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Abstract. Previously, maximum-likelihood methods have been proposed to jointly

estimate the activity image and the attenuation image or the attenuation sinogram

from time-of-flight (TOF) positron emission tomography (PET) data. In this

contribution, we propose a method that addresses the possible alignment problem

of the TOF-PET emission data and the computed tomography (CT) attenuation data,

by combining reconstruction and registration. The method, called MLRR, iteratively

reconstructs the activity image while registering the available CT-based attenuation

image, so that the pair of activity and attenuation images maximise the likelihood of

the TOF emission sinogram. The algorithm is slow to converge, but some acceleration

could be achieved by using Nesterov’s momentum method and by applying a multi-

resolution scheme for the non-rigid displacement estimation. The latter also helps to

avoid local optima, although convergence to the global optimum cannot be guaranteed.

The results are evaluated on 2D and 3D simulations as well as a respiratory gated

clinical scan. Our experiments indicate that the proposed method is able to correct

for possible misalignment of the CT-based attenuation image, and is therefore a very

promising approach to suppressing attenuation artefacts in clinical PET/CT. When

applied to respiratory gated data of a patient scan, it produced deformations that

are compatible with breathing motion and which reduced the well known attenuation

artefact near the dome of the liver. Since the method makes use of the energy-converted

CT attenuation image, the scale problem of joint reconstruction is automatically solved.

Keywords: Time-of-flight positron emission tomography (TOF-PET), joint estimation,

maximum likelihood, iterative reconstruction, image registration

1. Introduction

Positron emission tomography (PET) data are acquired over a relatively long time

interval whereas computed tomography (CT) attenuation values are acquired almost

instantaneously. In addition, in current PET/CT scanners, the CT and PET scans

nuyts
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are acquired sequentially. Thus, artifacts due to patient and/or breathing motion are

expected in emission reconstructions (in-scan motion) together with artifacts due to

possible misalignment of PET and CT data (between-scan motion). Recent studies

have shown that in time-of-flight (TOF) PET, joint and stable estimation of the activity

and the attenuation is possible (Defrise et al. 2012; Salomon et al. 2011; Rezaei et al.

2012b). Given the availability of TOF-PET data, the activity image can be jointly

estimated either with the attenuation image (Salomon et al. 2011; Rezaei et al. 2012b;

Rezaei et al. 2012a) or with the attenuation sinogram (Rezaei et al. 2014; Defrise et al.

2014; Panin et al. 2012; Li et al. 2013). Because TOF-PET determines the attenuation

only up to a constant (Defrise et al. 2012), some constraining is required for accurate

quantitative reconstruction. The MLAA algorithm (Rezaei et al. 2012b; Boellaard et al.

2014) jointly estimates the two images, solving for the constant by imposing the known

attenuation of tissue. Alternatively, Mehranian et al. (2015b) solved the scale problem

by incorporating an intensity prior on the estimated attenuation values using a Gaussian

mixture model of different tissue types. For MLACF (Rezaei et al. 2014; Defrise et al.

2014), which jointly estimates the activity image and the attenuation sinogram, this

straightforward constraining method is not possible. However, Panin et al. (2012)

proposed a modified MLACF version to complete the attenuation factors obtained from

CT, in which the constant is determined by the available CT-data.

Although the use of consistency conditions for the estimation of attenuation from

non-TOF emission data (Natterer et al. 1992; Kudo et al. 2001; Bronnikov 2000) has

had limited success in practice, they were found to be useful in determining the strength

of regularisation parameters for maximum a-posteriori reconstruction of the attenuation

image from transmission measurements (Panin et al. 2004). Furthermore, studies have

shown that the consistency conditions of the non-TOF emission data can also be used

to estimate the attenuation image that has affected the measurements as an affine

transform of a known attenuation image (Natterer 1993; Welch et al. 1998). This

approach was used as a means to correct for attenuation in the case of between-scan

motion (Bromiley et al. 2001; Alessio et al. 2010). Although instability issues were

reported with an affine motion model (Bromiley et al. 2001), the results seemed to be

encouraging with a rigid motion model despite a slow convergence (Alessio et al. 2010).

However, the problem of correcting for patient and/or breathing motion requires more

complex transformation models. Since with the introduction of TOF, the PET emission

data provide more information about the attenuation than before, it is expected that

the TOF-PET data also provide a means to estimate more complex motion models, and

could help mitigate the problems of in-scan and between-scan motion in TOF-PET.

In current TOF-PET/CT systems, the PET attenuation image is normally

estimated by converting the CT-image values to the photon energy of 511 keV (Kinahan

et al. 2003). In this study, we use this CT-derived attenuation image in a joint estimation

framework and align the attenuation image so that the pair of the activity image and the

deformed CT-based attenuation image better explain the emission measurements. To do

so, the estimation of the attenuation image of MLAA (Rezaei et al. 2012b) is replaced
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with a transformation (rigid or non-rigid) estimation based on minimising a sum of

squared differences (SSD) term in the joint estimation framework. We show below that

weighing the SSD term by the curvature of the emission log-likelihood ensures that a

decrease of the SSD term will produce an increase of the quadratic surrogate function

for the likelihood. The proposed algorithm is called MLRR (maximum likelihood

reconstruction of activity and registration of attenuation), which aims at combining

the high signal to noise ratio of the CT image with the optimal (i.e. the maximum

likelihood) alignment produced by the joint estimation. Since the method makes use

of CT-based attenuation images, no extra correction is required for the missing scale

problem in the joint estimation method.

The paper is organised as follows; the MLRR algorithm is described in section 2.

We will also look at options to improve its convergence, since the method was shown

to have a slow convergence rate with a non-rigid motion model (Rezaei et al. 2013a).

The design of the 2D and 3D simulation experiments are presented in section 3. The

simulation results are shown together with the results of a respiratory gated clinical

scan in section 4. In section 5, we conclude by discussing the results, drawing some

conclusions and giving an outline of future research on the topic.

2. Method/Theory

Assuming Poisson statistics and ignoring constant terms, the log-likelihood function for

TOF-PET emission data y can be expressed as:

L(λ, µ, y) =
∑

it

yit ln ȳit − ȳit (1)

where λ and µ represent the emission and attenuation parameters and ȳit is the expected

emission sinogram value for line-of-response (LOR) i and TOF-bin t, which is computed

as:

ȳit = bitai + sit =
∑

j

cijtλje
−

∑
k
likµk + sit (2)

where bit is the TOF-projection of the activity image along LOR i and in TOF-bin t,

ai is the attenuation factor along the same LOR and sit represents the contributions

of scatter and/or randoms for the same data bin i, t. Furthermore, cijt represents the

sensitivity of detector i and TOF-bin t to emissions coming from voxel j, λj is the

activity in voxel j, lij is the effective intersection length between LOR i and voxel j, µj

is the attenuation at voxel j. Note that summation over the TOF index (t) yields the

corresponding non-TOF values (
∑

t cijt = cij and
∑

t yit = yi).

