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ABSTRACT

Human cytomegalovirus is a widespread pathogen of major medical importance. It causes significant morbidity and mortality in im-
munocompromised individuals, and congenital infections can result in severe disabilities or stillbirth. Development of a vaccine is pri-
oritized, but no candidate is close to release. Although correlations of viral genetic variability with pathogenicity are suspected, knowl-
edge about the strain diversity of the 235-kb genome is still limited. In this study, 96 full-length human cytomegalovirus genomes from
clinical isolates were characterized, quadrupling the amount of information available for full-genome analysis. These data provide the
first high-resolution map of human cytomegalovirus interhost diversity and evolution. We show that cytomegalovirus is significantly
more divergent than all other human herpesviruses and highlight hot spots of diversity in the genome. Importantly, 75% of strains are
not genetically intact but contain disruptive mutations in a diverse set of 26 genes, including the immunomodulatory genes UL40 and
UL111A. These mutants are independent of culture passage artifacts and circulate in natural populations. Pervasive recombination,
which is linked to the widespread occurrence of multiple infections, was found throughout the genome. The recombination density
was significantly higher than those of other human herpesviruses and correlated with strain diversity. While the overall effects of
strong purifying selection on virus evolution are apparent, evidence of diversifying selection was found in several genes encoding pro-
teins that interact with the host immune system, including UL18, UL40, UL142, and UL147. These residues may present phylogenetic
signatures of past and ongoing virus-host interactions.

IMPORTANCE

Human cytomegalovirus has the largest genome of all viruses that infect humans. Currently, there is a great interest in establish-
ing associations between genetic variants and strain pathogenicity of this herpesvirus. Since the number of publicly available
full-genome sequences is limited, knowledge about strain diversity is highly fragmented and biased toward a small set of loci.
Combined with our previous work, we have now contributed 101 complete genome sequences. We have used these data to con-
duct the first high-resolution analysis of interhost genome diversity, providing an unbiased and comprehensive overview of cy-
tomegalovirus variability. These data are of major value to the development of novel antivirals and a vaccine and to identify po-
tential targets for genotype-phenotype experiments. Furthermore, these data have enabled a thorough study of the evolutionary
processes that have shaped cytomegalovirus diversity.

Human cytomegalovirus (HCMV), the prototype member of
the herpesvirus subfamily Betaherpesvirinae, is a widespread

and important pathogen. Seroprevalence in the adult population
ranges from 45% to 100% (1). After primary infection, HCMV
establishes a lifelong, latent infection in myeloid progenitor cells
(2). This virus causes mild to no symptoms in immunocompetent
individuals but is responsible for considerable morbidity and
mortality in immunocompromised individuals such as AIDS pa-
tients and transplant recipients (3). Furthermore, infection of the
developing fetus can lead to sensorineural hearing loss, neurode-
velopmental delay, or stillbirth, making HCMV a notorious con-
genital pathogen in both developed and developing countries (4).
In the United States alone, total health care costs related to HCMV
exceed $4.4 billion annually. Consequently, HCMV has been in-
cluded among high-priority targets in vaccine prioritization re-
ports by the U.S. Institute of Medicine (5). Several vaccine candi-
dates are currently in early development, but licensure is not
forthcoming (6).

With a length of 235 kb, HCMV has the longest genome of any

known virus infecting humans (7). It is composed of a linear dou-
ble-stranded DNA (dsDNA) helix and is structured in the charac-
teristic herpesvirus class E architecture, combining two unique
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regions (unique long [UL] and unique short [US]) that are both
flanked by a pair of inverted repeats (terminal repeat long/internal
repeat long [TRL/IRL] and internal repeat short/terminal repeat
short [IRS/TRS]). UL and US regions can be inserted in both
directions between repeats, giving rise to four genome isomers (8).
Genetic and antigenic heterogeneity of HCMV isolates was re-
ported early on in cytomegalovirus (CMV) research by neutral-
ization, hybridization, and restriction fragment length polymor-
phism assays (9–11). This was further confirmed by full-genome
analyses of a few clinical isolates (7, 12). PCR sequencing of several
hypervariable loci indicated that these loci exist as separate clus-
ters of polymorphisms or genotypes (reviewed in references 13–
15). These findings have spiked the interest of clinical virologists
in identifying potential correlations between genetic variants and
the pathogenic potential of different isolates. Several studies have
found some evidence to correlate specific genotypes with disease
outcome, investigating polymorphisms in the UL55 (glycoprotein
B) (16–19), UL73 (glycoprotein N) (20–22), UL75 (glycoprotein
H) (23), UL144 (tumor necrosis factor alpha [TNF-�]-like recep-
tor) (24–26), and UL146 and UL147 (viral CXCL chemokines)
(27, 28) genes. Others, however, found no evidence of these rela-
tionships (29–32). Overall, these studies have focused on one or,
at best, a few genes at a time, ignoring the influence of other vari-
able regions in the genome. Furthermore, variations in more con-
served genes could also have a major impact on strain phenotype,
as shown for the UL18 gene, encoding a major histocompatibility
complex class I (MHC-I) homolog (33, 34). In the near future,
more comprehensive approaches that characterize complete viral
genomes will become feasible and, if applied to sufficiently large
and well-defined patient cohorts, should provide clearer insights
into viral determinants of infection outcome.

The introduction of next-generation sequencing (NGS) nearly
a decade ago has drastically altered the genomics field and has
already shown its promise in the characterization of both inter-
and intrahost HCMV diversity (reviewed in reference 35). Despite
these recent developments, the number of publicly available
complete genomic sequences from clinically representative, low-
passage-number HCMV strains is still limited. Considering the
established diversity in several genes, there is a clear need to char-
acterize more complete genomic sequences from clinical isolates.
In this study, we provide the first high-resolution map of HCMV
diversity and evolution through the characterization of 96 addi-
tional isolates, quadrupling the amount of publicly available full-
genome sequence information. From these data, a wide extent of
gene-disrupting mutations in clinical isolates becomes apparent,
independent of passage artifacts. Furthermore, we corroborate the
important role of recombination in HCMV evolution and identify
signatures of selective pressure acting on individual protein resi-
dues. This study provides an important compendium of data con-
cerning strain diversity that will be of outstanding value for future
research efforts into understanding viral pathogenesis and devel-
oping antivirals and vaccines against this important pathogen.

MATERIALS AND METHODS
Patient samples, virus culture, and DNA purification. Both the KU Leu-
ven and University Hospitals Leuven Ethical Committees approved the
study protocol (protocol number S55970). A total of 100 samples were
collected from different HCMV patients. An overview of all samples in-
cluded in this study is given in Table S1 in the supplemental material.
Samples were collected at the University Hospitals Leuven (n � 81) and

Saint-Pierre University Hospital (n � 13) in Belgium and at the Institute
of Hematology and Blood Transfusion in the Czech Republic (n � 6).
Virus culture, DNA purification, and amplification were executed as de-
scribed previously (36). Briefly, samples were inoculated onto E1SM fi-
broblasts and cultured for the number of passages listed in Table S1 in the
supplemental material. When isolated foci of cytopathic effects became
apparent, viral DNA was isolated by Triton X-100-mediated lysis and
micrococcal nuclease digestion of cellular DNA. After DNA extraction,
viral DNA was amplified by multiple-displacement amplification.

