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Abstract 

Intracortical microprobes allow the precise monitoring of electrical and chemical signaling and are 

widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly 

enhanced the integration of multifunctional probes by facilitating the combination of multiple 

recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific 

application, various assembly strategies are required in addition to the microprobe fabrication itself. 

This paper summarizes recent advances in the fabrication and assembly of micromachined silicon 

probes for drug delivery achieved within the EU-funded research project NeuroProbes. The described 

fabrication process combines a two-wafer silicon bonding process with deep reactive ion etching, 

wafer grinding, and thin film patterning and offers a maximum in design flexibility. By applying this 

process, three general microprobe comb designs featuring up to four 8-mm-long shafts, cross sections 

from 150×200 to 250×250 µm², and different electrode and fluidic channel configurations are realized. 

Furthermore, we discuss the development and application of different probe assemblies for acute, 

semi-chronic, and chronic applications, including comb and array assemblies, floating microprobe 

arrays, as well as the complete drug delivery system NeuroMedicator for small animal research. 
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Introduction 

One of the fundamental goals of neuroscience is to understand how the central nervous system 

integrates information and controls behavior by electrical and chemical signaling. Microprobe 

technology is at the forefront of this research as it enables such activity to be measured on timescales 

consistent with cognitive processing in the brain, including decision-making and working memory. In 

this regard, the combination of electrophysiological recording with intracortical drug delivery would 

provide a powerful tool to investigate neural coding of behavior and cognition. 

Typically, pharmacological intervention in neuroscience research employs either microiontophoresis 

or pressure-driven liquid infusion systems to deliver drugs in the brain [1,2]. Today, pressure-driven 

systems based on stainless steel or glass capillaries are more commonly used as they are independent 

of the charge states of the drug molecules. In addition, the rapid development of 

microelectromechanical systems (MEMS) and the associated silicon-based fabrication processes have 

opened new technological perspectives with respect to functional microprobe integration. Following 

the pioneering work of Wise et al. [3], a wide variety of micromachined probes has been developed 

[4]. Depending on the number and geometrical arrangement of the probe shafts, one-dimensional (1D) 

single-shaft probes, two-dimensional (2D) probe combs with multiple shafts, and fully three-

dimensional (3D) microprobe arrays can be distinguished.  

Given the disc-like shape of silicon wafers, most often in-plane fabrication sequences are applied to 

realize microprobes with lengths of several millimeters, i.e. probe combs are fabricated in the wafer 

plane. Considering neural microprobes which combine electrodes and microfluidic channels for 

electrical recording and drug delivery, respectively, various materials and technological approaches 

have been pursued. This includes microprobes based on silicon (Si) [5-10], silicon-on-insulator (SOI) 

[11,12], and polymers such as parylene (Py) [13-15], polyimide (PI) [16,17], and SU-8 [18]. In 

addition to these main approaches, less common fabrication technologies have also been reported, e.g. 

a hybrid assembly affixing a silicon microelectrode array to a fused silica capillary [19]. 
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Integration of microfluidic channels into the probe body is certainly the most challenging aspect of 

this kind of probes. Thereby, surface micromachined [13,14], buried [5-7,11,12], and bonded [8-

10,15-18] channels can be generally distinguished. Surface micromachined channels are fabricated by 

deposition and subsequent etching of thin films and require sacrificial layers during fabrication. 

Typically, this technological approach results in rather low channel profiles not higher than ten 

micrometers with widths of a few ten micrometers. Buried channels are predominantly implemented in 

Si or SOI substrates. The approach requires first to etch a cavity into the substrate by dry or wet 

etching methods which is subsequently sealed by the deposition of additional layers such as oxides or 

polymers. Bonded channels are fabricated by first implementing an open channel structure in or on a 

substrate. This is followed by bonding of a second structure which seals the open channel, i.e. a 

structured or unstructured cover. Comparing the three different approaches with respect to the 

microfluidic design flexibility, the bonding approach is least restricted by the applied fabrication 

technologies and offers maximum flexibility. 

The electrodes on the probes are typically fabricated by patterning of thin films and are made of 

materials such as platinum (Pt) [7,11,16-18] including Pt-grey [8] and Pt-black [14], gold (Au) 

[6,7,10,12,13,15], or iridium (Ir) [5]. 

Depending on the specific neuroscientific application, different microprobe designs are required to 

reach the relevant areas of the brain. Thereby, the drug delivery functionality has been mostly limited 

to 1D or 2D probes. So far, full 3D arrays with individual micromachined drug delivery shafts have 

only been addressed by two approaches [6,20]. In addition, the micromachined probes have to be 

integrated into system assemblies offering distinct electrical and fluidic interfaces for the connection 

of macro-scale electronic and fluidic equipment. This is mandatory in order to be able to operate the 

microprobes during experiments. In this respect, acute and chronic assemblies have to be 

distinguished. Whereas acute assemblies are designed for short-term application, typically on a 

timescale of hours, and are easily fixed to laboratory equipment, chronic assemblies are implanted 

over longer timescales, typically weeks, and must allow animals the ability to behave in an 

unconstrained and natural manner. 
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Electrical interfacing is commonly effected by taking advantage of the broad range of integrated 

circuit (IC) packaging technologies. For this purpose, nearly all microprobes feature contact pads 

predominantly used for wire bonding to printed circuit boards (PCBs) or flexible cables which are in 

both cases terminated with electrical connectors. Alternatively, connectors can be soldered to the pads 

[17], reversible contact mechanisms used [18,21], or the pads directly inserted into zero insertion force 

(ZIF) connectors in case of flexible substrates [15,16]. Consequently, electronic equipment can be 

easily connected and disconnected to the probes. This is especially interesting for all chronic 

applications. On the other hand, fluidic interfacing requiring the transmission of matter is more 

complicated. A pluggable microfluidic connection to implanted probes is challenging, possibly 

introducing contaminations or bubbles into the system. Therefore, drug delivery is currently mostly 

limited to acute experiments. For this purpose, different kinds of tubing [5,7,11-16] or capillaries [17] 

are typically irreversibly attached to the probes and connected to macroscopic laboratory pumps. In 

addition, interfacing with O-rings was addressed [18,21]. So far, few approaches have targeted the 

integration of active micropumping components into multifunctional microprobes [10,22].  