The MLRR algorithm treats the log-likelihood function as a function of the activity

λ and the attenuation µ[Θ], where Θ = {Θp|p = 1 . . . P} represents a set of deformation

parameters, which deform the known attenuation image µ† into the attenuation image

µ[Θ]. The log-likelihood is maximised by estimating the activity values λj in every voxel

j and the deformation parameters Θ. Below, an iterative algorithm is derived which
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alternately updates the activity values while keeping the attenuation image fixed, and

then updates the deformation parameters while keeping the activity values fixed.

When the deformation, and therefore the attenuation, is fixed, the problem of

updating the activity image is the same as in standard maximum likelihood expectation

maximisation (MLEM) reconstruction. Hence, the activity is updated by applying an

iteration of the MLEM algorithm or its accelerated version, ordered subsets expectation

maximisation (OSEM). When the activity is fixed, the deformation of the attenuation

map must be updated such as to increase the likelihood. This problem could be solved by

deriving a dedicated gradient ascent algorithm for this subproblem. Instead, we propose

to use a nested approach, which first computes a desired attenuation update using an

established ML algorithm for transmission tomography (MLTR (Van Slambrouck et al.

2014)) and then apply an established registration algorithm to find the (incremental)

deformation that results in a good approximation of that desired update. In section

2.1 this method is derived, essentially by applying the chain rule to the gradient of the

likelihood and introducing reasonable approximations. This leads to the algorithm (12)

- (14). In section 2.2 an acceleration scheme based on Nesterov’s momentum method is

proposed. We consider both rigid and non-rigid deformations of the attenuation map.

For rigid deformations, the second step of the nested approach (eq. (14)) is solved

with a weighted least squares registration algorithm, as briefly discussed in section 2.3.

Section 2.4 proposes a method for non-rigid deformations, where the deformation step

is computed with a slightly modified version of the demons algorithm (Thirion 1998).

2.1. Attenuation Deformation Estimation

When the activity is fixed, the log-likelihood function becomes similar to that of standard

transmission tomography, except that instead of updating the attenuation values, we

wish to adjust the attenuation image by modifying the deformation parameters.

The proposed algorithm is based on the MLTR algorithm (Van Slambrouck et al.

2014), a maximum likelihood reconstruction algorithm for transmission tomography.

In every iteration MLTR makes a quadratic approximation to the Poisson likelihood

function, which is then replaced by a separable quadratic surrogate function. The

surrogate function has the following form:

S(µ(n) + δµ, y) = L(µ(n), y) +
∑

j

L̇
(n)
j δµj +

∑

j

1

2
L̈
(n)
j (δµj)

2 (3)

where,

L̇
(n)
j

△
= L̇j

∣

∣

∣

µ=µ(n)
=

∂L

∂µj

∣

∣

∣

∣

µ=µ(n)

, L̈
(n)
j

△
= L̈j

∣

∣

∣

µ=µ(n)
=
∑

k

∂2L

∂µj∂µk

∣

∣

∣

∣

∣

µ=µ(n)

where µ(n) represents the attenuation reconstruction at the current iteration n and δµ
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is its update. Maximising (3) produces the MLTR update δµ(n):

µ
(n+1)
j = µ

(n)
j + δµ

(n)
j (4)

δµ
(n)
j = argmax

δµ

S(µ(n) + δµ, y) = −
L̇
(n)
j

L̈
(n)
j

(5)

Details on the MLTR update for TOF-PET data are given in Appendix A. The update

maximises the surrogate and guarantees that the value of the quadratic approximation

to the likelihood increases. The likelihood is therefore expected to increase as well, but

because of the approximation, monotonicity cannot be guaranteed. In our experience

this algorithm works very well in practice and increases the likelihood monotonously.

The MLTR algorithm is now adapted to the new problem using an approach similar

to that proposed by Wang and Qi (Wang et al. 2009) for direct reconstruction of kinetic

parameters. For the problem at hand, the surrogate function (3) is rewritten as a

function of the deformation parameters Θ:

S̃(µ[Θ(n)] + δµ[θ], y) = L(µ[Θ(n)], y) +
∑

j

L̇
(n)
j δµj[θ] +

∑

j

1

2
L̈
(n)
j (δµj[θ])

2 (6)

where Θ(n) is the deformation at the current iteration n, θ is an update to that

deformation and δµ[θ] = µ[Θ(n) + θ]− µ[Θ(n)]. The new value of Θ is obtained as

Θ(n+1) = Θ(n) + θ(n) (7)

θ(n) = argmax
θ

S̃(µ[Θ(n)] + δµ[θ], y) (8)

where we have slightly misused the ’+’ sign to denote the composition of the

transformations. The update is obtained by setting the derivatives of (6) to zero, which

yields:

∂S̃

∂θp
=

(

∑

j

L̇
(n)
j + L̈

(n)
j δµj[θ]

)

∂δµj [θ]

∂θp
= 0, p = 1, ..., P (9)

This maximisation is equivalent to the following least squares problem:

θ(n) = argmin
θ

1

2

∑

j

L̈
(n)
j

(

δµj[θ]− δµ
(n)
j

)2

(10)

Finally, (10) can be regarded as an image registration problem using a weighted least

squares criterion, since it can be rewritten as:

θ(n) = argmin
θ

1

2

∑

j

L̈
(n)
j

(

(µj[Θ
(n)] + δµj[θ])− (µj[Θ

(n)] + δµ
(n)
j )
)2

(11)

The two images that are registered are

• the static image µ[Θ(n)] + δµ(n), which is obtained by applying MLTR iteration (5)

to the image obtained in the current iteration, and

• the image µ[Θ(n)] + δµ[θ], which is obtained by deforming the image at the current

iteration according to the deformation parameters θ.
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Consequently, the MLRR algorithm is obtained by iterating the following three steps

procedure:

(i) apply MLEM to update λj:

λ
(n+1)
j =

λ
(n)
j

∑

i cijai

∑

it

cijtai
yit

∑

ξ ciξtaiλ
(n)
ξ + sit

(12)

(ii) apply the MLTR algorithm to obtain the intermediate reconstruction m(n) (see

Appendix A for expressions for L̇j and L̈j):

m
(n)
j = µj[Θ

(n)] + δµ
(n)
j = µj[Θ

(n)]− L̇
(n)
j /L̈

(n)
j (13)

(iii) apply a weighted least squares registration to update the deformation:

Θ(n+1) = Θ(n) + argmin
θ

1

2

∑

j

L̈
(n)
j

(

µj[Θ
(n)] + δµj[θ]−m

(n)
j

)2

(14)

2.2. Acceleration

We have observed previously that the MLRR algorithm is slow to converge (Rezaei

et al. 2012b). Here we introduce a term based on Nesterov’s momentum (Kim et al.