Sequencing and assembly of genome sequences. Library preparation
for 454 and Illumina sequencing was performed as described previously
(36). Libraries were sequenced on the 454 GS FLX (Roche) and GAIIx and
HiSeq2000 (Illumina) platforms (see Table S1 in the supplemental mate-
rial). Full-genome consensus sequences were derived by using an ap-
proach that has been discussed extensively, with some modifications (36).
This approach consisted of de novo assembly, scaffolding of contigs on
HCMV reference sequences, and construction of a hybrid reference com-
bining contig and background reference sequences. Finally, the genome
consensus sequence of the strain under study was derived by mapping of
sequence reads onto this hybrid reference. The whole assembly procedure
was performed by using CLC Genomics Workbench v6.0.2 (Qiagen). Se-
quence reads were quality trimmed by using a base-calling error proba-
bility cutoff of 0.05 and a maximum of 2 ambiguities in each read. After de
novo assembly with standard settings, a reference sequence was selected
based on BLAST analyses of all contigs of �1 kb. Subsequently, all de novo
contigs (or the 2,000 longest contigs when there were �2,000 contigs)
were assembled with the selected reference sequence (“assemble se-
quences to reference” with standard settings), and the hybrid reference
was derived by using the “extract consensus sequence” option, whereby
areas without coverage in the assembly were filled from the reference
sequence. Sequence reads were then mapped to the hybrid reference with
standard settings and the “create stand-alone read mappings” option. The
process of consensus extraction and sequence read mapping was repeated
until the number of reads mapping to the consensus stopped increasing.
The final assembly was visualized with Tablet v1.12.12.05, manually in-
spected, and corrected if necessary (37). At this point, most genomes still
had a problematic assembly quality in the internal repeat area. Assemblies
were then cut at these regions, and the separate contigs were extended and
eventually joined by iterative mapping of sequence reads. Remaining un-
certainties were resolved via PCR amplification and Sanger sequencing, as
described previously (36). Data concerning the number of sequence reads
mapping to the final genome consensus and average read depth are sum-
marized in Table S1 in the supplemental material.

Sequence alignment and genome annotation. A DNA sequence
alignment of all 101 in-house-derived and 27 additional full-genome se-
quences was constructed with MAFFT v7.158b, option FFT-NS-i (maxi-
mum of 1,000 cycles) (38). Previously reported strains that were used in
this study are listed in Table S1 in the supplemental material. Full-genome
sequences of strains AD169, Towne, and Davis were omitted from all
analyses since they are derived from highly passaged laboratory strains
with obscure passage histories. It has been well established that these
strains are genetically severely altered by these procedures (39–41). Align-
ment inspection and editing were done with MEGA6 (42). NCBI
GenBank annotations of reference strain Merlin were identified in the
alignment, and individual open reading frame (ORF) alignments were
excised and realigned at the codon level by using the RevTrans v2.0 server
with MAFFT v6.240 (43). As a service to the HCMV research community,
we have shared fasta files containing all 170 gene alignments used for all
gene-specific analyses. Strains containing gene-disrupting mutations
were omitted on a gene-by-gene basis. The alignments can be downloaded
at http://www.regatools.be/hcmv_gene_alignments.tar.gz. Genome an-
notations for NCBI GenBank entries were transferred from a genetically
intact reference strain (BE/9/2010) by using RATT, with a word size of 30,
a cluster size of 400, a maximum extend cluster of 500, and an identity
cutoff of 40 (44). ORFs refractory to transfer because of sequence variabil-
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ity or disruptive mutations were manually annotated by referral to the
ORF-specific alignments.

Recent studies of HCMV transcription and translation at the full-
genome level have hinted at the expression of a much more complicated
pattern of RNAs and proteins than the 170 gene products that are cur-
rently annotated in the NCBI reference sequence for Merlin (45–47).
These findings await further experimentation to firmly establish the ex-
pression of these additional products and their conservation in different
strains. In our diversity analyses, we have therefore not yet included these
putative genes, which often (partially) overlap previously annotated
genes.

Analysis of ORF-disrupting mutations. Disruption of ORFs in spe-
cific strains was evaluated in the ORF-specific alignments. All mutations
that disrupted ORF integrity compared to the majority of strains were
noted (see Table S2 in the supplemental material). These mutations in-
clude indels that cause a frameshift leading to a completely altered protein
sequence and/or premature termination; deletions including the original
start codon or splice sites; and substitutions eliminating start codons,
introducing stop codons, or affecting splice sites. Mutations that were
shown previously to be artifacts of culture passage were omitted. Further-
more, if original clinical specimens were available, genes containing dis-
ruptive mutations were characterized by PCR and Sanger sequencing as
described previously (36) (primer sequences and annealing temperatures
are listed in Table S3 in the supplemental material).

Detection and analysis of tandem repeats. Tandem repeats (TRs)
were identified in the reference strain Merlin genome sequence, using a
method similar to the one described previously for herpes simplex virus 1
(HSV-1) (48). To avoid duplicate detection of identical TRs in TRL/TRS
and IRL/IRS regions, the Merlin sequence was trimmed of its terminal
repeat sequences. Perfect repeats with a period size (length of one repeat
unit) of 1 to 6 were identified with MIcroSAtellite identification tool v1.0
(MISA) (http://pgrc.ipk-gatersleben.de/misa/). Homopolymers (period
size of 1) were reported when they were longer than 5 copies (�5 nucle-
otides [nt]), TRs with a period size of 2 to 6 were reported when the total
repeat length was �9 nt (5 copies with a period size of 2, 4 copies with a
period size of 3, 3 copies with a period size of 4, and 2 copies with period
sizes of 5 and 6). Compound repeats identified by MISA were divided into
their individual constituent repeats. When these repeats were overlap-
ping, the longest repeat was retained. Longer and nonperfect repeats were
identified by using Tandem Repeat Finder v4.07b (TRF) with alignment
weights 2, 5, and 5 for matches, mismatches, and indels, respectively, a
minimum score of 40, and a maximum period size of 500 (49). If TRF
repeats contained overlap, only the highest-scoring repeat was retained.
MISA and TRF TR sets were then combined, retaining the longest TR in
case of overlap. Subsequently, conservation of TRs identified in Merlin
was assessed by referral to the multiple alignment of 124 complete HCMV
genome sequences (see Table S1 in the supplemental material). TRs that
showed overlap with the Merlin TRs and fulfilled the MISA or TRF criteria
described above were identified as orthologous repeats. TRs that did not
have orthologous repeats in �50% of strains were omitted from further
analyses. For all TRs, period size, copy number, position in the genome
(coding RNA/noncoding RNA [ncRNA]/intron/intergenic and UL/US/
IRL/IRS), and repeat type (homopolymer, period of 1 nt; microsatellite,
period of 2 to 9 nt; minisatellite, period of �9 nt) were recorded. TRs were
reported to be conserved if �50% of strains had identical sequences and
copy numbers.

Phylogenetic analyses. To maximize the amount of genetic informa-
tion included in our analyses, strains Toledo, TB40/E, 6397, and HAN2
were omitted from the full-genome alignment, along with the previously
excluded strains AD169, Towne, and Davis (see Table S1 in the supple-
mental material). These strains all contain large genome deletions and/or
rearrangements that interfere with a proper alignment. Since sites con-
taining gaps in one or more strains are omitted from several diversity
calculations, this would lead to the loss of important sequence informa-
tion. Genome-wide diversity estimates are thus based on a set of 124

full-genome sequences, 101 of which were sequenced in our laboratory
(see Table S1 in the supplemental material). For analyses at the gene level,
the complete set of 128 low-passage-number strains was used, although
strains mutated in a specific gene were omitted on a gene-by-gene basis
(see Table S2 in the supplemental material).

Genome-wide diversity statistics were calculated by using DnaSP
v5.10 and MEGA6 (42, 50). Nucleotide diversity (�), the number of poly-
morphic sites, and the average number of nucleotide differences were
calculated by using the DNA polymorphism option of DnaSP, excluding
gapped sites. A sliding window of � along the genome alignment was
constructed with a window size of 500 nt and a step size of 100 nt. To
compare HCMV diversity to those of the other human herpesviruses, the
overall mean distance (Jukes-Cantor model) and transition/transversion
ratio were calculated for genome alignments of available strain sequences
of all human herpesviruses by using the overall mean distance option of
MEGA6, with pairwise deletion of gapped sites.