Currently, neuroscientific experiments are predominantly performed with small animals such as rats 

and mice. In order to enable liquid infusions, different implantable general purpose drug delivery 

systems such as the iPRECIO
®
 micro infusion pump (Primetech Corporation, Tokyo, Japan) and the 

ithetis™ drug delivery device (Antlia SA, Lausanne, Switzerland) are commercially available or are 

under development [23]. However, these devices are not specifically adapted to micromachined probes 

and designed for relatively large liquid volumes of up to 1 mL. In general, few miniaturized systems 

for small animal research specifically addressing intracortical drug delivery by microprobes have been 

reported so far [24-28]. Whereas early approaches applied either chemitrodes [24] or stainless steel 

capillaries [25,26] as microprobes, the most recent approaches exploit the extended possibilities of 

micromachined probes [27,28]. 

The work described in this paper reviews the drug delivery approaches pursued within the EU-funded 

NeuroProbes project [29,30] targeting the development of multifunctional 1D, 2D, and 3D neural 

probe arrays comprising electrodes for electrophysiological recording and stimulation, biosensors, and 
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microfluidics. On the basis of a common fabrication process, three basic microprobe designs have 

been developed. The designs enable different assembly and integration strategies resulting in 

microprobe comb and array assemblies, floating microprobe arrays, and complete drug delivery 

systems. Beyond the technical description of the devices, application examples are presented.  

All animal related procedures complied with the legal and ethical requirements and local institutional 

guidelines at the University of Cambridge, United Kingdom, and the Katholieke Universiteit Leuven, 

Belgium. 
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Material and Methods 

Fluidic silicon microprobe concept 

The modular platform approach pursued by NeuroProbes is based on the insertion of individual 2D 

probe combs into a common platform to obtain a complete 3D array as described in [31-34]. Beyond 

this, different probe designs offering distinct interfaces for stand-alone assemblies are desirable for 

versatile applications. In order to address both aspects, a two-wafer bonding process was developed 

which is compatible with the processes and materials of the modular platform approach pursued by 

NeuroProbes. In addition, the process offers maximum flexibility in the geometrical probe design as 

well as the fluidic layout. The applied materials are silicon (Si) as the probe material and silicon oxide 

(SiO2) as well as nitride (SiN) used as passivation layers. As exemplary illustrated in Figure 1, three 

basic microprobe designs with various fluidic features have been implemented [8,20] enabling 

different assembly strategies as described later. Thereby both, in-plane and out-of-plane fluidic 

supplies as well as outlet ports have been developed. Probe design A (Figure 1A) comprises two 

slender 8-mm-long shafts with a pitch of 1.5 mm attached to a common base. Each shaft has a cross-

sectional area of 250×250 μm², includes a microfluidic channel, and features four planar electrodes 

with a diameter of 20 μm and a pitch of 500 μm located up- and downstream of the liquid outlet ports. 

The 4×4 mm² common base with a thickness of 400 µm is used for handling as well as system 

integration and provides access to the electrodes and microfluidic channels. For liquid supply, tubing 

can be directly sleeved over the protruding rectangular connectors having outer dimensions of 

400×400 μm², lengths of 1 mm, and in-plane inlet ports. Starting at the inlet port, the rectangular 

microfluidic channel narrows from 200×50 μm² to 50×50 μm² in the shaft and is terminated by a 

circular out-of-plane outlet port with a diameter of 25 μm. The electrodes can be accessed by 

150×300 μm² bond pads on the probe base. 

Probe design B (Figure 1B) differs from probe design A by a larger common base of 6×4 mm² with 

circular out-of-plane inlet ports located at the bottom surface. The out-of-plane inlet ports with a 
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diameter of 300 µm allow reversible fluidic interfacing to the platform by using O-rings. 

Alternatively, they enable bonding of a fluidic packaging onto the flat surface by using adhesive. 

Probe design C (Figure 1C) represents a probe comb for the assembly into the NeuroProbes floating 

slim-base platform [31-33]. For this purpose, the shafts are attached to a common base featuring four 

protruding segments with widths of 390 µm and lengths of 220/420 µm enabling to mechanically 

secure the comb in the platform. The common base of these probe combs has a thickness of 300 μm 

and is 2020×325 μm² in size. Among the 8-mm-long shafts, the two outer shafts comprise fluidic 

microchannels and have a rectangular cross-sectional area of 250×200 μm², whereas the shafts in the 

middle reserved exclusively for electrodes are narrowed down to 150×200 μm². Hence, compared to 

probe designs A and B, the shafts of design C are thinner. Liquid supply to the fluidic shafts is 

achieved by in-plane inlet ports in the two outer segments. In view of design flexibility, the comb base 

can be used for integrating fluidic channels to the inner shafts as well. Similar to design A, the cross 

sections of the microchannels narrow from 200×50 μm² at the inlet port to 50×50 μm² in the shafts. 

The channels are terminated by two in-plane outlet ports of 50×50 μm² implemented at the shaft 

flanks, as illustrated with the inset in Figure 1C. In addition, each shaft features four circular 

electrodes with a diameter of 50 µm and a pitch of 400 µm as well as one triangular tip electrode. All 

electrodes can be accessed by contact pads on the protruding segments as detailed elsewhere [31].  

Additionally, various sub-variants have been realized for each of these designs. For instance, probe 

variants with up to two individual microchannels per shaft and shaft thicknesses as thin as 150 µm are 

further described in [8,20]. 

Fabrication process 

The fluidic silicon microprobes are fabricated in a two-wafer silicon direct bonding process applying 

standard 4-inch silicon (100) wafers, deep reactive ion etching (DRIE), wafer grinding, and thin film 

processing, as described in detail in [8] for designs A and B and in [20] for design C. Dependent on 

the specific design and the intended probe thickness, the applied processing steps and wafer 

thicknesses vary slightly. 
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In the following, the fabrication steps are illustrated in case of probe design B using 300-µm-thick 

wafers as substrate material. The general fabrication steps are summarized in Figure 2. A two-stage 

DRIE process is first applied to define the fluidic channels as well as the outer shape of the probes in a 

first silicon wafer (Figure 2A,B), i.e. the channel wafer. Thereafter, the fluidic channels are covered by 

a second wafer using silicon direct bonding. This second cover wafer is then reduced in thickness from 

300 to 100 µm by wafer grinding (Figure 2C). Subsequently, both sides of the wafer compound are 

covered with silicon oxide and nitride followed by deposition and patterning of a 200/300-nm-thin 

gold/platinum (Au/Pt) stack to form electrodes as well as interconnecting leads and contact pads. The 

subsequent deposition and patterning of additional silicon oxide and nitride layers protects the tracks 

to the electrodes (Figure 2D). Finally, the probe geometry is further defined by DRIE from both wafer 

stack sides. Thereby, the rear etch realizes the out-of-plane inlet ports and additionally thins down the 

probe shafts to a thickness of 250 µm (Figure 2E), while the front etch implements the out-of-plane 

outlet ports (Figure 2F). 

