
Policy-Driven Data Management Middleware for
Multi-Cloud Storage in Multi-Tenant SaaS

Ansar Rafique, Dimitri Van Landuyt, Bert Lagaisse, and Wouter Joosen
iMinds-DistriNet, KU Leuven

3001 Leuven, Belgium

E-mail: firstname.lastname@cs.kuleuven.be

Abstract—Multi-tenant Software-as-a-Service (SaaS) applica-
tions are increasingly built on combinations of cloud storage
technologies and providers in a so-called multi-cloud setup. One
advantage is that such a setup helps satisfying the different
—sometimes even contrasting— storage requirements of dif-
ferent customer organizations (tenants). In such a multi-cloud
environment, the application data is distributed and replicated
over multiple cloud storage systems, each differing profoundly
in supported data models, development APIs, performance,
scalability, availability, and durability.

Despite the clear benefits, managing such a multi-cloud storage
architecture in practice is non-trivial. Addressing this complexity
in the application layer is far from ideal, as it inherently limits
the flexibility with which continuously changing application-wide
and tenant-specific storage requirements can be met.

To alleviate this, we present a reusable data management
middleware that (i) makes abstraction of multiple cloud storage
technologies and thus also providers; (ii) follows a policy-driven
approach for making data placement decisions; and (iii) provides
tenant customization support, i.e. by allowing tenants to define
storage configurations and data storage policies.

We validate and evaluate our prototype implementation in
the context of a realistic multi-cloud SaaS application. Our
performance benchmark results indicate that the benefits of the
proposed middleware can be achieved with acceptable overhead.

Index Terms—Data management middleware, Multi-cloud
storage, Policy-driven, Abstraction API for NoSQL, Multi-tenant
SaaS

I. INTRODUCTION

The cloud computing paradigm promises high availability,

elastic scalability, and thus offers increased flexibility. Due to

these characteristics of cloud computing, many organizations

adapt their IT infrastructure to operate completely or partially

in the cloud [4], [12]. Cloud storage providers offer online

mass storage services, which support data management fa-

cilities for multiple applications in an efficient and scalable

manner. In this context, Not only SQL (NoSQL) technology

has come to the forefront and has become increasingly popular

as cloud data management systems [12], currently owning the

highest share of cloud storage offerings [3], [19].

In practice, selecting a single provider or a single storage

technology is often too restrictive for three main reasons.

Firstly, there is a wide variety and heterogeneity of stor-

age systems in the NoSQL arena, spanning over multiple

storage providers [11], each of them differing profoundly in

terms of the data model, development application program-

ming interface (API), performance, scalability, availability,

and durability [11], [13], [19]. Each NoSQL system makes

a slightly different trade-off in terms of the qualities listed

above. Secondly, multi-tenant Software-as-a-Service (SaaS)

applications serve multiple customer organizations (tenants)

simultaneously, and therefore have to satisfy the different and

sometimes contrasting storage requirements of these tenants.

Thirdly, relying on a single cloud storage provider comes

with the non-negligible risks of technology, provider or vendor

lock-in, introducing concerns about provider reliability, avail-

ability, scalability, and performance guarantees.

For these reasons, cloud providers are actively searching for

solutions that enable them to leverage the benefits of using

a combination of different cloud storage technologies and

providers, in so-called multi-cloud setups. However, config-

uring and operating a multi-cloud setup is inherently difficult

for the following reasons:

• Heterogeneity — Accessing multiple systems supported

by different cloud storage providers introduces complex-

ity to the application as it has to deal with different

application programming interfaces (APIs).

• Complex storage logic — In many cases, the application

has to implement complex storage logic in the application

source code to achieve the composite benefits of multi-

datastore and the multi-cloud setup.

• Tenant customization — Moreover, the tenants of a

SaaS application commonly have different data storage

requirements, usually related to non-functional such as

data confidentiality, reliability, and security of data stored

in the cloud. Especially in a multi-tenant context, the eco-

nomic feasibility of the cloud offering relies extensively

on providing the tenants some degree of on-demand self-

service capabilities [22], i.e. allowing tenants to configure

the SaaS applications autonomously, without requiring

intervention from the SaaS provider.

To address these problems, we present a reusable, policy-

driven data management middleware that (i) makes abstrac-

tion of different cloud storage technologies and thus also

providers; (ii) follows a policy-driven approach for making

data placement decisions and getting the benefits of multi-

datastore and the multi-cloud setup; and (iii) allows the spec-

ification of storage configurations and advanced data storage

policies, both by the service provider and the tenants. Our

prototype implementation, on which we built a realistic multi-

2015 IEEE/ACM 2nd International Symposium on Big Data Computing

78

2015 IEEE/ACM 2nd International Symposium on Big Data Computing

978-0-7695-5696-3/15 $31.00 © 2015 IEEE

DOI 10.1109/BDC.2015.39

78

tenant and multi-cloud SaaS application validates the proposed

middleware. Additionally, our evaluation efforts focus on the

performance overhead.