Phylogenetic network analyses were performed with SplitsTree
v4.13.1 (51). Neighbor-net split networks were constructed by using un-
corrected p-distances and excluding gap sites. Network construction us-
ing the Jukes-Cantor model instead of p-distances yielded similar network
topologies. Recombination was further studied with the BootScan func-
tion of SimPlot v3.5.1, using a window size of 2,000 nt, a step size of 500 nt,
gap stripping, empirical transition/transversion ratio, neighbor-joining
tree construction with the Kimura two-parameter model, and 100 boot-
strap replicates (52). Recombination estimates for HCMV, HSV-1, vari-
cella-zoster virus (VZV), and Epstein-Barr virus (EBV) were compared by
analyzing an equal set of 9 full-genome sequences (the total number of
strains available for EBV). Strains of HCMV, HSV-1, and VZV were cho-
sen to best cover total diversity based on a split network of all strains (see
Fig. 6A and 7). Recombination breakpoints were analyzed by using Re-
combination Detection Program (RDP) v3.44 (53). This program com-
bines several recombination detection algorithms. Detection of break-
points with RDP, GENECONV, Chimera, MaxChi, and 3Seq were
combined with secondary detection with BootScan and SiScan (only for
testing of breakpoints identified by previously used methods). Analyses
were run with the linear-sequences option, checking of alignment consis-
tency, and automatic masking of identical sequences. Breakpoints were
reported if they were detected by at least two independent methods and
the Bonferroni-corrected P value was �0.05. Duplicate breakpoints were
counted only once; uncertain breakpoints were omitted. Gene-level re-
combination was analyzed by using three separate approaches. First, evi-
dence for recombination inside a gene was assessed with the Phi-test in-
cluded in the SplitsTree package (54). This is a simple and robust test that
determines whether recombination signals are detected in the alignment.
Next, the genetic algorithm for recombination detection (GARD) re-
ported whether recombination was present and identified presumable
recombination breakpoints (55). GARD was run via the Datamonkey
Web server of the HyPhy package (56, 57). Finally, recombination break-
points were further identified by using RDP3 as described above. RDP3-
detected breakpoints were used for calculations of breakpoint density,
reporting the number of breakpoints per kilobase for each gene.

To assess the overall selection type acting on a gene, estimates of the
ratio of nonsynonymous substitutions per nonsynonymous site (dN) to
synonymous substitutions per synonymous site (dS) were made with
MEGA6, using the Nei-Gojobori method (Jukes-Cantor) with 1,000
bootstrap replicates, treating gaps by pairwise deletion. Individual sites
under positive or negative selection were further assessed by using the
Datamonkey Web server of the HyPhy package. After inference of a nu-
cleotide substitution model, recombination was detected by using GARD.
Further analyses were based on either neighbor-joining trees of the com-
plete gene when no recombination was detected or GARD-inferred trees
of the separate recombination fragments. Subsequently, evidence of pos-
itive and negative selection at the codon level was assessed by using the
SLAC, FEL, FUBAR, and MEME algorithms (58–60). The RCSB Protein
Data Bank (PDB) was queried for structural data for HCMV proteins with
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residues under positive selection. Such a structure was available only for
pUL18 (PDB accession number 3D2U). Positively selected residues were
visualized on the structure with UCSF Chimera v1.9 (61).

Statistical analyses. All statistical analyses were performed by using
RStudio v0.98.1073. Comparisons of gene diversity (dN), recombination
density (breakpoints per kilobase), and selection density (percentage of
codons under positive or negative selection) over different gene families,
conservation groups, and functions were performed with Kruskal-Wallis
one-way analysis of variance (KWt), and pairwise comparisons were per-
formed with pairwise Wilcoxon rank sum tests (WRSts) with Holm cor-
rection for multiple testing. Nonparametric tests were chosen since there
was a large difference in the sizes of the groups.

Nucleotide sequence accession numbers. All full-genome consensus
sequences derived from this study were submitted to the NCBI GenBank
database under accession numbers KP745633 to KP745728.

RESULTS AND DISCUSSION
High-throughput sequencing of complete genomes from clini-
cal HCMV isolates. To efficiently characterize the genetic diver-
sity of a large set of complete genomic sequences derived from
clinical HCMV isolates, we recently described a method that com-
bines limited virus culturing and virion DNA purification with
multiple-displacement amplification and NGS (36). We showed
that this procedure was able to generate highly pure viral DNA
suitable for NGS analysis and validated that strain consensus se-
quences were representative of the original virus populations in
the clinical isolates. Here, we implemented this method to char-
acterize complete genomes in a group of 100 clinical HCMV iso-
lates (see Table S1 in the supplemental material). These isolates
were collected from Belgian (n � 94) and Czech (n � 6) individ-
uals infected with HCMV, including healthy adults, immunosup-
pressed patients, and congenitally infected infants.

DNA sequence reads were generated by using a combination of
the 454 GS FLX and Illumina NGS platforms. In Table S1 in the
supplemental material, some basic genome assembly statistics are
listed. We successfully derived a full-genome consensus sequence
for 96/100 strains, with the average read depth ranging from 35 to
3,315 (median, 2,031) and the proportion of reads mapping to the
consensus ranging from 1% to 98% (median, 89%). While eight
isolates were successfully sequenced at read percentages of �10%,
sample purity was �50% in the majority of isolates (77/96). For
three strains, we could not determine the full-genome consensus
because coverage was too low or unevenly distributed, leaving too
many sequence gaps for finishing through Sanger sequencing. For
one strain, coverage was adequate, but the isolate clearly consisted
of multiple genome variants, and a single, meaningful consensus
sequence could not be obtained, nor was it possible to segregate
the constituting variants, since NGS data provide no connection
between variants at different variable loci. The predominance of a
single genome variant along the entire genome for all other strains
suggests that these sequences constitute a contiguous genome.

As reported previously, genome assembly consisted of de novo
assembly, scaffolding on a reference sequence, and subsequent
iterative mapping of NGS reads on the genome scaffold (36, 62).
Terminal repeats were omitted from the scaffold since these re-
peats are identical to the internal repeats. This approach was
mostly successful, but assembly of the internal repeat regions
(IRL/IRS) generally required additional consideration, since de
novo contigs tended to break at these regions. Because of the high
sequence variability of the internal repeat regions (Fig. 1), refer-
ence-assisted iterative mapping usually did not solve this issue.

Therefore, contigs were split, sequence reads were assembled on
both contigs separately, and contigs were enlarged by the 50%
read overhangs at contig ends. This process was reiterated until
contigs could be joined. The transition between unique and repeat
regions needed to be determined manually to correctly add the
terminal repeat sequences at both genome ends. Transitions can
be recognized from NGS read assemblies through the concomi-
tant mapping of transition-crossing reads from different genome
isomers with inverted UL and US directions. While the position of
the US-IRS junction is stable, presumably because it is located
inside the TRS1/IRS1 reading frame, the UL-IRL junction is lo-
cated in a noncoding region and is positioned differently in sepa-
rate strains. Strain BE/5/2010 had an unusual layout for the IRL/
IRS region, with the IRL repeat starting after the IRS repeat and
being completely encompassed by it.

HCMV displays the highest level of genetic diversity of all
human herpesviruses. The overall genetic diversity of the HCMV
genome was assessed by aligning our 96 genomes with 28 previ-
ously reported sequences (see Table S1 in the supplemental mate-
rial). This alignment contains 255,248 sites: 223,991 sites are with-
out gaps, and 31,528 of these nongapped sites (14%) are
polymorphic. The interstrain nucleotide diversity, �, was esti-
mated to be 0.021, and the average number of nucleotide differ-
ences between two genomes is 4,734. This number is higher than
the recent estimate of � of 0.015 for murine cytomegalovirus
(MCMV), based on 11 complete genomes (63). There is a clear
discrepancy with the values for intrastrain nucleotide diversity
that were reported for congenitally infected infants (� � 0.18 to
0.25) (64). Care should be taken in directly comparing these esti-
mates, as interstrain diversity is estimated from measuring poly-
morphisms in separate consensus sequences, while intrastrain di-
versity is derived from characterizing polymorphisms of a single
virus population. However, the large discrepancy suggests that
many of the variants that were identified in these intrahost popu-
lations are deleterious and are not passed on. This notion is sup-
ported by the apparent stability of genotype sequences in patients
(30, 65–69).