This two-wafer bonding technology offers maximum flexibility in the design of the probe geometry as 

well as the microfluidic features. 
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Results 

General microprobe characteristics 

The general properties of the fabricated microprobes were characterized as described in detail in 

[8,20,35]. This includes measurements of the insertion forces, fluidic characteristics, and electrode 

impedances. In case of shaft cross sections of 250×250 μm², average insertion forces of 120 ± 13 mN 

at an insertion speed of 100 mm min−1 were determined in an agarose gel/polyethylene foil model 

representing the cortex and pia mater [8]. With respect to the infusion of water-based liquids, all 

microprobe designs require modest infusion pressures to achieve infusion rates on the order of 0.5-

3 µL/min. For instance, probe design A requires an infusion pressure of 1 kPa to achieve an infusion 

rate of 1.5 μL min
−1

 at a temperature of 26 °C [8]. Requiring electrical connection, the electrical 

impedances of the recording electrodes were determined after system assembly of the microprobes as 

detailed in the subsequent section. 

Microprobe comb assembly 

In order to apply the microprobes to in vivo experiments, a system assembly enabling connection of 

the microprobes to macroscale mechanical, fluidic, and electronic laboratory equipment is required. 

Considering this, the basic assembly shown in Figure 3 offering easy handling and robustness during 

operation was developed as described in [36]. In detail, the assembly provides three interfaces: (1) A 

robust polymer packaging which allows to conveniently mechanically clamp the system assembly 

during insertion, e.g. in a stereotactic frame. (2) Flexible inert tubing for fluidic connection which is 

easily adapted to laboratory equipment using commercially available fluidic connectors. (3) A 

commercial micro connector which offers pluggable electrical connections to the electrodes on the 

probe shafts. 

During the device assembly, the silicon microprobe comb (design A, cf. Figure 1A) is first bonded to 

the robust polyetheretherketone (PEEK) packaging by epoxy adhesive (EPO-TEK
®
 353ND-4, Polytec 

PT GmbH, Waldbronn, Germany). The protruding fluidic connectors at the platform of the microprobe 
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have a cross-sectional area of 400×400 μm². If fluidic tubing is directly sleeved over the connectors, a 

tubing inner diameter (ID) of 509 μm (based on equivalent circumferences) is required. This increases 

the dead volume of the system substantially. Therefore, medical grade heat-shrinkable tubing 

(Raychem MT2000, Tyco Electronics, Schaffhausen, Switzerland) is applied as an adaptor and allows 

to attach standard 50-cm-long polytetrafluoroethylene (PTFE) tubing having an ID of 300 μm and an 

outer diameter (OD) of 600 μm. After attachment, any remaining gaps resulting from the rectangular 

cross section of the connector are sealed with adhesive (EPO-TEK
®
 353ND-T, Polytec PT GmbH, 

Waldbronn, Germany). 

The electrical interface is realized by an electrical micro connector (CLM series, Samtec, Germering, 

Germany) attached to a custom-made flexible printed circuit board (FPCB, ANDUS Electronic, 

Berlin, Germany) by reflow soldering. The assembled FPCB is bonded to the microprobe platform as 

well as to the PEEK packaging by using adhesive (EPO-TEK
®
 353ND-T). Electrical connection 

between the FPCB and the bond pads on the microprobe platform is realized by wire bonding followed 

by protection with a glob top (EPO-TEK
®
 353ND-T). After assembly, the average impedance of the 

electrodes was measured to be 2.8 ± 1.3 MΩ at 1 kHz using the experimental setup described in [8]. 

However, if required, Pt-grey can be electrochemically deposited on the electrodes which reduces the 

average impedance to 65 ± 20 kΩ. 

Successful operation of the assembly was verified by acute in vivo experiments with anesthetized rats 

[36]. For this purpose, the assembly was mounted to the holder of a stereotactic frame and connected 

to a conventional syringe pump. During insertion, the microprobe shafts easily penetrated the adult rat 

dura and no broken shafts were observed. After insertion, microinfusions could be successfully 

administered to a variety of brain areas. The electrode configuration of the microprobe shafts is 

sketched in Figure 4A. In parallel, a stainless steel skull screw placed nearby with an impedance of 

350 Ω was applied as a differential electrode. Using this configuration, recordings of spontaneous 

single neuron spikes in the cerebellum could be obtained from different electrodes as shown in Figure 

4B. The impact of drug delivery on the electrophysiological activity was also assessed in a separate 

experiment by measuring the effects of a small infusion of lidocaine (a sodium channel blocker) on 
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evoked local field potentials (LFPs) in the sensory cortex [37]. Figure 4C shows the lidocaine-induced 

suppression of forelimb-evoked LFPs in the rat primary somatosensory cortex. The evoked potentials 

show an early positive deflection (onset ~10 ms) with a longer latency negative deflection (onset 

~20 ms), consistent with previous studies [38]. Following lidocaine infusion, the peak-to-trough 

amplitude of the forelimb potential was reduced to 27% of its original amplitude (260 µV reduced to 

70 µV). After 20 minutes of recovery time, the forelimb-evoked potential recovered to 65 % (170 µV) 

of its peak-to-trough amplitude as the effects of the infused lidocaine declined. 

