels, lipases
are unlikely to cause extensive hydrolysis as tmeyme is mainly present in the bran
(O'Connor & Harwood, 1992) while its substrateadyil glycerol (TAG), is primarily
located in germ and aleurone (Hargin & Morrison8@P Milling redistributes wheat
components and results in lipases in flour to cam@ contact with TAG. Some flour

lipids can bind to different components of glutearidg processing (McCanset al,

11
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2009). The release of FFAs upon storage of flourdently changes the lipid

composition.

Thiol contents

Extractable thiol contents comprise low moleculagight thiol compounds such as
glutathione or cysteine. Flour from both cultivanad comparable initial levels of
extractable thiols (146 and 143 nmol/g dm flour for. Akteur and cv. Apache,
respectively). A slight but significant decreaseswhlserved after 14 days (cv. Akteur) or
21 days (cv. Apache) of storage (Fig. 2A). A slovimit significant decrease was
observed during the next 70 days of storage foAkteur.

Available thiol contents were determined on flowsgensions. They consist of both
extractable thiol groups and thiol groups locatédthee outer side of unextractable
proteins (mainly gluten proteins). Upon flour sg@a no change in available thiol
contents is observed for cv. Apache, while for&kteur a slight but significant decrease
is measured (Fig 2B). This decrease, however, a@tiyt be ascribed to the decrease is
extractable thiols (Fig 2A). Furthermore, there wa®markable difference between the
available thiol contents of both cultivars. For &pa flour, the available thiol contents
were hardly higher than the extractable thiol cots#esuggesting that only a very limited
portion of thiols is located on the outside of umasgtable proteins in this flour. In Akteur
flour, on the contrary, approximately 50% more klde thiol groups occur than
extractable.

A possible explanation for the difference in avaléathiols between the two cultivars

could be found in the difference in their high nwlkar weight glutenin subunit (HMW-

12
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GS) composition. Cv. Apache contains subunits AX2%7, By9, Dx3 and Dyl12 while
cv. Akteur contains subunits Ax1, Bx7, By9, Dx5 dngl0 (Lagrainet al, 2012). The
major difference between these subunits is theerdiffce between subunit Dx3 (cv.
Apache) and Dx5 (cv. Akteur): Dx5 contains an extateine residue compared to Dx3.
Wieser and Zimmermann (2000) found that proportiafs subunits in a given
combination are strongly conserved between diffeceitivars and are only scarcely
influenced by genotype and growing conditions. Thata allow estimating that Dx3 and
Dx5 both make up the same proportions of the atabunt of HMW-GS in cvs. Apache
and Akteur, respectively. Thus, when assuming ttiiatextra cysteine residue of Dx5 is
not involved in a disulfide bond, this may expléne higher level of available thiols in
flour samples of cv. Akteur than in those of cv.ag&he.

Earlier reported results on the changes in thioiteat of flour during storage have not
been univocal. Tsen and Dempster (1963) noted $ossboth accessible (measured in
water) and total (measured in 6.0 M urea) thiolteots during the first year of storage of
flour of 14.5% mc. Total thiols decreased from @20 to 0.70 umol/g dm flour and
accessible thiols from ca. 0.68 to 0.44 pmol/g trarf Ewart (1988) stored flour of
different protein contents (8.9, 9.4 and 14.7% gimtfor 240 days at RT. A significant
linear decrease, starting from the first day ofrege, in accessible thiol content
(measured in sodium acetate buffer at pH 4.2) visemed for all three flour samples,
but the decrease in total thiols (measured in #&meesbuffer, containing 8.0 M urea) was
only significant for the high protein flour. ChendcaSchofield (1996) reported decreases
in contents of free reduced glutathione (GSH), foealized glutathione (GSSG) and

protein-glutathione mixed disulfides (PSSG) durihg first 10 days of storage after

13
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which their levels remains constant up to 40 ddyflaur storage at 20 °C. However, the
decrease in GSH content could not be explainedxXigaton to GSSG or linkage to
proteins to form PSSG. For flour of wheat 6 weekstfharvest, Mann et al. (2000)
reported a slight significant increase in totakff@H groups after 1 week of flour storage.
No significant changes in contents of GSH or GSS&ewseen, while for PSSG a
significant increase was reported. Bellenger andlddo(1972) noted a slight linear
increase in free SH content in flour during 16 wseek storage, while the level of SH
determined after sulfitolysis increased drasticallying the first two weeks of flour
storage, after which a period of constant SH lexes followed by a period of decrease of
9 weeks. They concluded that some disulfide bondsevalready present at time of
milling, while additional formation occurred durinthe first weeks of flour storage.
Because this oxidation occurred without any changbe number of free SH, some SH
groups must have been present in an inaccessibite daring quantification of free SH
prior to sulfitolysis. Tomic et al. (2013) reportadslight increase in the level of free SH

groups on washed gluten after 1 week of flour gjera

Pasting properties

Flour storage led to increases in RVA viscositiedlaur from both cultivars (Fig. 3).
However, there were some differences between the/ans. Peak, minimal and final
viscosities, and breakdown and setback readingskbéur profiles increased rather
gradually over the storage period resulting in 71@% higher values after 84 days
(Table I). Apache flour samples showed the largeseases in viscosity readings in the

first 21 days of storage. Moreover, the minimaktesity increased by 18% over the total

14
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storage period of 84 days, while final viscosityyorose by 10%, resulting in a less
pronounced increase in setback (6% increase).