To put these data in perspective toward the other human her-
pesviruses, we estimated the overall mean distance and transition/
transversion ratio for alignments of all available complete
genomic sequences of all nine human herpesviruses (Table 1).
Apart from HCMV, only for HSV-1, VZV, and EBV were the
numbers of complete genomic sequences adequate for a meaning-
ful estimation of overall diversity. With �0.02 substitutions/site,
versus �0.01 substitutions/site, HCMV stands out as being signif-
icantly more diverse than these alpha- and gammaherpesviruses
(P � 0.012 for comparisons with HSV-1, VZV, and EBV only, or
P � 2.5e�06 for comparisons with all human herpesviruses [de-
termined by one-sample t test]). This is not an artifact of the
higher number of sequences available for HCMV, since analysis of
the overall mean distance in five random, separate subsets gave
highly similar results (0.025 to 0.028 substitutions/site). In fact,
considering the larger geographical diversity of HSV-1 and VZV
strains included in this analysis, the current estimate for HCMV
could even be too low (see “HCMV evolution has been shaped by
pervasive recombination,” below). There is also a great discrep-
ancy in the estimated transition/transversion ratios between dif-
ferent herpesvirus species. HCMV has a relatively high ratio of
2.53. This is probably a consequence of strong purifying selection
removing transversions, which result in more nonsynonymous
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mutations (see “Positively selected residues provide a genetic fin-
gerprint of the evolutionary arms race between virus and host,”
below) (70).

In Fig. 1 (top), � is represented in a sliding window along the
HCMV genome. This clearly delineates several diversity hot spots,
isolated by long stretches of conserved sequence. To further ana-
lyze the heterogeneity of divergence, ratios of nonsynonymous
substitutions per nonsynonymous site (dN) were calculated for all
170 genes as a measure of the divergence of the encoded proteins
(see Table S4 in the supplemental material). A list of the most
divergent genes is provided in Table 2. All 30 genes that have a dN
value of �0.025 are listed, along with their gene family, conserva-
tion over herpesvirus subfamilies, their confirmed/proposed
function(s) (71), and studies that have previously characterized
and classified the diversity of these genes. Only 1 of these 30 genes
is conserved in all mammalian herpesviruses (UL73, encoding gly-
coprotein N), while 3 others are conserved within the subfamily
Betaherpesvirinae. For 4 of these 30 genes, no previous studies have
analyzed diversity in clinical isolates. For 9 others (including 5 of

the 6 most variable genes), analyses were limited to partial
genomic sequences of �10 clinical isolates (7). This demonstrates
the added value of a high-throughput, comprehensive analysis of
divergent genome regions. Reciprocally, genes such as UL55 and
UL75, encoding glycoproteins B and H, respectively, have been
sequenced extensively because of their known functional roles,
but they are not in this broad group of the most divergent genes.
On the other end of the diversity spectrum, the 25 most conserved
genes (dN of �0.002) are listed in Table 3. The majority of these
genes (19/25) are conserved in all mammalian herpesviruses (14/
25), in betaherpesviruses (3/25), or in beta- and gammaherpesvi-
ruses (2/25) (7).

Relationships of gene diversity with gene family, gene conser-
vation across herpesviruses, and encoded function(s) were further
explored and are visualized for gene families in Fig. 2 (top). Clear
and significant differences in gene diversity between separate gene
families and gene conservation groups were found (P � 4.8e�06
and P � 2.0e�08 [determined by KWt]) (Fig. 2). Because of the
small number of genes in several gene families, pairwise compar-
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FIG 1 Diversity and evolution of the HCMV genome. Shown is an overview of genetic diversity and evolutionary pressure along the HCMV genome. The
genome is divided into four panels. Each panel consists of four separate tracks. In the top track, nucleotide diversity is calculated in a sliding window of 500 nt
with a step size of 100 nt. As only ungapped residues are included in each window, the distance between two data points may vary in areas with many indels. In
the second track, the extents of recombination and positive selection are assessed for each gene. Displayed above the center of the appropriate gene (bottom
track), dark and light blue bars represent recombination breakpoint density and the percentage of codons under positive selection, respectively. For optimal
resolution, values were cut off at 10 breakpoints (brp)/kb and 4% codons under positive selection. Green and red bars in the third track indicate the genome
positions of conserved and variable tandem repeats. The bottom track annotates genes and other genome elements in four layers. The first two layers show genes
carried on the forward strand, and the last two layers show genes carried on the reverse strand. Spliced exons are connected with thin black lines. Genomic
inverted repeats (TRL, IRL/IRS, and TRS) and long noncoding RNAs are represented in black; genes are colored on a scale from green to red, indicating the
frequency of ORF-disrupting mutations in separate clinical isolates.
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isons were significant only for the RL11 family versus the US6
(P � 0.037 by WRSt), US12 (P � 0.0047 by WRSt), and US22 (P �
0.0044 by WRSt) gene families. The RL11 gene family indeed truly
stands out for the high number of variable genes. While variability
in RL11 genes was described previously, analyses of the most vari-
able members, RL5A, RL6, RL12, and RL13, were limited to a
comparison of seven strains (Table 2). Especially for the RL13
gene, it would be of interest to study the functional behavior of
different variants, as this gene has been implicated as a growth
temperance factor (72) and in immunomodulation (73). Consid-
ering the latter function of RL13, we found that the endocytic
YxxL motif essential for internalization of IgGs was 100% con-
served among clinical isolates. Cytomegalovirus-specific genes
were significantly more diverse than genes conserved in all mam-
malian herpesviruses (P � 8.4e�08 by WRSt), betaherpesvirus
genes (P � 0.0024 by WRSt), and genes conserved between beta-
and gammaherpesviruses (P � 0.0025 [determined by WRSt]).
The UL73 (encoding glycoprotein N) and UL74 (encoding glyco-
protein O) genes are outliers within core and betaherpesvirus
genes, respectively. Variability in these genes has been widely stud-
ied (Table 2). Similarly, we found statistically significant differ-
ences in the genetic diversity of genes classified according to the
function of the encoded product (P � 9.8e�06 by KWt) (based on
the functional classification reported in reference 71). Pairwise
comparisons were significant only for immunomodulation genes
versus genes encoding assembly (P � 0.0017 by WRSt), gene reg-
ulation (P � 0.0031 by WRSt), and replication (P � 0.011 by
WRSt) functions. Generally, diverse genes are involved in interac-
tions with the host (immunomodulation, entry, spread, cell tro-
pism, and virion proteins, which include surface glycoproteins),
while conserved genes perform core viral functions such as repli-
cation, assembly, modulation of the host cell cycle and proteins,
gene regulation, cellular trafficking, nucleotide repair, virion sta-
bility, latency, and viral growth.

Tandem repeats in the HCMV genome. Another important
source of sequence variation is the heterogeneity in the copy num-
bers of adjacently repeated elements or tandem repeats (TRs),
caused by recombination or strand slippage replication. Variation
in TRs is associated with phenotypic variability, regulation of gene
expression, and genetic evolvability in both prokaryotes and eu-

karyotes (74–76). Furthermore, several studies have found evi-
dence that TR variations may impact strain functionality and
pathogenicity in viruses (77–82). The presence of TRs in HCMV
was described previously, and TR polymorphisms could be used
as epidemiological markers to distinguish clinical isolates (83–85).
A comparative analysis of TRs in several members of the family
Herpesviridae, based on a single genome sequence for each species,
found the highest TR content in the alphaherpesvirus pseudora-
bies virus (18% of total nucleotides), followed by HSV-1 (9%),
EBV (7%), KSHV (4.5%), and VZV and HCMV (3%) (86). To
assess the total set of repeats in HCMV genomes, we identified all
homopolymers (repeats with a period size of 1 nt), microsatellites
(period size of 2 to 9 nt), and minisatellites (period size of �9 nt)
in the genome of reference strain Merlin and subsequently
searched for orthologous TRs in 123 other HCMV genome se-
quences. The total set of identified repeats is reported in Table S5
in the supplemental material. In total, 779 TRs were found in the
genome of strain Merlin, 23 of which are duplicated or triplicated
in TRL and/or TRS inverted repeats. For 683/779 TRs (88%), an
orthologous repeat could be found in the majority of the other
HCMV strains. These 683 TRs constitute 3.9% of the total nucle-
otides and are annotated in the HCMV genome in Fig. 1. Only 51
of these orthologous repeat sets (7%) were classified as variable
(�50% conservation of repeat sequence and copy number) (Fig.
1). While 81% of the total nucleotides are within protein-coding
regions, only 65% of TR nucleotides are found inside genes (Fig.
3A). Reciprocally, there is a clear overrepresentation of TRs in
noncoding regions, including the 4 long noncoding RNAs, in-
trons, and intergenic regions. Likewise, the internal repeat regions
(IRL-IRS) that make up only 1% of the trimmed Merlin genome
contain 8% of TR nucleotides (Fig. 3B). Overall, the level of TR
conservation is higher in coding than in noncoding regions (P �
9.9e�09 by Fisher’s exact test [FEt]) (Fig. 3C). When different
repeat types were analyzed separately, this held true for homopo-
lymers (P � 1.3e�06 by FEt) and minisatellites (P � 0.017 by FEt)
but not for microsatellites (P � 0.56 by FEt). Recently, TRs of
HSV-1 were analyzed based on a collection of 26 complete ge-
nomes by using a similar approach (48). The authors of that study
found 584 orthologous TRs in this data set, corresponding to 4.3
TRs/kb (5.4% of nucleotides), which is higher than the 2.9 TRs/kb