Microprobe array assembly 

A microprobe array assembly can be considered as an intermediate step between a microprobe comb 

assembly (2D) and a fully floating microprobe array (3D). Being not as miniaturized as a floating 

array, such an assembly can serve as an acute and semi-chronic research tool providing neuroscientists 

with the possibility for simultaneous neural recording combined with drug delivery. An image of the 

developed microprobe array assembly primarily designed for use with larger subjects such as non-

human primates is shown in Figure 5 [39]. The assembly consists of a small PEEK spacer onto which 

two microprobe combs (design A, cf. Figure 1A) are bonded by using adhesive (EPO-TEK
®
 353 ND-

4) resulting in a 3D microprobe array. Thereby, the spacer forms not only the basis of the array, but 

enables also the reversible docking of a neuronavigation positioning tool in form of a special stainless 

steel rod. The fluidic connections to the microprobes are realized by two-component tubing: a piece of 

rigid polyamide (PA) tubing is sleeved over the protruding connectors of the microprobe into which 

flexible polyethylene (PE) tubing is inserted and secured with EPO-TEK
®
 353ND-T adhesive. The 

tubing is terminated by the commercially available injection port (SIP22/4, Instech Laboratories Inc., 

Plymouth Meeting, PA, USA) shown in Figure 7C which is compatible with magnetic resonance 

imaging (MRI). In order to access the total of 16 recording electrodes, two highly flexible polyimide 

(PI) ribbon cables are used [40]. The cables are connected to the bond pads of the microprobes as well 

as a small PCB with an attached connector (Nanoseries, Omnetics Connector Corporation, 

Minneapolis, USA) by applying the Microflex technology described in detail elsewhere [41,42]. After 
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cable assembly, the electrical connections are protected by silicone (MED-2000, NuSil Technology, 

Carpinteria, CA, USA). 

The microprobe array assembly was applied to semi-chronic behavioral experiments in non-human 

primates [39]. Specifically, temporary inactivation of the anterior intraparietal (AIP) area by 

stimulating the chief inhibitory neurotransmitter gamma-aminobutyric acid (GABA) with the agonist 

muscimol in conjunction with grasping experiments was addressed.  

In order to investigate the spread of liquid by MRI, a mixture of muscimol and the MRI-contrast agent 

Dotarem
®
 (Guerbet, Villepinte, France) was used. After priming, a device was implanted inside of a 

custom-built MRI-compatible PEEK recording chamber typically used for such experiments [43,44]. 

Following craniotomy, the cylinder was anchored on the skull by dental cement enabling permanent 

access to the exposed dura mater. During implantation, the microprobes were oriented towards the 

target region (AIP area) by using the neuronavigation system Brainsight™ (Rogue Research Inc., 

Montreal, Canada) and inserted directly through the dura mater. In some cases, the dura was slightly 

thinned before insertion. All microprobe shafts survived the insertion procedure.  After a recovery 

period, repeated reversible inactivations of the AIP were performed by injection volumes varying 

between 0.5 and 4 µL. Anatomical MRI scans at a resolution of 0.6 mm isotropic after injection are 

shown in Figure 6. Localized injections of 1-2 µL into the AIP caused a deficit in grasping with the 

contralateral hand which correlated well with the liquid spread shown in Figure 6A and is consistent 

with previous findings [45]. The deficit disappeared 24 hours after the injection which is typical for 

this kind of inactivation experiments. In case of larger injection volumes of 4 µL, the muscimol 

solution spread to the medial bank of the intraparietal sulcus (IPS) as shown in Figure 6B. The 

resulting inactivation of the medial bank caused an additional deficit in reaching, i.e. correct direction 

of the arm to obtain a food reward. The microprobe array assembly remained implanted over a time 

period of 28 days. During this time, no clogging of the fluidic channels was observed. However, in 

general the array assembly is not intended for longer implantation times. Due to the size of the array 

backbone, the probes can shift inside the recording cylinder, possibly causing lesions in the brain. 
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Floating microprobe array 

In case of a chronically implanted multifunctional 3D microprobe array, additional aspects need to be 

considered [20]: During implantation, the array has to be placed in the small space between skull and 

brain. However, blood pulsation and head movements cause permanent relative motions of the brain 

with respect to the surrounding skull. If the array is rigidly connected to the skull, the stiff and fixed 

array shafts can interfere with the brain motions, possibly causing tissue damage. Therefore, starting at 

a certain brain size, the array must be mechanically decoupled from the skull and be able to “float” on 

the brain surface. Considering these boundary conditions, the backbone of the array (i.e. the platform) 

should be as thin as possible. In addition, the connecting electrical and fluidic cables are required to be 

highly flexible in order to prevent any mechanical interference with the floating operation. 

To address these demands, the developed floating microprobe array for neural drug delivery shown in 

Figure 7D relies on a slim-base platform in conjunction with an elastic microfluidic cable for liquid 

supply. Microprobe combs, platform, and microfluidic multilumen cable are first fabricated as 

individual components followed by assembly as described in detail in [20]. 

Fabrication of the platform is based on a two-step DRIE process combined with wafer grinding of 

500-μm-thick 8-inch silicon (100) wafers. The resulting 300-µm-thin platform has a footprint of 

4000×4000 μm² and offers 4×4 bays enabling the insertion of up to four individual probe combs. 

Liquid supply to the inserted probes is realized from the platform rear. For this purpose, the bays in the 

corners are implemented as through-connections. 

The microfluidic cable is fabricated by replica molding and oxygen plasma bonding of two silicone 

films (MED-6015, NuSil Technology, Carpinteria, CA, USA). The resulting highly elastic 

microfluidic cable has a final thickness of only 250 μm and contains four independent microfluidic 

channels each having a cross section of 300×50 µm². The distal end of the microfluidic cable is 

terminated by a PEEK adaptor with four injection ports (SIP22/4) for fluidic supply. To infuse liquids, 

the injection port exemplary shown in Figure 7C is connected with a septum needle. 
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During assembly, the silicone cable enabling liquid delivery to the four bays with through-connections 

is first attached to the platform rear side by oxygen plasma bonding. Then, the protruding segments of 

the individual fluidic probe combs (design C, cf. Figure 1C) are inserted into the platform and secured 

with adhesive (EPO-TEK
®
 301, Polytec PT GmbH, Waldbronn, Germany) as illustrated in Figure 7A. 

A scanning electron micrograph of the protruding segments is shown in Figure 7B. 

In a laboratory setup, liquid delivery through all four fluidic shafts could be successfully demonstrated 

and characterized [20]. 

Chronic drug delivery system NeuroMedicator 

In neuroscience, microinfusions of drugs directly into the central nervous system of awake animals are 

widely used to investigate brain functions related to behavior. However, whereas small, skull-mounted 

transmitters (headstages) for wireless electrophysiological recordings are already commercially 

available, drug delivery relies mostly on tethered liquid infusion systems with a stationary syringe 

pump possibly interfering with behavior. This shortfall is addressed by the NeuroMedicator [27,28] 

combining a fluidic microprobe comb (design B, cf. Figure 1B) with a micropumping system. The 

NeuroMedicator illustrated in Figure 8A features 2×8 discrete liquid reservoirs interconnected in a 

pearl-chain-like manner which can be infused on demand. With outer dimensions of 20×17.5×5 mm³, 

the device is small and lightweight enough to be placed directly on the skull of a rat. A detailed 

description of the device is provided elsewhere [28]. 