Sincea-amylase activities were negligible (below detection limit) in the stdy milled
flour of both cultivars, it is unlikely that the ahges in RVA profiles upon flour storage
are caused by such enzyme activity.

FFAs and othelipids (e.g. monoacyl (MAG) and diacyl glycerols (DAG)etproducts
of TAG hydrolysis) can form inclusion complexes hw@mylose. As such complexes can
impact viscosity of wheat wholemeal pastes (Copkleinal, 2009), changes in lipid
composition as a result of flour rather than whaahstorage may also alter flour pasting
characteristics. In general, higher final viscesitand setback readings are noted in RVA
for starches mixed with fatty acids (FAs) and MAtan for granular (defatted) starches,
while for peak viscosity both increases and deegasive been described (Deffenbaugh
& Walker, 1990; Ravet al, 1999; Lianget al, 2002).

Salman and Copeland (2007) also found increasgmsting profiles of stored wheat
whole meal. However, the impact on final viscosityd setback in their results was
higher than noted here. As the final viscositiegalated positively with fat acidity and
negatively with iodine binding values of flour pastmeasured after RVA analysis, they
concluded that FAs released during storage form pbexes with starch during
gelatinization leading to changes in pasting pesfiSalman & Copeland, 2007).

Gerits et al. (2015) noted similar increases in RMasting profiles as seen here when
adding lipases to the RVA samples. They concludhed the increase in end viscosity

afterin situformation of FFA could not only be ascribed to AMsomplex formation but

15
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mainly to a different behavior of the starch grawdmnants during heating (Germsal,
2015).

A remarkable difference between the profiles of thie cultivars in this study is the
presence of a ‘bump’ around 60 °C in the RVA pmoftluring the cooling phase for
Apache but not for Akteur samples. This indicatesnation of amylose-lipid (AM-L)
complexes (Xuet al, 1992). Condd’etit and Escher (1995) have suggestedithaitu
formed AM-L complexes act as junction zones in Bvoek between granules, and thus
induce gelation. However, the RVA profiles of floiuom cv. Akteur contained no such
‘oump’ although both flour samples contained simikavels of FFAs. Putseys et al.
(2010a) studied the effect of the addition of ghptemonostearate to a wheat starch
suspension in the RVA. They reported a similar ‘pum the profile during cooling as
seen here for cv. Apache (Fig. 3B). Remarkablysunch ‘bump’ was observed when the
same amount of glycerol monostearate was addechenfdarm of pre-synthesized
amorphous AM-L complexes (Putsegs al, 2010a) as seen here for cv. Akteur (Fig.
3A). Even though the complexes dissociate andheegltycerol monostearate free during
the heating phase (Geldees al, 2006), the liberation of the lipid does not indug
viscosity increase comparable to that during thelicg phase in the presence of
uncomplexed glycerol monostearate. The reasonghierobservation remained unclear
(Putsey<=t al, 2010a).

It is widely assumed that some starch lipids amamexed with amylose in native starch
granules, although the evidence is entirely indi(Bvans, 1986; Morrisoet al, 1993).
There is also evidence supporting the view thatlaseyand lipids co-exist independently

in the wheat kernel and only form complexes unddatgisation conditions (Morrisoet
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al., 1993). Whether AM-L complexes can be formed ddpem the lipid fatty acid chain
length, its degree of (un)saturation and the iderdf the polar head (Putseys al,
2010b). Fatty acids with a chain length of at leb&t(Bhatnagar & Hanna, 1994) and
preferentially 16 or 18 carbon atoms more easitypnfdM-L complexes (Krog, 1971). In
wheat starch, the most common lipid fatty acidspaienitic (C16:0) and linoleic (C18:2)
acids (Morrison, 1988; Vasanthan & Hoover, 1992)e Thore unsaturated bonds a FA
contains, the lower its tendency to enter intohiidrophobic cavity of amylose helices.
The nature of these bonds (ias vs. trang) affects complex formation and the thermal
properties of the complex, witbisunsaturated fatty acids forming the less thermally
stable AM-L complexes (Putseyd al, 2010b). Finally, the type of lipid determines
whether AM-L complexes can be formed. FFA and MAGreneasily form such
complexes than DAG, whereas TAG do not form theadlgEliasson, 1994).