2014; Nesterov 1983) that affects the estimation of the intermediate reconstruction m(n),

and significantly improves the convergence speed of the algorithm. In this accelerated

scheme, the second step of the algorithm (eq. (13)) is replaced by:

(ii)* replace MLTR updatem(n) with the updatem(n)∗ , which is obtained with Nesterov’s

momentum method as follows:

m
(n)∗

j = µj[Θ
(n)] + δµ

(n)∗

j

= µj[Θ
(n)]−

L̇j

L̈j

∣

∣

∣

∣

∣

µ=µ[Θ(n)]+α(n)δµ(n−1)∗

+ α(n)δµ
(n−1)∗

j (15)

where, δµ(n)∗ is the current accelerated MLTR attenuation update, and

α(n) =
h(n−1) − 1

h(n)
, h(n) =

1 +
√

1 + 4(h(n−1))2

2
(16)

with h(0) = 1.

The addition of a term based on previous MLTR reconstruction updates δµ(n−1)∗

provides some momentum for attenuation reconstruction, and consequently for the

estimated motion parameters. The acceleration with Nesterov momentum is known

to be non-monotonic even if the original optimiser is monotonic.

2.3. Special Case of Rigid Motion Estimation

To simultaneously reconstruct the activity image and rigidly align the attenuation map,

the parameter set Θ contains 6 rigid motion parameters (three translations and three

rotation angles). They are determined by a rigid registration algorithm which minimises

the sum of weighted squared differences (11), using a gradient descent algorithm and

accelerated by incorporating the momentum produced by (15).
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2.4. Special Case of Non-rigid Deformation Estimation

For the non-rigid case, the deformation parameters Θ are replaced by a vector‡

Dj = (Dx
j , D

y
j , D

z
j ) of displacement fields for every voxel j. Minimising (10) by means

of the demons registration algorithm (Thirion 1998), an incremental displacement d

update is computed as:

d
(n)
j =

(∇µ[D(n)])jδµ
(n)
j

‖(∇µ[D(n)])j‖2 − β/L̈
(n)
j

(17)

where (∇µ[D(n)])j is the gradient of the deformed attenuation image at voxel j with

respect to the image coordinates (x, y, z), and β/L̈
(n)
j helps to stabilise the incremental

displacement estimate d
(n) at low gradient values of the deformed attenuation image in

which β is the strength of a penalty term. Details on the derivation of the incremental

displacement update are given in Appendix B.

The displacement update (17) is essentially the constrained demons update (Thirion

1998), differing from it only by using a different form for the stabilisation term and by

only using the gradient of the deformed CT image§. The original demons algorithm uses

||δµ||2 in the denominator which automatically limits the step size to a maximum of 0.5

pixels. As the iterations proceed and the maximum likelihood solution is approached,

the values δµ become small, hence a smaller maximum step size would be more desirable.

The use of the stabilising term β/L̈
(n)
j further reduces the influence of the vanishing δµ

(n)
j

in later iterations. Unfortunately L̈
(n)
j is count-dependent. This count-dependency is

accounted for by adjusting β such that the incremental displacement update of (17) gives

a maximum change of 0.5 voxels in the early iterations of the MLRR algorithm. The

value of β is then kept constant in subsequent iterations, ensuring that the displacement

updates (17) will vanish with vanishing δµj .

When using the acceleration provided by the momentum of the attenuation updates

(using the accelerated estimate δµ(n)∗ defined in (15) instead of δµ(n)), in order to limit

the maximum incremental displacement in (17) to the defined maximum, the same

acceleration scheme must also be applied to the stabilising term β/L̈(n). Since β is

fixed and L̈(n) changes little with iterations, we alternatively weight the strength of the

regularisation term in each iteration by:

γ(n) = 1 + α(n)γ(n−1) (18)

where, γ(0) = 0 and use γ(n)β/L̈
(n)
j as the modified regularisation term in (17).

The task of image registration can also be accelerated by a multi-resolution

registration scheme. A multi-resolution approach offers two advantages: not only

it accelerates the registration process, it also reduces the risk of getting stuck at

possible local maxima of the solution space. However, with a non-rigid motion model,

convergence to the global solution is never guaranteed. In our implementation of the

‡ A bold symbol indicates a three element vector throughout the text.
§ The gradient of the moving image is used as opposed to the gradient of the fixed image (Vercauteren

et al. 2009).
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multi-resolution registration scheme, the incremental displacement update is estimated

in multiple resolution levels in every iteration, where the pixel width in a coarser level

was set to twice that of the finer resolution level. After updating the incremental

displacement fields in each resolution level, the final incremental displacement field is

computed as the composition of the multi-resolution incremental displacement fields

(coarse-to-fine resolution levels), and is used to deform the CT attenuation image.

In addition to constraining the incremental displacement update to small

displacement values by introducing a quadratic penalty term defined in (B.5), we also

favour locally smooth displacement estimates dj by enforcing a fluid-like and a diffusion-

like smoothing on the estimated displacement fields. These approaches have been

previously shown to be very effective for optimisation with the demons (Vercauteren

et al. 2009). When computing the non-rigid displacement fields at each resolution

level, the additional regularisation was done by applying a Gaussian smoothing to the

displacement fields, i.e.:

d
(n)
j =

∑

ξ

GF
jξd

(n)
ξ (19)

D
(n+1)
j =

∑

ξ

GD
jξ(D

(n)
ξ + d

(n)
ξ ) (20)

where, GF and GD are the fluid-like and diffusion-like regularising Gaussian kernels

(Vercauteren et al. 2009; Cachier et al. 2004), respectively. Details about the parameter

values used in the experiments are provided in the simulation designs of section 3.

When the activity is fixed and the log-likelihood is treated as a function of voxel

attenuation values, the associated Hessian is negative semi-definite, and therefore, the

only local maximum is the global one (Lange et al. 1995). However, when the log-

likelihood is treated as a function of a displacement field, the computation of the

Hessian is challenging, and it seems very likely that there will be multiple local maxima.

Therefore, starting the non-rigid motion estimation from a rigidly aligned attenuation

map would be recommended.

3. Experiment Design

The Siemens Biograph mCT scanner specifications (Jakoby et al. 2011) (with a radial

detector mashing of 2) were chosen in the simulations. In the 2D simulations, the

TOF-PET data were organised in a 3D sinogram consisting of 200 radial bins of 0.4

cm width, 168 projection angles over 180 deg, and 13 TOF-bins of 312 ps width (which

is sufficient to avoid aliasing artifacts in the reconstructions (Defrise et al. 2008)) with

an effective TOF resolution of 580 ps. A small discrepancy between the simulation

and reconstruction projectors was introduced by discretising the 2D thorax phantom in

an over-sampled grid of 600 × 600, and the simulated LORs were subsequently under-

sampled as the average of three LORs. Both activity and attenuation images were

forward-projected using Joseph’s method (Joseph 1982), where for each TOF-bin the
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activity image was weighted by the effective weights of the TOF-bin width and the TOF-

resolution. Activity and attenuation images were then reconstructed in a 200×200 pixel

grid of 0.4 cm width.