The operational concept of the NeuroMedicator is illustrated in Figure 8B. The drug liquid is stored in 

the reservoir plate, i.e. a plate with interconnected reservoirs sealed on one side with an elastic film. 

Prior to implantation, the liquid is loaded into the reservoirs through the microprobe by applying 

vacuum. After implantation and electrical connection, discrete 0.25 μL infusions can be sequentially 

released. For this purpose, short heating pulses each requiring 3.375 Ws of heating energy are applied 

to the composite underneath an individual reservoir. The resulting irreversible expansion deforms the 

elastic film into the reservoir, displaces the liquid, and releases it through the microprobe directly to 

the neural tissue. 
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The required volumetric expansion is realized by thermally expandable Expancel
®
 microspheres 

(Expancel, Sundsvall, Sweden) embedded into an elastic polydimethylsiloxane (PDMS) matrix [46]. 

Expancel
®
 microspheres are polymeric shells with a diameter of about 10 μm which contain a liquid 

hydrocarbon. At room temperature, the hydrocarbon is volatile and needs to be stored above its vapor 

pressure. Heating of the microspheres softens the polymeric shell and increases further the vapor 

pressure. Above a critical temperature of about 80° C, the soft shell cannot withstand the internal 

pressure anymore and starts to expand. Thereby, the relaxing vapor pressure propels a volumetric 

expansion by a factor of up to 60 [47]. When temperature is decreased again, the expanded polymeric 

shell solidifies and prevents shrinkage. 

The reservoir plate with the microprobe comb, the microheater array with the expandable material on 

top, and the device housing are first fabricated and pre-assembled as individual components followed 

by assembly of the complete NeuroMedicator. 

In case of the reservoir plate, the liquid reservoirs are milled as spherical caps into a rigid cyclo-olefin 

polymer (COP) plate (Zeonor 1420R, Zeon Europe GmbH, Düsseldorf, Germany) and sealed with a 

laser-welded thermoplastic elastomer (TPE) film (HTF 9467/44, KRAIBURG TPE GmbH & Co. KG, 

Waldkraiburg, Germany). After this, the common base of a microprobe comb (design B, cf. Figure 

1B) is adhesively bonded to the front side (EPO-TEK
®
 353ND, Polytec PT GmbH, Waldbronn, 

Germany). Finally, the barrier properties of the TPE film are increased by a sputtered layer of 

aluminum (Al).  

The expandable material is a composite of Expancel 820 DU 40 (Expancel, Sundsvall, Sweden) and 

PDMS RTV615 (Momentive Performance Materials Inc., Albany, NY, USA). To be used for 

actuation, a 500-μm-thick layer is deposited by spin coating and cured on top of a PCB-based 

microheater array. The microheater array specifically developed for this application features 

micromachined titanium (Ti) heaters on one side and a reflow soldered electrical micro connector 

(CLM series, Samtec, Germering, Germany) on the other side. 
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During assembly, the microheater array with the expandable material and the reservoir plate with the 

attached microprobe comb are subsequently mounted into a robust poly(methyl methacrylate) 

(PMMA) housing and secured with adhesive (EPO-TEK
®
 353ND-T). A photograph of an assembled 

NeuroMedicator is shown in Figure 8C. 

The NeuroMedicator was successfully evaluated as a tool for pharmacological manipulation of 

behavior in the 5-choice serial reaction time task (5-CSRTT) [28], a behavioral test of visual attention 

and impulsivity. During the 5-CSRTT, a rat is trained to respond to one of five stimulation lights and a 

correct answer is rewarded with a food pellet. A schematic drawing of the 5-CSRTT apparatus is 

shown in Figure 9 and described in detail elsewhere [48,49]. 

For evaluation, a device filled with the N-methyl-D-aspartate (NMDA) receptor antagonist 3-((R)-2-

Carboxypiperazin-4-yl)-propyl-1-phosphonic acid, (R)-CPP, was implanted into a rat trained to 

perform the 5-CSRTT. (R)-CPP infusions targeted to the ventromedial prefrontal cortex (or 

infralimbic cortex) are known to increase the likelihood of rats to respond impulsively [50,51], i.e. to 

respond before the occurrence of a light stimulus in expectation of a food reward. 

The frequency of impulsive responses was characterized before and after device implantation as 

shown in Figure 9. Thereby, the stable base line at the first three days after implantation suggests that 

passive drug leakage from the probe outlets is negligible. On the eighth day, a bilateral infusion of 

0.25 µL (R)-CPP targeted to the infralimbic cortices was performed. Immediately after infusion, 

impulsive responding was approximately three-fold higher, but recovered to control levels on the 

subsequent days.  
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Discussion 

Different approaches for intracortical drug delivery by silicon fluidic microprobes developed within 

the NeuroProbes project have been summarized. Although micromachined probes represent certainly 

the key components for such approaches, the assembly of microprobes to complete systems offering 

distinct interfaces is required to enable practical applicability. Whereas chronic electrophysiological 

recordings can be performed today with pluggable wireless headstages, drug delivery typically 

requires tubing and tethered arrangements which limits its application in combination with chronic 

electrophysiology. Considering especially future therapeutic applications of intracortical probes, 

remote drug delivery is of high priority. However, as discussed above, the development of fluidic 

interfaces presents a formidable challenge. The two-wafer bonding process developed in NeuroProbes 

offers not only a maximum flexibility in the microprobe geometry, but considers also possibilities for 

flexible fluidic interfacing. For instance, fluidic inlet and outlet ports in virtually all spatial directions 

can be implemented. This flexibility was exploited to realize different assemblies. 