The rest of the paper is structured as follows: Section II

motivates this work from the context of a realistic SaaS

application case, derives the problem statement, and identi-

fies key goals of our middleware. Section III introduces the

middleware architecture in support of policy-driven storage

and multi-tenant customization, while Section IV discusses

the validation of the proposed middleware in a prototype.

Section V subsequently evaluates the performance overhead

introduced by this middleware, and Section VI discusses

related work. Finally, Section VII concludes the paper and

indicates potential tracks for future research.

II. MOTIVATION AND PROBLEM STATEMENT

The motivation for this paper is based on our experiences

with a number of multi-tenant SaaS applications, which have

been studied in the context of several applied research projects

in collaboration with industry [6], [7], [9]. A tenant is an orga-

nizational customer of a SaaS application and the customers of

that organization are the end users of the application. A multi-

tenant SaaS application serves multiple tenants and their end

users at once [8], [18], [23]. In Section II-A, we introduce

a specific SaaS application, on which we rely to derive the

problem statement in Section II-B. Finally, we present the key

goals of the middleware in Section II-C.

A. Application Case

The Log Management as a Service (LMaaS) application is

a multi-tenant, business-to-business (B2B) cloud offering that

takes over log management, analysis, and storage from the

tenant organization. The tenants of the LMaaS application are

customer organizations of all sizes (such as banks, supermar-

kets, hospitals). Different tenants of the LMaaS application

have different, sometimes even contrasting requirements with

respect to how the data should be dealt within such a multi-

cloud storage environment. For example, for some tenants

(e.g., banks), even log data is considered highly sensitive, and

therefore they prefer to keep using their own on-premise stor-

age infrastructures, whereas other tenants have no objections

against having their log data stored in a public cloud.

Furthermore, the application deals with large amounts of

heterogeneous data, coming from different sources, and many

different data types with different storage requirements (raw

log entries, log meta-data, archived logs, historical logs, and

incident reports). Different requirements apply to these dif-

ferent data types, for example, raw log entries require high

availability as well as high write and read throughput, whereas

for historical logs high write throughput counts.

Examples of more fine-grained storage logic involve taking

into account more specific data properties such as the object

size. For example, incident reports of different data sizes have

to be dealt with differently in the LMaaS application: if they

are less than 20MB in size, they should be stored in an on-

premise infrastructure, otherwise they must be placed in a

public cloud. At the same time the requirements regarding

data confidentiality and low latency search must be taken into

account.

B. Problem Statement

A multi-cloud setup introduces substantial complexity in the

application layer. Clearly, the LMaaS application needs to deal

with this complexity to satisfy different application-wide as

well as tenant-specific storage requirements. Specifically, the

LMaaS application has to deal with heterogeneity in terms of

different APIs. In addition, the application has to implement

the complex storage logic (which usually involves (re)writing

the source code) to achieve the benefits of both the multi-cloud

and the multi-datastore setup. Finally, the application needs to

provide configuration support to tenants, to allow them the

self-service that is crucial for the economic feasiblity of a

cloud offering.

C. Key Goals

We define the following key goals for our middleware:

1) Uniform API — The middleware needs to provide a

uniform API for the widely different data storage systems,

to allow application development to be technology and

vendor independent.

2) Multi-datastore support — The middleware needs to

support multiple datastores at once in order to achieve

the benefits of a multi-cloud storage setup.

3) Multi-tenant customization — The middleware needs

to be highly configurable and customizable to support

the contrasting requirements of different tenants of the

SaaS application.

III. MIDDLEWARE ARCHITECTURE

This section discusses the architecture of our proposed

middleware platform that makes abstraction of multiple cloud

storage providers and thus also of storage systems. In ad-

dition, the architecture supports flexible and dynamic data

management using policies and offers multi-datastore as well

as multi-tenant customization support. Figure 1 presents the

architecture of our proposed middleware. The architecture is

divided into four different layers: (i) the Multi-tenancy layer

(optional for multi-tenant SaaS applications); (ii) the SaaS

Application layer; (iii) the Data Management Middleware

layer; and (iv) the Decentralized, Distributed Storage layer.

The core of the middleware and the focus of this paper is the

Data Management Middleware layer. The next section focuses

on the Data Management Middleware layer with respect to

different components offered by this layer.