In the fully 3D simulation, the TOF-PET emission data were organised in a 5D

sinogram consisting of 200 radial bins of 0.4 cm width, 168 azimuthal angles, 9 co-

polar angles with 109 planes of 0.2 cm width, and 13 TOF-bins of 312 ps width. A 3D

implementation of the above forward-projection was used to obtain the 5D TOF-PET

emission measurements. The resulting 3D activity and attenuation reconstructions had

a 200× 200× 109 voxel grid with a voxel width of 0.4 cm and 0.2 cm in the transaxial

and axial directions, respectively.

The above described MLRR images were compared to the reconstructions obtained

with the MLAA algorithm (Rezaei et al. 2012b), with the aim of revealing similarities

and differences between the joint reconstructions and not identifying one as the

algorithms of choice (left for future research). The MLAA reconstructions were

initialised with a uniform activity image and a uniform tissue attenuation image in

the phantom/patient support. In order to eliminate any confounding effects of the

scale factor in the reconstructions, the scale problem in MLAA was fixed by assuming

knowledge of the total tracer activity. The MLRR algorithm is initialised with a

uniform activity image, the misaligned CT-based attenuation image µ† and the identity

displacement field for a non-rigid motion model. Furthermore, the CT attenuation image

used in the simulations had the same image resolution as the true phantoms that were

used to create the PET emission data. In the patient data reconstructions, a Gaussian

smoothing of 4 mm FWHM was applied to correct for the difference in PET and CT

system resolutions.

In the following, the activity and attenuation figures are displayed in inverse gray

and gray colour maps, respectively.

3.1. 2D Simulation

The MLRR and MLAA algorithms were compared in a 2D TOF-PET simulation of

a 2D thorax phantom. Figure 1 shows the activity and attenuation images with three

(tissue (blue), lung (green), and tumour (red)) contours of the regions of interest (ROIs)

where the reconstructions are analysed in. The figure also shows the two mismatched

CT attenuation images used in the study. The mismatch in the CT1 attenuation image

is created by an increase of the size of the lungs, and a change in the size and location

of the simulated tumour lesion. The CT2 attenuation image is obtained by a rigid

transformation of the CT1 attenuation image, i.e. rotation of 30 deg, and a translation

of 2.4 cm and 6.0 cm in the horizontal and vertical directions, respectively.

3.1.1. Reconstructions MLAA and MLRR reconstructions are compared for noise-

free TOF-PET data as well as moderate-noise and high-noise in the emission data. The

moderate-noise TOF-PET data had an expected maximum count of 50.4 and 146.0
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CT1 CT2

Figure 1: 2D activity (column 1) and attenuation (column 2) images of a simulated

thorax phantom. The activity contours define tissue (blue), lung (green), and tumour

(red) regions of interest (ROIs). The two mismatched CT attenuation images used in

the 2D simulation study are shown in columns 3 and 4. CT1 (column 3) differs from

the true attenuation by a non-rigid deformation of the attenuation image, CT2 (column

4) is obtained by a rigid transformation of the CT1 attenuation image.

in the TOF-PET sinogram and its corresponding non-TOF sinogram data bins, for the

high-noise data these count values were 12.6 and 36.5. In this study, the CT2 attenuation

image was used as the mismatched attenuation image. For MLAA, we assumed that

the total amount of activity was known and the MLAA activity reconstructions were

scaled in each iteration accordingly.

The reconstructions are analysed after 5 iterations of 24 subsets of the MLRR

algorithm, where the attenuation image is updated three times for each update of the

activity image (i.e. after each MLEM sub-iteration, three MLTR sub-iterations are

applied). The first iteration estimates the rigid transformation parameters, providing an

initial alignment of the given CT attenuation image. The following 4 iterations assume

a non-rigid deformation model, where the multi-resolution scheme is used to update

the displacement parameters in two resolution levels in each iteration. A diffusion-

like and fluid-like regularisation of the displacement field was obtained by smoothing

the displacement field and its update with a Gaussian of 1.0 and 2.5 pixels FWHM,

respectively. The same smoothing regularisation was applied for the noise-free and

the noisy TOF-PET emission data sets. For the MLAA reconstructions, 3 iterations

with 24 subsets were applied, again with 3 MLTR sub-iterations for each MLEM sub-

iteration. For the MLEM reconstruction 3 iterations with 24 subsets were computed. In

both MLAA and MLRR, the attenuation is updated more frequently than the activity

because its convergence tends to be slower.

The emission data provide no attenuation information in LORs that do not intersect

the activity distribution. In order to improve the attenuation reconstruction of MLAA,

LOR-values outside the support of the activity distribution were given a small count in

the “blank” (un-attenuated projection of the activity image) and measured sinograms,

which encourages the MLTR algorithm to assign zero attenuation outside the activity

distribution support. For MLRR, the displacement estimation was restricted to the

voxels within the support of the CT-based attenuation image.
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3.1.2. Bias-Variance We analysed noise properties of the activity reconstructions of

both MLRR and MLAA. First a noise-free data set was computed (with the same

expected maximum count as the high-noise data set of section 3.1.1), which was then

used as the expectation for a pseudo-random Poisson noise generator to generate 100

independent noise realisations. In this study, the CT2 mismatched attenuation image

was used, and the reconstruction parameters were set as previously described. The

results are reported after 120 updates of MLRR and MLAA activity reconstructions,

where all projection angles were used in every update. For MLRR, a rigid motion model

is used in the first 24 activity updates and a non-rigid motion model is used for the

following 96 updates of the MLRR activity image. The joint activity reconstructions

are compared to MLEM reconstructions with the attenuation sinograms of the true,

CT1, and CT2 attenuation images. We assume that the noise-free reconstructions of

the thorax phantom are a good estimate of the average of noisy reconstructions. Bias

is computed as the average absolute pixel-by-pixel difference between the noise-free

reconstruction and the activity phantom of figure 1, and variance is computed as the

squared mean difference from the noise-free reconstructions. We report the estimated

bias as well as the variance of activity reconstructions in the support of the 2D thorax

phantom for 100 different TOF-PET noise realisations.

3.1.3. Convergence Analysis In order to get more insight into the convergence

properties of MLRR, the log-likelihood of equation (1) as well as the root mean square

error (RMSE) between the attenuation reconstructions and the true attenuation image

were computed for each iteration of MLRR. The log-likelihood was normalised by its

upper limit defined by the TOF emission data, i.e.
∑

it yit ln yit − yit. The influence

of Nesterov’s momentum acceleration as well as the multi-resolution displacement

estimation scheme in MLRR are analysed in the noise-free and the moderate-noise

TOF-PET emission data. A non-rigid motion model starting from the CT1 mismatched

attenuation image was used in the analysis, and the likelihood and RMSE are plotted

for 250 updates of the attenuation image. In this study, no ordered subsets acceleration

was applied, i.e. all projection angles were used in every iteration.