The microprobe comb assembly can be considered to be the basic assembly concept enabling easy 

access to the general functionalities of the microprobe, but requires permanently attached tubing. This 

limits its application mostly to acute experiments. On the other hand, the microprobe array assembly 

offers an increased flexibility as the injection ports allow the experimenter to reversibly connect and 

disconnect the liquid supply. However, one has to consider that insertion and backtracking of the 

septum needle can already cause a liquid displacement of about 1 μL resulting in infusion and suction, 

respectively. In addition, the presently used injection port confines a dead volume of around 8 µL. The 

array assembly can be used within a standard recording chamber, but chronically implanted assemblies 

require a slimmer backbone. This issue was addressed by the floating microprobe array approach 

having a total backbone thickness of only 550 μm. Similar to a highly flexible electrical ribbon cable, 

an elastic microfluidic multilumen cable is applied to supply the array with liquid, thereby maintaining 

floating operation. Unfortunately, high mechanical elasticity and barrier properties are typically 

contradictory requirements. Therefore, diffusive species transport through the walls of the microfluidic 

cable during implantation needs to be considered. Regarding a reversibly connectable liquid supply, 
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the same considerations as for the microprobe array assembly apply. With respect to a multifunctional 

array, electrodes on the microprobe combs as well as proven electrical interconnect technologies to the 

platform [31,32] are available. This allows not only to assemble a floating array combining drug 

delivery with electrophysiology, but also to integrate probe combs with additional functions, e.g. 

combs with CMOS-electronics for electronic depth control [52,53] or mechanical stress mapping [54].  

In general, localized drug delivery into a specific brain region is challenging. In case of pressure-

driven brain infusions, liquid backflows along the applied catheters and cannulas are commonly 

observed depending on the infusion parameters [55,56]. Similarly, backflows along the shafts of the 

developed microprobes can occur [35]. 

If liquid is stored in a remote drug delivery device for the entire experiment, no pluggable fluidic 

interfaces are required and an autonomous drug-on-demand system results. The NeuroMedicator was 

developed as an add-on device to be used in conjunction with a headstage in small animal research. 

After filling and electrical connection, individual drug doses of 0.25 µL can be infused in both 

hemispheres of the brain. Future development directions could target wirelessly controlled drug 

delivery combined with electrophysiology. For this purpose, the microprobe comb of the 

NeuroMedicator features recording electrodes. Thereby, a modified recording and stimulation 

headstage could be used for both wireless control of drug delivery as well as electrophysiology. 

On the basis of the presented work, further multifunctional probes and assemblies have been 

developed. For instance, biosensors were integrated onto probe design B and successfully 

characterized [21]. Thereby, a reversible packaging taking advantage of the out-of-plane inlet ports 

enables fluidic as well as electrical contact and reduces assembly time of the liquid-stored probes to 

less than two minutes. In addition, alternative fabrication sequences have been derived from the 

presented core processes. In this respect, a fabrication process replacing the Si cover of probe design A 

with a 10-μm-thick bonded PI film was developed. By applying this process, microfluidic neural 

probes with in-channel electrodes were successfully fabricated and characterized [57]. 

 



 20 

Acknowledgements 

This work was performed in the frame of the Information Society Technologies (IST) Integrated 

Project NeuroProbes of the 6th Framework Program (FP6) of the European Commission (Project 

number IST-027017). The authors gratefully acknowledge the support from the cleanroom and 

machine shop facilities at HSG-IMIT, IMTEK, and IMEC. Furthermore, the authors would like to 

thank all staff members of the involved institutions who supported the presented work. The provision 

of microspheres from Expancel, Sundsvall, Sweden, TPE films from KRAIBURG TPE GmbH & Co. 

KG, Waldkraiburg, Germany, and COP plates from Zeon Europe GmbH, Düsseldorf, Germany, is 

gratefully acknowledged. 

   



 21 

References 

[1] Lacey G. Microelectrophoresis and pressure ejection methods. In: Martin R, editor. 

Neuroscience methods: a guide for advanced students. Amsterdam: Harwood Academic 

Publishers 1997: 80–84. 

[2] Lalley PM. Microiontophoresis and pressure ejection. In: Windhorst U, Johansson H, editors. 

Modern techniques in neuroscience research. Berlin: Springer 1999: 193–212. 

[3] Wise KD, Angell JB, Starr A. An integrated-circuit approach to extracellular microelectrodes. 

IEEE Trans Biomed Eng 1970; 17: 238–247. 

[4] HajjHassan M, Chodavarapu V, Musallam S. NeuroMEMS: neural probe microtechnologies. 

Sens 2008; 8: 6704–6726. 

[5] Chen J, Wise KD, Hetke JF, Bledsoe, Jr SC. A multichannel neural probe for selective chemical 

delivery at the cellular level. IEEE Trans Biomed Eng 1997; 44: 760–769. 

[6] Paik SJ, Lee A, Koo K, et al. Localized stimulation of and recording from neural cells with fluid 

injectable neuronal microneedles. In: Proc 9th Int Conf on Miniaturized Systems for Chemistry 

and Life Sciences (μTAS). Boston 2005: 1178–1179. 

[7] John J, Li Y, Zhang J, Loeb JA, Xu Y. Microfabrication of 3D neural probes with combined 

electrical and chemical interfaces. J Micromech Microeng 2011; 21: 105011 (11pp). 

[8] Seidl K, Spieth S, Herwik S, et al. In-plane silicon probes for simultaneous neural recording and 

drug delivery. J Micromech Microeng 2010; 20: 105006 (11pp). 

[9] Kobayashi R, Kanno S, Lee S, et al. Development of double-sided Si neural probe with 

microfluidic channels using wafer direct bonding technique. In: Proc 4th Int IEEE/EMBS Conf 

on Neural Engineering (NER). Antalya 2009: 96–99. 

[10] Park S, Jang Y, Kim HC, Chun K. Fabrication of drug delivery system with piezoelectric 

micropump for neural probe. In: Proc 23rd Int Techn Conf on Circuits/Systems, Computers and 

Communications (ITC-CSCC). Shimonoseki City 2008: 1149–1152. 

[11] Cheung KC, Djupsund K, Dan Y, Lee LP. Implantable multichannel electrode array based on 

SOI technology. J Microelectromech Syst 2003; 12: 179–184. 

[12] Guo K, Pei W, Li X, et al. Fabrication and characterization of implantable silicon neural probe 

with microfluidic channels. Sci China Technol Sci 2012; 55: 1–5. 

[13] Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T. Parylene flexible neural probes 

integrated with microfluidic channels. Lab Chip 2005; 5: 519–523. 

[14] Pellinen DS, Moon T, Vetter RJ, Miriani R, Kipke DR. Multifunctional flexible parylene-based 

intracortical microelectrodes. In: Proc 27th Annu Int Conf of the IEEE-EMBS (EMBC). 