A. Data Management Middleware Layer

As shown in Figure 1, the Data Management Middleware

layer consists of three coarse-grained components: (a) the Data
Access Middleware component, (b) the Configuration Man-
agement component, and (c) the Storage Drivers component.

The Storage Drivers component addresses heterogeneity and

hides the complexity of back-end systems, distributed across a

7979

Listing 1: Annotations are supported on both the class-level

as well as the field-level.

1 . . .
2 @Confidential
3 @IncidentReport
4 p u b l i c c l a s s R e p o r t imp lemen t s S e r i a l i z a b l e {
5 . . .
6 @Size
7 p r i v a t e dou b l e s i z e ;
8 . . .
9 }

multi-cloud setup by providing a uniform API. However, we

omit this component for space reasons and rather focus on

Data Access Middleware component and the Configuration
Management component.

1) Data Access Middleware Component: The SaaS appli-

cations are developed on top of the Data Access Middleware
component, independent of the underlying technologies sup-

ported by multiple cloud storage providers. To accomplish

this, standardization is key: our middleware offers a Java

Persistence API (JPA) and Java Persistence Query Language

(JPQL) because they are a de-facto standard for developing

Java applications [21].

The Data Access Middleware component provides an

additional set of annotations to specify meta-information

about the data. The proposed middleware supports an

additional application-specific (e.g., @RawLog, @Inciden-
tReport, @Size), technology-specific (e.g., @Writeconsis-
tency, @Readconsistency), and the middleware-specific

(e.g., @Confidential, @Nonconfidential) annotations. These

annotations are supported on both the class-level as well as the

field-level as shown in Listing 1. Developing and deploying

a SaaS application on top of this middleware involves a

set of configuration tasks. These tasks are accomplished in

the form of placing additional annotations provided by the

middleware platform and setting data storage policies as show

in Figure 1. This component comprises of two main service

components: (a) the Data Management Service component,

and (b) the Policy Management Service component.

The Data Management Service component facilitates

insert/create, read, update, and delete (CRUD) operations and

provides an interface for SaaS applications to interact with the

proposed middleware. This component reads meta-information

about the incoming data and then calls the Policy Man-
agement Service component. The latter one is responsible

to interact with the policy engine in order to evaluate the

data storage policies based on the meta-information. Then, it

returns the information to the Data Management Service
component about the storage systems, best suited for stor-

ing the data. Based on the returned information, the Data
Management Service component, then decides where the

data needs to be stored and whether the data needs to be en-

crypted. The component calls Encrypt/Decrypt component,

if the data needs to be encrypted or decrypted. The Data
Management Service component then communicates with

the Configuration Management Service component to get

����������	
	�������
	���	

��������
�������

����
���	����
���������		�
���
�����

����
���	����

�
���������

����
���
����������

������������
����
�����

���
�����������������	��
������
������

����
���	����
��������������
���������

������������
�����������������

���
����������������	�
	��������

����
���	����
��������������	

����
���	����
����

���������
�������

����
���	����
 ������!�������

����
���	����
�������������

���������
�������

������������
����
�����

�����
������	������
��
������

����
���	����
"�
���

���������
�������

������������
#�

$��%�"��	�	������

��

�	�	����
��	�����������	��������	

���������	��	�� ! �����	��	�� " �����	��	�� #

����
���	����
�����&

���&��
���'(

����
���	����
�������

���&��
���'(

����
���	����
�������

���&��
���'(

����
���	����
�������

���&��
���'(

����
���	����
�����&

���&��
����'(

����
���	����
�����&

���&��
���')

��� ������

��
��$�	�����

������������
�������	������������	����

����
������

������������
�������	�����������	�	

��������

*��� �����&

�����������������

+����

��������"�

 ��
�����"�
���

 ��!���

"��	�	�������������������������

����	���������
���
%�&'%��

���	��(�	��(�	���)

%��

�*	����	 �*	����	

Fig. 1: Architecture of the proposed middleware platform for

mulit-cloud storage in multi-tenant SaaS.

the storage configuration details about the back-end storage

systems, best suited for storing data across multiple cloud

storage providers. After getting the information, the Data
Management Service component interacts with Storage
Drivers component and overrides the configuration detail

about the storage system, which is best suited for storing data.

The Policy Management Service component is respon-

sible for the data storage policies and provides an interface

for SaaS applications to set an application-wide policies.

However, in order to cope with the different and varying

tenant requirements, the component allows tenants to over-

ride an application-wide policies and set tenant-specific data

storage policies. Listing 2 shows as an example of tenant-

specific data storage policy. Moreover, in order to get greater

fault tolerance, high availability, and reduced client-perceived

latency, multiple storage systems, distributed across multiple

cloud storage providers can be specified using (&&) separator.