3.1.4. TOF-resolution The effects of the TOF-resolution was studied by varying the

simulated TOF Gaussian kernel ranging from 1.2 ns to 0.2 ns FWHM. In order to

avoid aliasing artifacts, the emission data were projected in 40 TOF-bins of 100 ps

width. Similar to section 3.1.3, the algorithm is initialised with the CT1 mismatched

attenuation image, only a non-rigid motion model was considered and no ordered subsets

were applied during reconstructions. We report on the likelihood and RMSE obtained

after 250 updates of the attenuation image.
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3.2. 3D Simulation

The XCAT phantom (Segars et al. 2010) was used to generate realistic respiratory

motion. A maximum diaphragm motion of 2.0 cm and a maximum anterior-posterior

motion of 1.2 cm was used to simulate the breathing cycle, which was gated into 8

(motion-free) frames. Figure 2 shows the activity and attenuation images of the XCAT

phantom frame used in this study as well as the mismatched CT attenuation image

which was chosen from a different frame in the respiratory cycle.

CT

Figure 2: Transaxial, coronal and sagittal views through the true activity (left),

true attenuation (centre), and the mismatched CT attenuation (right) images of the

breathing XCAT phantom. The XCAT phantom was gated into 8 respiratory gates, the

true activity and attenuation images, and the mismatched attenuation image correspond

to frames 4 and 2, respectively.

The XCAT phantom was forward projected with the 3D TOF-PET projector, and

Poisson noise was added to the measurements to simulate a 4 min 18F-FDG thorax scan.

The average maximum count of the TOF sinogram and its corresponding non-TOF

sinogram were 10.6 and 28.2, respectively. MLRR and MLAA activity and attenuation

reconstructions are then compared. Furthermore, the attenuation reconstruction of

MLRR is compared to a demons (Thirion 1998) registration of the CT attenuation image

and the reference true attenuation of figure 2. In the 3D simulation, the displacement

estimate of MLRR was regularised by a diffusion-like smoothing of 1.0 voxel FWHM and

a fluid-like smoothing of 2.5 voxels FWHM. The activity and attenuation reconstruction

comparison of MLAA and MLRR are after 3 iterations of 24 subsets, and the demons

registered attenuation image is obtained after the same number of registration updates

in two resolution levels.

3.3. Patient Data

3.3.1. Reconstruction A clinical 4 min TOF-PET thorax scan (Siemens Biograph

mCT) of a patient injected with 296 MBq of 18F-FDG is reconstructed with MLRR

and compared to activity reconstructions of MLEM. The emission data was acquired

80 minutes post-injection, and had a measured true-to-prompt coincidence event ratio
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of 36%. The additive contribution of randoms as well as the single-scatter estimate

(Watson 2007) were corrected for during reconstructions. The displacement estimates

were updated as in section 3.2.

3.3.2. Gated Reconstructions The amplitude-based data-driven gating of (van Elmpt et

al. 2011) is used to gate the 4 min 18F-FDG thorax scan of the patient into 3 respiratory

gates. For each gate, we compare the MLEM activity reconstruction with the CT-based

attenuation image to the activity reconstruction of MLRR, initialised with the same

CT-based attenuation image.

4. Results

4.1. 2D Simulation

4.1.1. Reconstructions An MLEM activity reconstruction with the mismatched CT2

attenuation image is shown in figure 3 together with the joint activity and attenuation

reconstructions of MLAA and MLRR for the noise-free TOF-PET emission data. Figure

3 also shows the attenuation estimates of MLRR (after 1 iteration of 24 subsets)

assuming a rigid transformation model and the non-rigid attenuation estimate of MLRR

(the following 4 iterations of 24 subsets). The MLRR attenuation estimate is comparable

to the attenuation reconstruction of MLAA; however, it differs slightly near rapid

directional changes of the attenuation gradient.

MLRR

DCT ATT

MLAA

DCTrigid

MLEMCT2

Figure 3: The top row shows the activity images produced by MLEM with the

mismatched CT2 attenuation image, by MLRR and by MLAA. The bottom row shows

the MLRR attenuation images obtained after the initial rigid transformation (left) and

the final non-rigid transformation (middle), and the MLAA attenuation image (right).

(The mismatched CT2 attenuation image is shown in fig 1.)

Figure 4 shows the MLRR and MLAA activity and attenuation reconstructions

for the moderate-noise and the high-noise TOF-PET emission data. As in the noise-

free case, the MLRR attenuation reconstructions are obtained after an initial rigid
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parameter estimation followed by a non-rigid displacement estimation. Since noise

behaves differently in both algorithms, the attenuation reconstructions are visually

different. In MLAA noise directly influences the voxel values whereas in MLRR noise

propagates through the deformation into the position of the anatomical boundaries (i.e.

gradients in the attenuation image), however, the resulting attenuation image is still

piecewise smooth similar to the original CT-based attenuation image. Thus, implicitly

applying a very strong noise suppression to the attenuation coefficients, except near

anatomical boundaries.

MLAAMLRR DCT ATT

Figure 4: Activity (columns 1 and 3) and attenuation (columns 2 and 4) reconstructions

of MLRR and MLAA for the moderate-noise (top) and high-noise (bottom) TOF-PET

emission data.

At both noise levels, the activity reconstructions of MLAA and MLRR are very

similar. To quantify the accuracy of the reconstructions, two error measures were

used; 1- the mean absolute difference (MAD) and 2- the mean difference (MD) of the

reconstructions. The error terms were computed as:

MAD =

∑

j |ACTj −GTj|
∑

j GTj

, MD =

∑

j∈ROIACTj −
∑

j∈ROIGTj
∑

j∈ROIGTj

(21)

where GT is the ground truth activity distribution (figure 1) and ACT was set to

the activity reconstruction of MLRR, MLAA and MLEMCT2, respectively. For the

reconstructions of figure 4, the mean absolute difference of MLRR and MLAA were

28.9% and 26.5% for the moderate-noise activity reconstructions and 51.1% and 48.8%

for the high-noise simulations, respectively. The same measure of error was 42.8% and

50.6% for the MLEM reconstruction with the mismatched CT attenuation image. Table

1 reports on the mean difference (MD) errors obtained in the ROIs defined in figure 1.

Although the MLRR and MLAA produce similar error terms in the defined ROIs, the

results could still be affected by a difference in convergence of the two methods.

4.1.2. Bias-Variance Figure 5a shows the bias and variance properties of MLRR and

MLAA activity reconstructions compared to reference MLEM reconstructions with the
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Table 1: Mean difference (MD) errors of different regions of interest (ROIs) for

MLRR/MLAA activity reconstructions and the ground truth activity of figure 1.