Shanghai 2005: 5272–5275. 

[15] Ziegler D, Suzuki T, Takeuchi S. Fabrication of flexible neural probes with built-in microfluidic 

channels by thermal bonding of parylene. J Microelectromech Syst 2006; 15: 1477–1482. 

[16] Metz S, Bertsch A, Bertrand D, Renaud P. Flexible polyimide probes with microelectrodes and 

embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of 

bioelectric activity. Biosens Bioelectron 2004; 19: 1309–1318. 



 22 

[17] Rubehn B, Wolff SBE, Tovote P, Lüthi A, Stieglitz T. A polymer-based neural microimplant for 

optogenetic applications: design and first in vivo study. Lab Chip 2013; 13: 579–588. 

[18] Fernández LJ, Altuna A, Tijero M, et al. Study of functional viability of SU-8-based 

microneedles for neural applications. J Micromech Microeng 2009; 19: 025007 (8pp). 

[19] Rohatgi P, Langhals NB, Kipke DR, Patil PG. In vivo performance of a microelectrode neural 

probe with integrated drug delivery. Neurosurg Focus 2009; 27: E8. 

[20] Spieth S, Brett O, Seidl K, et al. A floating 3D silicon microprobe array for neural drug delivery 

compatible with electrical recording. J Micromech Microeng 2011; 21: 125001 (16pp). 

[21] Frey O, van der Wal PD, Spieth S, et al. Biosensor microprobes with integrated microfluidic 

channels for bi-directional neurochemical interaction. J Neural Eng 2011; 8; 066001 (9pp). 

[22] Papageorgiou DP, Shore SE, Bledsoe SC, Wise KD. A shuttered neural probe with on-chip 

flowmeters for chronic in vivo drug delivery. J Microelectromech Syst 2006; 15: 1025–1033. 

[23] Gensler H, Sheybani R, Li PY, Mann R, Meng E. An implantable MEMS micropump system for 

drug delivery in small animals. Biomed Microdevices 2012; 14: 483–496. 

[24] Criswell HE. A simple chronic microinjection system for use with chemitrodes. Pharmacol, 

Biochem Behav 1977; 6: 237–238. 

[25] Bozarth MA, Wise RA. Electrolytic microinfusion transducer system: an alternative method of 

intracranial drug application. J Neurosci Methods 1980; 2: 273–275. 

[26] Ikemoto S, Sharpe LG. A head-attachable device for injecting nanoliter volumes of drug 

solutions into brain sites of freely moving rats. J Neurosci Methods 2001; 110: 135–140. 

[27] Spieth S, Schumacher A, Kallenbach C, Messner S, Zengerle R. The NeuroMedicator – a 

micropump integrated with silicon microprobes for drug delivery in neural research. J 

Micromech Microeng 2012; 22: 065020 (11pp). 

[28] Spieth S, Schumacher A, Holtzman T, et al. An intra-cerebral drug delivery system for freely 

moving animals. Biomed Microdevices 2012; 14: 799–809. 

[29] Neves HP, Orban GA, Koudelka-Hep M, Ruther P. Development of multifunctional probe arrays 

for cerebral applications. In: Proc 3rd Int IEEE EMBS Conf on Neural Engineering. Kohala 

Coast 2007: 104–109. 

[30] Ruther P, Aarts A, Frey O, et al. The NeuroProbes project – multifunctional probe arrays for 

neural recording and stimulation. Biomed Tech 2008; 53: 238–240.  

[31] Aarts AAA, Neves HP, Puers RP, Hoof CV. An interconnect for out-of-plane assembled 

biomedical probe arrays. J Micromech Microeng 2008; 18: 064004 (7pp). 

[32] Aarts AAA, Neves HP, Puers RP, Herwik S, Seidl K, Ruther P. A slim out-of-plane 3D 

implantable CMOS based probe array. In: Proc Smart Systems Integration. Brussels 2009: 258–

263. 

[33] Herwik S, Kisban S, Aarts AAA, et al. Fabrication technology for silicon-based microprobe 

arrays used in acute and sub-chronic neural recording. J Micromech Microeng 2009; 19: 074008 

(11pp). 

[34] Kisban S, Holzhammer T, Herwik S, Paul O, Ruther P. Novel method for the assembly and 

electrical contacting of out-of-plane microstructures. In: Proc 23rd IEEE Int Conf on Micro 

Electro Mechanical Systems (MEMS). Hong Kong 2010: 484–487. 



 23 

[35] Spieth S, Schumacher A, van de Moosdijk S, Haeberle S, Zengerle R. Silicon microprobe 

systems for neural drug delivery: experimental characterization of liquid distribution. In: 

Magjarevic R, Dössel O, Schlegel WC, editors. Proc World Congress on Medical Physics and 

Biomedical Engineering. Munich 2009. IFMBE Proceedings 25/9. Berlin: Springer 2009: 158–

161. 

[36] Spieth S, Schumacher A, Seidl K, et al. Robust microprobe systems for simultaneous neural 

recording and drug delivery. In: Magjarevic R, Sloten J, Verdonck P, Nyssen M, Haueisen J, 

editors. Proc 4th Eur Conf of the Int Federation for Medical and Biological Engineering 

(ECIFMBE). Antwerp 2008. IFMBE Proceedings 22. Berlin: Springer 2009: 2426–2430. 

[37] Spieth S, Schumacher A, Seidl K, et al. Microprobe systems for neural recording and drug 

delivery. Society for Neuroscience Annual Meeting, Washington DC 2008: Program No. 863.14, 

2008 Neuroscience Meeting Planner. 

[38] Freeman S, Sohmer H. A comparison of forepaw and vibrissae somatosensory cortical evoked 

potentials in the rat. Electroencephalogr. Clin. Neurophysiol 1996; 100: 362–369. 

[39] Trenkle F, Spieth S, Kisban S, et al. Robust and MRI compatible electro-fluidic microprobe 

systems used for behavioral neuroscience. Society for Neuroscience Annual Meeting, Chicago 

2009: Program No. 664.11, 2009 Neuroscience Meeting Planner. 

[40] Stieglitz T, Beutel H, Schuettler M, Meyer J. Micromachined, polyimide-based devices for 

flexible neural interfaces. Biomed Microdevices 2000; 2: 283–294. 

[41] Meyer J-U, Stieglitz T, Scholz O, Haberer W, Beutel H. High density interconnects and flexible 

hybrid assemblies for active biomedical implants. IEEE Trans Adv Packag 2001; 24: 366–374. 