TABLE 1 Genetic diversity of human herpesviruses

Subfamily Speciesa

No. of
strainsb

Overall mean distance
(substitutions/site) Standard errorc

Transition/transversion
ratio

Alphaherpesvirinae HHV-1 (HSV-1) 26 0.0076 0.000079 1.63
HHV-2 (HSV-2) 2 0.0041 0.000083 1.29
HHV-3 (VZV) 46 0.0014 0.000040 2.01

Betaherpesvirinae HHV-5 (HCMV) 124 0.0266 0.000100 2.53
HHV-6A 2 0.0135 0.000380 1.88
HHV-6B 2 0.0070 0.000138 1.81
HHV-7 2 0.0013 0.000084 2.80

Gammaherpesvirinae HHV-4 (EBV) 9 0.0087 0.000086 1.36
HHV-8 (KSHV) 3 0.0021 0.000066 1.05

a The official taxonomic names (human herpesvirus 1 [HHV-1] to HHV-8) are given, followed by common names in parentheses, if available. HSV-1, herpes simplex virus 1; VZV,
varicella-zoster virus; HCMV, human cytomegalovirus; EBV, Epstein-Barr virus; KSHV, Kaposi sarcoma-associated herpesvirus.
b GenBank accession numbers for strains used in genome alignments are listed in Table S1 in the supplemental material; data for the HSV-1 alignment were reported previously
(48).
c Standard errors were calculated from 500 bootstrap replicates.
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(3.9% of nucleotides) that we found for HCMV. HSV-1 also has
more variable TRs than does HCMV (17% versus 7%). HSV-1
shows a similar overrepresentation of TRs in noncoding regions
and in the genomic inverted repeats. Likewise, most variable TRs
are located in noncoding regions in both viruses. While HSV-1 has
a higher proportion of genes containing TRs (92%, versus 79% for
HCMV), this is caused mostly by the large number of homopoly-
mers in HSV-1 genomes (3.4 TRs/kb, versus 1.2 TRs/kb for
HCMV). When only the proportion of genes containing micro-
and minisatellites is calculated (thus excluding homopolymers),
68% of HCMV genes still contain TRs, while this proportion is
decreased to 39% for HSV-1.

TR polymorphisms in noncoding regions might have a pro-
found impact on gene regulation and expression by altering bind-
ing sites for regulatory proteins, chromatin structure, transcript
stability and transcription, splicing, or translation efficiency (87–
90). However, we can only speculate about their effects based on
sequence data alone. Overall, selection seems to have constrained

the presence of unstable TR elements inside coding regions, illus-
trated by the discrepancy of TR frequencies between coding and
noncoding regions (Fig. 3A) and the higher level of conservation
of TRs in coding regions (Fig. 3C). Therefore, it is conceivable that
some TR variations in coding regions might have specific func-
tions or provide the virus with greater adaptability because of their
intrinsic instability (so-called “evolutionary tuning knobs” [91]).
Mutation rates in TRs can be up to 100,000 times higher than
those in other parts of the genome. Therefore, we assessed the
potential impact of TR variation in coding regions on the encoded
proteins (see Table S5 in the supplemental material). Nine out of
the 13 variable TRs inside protein-coding regions constitute vari-
ability in the longer and nonperfect TRs, as determined by TRF
analysis. Diversity in these minisatellites comprises mostly varia-
tions in repeat sequence and period length, caused by nucleotide
divergence in these areas. The UL50 and UL111A genes contain
variable trinucleotide microsatellites, causing amino acid stretches of
various lengths (Table 4). Homopolymer length variation is pres-

TABLE 2 Most divergent HCMV genes

Gene dNa Gene familyb

Gene
conservationc Function(s)d Referencef

RL6 0.555 RL11 No Latencye 7
RL5A 0.516 RL11 No Unknown 7
RL12 0.467 RL11 No Virion protein,e immunomodulatione 7
UL146 0.448 CXCL No Immunomodulation 67
RL13 0.297 RL11 No Cell tropism,e virion protein, immunomodulation,e

replication
7

UL9 0.235 RL11 No Viral growth 7
UL1 0.156 RL11 No Virion protein, cell tropism,e assemblye 98
UL139 0.144 NA No Immunomodulatione 137
UL74 0.110 NA Beta Viral spread, assembly, entry, immunomodulation,

virion protein
138

UL11 0.106 RL11 No Immunomodulation 139
UL73 0.103 NA Core Entry, virion protein, latencye 140
UL6 0.086 RL11 No Unknown 98
UL144 0.082 NA No Immunomodulation, latency 141
UL120 0.075 UL120 No Unknown 7
UL20 0.068 NA No Immunomodulatione NA
UL8 0.064 RL11 No Unknown 7
UL4 0.060 RL11 No Virion protein, latencye 142
UL7 0.056 RL11 No Immunomodulation 98
UL142 0.047 MHC No Immunomodulation 7
UL147 0.046 CXCL No Immunomodulatione 67
UL37 0.041 NA Beta Latency,e replication, apoptosis, gene regulation,

immunomodulation, viral growth
143

UL22A 0.039 NA No Immunomodulation,e virion protein NA
UL148D 0.036 NA No Unknown 144
UL10 0.034 RL11 No Viral growth 98
UL2 0.033 NA No Unknown 7
UL150 0.033 NA No Latencye 145
UL25 0.032 UL25 No Virion protein NA
UL133 0.028 NA No Assembly,e latencye 7
US34A 0.028 NA No Unknown NA
UL33 0.027 GPCR Beta Immunomodulation, virion protein, host modulation 146
a dN, nonsynonymous substitutions per nonsynonymous site.
b NA, not assigned to a gene family.
c Gene conservation over different herpesvirus subfamilies. Core, conserved in all mammalian herpesviruses; Beta, conserved in all members of the subfamily Betaherpesvirinae; No,
not conserved in all members of the subfamily Betaherpesvirinae.
d Functions of the encoded gene products were reported previously (71).
e Proposed function, which needs further validation.
f Studies characterizing diversity in clinical isolates for each gene. NA indicates that there have been no previous reports analyzing sequence diversity for this gene.
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ent in the RL12 and UL1 genes, but it does not cause frameshifts
and results only in amino acid divergence. In fact, none of these 13
variable TRs in protein-coding regions cause frameshifts that dis-
rupt ORF integrity. Because TRs cataloged as conserved (�50% of
strains with conserved repeat sequence and copy number) could
also contain variation in a minority of strains, we analyzed an
additional set of 53 protein-encoding TRs with variations in pe-
riod length or copy number below the 50% threshold (see Table S5
in the supplemental material). These TRs comprised 26 homopo-
lymers, 5 microsatellites, and 22 minisatellites. While most of
these TR variations either were conserved or led to amino acid
variations and indels without a clear repetitive character at the
protein level, seven TRs caused the occurrence of repetitive single-
amino-acid stretches of various lengths (Table 4). These stretches
contain mostly small and hydrophilic amino acids, suggesting se-
lective constraints toward these residues in coding TRs (92). It is
assumed that TRs inside coding regions form flexible, unstruc-
tured, and hydrophilic loops (75). These amino acid loops might
be involved in protein-protein interactions that could be altered
by changes in loop length. For example, the variable proline
stretch in UL50 might have functional consequences for the effi-
ciency of nuclear egress of HCMV capsids. Together with pUL53,
pUL50 forms the nuclear egress complex (NEC). A random screen
for dominant negative mutants of M50 (the MCMV homolog of
UL50) identified this proline-rich motif to be essential for nuclear
egress, and this finding was confirmed for HCMV UL50 (93). The