Tumor ROI Tissue ROI Lung ROI

MLRR MLAA MLRR MLAA MLRR MLAA

noise-free (%) 7.0 2.9 2.6 0.6 1.9 −0.7

moderate-noise (%) −4.0 −1.6 −6.9 −4.8 2.4 −3.9

high-noise (%) −3.0 −10.1 −6.1 −7.5 −0.8 −0.3

true (MLEMTrue), CT1 (MLEMCT1), and CT2 (MLEMCT2) attenuation images. As

expected, the misalignment of the CT can strongly influence bias in the emission

reconstructions. Interestingly, after changing from a rigid motion model (prior to the

kink in the curve) to a non-rigid motion model, bias and variance values for MLRR

and MLAA are similar. Figure 5a suggests that similar bias should be expected by

both MLRR and MLAA at a matched variance level. Furthermore, figure 5b shows

the scatter plots of the MLRR/MLAA and the MLEM mean and variance activity

reconstructions of the 100 noise realisations, where linear regression was applied to

quantify image similarities. For both the mean and the variance images, slightly better

similarity measures (slope q, coefficient of determination r2) were computed for MLRR

than for MLAA compared to the reference MLEM mean and variance images.

4.1.3. Convergence Analysis Figure 6 shows the normalised likelihood (1) and the

RMSE values for 250 updates of the MLRR algorithm where no subsets were used for

the estimation of the MLTR attenuation update. The two measures are computed with

no acceleration and a registration in only the finest resolution level (MLRR). The results

are then compared to the results obtained by using Nesterov’s momentum (MLRR+),

registration in two resolution levels in each iteration (MLRRMR), and the combined

acceleration and multi-resolution scheme (MLRRMR+). Although monotonicity of

the likelihood cannot be guaranteed in MLRR, the likelihood has increased in each

iteration in all simulated cases. In all simulations, the reconstructions accelerated by

Nesterov’s momentum achieve a higher likelihood and a lower RMSE than the non-

accelerated MLRR reconstructions. Furthermore, the joint utilisation of Nesterov’s

momentum together with multi-resolution registration scheme provides an increased

level of convergence with the least amount of error. It should also be mentioned that

applying ordered subsets lead to further acceleration of the algorithm; however, the

decrease in the RMSE values was no longer monotonic.

4.1.4. TOF-Resolution Figure 7 shows the estimated likelihood and the RMSE of the

reconstructed activity images compared to the ground truth activity image of figure 1.

It can be observed that as the TOF-resolution improves so does the convergence of the

MLRR algorithm. Analysing the RMSE for different sets of fluid-like and diffusion-like

regularisation of the estimated displacements, we found that the fluid-like regularisation
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(a) Bias and variance of MLRR and

MLAA activity reconstructions compared

to MLEM activity reconstructions with the

true, CT1, and CT2 attenuation images.

The curves are produced by varying the

number of iterations.

(b) MLAA-MLEM (left) and MLRR-MLEM

(right) scatter plots of the mean (top) and the

variance (bottom) of the activity reconstruc-

tions (obtained after 120 updates) for the 100

noise realisations. Linear regression (slope q,

coefficient of determination r
2) was applied to

the data-points of each plot to analyse the im-

age similarities.

Figure 5: Results of the noise realisation study, (a): bias and variance curves, (b):

MLRR and MLAA scatter plots.

had a minimal effect on the RMSE values, whereas the diffusion-like regularisation could

cause instabilities most likely occurring at discontinues of the gradient image of the

attenuation.

4.2. 3D Simulation

Figure 8 shows the MLRR and MLAA activity reconstructions as well as the

MLEM activity reconstructions with the true attenuation image (MLEMTrue) and the

mismatched CT (MLEMCT) image which was chosen from a different respiratory frame.

As expected, the MLEM reconstruction suffers from motion artifacts (most pronounced

near the dome of the liver), and the joint activity reconstructions of MLAA and

MLRR are comparable to the MLEM reconstruction with the true attenuation image

(MLEMTrue). The figure also shows the attenuation reconstruction of MLAA (ATT)

and the attenuation estimate of MLRR (DCT) together with a registered demons

attenuation image. Although the attenuation reconstruction of MLAA is sufficient for

attenuation correction, the attenuation details are lost due to the amount of noise in

the data. In contrast, the MLRR attenuation estimate has the benefit of producing an

aligned attenuation estimate while roughly maintaining the resolution of the mismatched

CT attenuation image. Visual inspection shows a good agreement between MLRR
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Figure 6: Normalised log-likelihood of (1) (left) together with the RMSE (right) of

the attenuation estimates of MLRR for noise-free (top) and moderate-noise (bottom)

TOF-PET emission data.

Figure 7: Normalised log-likelihood of (1) (left) together with the RMSE (right) of

the activity reconstructions of MLRR for the noise-free TOF-PET emission data with

a varying TOF Gaussian resolution of 1.2 ns to 0.2 ns FWHM.

attenuation image and the true attenuation image.

4.3. Patient Data

4.3.1. Reconstruction Figure 9 shows the MLEM activity reconstruction together with

the MLRR and MLAA activity and attenuation reconstructions of the 4 min 18F-FDG

patient scan. The reconstructions are obtained after 3 iterations of 24 subsets, and

the activity reconstructions are post-smoothed by a Gaussian of 0.4 cm FWHM. The

shadow-like artifacts (more pronounced near the dome of the liver and the lateral wall

of the heart) in the MLEM activity reconstruction suggest slight mismatch between

the CT and the average attenuation image that has affected the TOF-PET emission
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MLEMCT

CT

MLEMTrue

demons

MLRR

DCT

MLAA

ATT

Figure 8: Activity (top) and attenuation (bottom) reconstructions of the XCAT

phantom. The MLRR (column 3) and MLAA (column 4) activity reconstructions are

compared to activity reconstructions of MLEM with the mismatched CT (column 1 -

top) and the true attenuation image (column 2 - top). The CT (column 1 - bottom) and

the registered demons (column 2 - bottom) attenuation images are shown as reference.

For the true attenuation image, see figure 2 (centre column).

data. The reconstructed attenuation image of MLRR (and MLAA) supports this claim,

where the boundary of the liver is shifted upward and hence the activity reconstruction

of MLRR (and MLAA) seems free of the shadow-like artifacts. It has been shown that

TOF-PET is more robust than non-TOF PET to errors in the attenuation image (Conti

2011). Hence, to better reveal the presence of possible attenuation mismatches, non-

TOF data were produced by summing all TOF-bins and reconstructed with non-TOF

MLEM using the different attenuation maps. The comparison of these non-TOF MLEM

images based on the CT, the deformed CT of MLRR (DCT) and the MLAA (ATT)

attenuation images provide more evidence that the alignment of attenuation image has

been improved by the joint estimation methods.

4.3.2. Gated Reconstructions Figure 10 shows the MLRR reconstruction of the same

4 min 18F-FDG patient scan when the emission data was gated into 3 respiratory gates.