[42] Kisban S, Herwik S, Seidl K, et al. Microprobe array with low impedance electrodes and highly 

flexible polyimide cables for acute neural recording. In: Proc 29th Annu Int Conf of the IEEE-

EMBS (EMBC). Lyon 2007: 175–178. 

[43] Kisban S, Janssen P, Herwik S, Stieglitz T, Paul O, Ruther P. Hybrid microprobes for chronic 

implantation in the cerebral cortex. In: Proc 30th Annu Int Conf of the IEEE-EMBS (EMBC). 

Vancouver 2008: 2016–2019. 

[44] Stieglitz T, Rubehn B, Henle C, et al. Brain-computer interfaces: an overview of the hardware to 

record neural signals from the cortex. In: Verhaagen J, Hol EM, Huitenga I, et al., editors. 

Neurotherapy: progress in restorative neuroscience and neurology. Progress in Brain Research 

175. Amsterdam: Elsevier 2009: 297–315. 

[45] Gallese V, Murata A, Kaseda M, Niki N, Sakata H. Deficit of hand preshaping after muscimol 

injection in monkey parietal cortex. Neuroreport 1994; 5: 1525-1529. 

[46] Samel B, Griss P, Stemme G. A thermally responsive PDMS composite and its microfluidic 

applications. J Microelectromech Syst 2007; 16: 50–57. 

[47] Expancel, Sundsvall, Sweden. Eine technische Präsentation der Expancel Mikrosphären. 

Technische Information Nr. 40. Issue 2006-07-24. 

[48] Robbins TW. The 5-choice serial reaction time task: behavioural pharmacology and functional 

neurochemistry. Psychopharmacology (Heidelberg, Ger) 2002; 163: 362–380. 

[49] Bari A, Dalley JW, Robbins TW. The application of the 5-choice serial reaction time task for the 

assessment of visual attentional processes and impulse control in rats. Nature Protocols 2008; 3: 

759–767. 



 24 

[50] Murphy ER, Dalley JW, Robbins TW. Local glutamate receptor antagonism in the rat prefrontal 

cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacology 

(Heidelberg, Ger) 2005; 179: 99–107. 

[51] Carli M, Baviera M, Invernizzi RW, Balducci C. Dissociable contribution of 5-HT1A and 5-

HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as 

impulsivity and compulsive perseveration in rats. Neuropsychopharmacology 2006; 31: 757–

767. 

[52] Seidl K, Herwik S, Torfs T, Neves HP, Paul O, Ruther P. CMOS-based high-density silicon 

microprobe arrays for electronic depth control in intracortical neural recording. J 

Microelectromech Syst 2011; 20: 1439–1448. 

[53] Torfs T, Aarts AAA, Erismis MA, et al. Two-dimensional multi-channel neural probes with 

electronic depth control. IEEE Trans Biomed Circuits Syst 2011; 5: 403–412. 

[54] Seidl K, Lemke B, Ramirez H, Herwik S, Ruther P, Paul O. CMOS-based high-density silicon 

microprobe for stress mapping in intracortical applications. In: Proc 23rd IEEE Int Conf on 

Micro Electro Mechanical Systems (MEMS). Hong Kong 2010: 35–38. 

[55] Chen MY, Lonser RR, Morrison PF, Governale LS, Oldfield EH. Variables affecting 

convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, 

cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 1999; 90: 

315–320. 

[56] Morrison PF, Chen MY, Chadwick RS, Lonser RR, Oldfield EH. Focal delivery during direct 

infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. Am J Physiol-Reg I 

1999; 277: R1218–R1229. 

[57] Moser D, Seidl K, Paul O, Ruther P. Fabrication of microfluidic neural probes with inchannel 

electrodes. In: Proc IEEE Sensors 2012. Taipei 2012: 1–4. 

 

 

  



 25 

Figure legends 

Figure 1  Fluidic silicon microprobe designs: Design A and B offer a common probe base with in- and 

out-of-plane inlet ports, respectively, as well as out-of-plane outlet ports. Design C features in-plane 

outlet ports while the common base offers protruding segments with integrated in-plane inlet ports for 

assembly into a floating platform. 

Figure 2  General fabrication steps of the silicon microprobes: (A),(B) two-stage DRIE process to 

implement the channel structure and probe shape, (C) direct wafer-to-wafer bonding and grinding, (D) 

deposition and patterning of electrodes, (E) rear and (F) front side oxide patterning followed by DRIE 

for probe patterning. 

Figure 3  Microprobe comb assembly with attached PTFE-tubing and micro connector serving as 

fluidic and electrical interfaces, respectively, in comparison to a one Euro-Cent-coin. 

Figure 4  Results of acute experiments: (A) Electrode configuration of the microprobe shafts; (B) 

spontaneous single neuron spikes in cerebellum (raw data and superimposed spike waveforms); (C) 

lidocaine-induced inactivation of forelimb-evoked LFPs in the rat primary somatosensory cortex after 

delivery of 0.4 μL of a 5% lidocaine solution. The data shown are averages of five stimuli. The LFPs 

were recorded with electrode no. 6 next to the liquid outlet port. 

Figure 5  Microprobe array assembly with 2×2 probe shafts offering an electrical micro connector, 

dockings for injection ports, and a guidance for a positioning tool. 

Figure 6  MRI scans after injection of (A) 2 µL of a Muscimol/Dotarem
®
 mixture in a non-human 

primate’s AIP and (B) additional liquid spread to the medial bank of the IPS after injection of 4 µL. 

Figure 7  Floating microprobe array: (A) illustration of the comb assembly into the floating platform; 

(B) scanning electron micrograph of a probe comb with electrodes; (C) injection port with septum 

needle; (D) image of an assembled array with inserted combs (without electrodes). 

Figure 8  Drug delivery system NeuroMedicator: (A) Illustration of the device concept; (B) principle 

of operation based on (1) individual liquid reservoirs sealed on one side with an elastic film, (2) filling 

with liquid in vacuum, and (3),(4) localized heating of the expandable material displacing discrete 

liquid amounts; (C) photograph of an assembled NeuroMedicator. 

Figure 9 Percentage of impulsive responses during the 5-CSRTT before and after infusion of (R)-CPP 

into the rat mPFC. The NeuroMedicator was implanted on the fourth day. 
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