Based on the above it is tempting to speculate ¢hatAkteur contained significantly
more AM-L complexes in its native kernel than c\paghe and/or that the FFA formed
in cv. Akteur are less suited than those formeavin Apache toin situ form AM-L
complexes during the cooling phase with the comedmg impact on the viscosity
profile. DSC results seem to support this hypothesior cv. Akteur, the average
dissociation enthalpy of the AM-L complexes is 028 dm flour, while for cv. Apache
significantly less AM-L complexes were measured|yof.08 J/g dm flour). This
observation is in agreement with findings by Geettsl. (2015). They used flour with a
relatively high level of AM-L complexes (approxineit 0.4 J/g dm dough) and observed

no ‘bump’ in the corresponding RVA profile (Gerigt al, 2015). The hypothesis is
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further supported by the linear relation betweea BEFA content and the area of the
‘bump’ in the RVA profile of cv. Apache (Fig.4).

However, even though the increase in FFA conteris flour storage time (Fig. 1) is
similar for both cultivars, the effect on the RVAofile differs. This may indicate that
also factors other than lipids cause the changgm$ting characteristics of wheat flour
upon storage.

Here, changes in the proteins come to mind. Theedse of approximately 50 nmol/g
dm flour in extractabléhiol content in the present study could also be partly respbasi
for the upward shift in RVA profiles. Unfortunatel$alman and Copeland (2007) did not
measure the changes in thiol content during fldarage. However, the impact of low
molecular weight thiol compounds on RVA viscositgsistudied by adding cysteine to
the suspension. Ravi et al (1999) noted small daavdvshifts in the RVA profiles of
wheat flour upon addition of 380 nmol cysteine/gufl. For rice flour, addition of
approximately 200 nmol cysteine/g flour slightlyteméd the peak viscosity and
breakdown, while the hot paste viscosity, finacesity and setback of cooked rice paste
were drastically decreased in the presence of disseine level (Likitwattanasade &
Hongsprabhas, 2010). Reducing agents dithiothrdd®IT) andp-mercaptoethanol also
reduced the RVA viscosity of different rice flougBhou et al, 2003; Deryckeet al,
2005).

In this study, there was a remarkable differendsvéen the available thiol contents of
both cultivars. For Apache flour, the availableothtontents were only slightly higher
than the extractable thiol contents, suggesting ¢imdy a limited portion of thiols is

located at the outside of unextractable proteinktedr flour, in contrast, contained
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376

approximately 50% more available than extractahlel tgroups. The higher level of
available thiols on gluten in Akteur wheat may @allfor higher degrees of thiol-disulfide

interchange reactions. However, this was not reftb the RVA profiles.

CONCLUSIONS

Akteur and Apache flour samples showed similaraases in FFA contents upon storage.
Flour from both cultivars showed slight but sigeéint decreases in extractable ol
contents, pointing to oxidation of low molecularigrg thiol compounds. Furthermore,
storage of flour resulted in increases of RVA vities and thus changed flour pasting
properties. In summary, we believe that changeffour properties upon aging are (at
least partially) related to oxidation reactionsweing either during storage or processing
of flour. In addition, enzymatic activity of lipasevith concomitant release of FFAs is an
important process during flour storage. Changedipid composition can have a
significant impact when resulting in the formatiohinclusion complexes with amylose

upon heating.
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505 TABLES
506 Table |l Changes in Rapid Visco Analyzer (RVA) pasting prtipe of flour samples

507 from cv. Akteur (A) and cv. Apache (B) upon flouosage at 25 °C in airtight containers.

508
cv. Akteur cv. Apache
Storage time (days) 0 21 42 84 0 21 42 84
Peak viscosity (cP) 3322 3392 3525 3624 2961 3273 3225 3396
Min. viscosity (cP) 1195 1233 1261 1318 1244 1372 1313 1463
Final viscosity (cP) 2874 2938 3037 3091 3236 3467 3415 3571
Breakdown (cP) 2127 2159 2265 2307 1717 1901 1912 1983
Setback (cP) 1679 1705 1777 1773 1992 2096 2102 2108
509
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FIGURES
Fig. 1 Changes in free fatty acid (FFA) content of floanples from cv. Akteur—e— )
and cv. Apache—— ) upon flour storage at 25 °C mighit containers. Within one

cultivar, values of points with the same letter moé significantly differentd = 0.05).

Fig. 2 Changes in extractable (A) and available (B) teimhtents of flour samples from
cv. Akteur —— ) and cv. Apach—— ) upon flour storagi@5 °C in airtight containers.
Within one cultivar, values of points with the saleger are not significantly differend (

= 0.05).

Fig. 3 Changes in Rapid Visco Analyzer (RVA) pasting dedfiof flour samples from
cv. Akteur (A) and cv. Apache (B) upon flour stogagt 25 °C in airtight containers for
0 days (e. freshly milled flour;——), 21 days-—- ), 42day---- )daB4 days (

------- ). The dotted line-:--- ) represents the applied teatpee profile.

Fig. 4 Relation between free fatty acid (FFA) content aneh of the ‘bump’, calculated

from the Rapid Visco Analyzer (RVA) pasting proffier cv. Apache for flour stored at

room temperature for 0, 21, 42 and 84 days.
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HIGHLIGHTS
» Freefatty acid content increases during flour storage
» Extractable thiol content decreases during flour storage
* Rapid Visco Anayser viscosity profiles shift upwards during flour storage

* Flour aging impacts flour pasting properties