authors of that study suggested that this motif likely controlled a
binding site for a NEC interaction partner. The latter could be
HCMV pUL97, a protein kinase that was recently found to phos-
phorylate S216, a site neighboring the proline stretch. This phos-
phorylation modulates NEC localization and nuclear egress (94,
95). It might be of interest to assess the effect of the large length
heterogeneity (4 to 12 residues) in the proline motif on nuclear
egress efficiency. Finally, homopolymer length variation in the
UL111A and UL133 genes caused frameshifts that resulted in pre-
mature ORF termination in strains BE/16/2010 and BE/17/2010
(UL111A) and in strain BE/2/2012 (UL133) (see Tables S2 and S5
in the supplemental material).

Wild-type HCMV strains contain ORF-disrupting muta-
tions in a wide range of nonessential genes. The accumulation of
gene-disrupting mutations in cell culture-passaged HCMV strains
is a well-described phenomenon (35, 96). As first suggested for
isolates of koi herpesvirus, some disrupting mutations might also
occur in vivo (97). Recently, a few studies have indicated that some
HCMV mutants may indeed be present in clinical isolates prior to
culture passage (36, 62, 98). In particular, strains JP (62) and BE/
21/2010 (36) were sequenced directly from clinical material and
displayed disruptive mutations in the RL5A and UL111A genes
and in the RL5A, UL9, and UL150 genes, respectively. Further-
more, we showed that RL5A, UL1, UL9, and UL111A mutants
identified in three additional strains after limited passaging were
also present in the original clinical isolate (36). With our current

TABLE 3 Most conserved HCMV genes

Gene dNa Gene familyb

Gene
conservationc Function(s)d

UL46 0.000 NA Core Virion protein
UL85 0.000 NA Core Assembly
UL103 0.000 NA Core Virion protein, assembly
US18 0.000 US12 No Unknown
UL26 0.001 US22 No Virion protein, gene regulation, virion stability
UL29 0.001 US22 Beta Virion protein,e gene regulation, apoptosis, cell tropism
UL31 0.001 DURP Beta Gene regulation
UL35 0.001 UL25 Beta Gene regulation,e replication, nucleotide repair,

assembly, virion protein
UL41A 0.001 NA No Virion protein
UL44 0.001 NA Core Host modulation, replication, latencye

UL50 0.001 NA Core Virion protein,e latency,e assembly
UL57 0.001 NA Core Replication
UL79 0.001 NA Betagamma Gene regulation, latencye

UL86 0.001 NA Core Assembly
UL88 0.001 NA Betagamma Virion protein, assemblye

UL89 0.001 NA Core Viral growth, assembly
UL96 0.001 NA Core Virion protein, assembly
UL98 0.001 NA Core Nucleotide repair, latencye

UL102 0.001 NA Core Replication
UL104 0.001 NA Core Assembly
UL105 0.001 NA Core Replication, latencye

UL114 0.001 NA Core Nucleotide repair, replication, latencye

US13 0.001 US12 No Unknown
US24 0.001 US22 No Virion protein, gene regulation
US31 0.001 US1 No Unknown
a dN, nonsynonymous substitutions per nonsynonymous site.
b NA, not assigned to a gene family.
c Gene conservation over different herpesvirus subfamilies. Core, conserved in all mammalian herpesviruses; Beta, conserved in all members of the subfamily Betaherpesvirinae;
Betagamma, conserved in all members of the subfamilies Betaherpesvirinae and Gammaherpesvirinae; No, not conserved in all members of the subfamily Betaherpesvirinae.
d Functions of the encoded gene products were reported previously (71).
e Proposed function, which needs further validation.
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data set providing full-genome information for 96 clinical isolates,
supplemented with 32 previously reported sequences, we have an
ideal opportunity to further assess the occurrence of ORF-dis-
rupting mutations in clinical HCMV isolates and provide a more
detailed estimate of the mutation frequency in different genes.

An overview of all genes that contain ORF-disrupting muta-
tions in one or more isolates is presented in Table 5, and more
detailed information is provided in Table S2 in the supplemental
material. In total, 26 of 170 genes (15%) have a disrupted ORF in
at least one clinical isolate. Unsurprisingly, none of these genes are
essential for growth on fibroblast cells, although UL30 was found
to be growth augmenting (99, 100). Looking at the distribution of
mutants over different clinical isolates (Fig. 4), only 28 of 124
isolates (23%) have the complete set of 170 intact genes, with the
other isolates having 1 (33%), 2 (27%), 3 (13%), or 4 (3%) mu-
tated genes. With these data, we show that only 1 out of 4 clinical
isolates is genetically intact and that gene-disrupting mutations
are extremely common in a defined set of nonessential genes. We
cannot rule out the possibility that even more genes are mutated in
our isolates, as discussed in Text S1 in the supplemental material.
Some mutations affect only a small proportion of the ORF (e.g., in
the US9 and US27 genes) (Table 5). These cases could be better
described as variants than as mutants if the encoded gene products
are not affected by these N- or C-terminal deletions, but func-
tional experiments are needed to evaluate this.

As our strains were minimally passaged in fibroblast cell cul-
ture, some mutations might be artifacts of culture adaptation.
Therefore, the presence of mutations in the original clinical ma-
terial was assessed by direct PCR sequencing of these samples, if

available. All mutations that were confirmed with this procedure
are shown in Table 5 and in Table S2 in the supplemental material.
Importantly, all but one of the mutations that were characterized
in the original clinical material could be confirmed to be unrelated
to culture amplification. Mutations in the RL1, RL5A, RL6, UL1,
UL9, UL30, UL40, UL111A, UL142, UL150, US7, US9, and US27
genes are thus indeed present in clinical isolates. Moreover, the
occurrence of identical mutations in unrelated and geographically
distinct isolates confirms their circulation in natural populations.
The only mutation identified as an artifact of culture passage was
a substitution in the first splice donor site of the UL128 gene in
strain BE/11/2011; the specific case of mutations in the RL13 and
UL128 genes is discussed in further detail in Text S1 in the sup-
plemental material.

Mutated genes are highlighted on the genome map in Fig. 1
with a color code depicting mutation frequency. The RL11 gene
family stands out, with 7 out of 14 members containing disruptive
mutations (or 6 if RL13 is omitted). Furthermore, 4 out of 5 genes
that are mutated in �10% of isolates are part of this family. RL11
genes share homology with the CR1 domain of the adenovirus E3
genes through their RL11 domain (101). The encoded proteins
have similarities to the IgD family, and because of their hypervari-
ability (see “HCMV displays the highest level of genetic diversity
of all human herpesviruses,” above), it is believed they could have
a function in modulating variable host proteins. Immunomodu-
latory capacities have recently been proposed for UL7 (102), UL11
(103), and RL12 and RL13 (73). While RL13 mutants are probably
culture artifacts and RL12 and UL11 mutants are rare and uncon-
firmed in clinical material, mutations in RL5A, RL6, UL1, and
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UL9 are much more common and definitely circulate in the host.
Functional data for these genes are limited, with UL1 being impli-
cated as a tropism factor (104) and UL9 being implicated in
growth temperance (100). While our analysis shows that almost
35% of strains have a mutation in UL9, a previous study that
characterized UL9 sequences in unpassaged and moderately and
highly passaged isolates from a diverse geographical background
found only 2 mutations in 41 strains (5%) (GenBank accession
numbers DQ847465 to DQ847505). It is unclear whether this dis-
crepancy is due to geographical differences in UL9 mutations, the

types of patients involved, or the body compartment that was
sampled.