8080

Listing 2: Example of a tenant-specific data storage policy that

allows tenants to use on-premise storage infrastructure.

1 . . .
2 r u l e " d e a l i n g wi th c o n f i d e n t i a l h i s t o r i c a l l o g d a t a "
3 when
4 d s S e l e c t o r : E n t i t y (d a t a == " c o n f i d e n t i a l " and

documentType == " h i s t o r i c a l l o g ")
5 t h e n
6 d s S e l e c t o r . s e t D a t a s t o r e (" c a s s a n d r a _ p r i v a t e ") ;
7 end
8 . . .

The Policy Management Service component also facilities

tenants to configure and use on-premise storage infrastructure

than relying on the SaaS provider storage facilities. The

component uses the default data storage policies if none of

the policies are specified as shown in Figure 1.

2) Configuration Management Component: The configura-
tion management component is responsible for storing persis-

tence configuration details of tenants and SaaS providers about

the back-end storage systems. This component is composed

of Configuration Management Service component, which

provides an interface for tenants and SaaS providers, to set

tenant-specific or application-wide persistence configuration

files. The SaaS providers and tenants define the configuration

details in storage-configuration.xml file.

IV. PROTOTYPE IMPLEMENTATION

We implemented a prototype on top of Kundera by extend-

ing it with an advanced middleware features support using

the Java programming language. Kundera [14] is an open

source project which provides drivers for different storage

systems and addresses the heterogeneity among them. The

advanced middleware features include the introduction of (a)

policy engine, (b) multi-datastore support, and (c) multi-tenant

customization support. In addition to this, the middleware pro-

vides a number of middleware-specific, application-specific,

and the technology-specific annotations along with JPA anno-

tations to specify additional information about the data. The

prototype uses the Drools1 for the policy evaluation, a rule

engine that uses rule-based approach to implement an expert

system. The prototype supports a number of different back-end

systems, including in-memory storage systems (e.g., Ehcache,

Redis), full-text search systems (e.g., Elasticsearch), SQL-

based systems (e.g., MySQL) and NoSQL storage systems

(e.g., Oracle NoSQL, Cassandra, MongoDB, HBase, Neo4J).

The middleware is deployed as a server on Tomcat 72

with an exposed interface to the client. On start-up, the

middleware reads an application-wide storage configuration

files and data storage policy files. In order to set the tenant-

specific storage configurations and data storage policies, the

tenant must override these files. All the meta-data and the

policy decisions are cached and stored in Ehcache. Once the

application-wide configuration files and the data storage policy

1http://www.drools.org/
2http://tomcat.apache.org/

files are configured, the middleware is ready to serve tenants

requests.

V. EXPERIMENTAL EVALUATION

In the decision to use the proposed middleware platform for

alleviating complexity in the application layer, the impact on

the application performance is a vital criterion. Therefore, two

questions drive our experiments:

Q1. What is the impact on the performance in terms of

overhead using the proposed middleware platform?

Q2. How the performance of the proposed middleware plat-

form can be optimized?

The experiments are conducted using the LMaaS application

discussed in Section II-A. All the experiments are designed for

a storage scenario by taking into account the tenant-specific

data storage policy (see Listing 3) that uses a combination of

cloud storage providers.

Section V-A presents the benchmark and their setup. Then,

Section V-B presents the results, which are then summarized

in Section V-C.

A. Experimental Setup

The middleware platform is evaluated by storing tenant-

specific data, which have different storage requirements,

across five different deployment setups: (i) Cassandra-
private contains a Cassandra instance deployed on a single

node, (ii) Cassandra-public contains a three-node Cassandra

cluster deployed in a private IaaS cloud lab, (iii) MongoDB-
private contains a MongoDB instance deployed on a single

node, (iv) MongoDB-public contains a MongoDB instance

deployed on Morpheus3 public cloud, and (v) Elasticsearch-
private is deployed on a single node in a private environment.

TABLE I: Hardware Setup

Client Node

Processor Intel(R) Core(TM) i5 @ 2.60GHz (Dual)

Memory 8GB

Operating System Windows 8

Server: 1 to 3 Nodes

Processor 2 X Intel(R) Core(TM) 6400 @ 2.13 Ghz

Memory 8GB

Operating System Linux/Ubuntu

We conducted four experiments in which the LMaaS appli-

cation uses a combination of five deployment setups discussed

above. In the first experiment, the application is configured

to use Cassandra-private deployment for storing 1 280 000

confidential Raw Log entries as shown in Listing 3 from

lines 2 - 7. In the second experiment, the application is

configured to use Cassandra-public for storing 1 280 000 non-

confidential Raw Log entries as shown in Listing 3 from

lines 9 - 14. In the third experiment, the application is

configured to store 1 280 000 confidential Incident Reports

3http://gomorpheus.com/

8181

having size < 20 MB in MongoDB-private and size > 20 MB

in MongoDB-public as shown in Listing 3 from lines 16 - 30.