As before, the reconstructions are obtained after 3 iterations of 24 subsets and the

activity reconstructions are post-smoothed by a 0.4 cm FWHM Gaussian kernel. It is

interesting to see that the position of the lung-liver boundary differs for the attenuation

reconstruction of each gate, and that the MLRR activity reconstructions seem to be free
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MLAA

NTMLEM
ATT

ATT

MLRR

NTMLEM
DCT

DCT

MLEM

NTMLEM
CT

CT

Figure 9: Transaxial, coronal and sagittal slices through the activity (top)

reconstructions of MLEM (left), MLRR (centre) and MLAA (right) shown together with

the CT-based attenuation (middle-left), the MLRR deformed-CT attenuation (middle-

centre) and the MLAA attenuation (middle-right) reconstruction. The non-TOF

(intensifying motion-induced artifacts) MLEM activity reconstructions (bottom) with

the CT-based (left), MLRR deformed-CT (centre) and the MLAA (right) attenuations

are shown for reference.

of the shadow-like artifacts observed in the MLEM activity reconstruction close to the

boundary of the liver. Although the shadow-like artifacts near the lateral wall of the

heart seem to be reduced in the MLRR activity reconstruction, there are some remaining

artifacts which are observed in both MLRR and MLAA activity reconstructions which

we attribute to the cardiac motion.

5. Discussion

Time-of-flight PET has attracted a lot of interest among researchers due to the desired

properties of the emission reconstructions from TOF-PET data (Conti 2011), e.g. faster

convergence rate, improved contrast-to-noise ratio, robustness to possible inaccuracies

in normalisation and attenuation factors, etc. More recently a systematic study on

a population of clinical patient scans (Mehranian et al. 2015a) has showed that TOF

reconstructions substantially improve the quantitative accuracy of tracer distribution as

a result of the TOF robustness to possible imperfections. Since it was shown that the

TOF-PET emission data provide information about the attenuation that is not available

in non-TOF data (Defrise et al. 2012; Conti 2011; Salomon et al. 2011), the topic of

joint activity and attenuation reconstruction from TOF-PET data has gained increased

attention. In addition to the desired properties of TOF-PET reconstructions, the joint

reconstruction methods provide a novel approach to activity and attenuation alignment
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DCT

GATE 3

DCT

GATE 2

DCT

GATE 1

ATTMLAAATTMLAAATTMLAA

DCTMLRRDCTMLRRDCTMLRR

Figure 10: Results for the gated TOF-PET emission data. The superscripts denote

the gate number. For each of the three gates, the following images are shown: MLRR

activity and attenuation images (centre row), the MLAA activity and attenuation images

(bottom row) and the difference between the MLRR attenuation image and the original

CT-based attenuation (top right).

in case of between-scan and in-scan motion.

Although methods have been proposed that make use of the invaluable CT (Panin

et al. 2012) or MR (Salomon et al. 2011; Li et al. 2013) data, the methods assume a

perfect activity and attenuation alignment. In this contribution we use the available CT-

based attenuation images and non-rigidly align them to the emission data. By doing so

we obtain aligned attenuation images while approximately preserving the resolution and

signal-to-noise ratio of the CT-images. Furthermore, since the CT-based attenuation

images are pre-corrected for the appropriate photon energy of 511 keV, no extra handling

of the data is required to correct for the unknown scale in the joint estimation problem

(Defrise et al. 2012).

The proposed MLRR algorithm builds on the MLAA algorithm by replacing the

update of the attenuation image by estimating transformation parameters that produce

the required attenuation update. For each MLAA sub-iteration (with a 1:3 activity to

attenuation update ratio), a total of 16 (back/)projections are required which only 2

are TOF (back/)projections. For reference, each MLEM sub-iteration involves only 2

TOF and 1 non-TOF (back/)projection operations. In addition to the same number

of (back/)projections as MLAA, MLRR requires 3 incremental (rigid/nonrigid) motion

estimations per iteration. In our implementation of the algorithm, each iteration of the

MLRR algorithm roughly takes twice as long as an MLAA iteration.

The method was accelerated by using Nesterov’s momentum which makes use

of the previous attenuation update as well as the current update of MLTR. Our
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use of the momentum method is empirical, since it was used here to accelerate the

MLTR algorithm, ignoring the fact that MLTR was interleaved with updates of the

deformation. Nevertheless, it was found to yield a very significant acceleration. The

effects of using Nesterov’s momentum as well as the multi-resolution approach were

investigated by means of the log-likelihood function and the RMSE of the MLRR

attenuation reconstructions (figure 6). The convergence analysis showed a monotonic

increase/decrease in the log-likelihood/RMSE values in the simulations. However, we

should note that Nesterov’s acceleration method is known to be non-monotonic. We

anticipate that with a better TOF-resolution, a similar improvement would be expected

for MLRR reconstructions as with MLAA reconstructions reported in (Rezaei et al.

2012b).

In our experience and in the case of a non-rigid motion model, we were able

to achieve stable results provided that the incremental displacement updates were

small and locally smooth. The use of a multi-resolution scheme further improves the

stability of the non-rigid registration. Although the proposed non-rigid update of (17)

is count dependent, it reduces the influence of the vanishing attenuation updates in

later iterations. We found the update of (17) to be better suited than the original

regularised demons update with a fixed maximum displacement update in each iteration

(Vercauteren et al. 2009). We do not expect problems due to the count-dependency

of (17) in clinical practice as the strength of the quadratic regularisation (β) of the

estimated displacement field could be computed from the initial iterations to give the

desired maximum update of the displacement fields.

In this study, the Gaussian fluid-like and diffusion-like smoothing parameters were

chosen empirically; however, similar to (Yeo et al. 2008), a more extensive study is

still required to optimise and to analyse the effect of the smoothing parameters on

the estimated displacement field and on the quantitative accuracy of the reconstructed

activity image. As illustrated in figure 4, noise on the emission data propagates into

the MLRR attenuation map as uncertainties on the position of the contours in the

deformed attenuation image. The results of the 2D noise analysis (figure 5) showed

that noise propagation has no adverse effect on the noise in the reconstructed activity

image. However, for some applications, e.g. when the deformed CT would also be used

for defining regions of interest, it may be desirable that the deformation of the CT is as

realistic as possible. For such applications a stronger constraining may be needed than

the one we have applied in our experiments.

In the clinical patient scan, MLRR was able to produce an aligned attenuation

image which effectively removed parts of the shadow-like artifacts observed in the MLEM

activity reconstruction. The shadow-like artifacts which were observed above the dome

of the liver were also absent in the MLRR activity reconstruction of the 3 respiratory

gates; however, artifacts were still present near the lateral wall of the heart. We attribute

this to the cardiac motion, present in each respiratory phase. MLRR produced a fairly

large deformation near the lateral wall. We assume this deformation minimises the

inconsistencies due to the cardiac motion. It is likely that these inconsistencies can
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not be eliminated entirely, since there is no stationary object that can explain the

attenuation produced by an active and attenuating object which moved during the

acquisition (Hamill et al. 2012; Rezaei et al. 2013b). Otherwise, the deformations

produced by MLRR seem to be well in agreement with respiratory motion.