Several genes in the RL1 family (2/2), the US6 family (3/6), and
the US12 family (2/10) are also affected. For the RL1 family genes
RL1 and UL145, functional knowledge is lacking, and in both
cases, only one strain contains a mutation. Members of the US6
family have established or tentative immunomodulatory func-
tions, interfering with the major histocompatibility complex class
I (MHC-I) antigen-processing pathway (71, 105). The role of US6
in inhibition of antigen peptide transport to MHC-I molecules has
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been well described (106). Studies on US7 and US9 function are
much scarcer (107–109), but immunomodulatory functions have
been predicted (71). The natural occurrence of mutants in US6,
US7, and US9 may suggest some functional redundancy, as the

US2, US3, US10, and US11 genes all target MHC-I antigen pre-
sentation (110). The US12 gene family encodes 10 seven-trans-
membrane proteins, with some members recently being associ-
ated with immunomodulation (111, 112) and cell tropism for

TABLE 4 Tandem repeats encoding variable repetitive elements at the protein level

nt positionsa Gene
Period size
(nt) Copy no. (range)

Repetitive element in protein
(copy no. [range])

27690–27696 UL22A 1 6–9 Glycine stretch (1–3)
73888–73902 UL50 3 3–11 Proline stretch (4–12)
99616–99627 UL69 3 3–9 Proline stretch (4–12)
118052–118063 UL80/UL80.5 3 2–6 Serine stretch (4–7)
150242–150253 UL102 3 2–5 Serine stretch (3–4)
161081–161092 UL111A 3 1–8 Threonine stretch (1–8)
162890–162901 UL112 3 3–5 Glycine stretch (3–5)
162925–162951 UL112 12–15 1.9–2.3 Glycine stretch (7–9)
178548–178559 UL132 3 2–8 Glutamate stretch (2–8)
a Positions in the genome of reference strain Merlin.

TABLE 5 Genes containing ORF-disrupting mutations in HCMV strains

Gene % of strains mutateda Mutation type(s)b (no. of strains)
Median unaffected fraction of
mutated ORFs (min–max)

UL9 34.6 (n � 127) Sub in cod59 (5),c 23-nt del (4),c sub in cod6 (3),c 5-nt del (3),c sub in cod59
(2), 71-nt del (1),c sub in cod23 (1), sub in cod26 (1),c sub in cod40 (1),c sub
in cod49 (1), sub in cod53 (1),c sub in cod59 (1), sub in cod63 (1), sub in
cod71 (1),c sub in cod79 (1), sub in cod163 (1), 1-nt ins (1), 1-nt ins (1),c

1-nt ins (1), 178-nt del (1), 90-nt del (1), 51-nt del (1), 44-nt del (1), 40-nt
del (1), 40-nt del (1), 29-nt del (1), 29-nt del (1),c 19-nt del (1), 19-nt del (1),
4-nt del (1), 2-nt del (1),c 1-nt del (1)

27 (2–95)

RL5A 20.3 11-nt del (14),c 2-nt del (4),c 17-nt del (3),c sub in cod12 (2),c sub in cod35 (1),c

44-nt del (1), 1-nt del (1)
51 (6–58)

RL6 15.6 316-nt del (14),c 17-nt del (2), sub in cod57 (1),c 5-nt del (1), 2-nt del (1), 2-nt
del (1)

0 (0–66)

US9 15.0 (n � 127) 35-nt del (18),c sub in cod227 (1)c 94 (91–94)
UL1 10.2 Sub in cod99 (6),c sub in cod86 (2), sub in cod147 (2), sub in cod42 (1), sub in

cod45 (1),c 4-nt del (1)
44 (8–68)

UL111A 9.4 Sub in cod36 (3),c 38-nt del (3),c sub in cod129 (2), sub in cod56 (1), 2-nt ins
(1), 1-nt ins (1), 219-nt del (1)c

32 (9–72)

UL150 6.3 Sub in cod1 (1), 2-nt deletion (7)c 1 (1–95)
UL40 5.5 Sub in cod1 (7)c 93 (93–93)
US7 5.5 (n � 127) Sub in cod161 (1), sub in cod179 (1), 1-nt ins (1),c 112-nt del (1), 76-nt del (1),c

67-nt del (1), 47-nt del (1)c

71 (3–93)

RL13 3.9 Sub in cod150 (1), 2-nt ins (1), 279-nt del (1), 2-nt del (1), 1-nt del (1) 50 (23–80)
UL128 2.4 (n � 126) Sub in splice donor site (1), 1-nt ins (1), 14-nt del (1) 32 (19–41)
UL133 2.3 Sub in cod247 (1), 1-nt ins (1), 37-nt del (1) 78 (61–97)
US13 2.3 24-nt del (3) 97 (97–97)
RL12 1.6 5-nt del (1), 2-nt del (1) 36 (27–45)
UL136 1.6 Sub in cod210 (1), sub in cod227 (1) 91 (87–94)
US27 1.6 18-nt del (1), 43-nt del (1)c 97 (97–97)
RL1 0.8 84-nt del (1)c 87 (87–87)
UL11 0.8 1-nt del (1) 39 (39–39)
UL30 0.8 1-nt ins (1)c 73 (73–73)
UL148 0.8 Sub in cod104 (1) 33 (33–33)
UL145 0.8 349-nt del (1) 54 (54–54)
UL142 0.8 77-nt del (1)c 73 (73–73)
UL150A 0.8 Sub in cod264 (1) 97 (97–97)
IRS1 0.8 (n � 126) Sub in cod836 (1) 99 (99–99)
US6 0.8 (n � 127) Sub in cod35 (1) 19 (19–19)
US12 0.8 2-nt ins (1) 44 (44–44)
a n � 128, unless stated otherwise (mutations that are certain to be artifacts of culture passage are omitted).
b del, deletion; ins, insertion; sub, substitution; cod, codon (codon refers to the actual codon position in the specific strain that contains the mutation).
c Mutations that were verified to be present in original clinical material (or strains sequenced directly from clinical material).
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epithelial and endothelial cells (113). Functions of the US12 and
US13 genes have not yet been revealed. These different HCMV
gene families exist as clusters of adjacent (apart from the RL1
family) and (distantly) related genes that probably originated

from duplication of an ancestral gene (114). As recent experi-
ments with poxviruses have shown, these so-called genomic ac-
cordions can rapidly expand under strong selective pressure and
provide dsDNA viruses with low mutation rates an alternative
mode to evolve more quickly under specific circumstances (115,
116). Subsequently, adaptive mutations in these new copies can
accumulate at a much higher rate than in one isolated gene. Fi-
nally, when the selective environment changes, genes that did not
acquire beneficial functions can be removed, and the accordion
contracts. Especially for the RL11 and US6 gene families, where
mutant genes were confirmed to be present in clinical isolates, this
accordion contraction could be currently ongoing.