However, the Incident Reports are confidential and have low

latency search requirements. Therefore, the Incident Reports
need to be encrypted first before storing in MongoDB-public
and must also be indexed in Elasticsearch-private to meet

low latency search requirements. In the last experiment, the

application is configured to use both the Cassandra-private
and the MongoDB-private for storing 1 280 000 confidential

Raw Log entries, which also have requirements with respect

to confidentiality and high availability, as shown in Listing 3

from lines 32 - 37.

We compared two application setups for all the performance

experiments, one with the proposed middleware layer enabled,

and one without (where the application directly accesses each

data storage system using Kundera platform which is the

baseline for the performance comparison). The overhead is

evaluated by comparing the performance of the middleware

layer with the baseline. Table I lists the hardware used for the

evaluation on both client and server sides.

B. Performance Impact Results

This section presents the results of our performance bench-

marks and as such shows the performance in terms of overhead

of the proposed middleware platform.

1) Performance Overhead: The performance overhead re-

sults of four experiments discussed in Section V-A are pre-

sented in Figure 2a, Figure 2b, Figure 2c, and Figure 2d

respectively (addresses Q1). The proposed middleware with

cache-disabled introduces, 236%, 17%, 60%, and 140% rel-

ative performance overhead compared to the baseline for all

four experiments respectively.

The performance overhead results show that the overhead

of the proposed middleware is significant. However, we were

interested to inspect the total time each component of the

Data Management Middleware layer takes to perform an

operation. Therefore, we have measured the total time spent on

different components of the middleware with cache-disabled
by manually injecting profiling statements for all the four

experiments. Table II shows the results of this experiment for

Figure 2a.

TABLE II: Total time spent on each component of the mid-

dleware with cache-disabled for Figure 2a.

Component Seconds
Middleware
�

JPA/Reflection (Data Management Service) 72.48
�

Data Management Decisions 2
�

Policy Evaluation (Policy Management Service) 397.39
�

Baseline (Storage Drivers) 199.3

Total 671.17

We have learned that the significant overhead introduced

by our middleware mainly corresponds to reading meta-data

as well as evaluating and executing the policies at run-time.

Listing 3: Tenant-specific data storage policy contains rules

for data distribution across multiple deployment setups.

1 . . .
2 r u l e " d e a l i n g wi th c o n f i d e n t i a l raw l o g d a t a "
3 when
4 d s S e l e c t o r : E n t i t y (d a t a == " c o n f i d e n t i a l " , t y p e == "

rawlog ")
5 t h e n
6 d s S e l e c t o r . s e t D a t a s t o r e (" c a s s a n d r a _ p r i v a t e ") ;
7 end
8

9 r u l e " d e a l i n g wi th non−c o n f i d e n t i a l raw l o g d a t a "
10 when
11 d s S e l e c t o r : E n t i t y (d a t a == " n o n c o n f i d e n t i a l " , t y p e ==

" rawlog ")
12 t h e n
13 d s S e l e c t o r . s e t D a t a s t o r e (" c a s s a n d r a _ p u b l i c ") ;
14 end
15

16 r u l e " d e a l i n g wi th c o n f i d e n t i a l i n c i d e n t r e p o r t s
where t h e s i z e o f each i n c i d e n t r e p o r t i s l e s s
t h a n 20 MB"

17 when
18 d s S e l e c t o r : E n t i t y (d a t a == " c o n f i d e n t i a l " and

documentType == " i n c i d e n t −r e p o r t " and s i z e < 20)
19 t h e n
20 d s S e l e c t o r . s e t D a t a s t o r e (" mongodb_pr iva t e ") ;
21 end
22

23 r u l e " d e a l i n g wi th c o n f i d e n t i a l i n c i d e n t r e p o r t s
where t h e s i z e o f each i n c i d e n t r e p o r t i s
g r e a t e r t h a n 20 MB"

24 when
25 d s S e l e c t o r : E n t i t y (d a t a == " c o n f i d e n t i a l " and

documentType == " i n c i d e n t −r e p o r t " and s i z e > 20)
26 t h e n
27 d s S e l e c t o r . e n c r y p t F i r s t (t r u e) ;
28 d s S e l e c t o r . s e t D a t a s t o r e (" mongodb_publ ic ") ;
29 d s S e l e c t o r . s e t I n d e x s t o r e (" e l a s t i c s e a r c h _ p r i v a t e ") ;
30 end
31