The registration step in the MLRR algorithm preserves the CT attenuation

intensities, and is not mass preserving. The effects of utilising a mass preserving

algorithm, and its comparison to the current intensity preserving algorithm remains to

be studied. Furthermore, applying additional constraints on the estimated deformation

field such as the ones which enforce local rigidity might provide a tool to better reflect

internal motion. With the recent developments and interest in simultaneous PET/MR

systems, adapting the method to also use the anatomical information gathered from

the MR by combining MLRR (i.e. jointly estimating deformation and activity) with

Salomon’s approach (Salomon et al. 2011) (i.e. jointly estimating a small number of

attenuation values and activity) could be fruitful.

6. Conclusion

The MLRR algorithm was proposed to make use of the high quality CT image and

to iteratively reconstruct the activity image while deforming the CT-based attenuation

image. Our 2D and 3D simulations indicate that the method is able to produce aligned

activity and attenuation reconstructions similar to MLAA, with two advantages: the

missing scale problem is solved automatically by using CT-based attenuation coefficients,

and the resulting attenuation image is “almost free of noise”. Furthermore, the improved

alignment of CT and PET might also benefit the diagnostic value of the image pair,

which remains to be investigated. However, some constraining of the estimated motion

parameters is required to avoid inaccuracies observed mostly at high gradients of

the attenuation image. The noise analysis showed that the corresponding activity

reconstructions of MLRR were comparable to the ones produced by MLAA in terms

of bias and variance. As expected, the activity reconstructions of the clinical scans

produced by MLRR suffer less from motion-induced or mismatch artifacts than the

reference MLEM activity reconstructions. In addition, the attenuation results of the

gated patient data are in agreement with expected breathing motion.
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Appendix A

Given the time-of-flight PET emission data yit, the variables L̇ and L̈ in (5) can be

computed from the Poisson log-likelihood (1) to give the MLTR attenuation update as:

L̇j =
∂L

∂µj

=
∑

it

lij(ȳit − yit)(1−
sit
ȳit

)

=
∑

i

lij

(

(ȳi − yi)−
∑

t

(ȳit − yit)
sit
ȳit

)

(A.1)

≈
∑

i

lij(ȳi − yi)(1−
si
ȳi
) (A.2)

L̈j =
∑

k

∂2L

∂µj∂µk

= −
∑

k

∑

it

lijlik(ȳit − sit)(1−
yitsit
ȳ2it

)

≈ −
∑

i

lij

(

(ȳi − si)−
∑

t

(ȳit − sit)
sit
ȳit

)

∑

k

lik (A.3)

≈ −
∑

i

lij(ȳi − si)(1−
si
ȳi
)
∑

k

lik (A.4)

where, approximation (A.3) is achieved by assuming that the fraction yit/ȳit ≈ 1, and

since it is imposed in computing L̈ (the denominator of the MLTR attenuation update) it

only influences the convergence speed of the algorithm. Approximations (A.2) and (A.4)

are achieved by assuming that the fraction sit/ȳit is roughly independent of the TOF-bin

t, and can be replaced by the non-TOF fraction si/ȳi. This approximation eliminates

the summation over the TOF index for both L̇ and L̈. Since our approximation is exact

for sit = 0, we can expect it to be a good approximation for small sit. In cases where

this is not so, the approximation does not affect the final solution (since in the noise-

free case the problem of attenuation estimation has the same solution for non-TOF as

well as for TOF emission data); however, it may adversely affect the noise propagation.

The advantage of the approximation is that it reduces the computation time for the

attenuation update.

Although the use of the TOF data has been suggested for the attenuation update

in the joint estimation frame-work (Ahn et al. 2012), in our experiments the TOF

information was ignored to reduce the computation time. The combination of (A.2)

and (A.4) which we used, is the standard non-TOF MLTR update with an additive

contribution (Van Slambrouck et al. 2014).

Appendix B

In this section, with some approximations we derive the displacement update (17)

justifying the use of the demons algorithm (Thirion 1998) to update the deformation

field. We parameterise the transformation by a displacement field, i.e. the deformation

parameters Θ now consist of a vector Dj = (Dx
j , D

y
j , D

z
j ) for every voxel j, and focus on
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the estimation of the displacement field that non-rigidly deforms µ† to an attenuation

image that agrees best with the TOF-PET emission data according to the Poisson

likelihood. The derivative in (9), with respect to an incremental displacement field d at

voxel j, can now be approximated by:

∂δµk[d]

∂dj

=
∂µk[D

(n) + d]

∂dj

≈ (∇µ[D(n)])jδjk (B.1)

where (∇µ[D(n)])j is the gradient of the deformed attenuation image at voxel j

with respect to the image coordinates (x, y, z), and δjk is the Kronecker delta. This

approximation assumes that the value in a pixel is independent of the deformation in

other pixels. In reality however, there will be some dependence on neighbouring voxels

due to unavoidable interpolations.

Furthermore, using the first order Taylor series expansion of µj [D
(n) + d] together

with (B.1) we find‖:

δµj[d] ≈ (∇µ[D(n)])jdj (B.2)

Inserting (B.1) and (B.2) in (9) we obtain:

∂S̃

∂dj

= (L̇
(n)
j + L̈

(n)
j (∇µ[D(n)])jdj)(∇µ[D(n)])j = 0 (B.3)

The solution of (B.3) is not unique. By taking the minimum norm solution (the same

choice was made in (Thirion 1998; Vercauteren et al. 2009)) an incremental displacement

dj is estimated in the direction of (∇µ[D(n)])j, which reduces the problem to a set of

1D problems with solution

d
(n)
j = −

(∇µ[D(n)])j

‖(∇µ[D(n)])j‖2

L̇
(n)
j

L̈
(n)
j

=
(∇µ[D(n)])j

‖(∇µ[D(n)])j‖2
δµ

(n)
j (B.4)

where δµ(n) is the attenuation update of MLTR (5). Equation (B.4) is the unconstrained

optical flow equation commonly used in image registration methods.

Since the registration problem is highly under-determined, it is often necessary

to regularise the estimated displacement fields. This is typically achieved by adding

a penalty term that favours smaller values of displacements dj. Adding a quadratic

penalty term to the surrogate function (9), we have:

S̃reg(µ[D + d], y) = S̃(µ[D + d], y)−
∑

j

1

2
β‖dj‖

2 (B.5)

where β determines the strength of the penalty term. With the same approximations,

the incremental displacement update is then given in (17), where β/L̈
(n)
j helps to stabilise

the incremental displacement estimate d
(n) at low gradient values of the deformed

attenuation image.

‖ In this context all vector multiplications are inner products.
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