32 r u l e " d e a l i n g wi th c o n f i d e n t i a l raw l o g d a t a which
a l s o r e q u i r e s h igh a v a i l a b i l i t y "

33 when
34 d s S e l e c t o r : E n t i t y (d a t a == " c o n f i d e n t i a l " , t y p e == "

rawlog " , a v a i l a b i l i t y == " h igh ")
35 t h e n
36 d s S e l e c t o r . s e t D a t a s t o r e (" c a s s a n d r a _ p r i v a t e &&

mongodb_pr iva t e ") ;
37 end
38 . . .

As shown in Table II, the Data Management Service com-

ponent, which provides a JPA interface for the applications,

takes 72.48 seconds to process 1 280 000 confidential Raw
Log entries. The component requires inspecting the entity

at run-time to read application-specific, technology-specific,

and the middleware-specific annotations using the Reflection.

The other component, which takes most of the time is the

Policy Management Service component. This component

uses the Drools policy evaluation engine and takes 397.39
seconds to process 1 280 000 Raw Log entries. The Policy
Management Service component evaluates the data storage

policy at run-time for each data storage request to make

data placement decisions. The next section optimizes the

performance of the proposed middleware. More specifically,

the performance impact of the Data Management Service

8282

`

199.31

671.17

206.61

0

200

400

600

800

To
ta

l t
im

e
in

 se
co

nd
s

3602.51

4216.75

3628.58

3200

3400

3600

3800

4000

4200

4400

To
ta

l t
im

e
in

 se
co

nd
s

825.21

1321.32

832.74

0

500

1000

1500

To
ta

l t
im

e
in

 se
co

nd
s

348.49

839.41

355.06

0

200

400

600

800

1000

To
ta

l t
im

e
in

 se
co

nd
s

��� ����	
��� �
 ���
����
��� Raw Log
��
	��� �� Cassandra-private�

�� ����	
��� �
 �������
����
��� Raw
Log ��
	��� �� Cassandra-public�

��� ����	
��� �
 ���
����
��� Incident
Reports �
 � �� �� �� MongoDB-
private� � �� �� ��MongoDB-public�

��� ����	
��� �
 ���
����
��� Raw Log
��
	��� �� ��
� Cassandra-private ���

MongoDB-private for ���� ����������
��

Baseline Middleware cache-disabled Middleware cache-enabled

Fig. 2: Total time in seconds to insert 1 280 000 entries of different types using the proposed middleware platform with and
without performance optimization.

component and the Policy Management Service component

(printed in bold and italic in Table II) is taken into account.

2) Performance Optimization: In this section, we discuss

how the performance of the proposed middleware platform

can be optimized (addresses Q2). As discussed in the previous

section, the Data Management Service component reads

meta-data for each data storage request at run-time using

the Reflection. For example, storing 1 280 000 Raw Log
entries require inspecting the entity 1 280 000 times. We have

realized that inspecting entity for each data storage request

to get the meta-data is unnecessarily costly operation. The

performance can be optimized by inspecting the entity only

once at run-time and keeping meta-data in memory. The

entity only needs inspection the next time when the meta-

data changes. Similarly, the Policy Management Service
component fires an event for each data access object to get the

details about the data storage locations. This impact can also

be reduced drastically by an efficient policy implementation

mechanism where the policy decisions can be cached.

To illustrate this, we re-run the same experiments discussed

in Section V-A, however, by inspecting the entity as well as

evaluating and executing the policies only once at run-time

and keeping both the meta-data and policy decisions in cache

(with cache-enabled). The results of these experiments are

presented in Figure 2a, Figure 2b, Figure 2c, and Figure 2d

respectively. As shown, the overhead of using the proposed

middleware with cache-enabled decreases drastically for all

the experiments. For Figure 2a, we have looked at the total

time spent on different components of the middleware that

uses the cache. The results of this experiment are presented

in Table III. The results indicate that the Data Manage-
ment Service component now takes 2.31 seconds to process

1 280 000 confidential Raw Log entries, whereas for the

same number of entries the Policy Management Service
component takes 1.84 seconds. The performance improvement

in both components also reflects the overall performance

impact of the middleware, the overhead decreases significantly

compared to previous experiments. The proposed middleware

with cache-enabled introduces 3.66%, 0.72%, 0.91%, and

1.88% relative performance overhead compared to the baseline

for all four experiments respectively.

C. Discussion

Our proposed middleware supports CRUD operations across

multiple data storage systems, however, this paper only focuses

on the insert/create operation.

TABLE III: Total Time spent on each component of the

middleware with cache-enabled for Figure 2a.

Component Seconds
Middleware
�

JPA/Reflection (Data Management Service) 2.31
�

Data Management Decisions 3.16
�

Policy Evaluation (Policy Management Service) 1.84
�

Baseline (Storage Drivers) 199.3

Total 206.61

Overall, the proposed middleware platform provides an

abstraction by hiding the complexity of multi-cloud storage

architecture in the application layer and offers multi-tenant

customization support. In addition, it helps to get rid of

(re)writing an application code to: (i) support multi-cloud

setup and thus also multiple storage systems, and (ii) ad-

dress different tenant requirements in the application layer.

The complexity of (re)writing an application code is taken

away by defining policies that facilitate smart storage of an

application data across multi-cloud storage architecture. The

results indicate that the overhead of the proposed middleware

platform is always less than 4%. The performance of the

proposed middleware platform can be optimized and run-time

overhead can further be reduced by inspecting the entities as

well as evaluating and executing the policies at compile time

only and keeping the decisions in memory.

VI. RELATED WORK

In this section, we discuss some cloud storage works that are

most relevant to our research. The problem of heterogeneity

and the lack of standardization across different cloud storage

providers in terms of storage systems has been attracting

more attention lately from both the industry [14], [20] and

the research community [2], [16], [19]. However, so far these

studies have all concentrated primarily on heterogeneity and

portability by building an abstraction layer. The abstraction

layer supports application portability across multiple cloud

providers with minimal migration efforts, compared to when

the native API is directly used. Similarly, there are a number

of studies [3], [4], [10] that provide a federated cloud storage

system to integrate with diverse public cloud storage providers.

However, to the best of our knowledge, none of these studies

support policies that facilitate the smart storage of application

data within and across multiple cloud storage providers and

offer multi-tenant customization support.

8383

Our work is similar to Tiera [17], a middleware that is

flexible and enables a rich array of policies. While they

focus on hiding the complexity of different interfaces, we

leverage the ability to store a part of the application data that

enables smart and efficient data storage while also optimizing

the performance. In addition, the implementation of Tiera,

only supports a single data center, whereas we enable the

implementation of multi-cloud setup.

Another related solution is provided by Papaioannou et

al. [15]. The authors presented Scalia [15], a cloud storage

brokerage solution which is similar to HAIL [5] and inspired

by RACS [1]. Scalia continuously adapts the placement of

data based on data access patterns. Our work is similar to

Scalia in aspects such as data distribution and the use of multi-

cloud setup. However, we use policy-driven approach for the

data placement decisions, whereas they focuses on data access

patterns. In addition, we provide multi-tenant customization

support, which they have not considered in their research.

VII. CONCLUSION

The benefits of a multi-cloud setup are compelling for both

SaaS providers and tenants. However, managing a multi-cloud

storage architecture in practice is not trivial as it introduces

additional complexity in the application layer.

This paper presents a policy-driven data management mid-

dleware platform that (i) makes abstraction of multiple cloud

storage providers, (ii) supports a rich array of continuously

changing application-wide and tenant-specific storage policies

for the data management, and (iii) supports tenant customiza-

tion and refinement. We have validated the core concept by

building a multi-tenant SaaS application, a log management

prototype implementation on top of the proposed middleware

that uses a combination of multiple cloud storage providers.

The results of our experimental evaluation demonstrate that

the benefits of the proposed middleware are achieved with

minimal performance overhead.

There are a number of interesting variants to explore in

the follow-up work. Firstly, we intend to investigate the

problems related to implementing search operations in a multi-

cloud storage setup and envision supporting different search

strategies. Secondly, we plan to address the limitation of

our middleware that stores metadata and policy decisions in

the cache server that is deployed to a single geographical

location. We aim at replicating metadata and pre-compiling

policy decision services, thereby accommodating geographi-

cally distributed clients to realize low latency requirements.

ACKNOWLEDGMENTS

This research is partially funded by the Research Fund KU

Leuven (project GOA/14/003 - ADDIS) and the iMinds DMS2

project, which is co-funded by iMinds (Interdisciplinary in-

stitute for Technology), a research institute founded by the

Flemish Government. Companies and organizations involved

in the project are Agfa Healthcare, Luciad, UP-nxt, and

Verizon Terremark, with project support of IWT (government

agency for Innovation by Science and Technology).

REFERENCES

[1] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon.
Racs: a case for cloud storage diversity. In SoCC ’10 Proceedings of
the 1st ACM symposium on Cloud computing. ACM, 2010.

[2] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. Uniform access to
non-relational database systems: the sos platform. In CAiSE ’12 Pro-
ceedings of the 24th international conference on Advanced Information
Systems Engineering, pages 160–174. ACM, 2012.

[3] David Bermbach, Markus Klems, Stefan Tai, and Menzel Michael.
Metastorage: A federated cloud storage system to manage consistency-
latency tradeoffs. In IEEE International Conference on Cloud Comput-
ing (CLOUD), 2011, pages 452–459. IEEE, 2011.

[4] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernand Andre, and
Paulo Sousa. Depsky: Dependable and secure storage in a cloud-of-
clouds. ACM Transactions on Storage (TOS), 9(4), November 2013.

[5] Kevin D. Bowers, Ari Juels, and Alina Oprea. Hail: a high-availability
and integrity layer for cloud storage. In Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 2009.

[6] CUSTOMSS. CUSTOMization of Software Services in the cloud.
http://www.iminds.be/en/research/overview-projects/p/detail/customss,
2011. [Last visited on June 27, 2014].

[7] D-Base. Decentralized support for Business processes in Ap-
plication Services . http://www.iminds.be/en/research/overview-
projects/p/detail/d-base, 2014. [Last visited on June 27, 2014].

[8] Tom Desair, Wouter Joosen, Bert Lagaisse, Ansar Rafique, and Stefan
Walraven. Policy-driven middleware for heterogeneous, hybrid cloud
platforms. In ARM ’13 Proceedings of the 12th International Workshop
on Adaptive and Reflective Middleware. ACM, 2013.

[9] DMS2. Decentralized Data Management and Migration for SaaS
(iMinds ICON project). http://www.iminds.be/en/research/overview-
projects/p/detail/dms2, 2014.

[10] Dan Dobre, Paolo Viotti, and Marko Vukolic. Hybris: Robust hybrid
cloud storage. In SOCC ’14, pages 1–14. ACM, 2014.

[11] Brian F. Cooper, Adam Silberstein, Erwi Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
SoCC ’10, pages 143–154. ACM, 2010.

[12] Katarina Grolinger, Wilson A Higashino, Abhinav Tiwari, and
Miriam AM Capretz. Data management in cloud environments: Nosql
and newsql data stores. Journal of Cloud Computing: Advances, Systems
and Applications, 2(1):2–22, December 2013.

[13] Till Haselmann, Gunnar Thies, and Gottfried Vossen. Looking into a
rest-based universal api for database-as-a-service systems. In 12th IEEE
International Conference on Commerce and Enterprise Computing,
pages 7–24. IEEE, 2010.

[14] Impetus. impetus-opensource/Kundera . https://github.com/impetus-
opensource/Kundera, 2015.

[15] Thanasis G. Papaioannou, Nicolas Bonvin, and Karl Aberer. Scalia: an
adaptive scheme for efficient multi-cloud storage. In SC ’12 Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. ACM, 2012.

[16] Ansar Rafique, Stefan Walraven, Bert Lagaisse, Tom Desair, and Wouter
Joosen. Towards portability and interoperability support in middleware
for hybrid clouds. In CrossCloud 2014 : IEEE INFOCOM CrossCloud
Workshop. IEEE, 2014.

[17] Ajaykrishna Raghavan, Abhishek Chandra, and Jon Weissman. Tiera:
towards flexible multi-tiered cloud storage instances. In Middleware ’14
15th International Middleware Conference, pages 1–12. ACM, 2014.

[18] Anna Schwanengel and Uwe Hohenstein. Challenges with tenant-
specific cost determination in multi-tenant applications. In Proceedings
of CLOUD COMPUTING 2013, 2013.

[19] Rami Sellami, Sami Bhiri, and Bruno Defude. Odbapi: A unified rest
api for relational and nosql data stores. In IEEE International Congress
on Big Data (BigData Congress), pages 653–660. IEEE, 2014.

[20] Spring. Spring Data. http://projects.spring.io/spring-data/, 2015.
[21] Uta Storl, Thomas Hauf, Meike Klettke, and Stefanie Scherzinger.

Schemaless nosql data stores – object-nosql mappers to the rescue? In
BTW, 2015.

[22] Wei Sun, Xin Zhang, Chang Jie Guo, Pei Sun, and Hui Su. Software
as a service: Configuration and customization perspectives. In Congress
on Services Part II, 2008. SERVICES-2. IEEE, pages 18–25, Sept 2008.

[23] Stefan Walraven, Eddy Truyen, and Wouter Joosen. A middleware
layer for flexible and cost-efficient multi-tenant applications. In ACM/I-
FIP/USENIX 12th International Middleware Conference. ACM, 2011.

8484