Several additional, isolated genes are mutated in the original
clinical material. The fact that almost 10% of strains are affected
in the viral interleukin-10 (IL-10)-encoding UL111A gene is strik-
ing. UL111A encodes separate transcripts during productive
(cmvIL-10) and latent (LAcmvIL-10) infection, and both gene
products are affected in all 12 mutant isolates (Fig. 5). cmvIL-10
binds and signals through the human IL-10 receptor and mimics
its immunomodulatory properties. It has been shown to inhibit
the production of proinflammatory cytokines and MHC-I and -II
expression in monocytes and to stimulate monocyte differentia-
tion to a phagocytic phenotype and B cell proliferation and differ-
entiation. It is believed that these concerted cmvIL-10 actions
have an important impact on the immune system’s capacity to
control HCMV replication (117). In this regard, cmvIL-10 has
been shown to impair cytotrophoblast remodeling of the uterine
vasculature, thereby possibly enhancing congenital disease (118).
The latency-associated LAcmvIL-10 product cannot signal
through human IL-10 receptors in the same fashion but was re-
cently shown to upregulate the expression of cellular IL-10 and
CCL8 (119). Another mutated gene with potential implications
for the immunomodulatory capacities of isolates is UL40. The
UL40 signal peptide is necessary for the cell surface expression of
HCMV pUL18 and HLA-E molecules, both of which are natural
killer (NK) cell ligands that can inhibit NK cell activation in the
absence of normal MHC-I antigen presentation (120). In 5.5% of
isolates, UL40 has a substitution in its original start codon, pre-
sumably leading to translation initiation from an alternative start
codon located 15 nt downstream and truncating the signal peptide
(see Table S2 in the supplemental material). Whereas this muta-
tion was previously found only in strain 3157, we identified six
more instances of signal peptide truncation in our isolates. By
using UL40 from strain 3157 in comparison to wild-type UL40, it
was recently demonstrated that this mutation did not affect UL40
translation or pUL18 surface expression but did inhibit the surface
expression of HLA-E and thereby sensitized infected cells to NK
cell lysis (120). For both the UL111A and UL40 genes, unrelated
strains display identical deletions or substitutions, suggesting
wide circulation of mutants in the population (Fig. 5; see also
Table S2 in the supplemental material). Studying the impact of
UL111A and UL40 mutants on the immune-evasive potential of
strains and their implications for strain pathogenicity might be
worthwhile, as initial findings for UL40 illustrate (120). The re-
maining genes containing disruptive mutations are discussed fur-
ther in Text S1 in the supplemental material; mutants of these
genes in clinical material were rare and/or unconfirmed.

HCMV evolution has been shaped by pervasive recombina-
tion. An important role for recombination in HCMV evolution
has long been suggested. Given the common occurrence of mul-
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FIG 5 ORF-disrupting mutations in the UL111A gene. Shown is a nucleotide alignment of wild-type UL111A (strain Merlin) and all 12 mutants. Countries of
isolation are listed for all strains with the international two-letter code (GB, Great Britain; BE, Belgium; CZ, Czech Republic; DE, Germany). Mutations
(deletions, insertions, and substitutions) are highlighted in red, and the predicted stop codons are underlined, with untranslated sequences after stop codons
being crossed out. Introns have a gray background, unless they are aberrantly translated because of the deletion of splice donor sites. LAcmvIL-10 transcripts are
similar, but the second intron is not spliced, with translation proceeding into it.
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tiple infections in a single host, the potential for recombination is
obvious (reviewed in reference 15). Recombination has been
identified in individual gene sequences and by the small amount
of gene linkage observed (98, 121–124). However, overall recom-
bination on a full-genome scale has not yet been quantified.

Since standard phylogenetic trees cannot account for recom-
bination and are incorrect if recombined sequences are included,

we have analyzed phylogenetic relationships by constructing a
split-decomposition network (Fig. 6A) (51). The large numbers of
reticulate connections that are apparent at the root of the network
indicate conflicting evolutionary signals such as those caused by
recombination. By using the Phi-test for recombination, it was
confirmed that recombination between isolates was detected (P �
0.0) (54). To further visualize recombination events, nine strains
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were selected from the network, and a BootScan analysis was per-
formed based on a sequence alignment of these strains only (Fig. 6B).
The constant shifting of phylogenetic relationships along the genome
provides further evidence of numerous recombination events.

When split networks were constructed for HSV-1, VZV, and
EBV, similar evidence for recombination was detected (P values
are shown in Fig. 7). Previous studies have reported distinct geo-

graphic clusters for HSV-1, VZV, and EBV strains (48, 125–127).
Split networks for these viruses indeed show distinct clusters (Fig.
7), while such clusters do not become apparent from our HCMV
split network. However, apart from two Asian strains, all isolates
were collected from European and North American patients. In-
terestingly, Asian strains JHC (128) and HAN are neighbors in the
split network (highlighted in gray in Fig. 6A), but they do not
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cluster separately from European/North American strains. Addi-
tional full-genome sequences from Asian and African strains will
be necessary to investigate the potential existence of separate geo-
graphic clusters of HCMV.

The amount of recombination was quantified by detecting in-
dividual recombination breakpoints with RDP3 (53). To allow
comparison of recombination densities in HCMV, HSV-1, VZV,
and EBV genomes, we selected a group of nine full-genome se-
quences for each virus species, i.e., the total number of genomes
that was available for EBV. Strains were selected to properly reflect
total diversity (Fig. 6A and 7). Of these four human herpesviruses,
HCMV clearly has the highest recombination density (Table 6).
There is a statistically significant, positive correlation between
overall nucleotide diversity (Table 1) and recombination density
(Table 6) for these four viruses (P � 0.017 and � � 0.98 by Pear-
son’s product-moment correlation). In comparisons of cluster-
ings of isolates in the split networks (Fig. 6A and 7), there is a
tentative inverse relation between the existence of distinct clusters
and the recombination breakpoint density. VZV has the lowest
recombination density, and the divergence of clusters is very clear,
with few recombinants between clusters. HSV-1 and EBV have
intermediate recombination densities: distinct clusters are still
recognizable, but their delineation is less pronounced because of
the presence of intermediate recombinants. Finally, HCMV has a
markedly higher recombination density, resulting in a star-like
phylogeny with no apparent clustering. Hypothesizing that these
clusters or “genome types” have evolved during human radiation
across the planet, we may now see a fading of geographical genome
types because of increased global travel and mixing of populations
and viruses. This hypothesis is supported by findings that the geo-
graphic separation of VZV clades might be slowly fading because
of recent immigration (129). Given their different recombination
densities, distinct herpesviruses would currently be at different
stages of this process. In comparisons of recombination in HSV-1
and VZV, it has been proposed that inherent disparities in biolog-
ical characteristics might be at the root of recombination potential
(130). Higher recombination rates in HSV-1 were attributed to
more frequent reactivation, longer episodes of asymptomatic
shedding, and subsequent increased occurrence of multiple infec-
tions. In the same fashion, its superior immunomodulatory capa-
bilities and broad cell tropism might explain the even higher ca-
pacity for recombination in HCMV.

While it is clear that recombination at the genome level permits
the exchange of alleles at separate loci, we also wanted to evaluate
the contribution of recombination to the generation of variation
at the level of individual genes. Evidence for recombination in
codon-aligned gene sequences was assessed by three different
methods. The Phi-test for recombination simply determines

whether there is statistically significant evidence for recombina-
tion, while GARD and RDP3 identify specific recombination
breakpoints. An overview of results for all genes is presented in
Table S6 in the supplemental material. Recombination was con-
firmed in 93 out of 170 genes (55%) by at least 2 out of 3 methods.
The densities of breakpoints varied enormously between different
genes, as illustrated in Fig. 1. Gene-specific recombination densi-
ties were grouped in different gene families, gene conservation
groups, and gene functions, as described above for diversity (see
second panel in Fig. 2 for gene families). There was a statistically
significant difference between recombination densities in differ-
ent gene families (P � 0.0031 by KWt) but not in different con-
servation categories (P � 0.13 by KWt). For the former, none of
the pairwise comparisons were significant. Overall, gene families
with higher levels of diversity display higher recombination den-
sities, although there are clearly some exceptions in conserved
genes, such as IRS1 and TRS1 of the US22 family (Fig. 2). When
divided over different gene functions, there was still a statistically
significant difference between recombination densities (P � 0.023
by KWt; no significant pairwise comparisons). The discrepancy
between overall KWt results and the results of pairwise compari-
sons for recombination over different gene families and functions
is caused by the rigorous correction for multiple testing in the
latter. The numbers of genes assigned to gene families and func-
tions vary widely, reducing the power of the tests. In summary,
our data demonstrate the potential for recombination to generate
diversity both at the level of the individual gene as well as over the
complete genome. The high recombination rate in HCMV com-
pared to that in other human herpesviruses could be one of the
most important reasons for its higher level of strain diversity. Re-
ciprocally, the increased diversity could also result in a higher
sensitivity for detection of recombination events that are unde-
tectable in more conserved herpesviruses.

Positively selected residues provide a genetic fingerprint of
the evolutionary arms race between virus and host. While inter-
molecular recombination is a very strong mechanism to increase
nucleotide diversity, its ability to do so relies on preexisting vari-
ation through mutations caused by polymerase infidelity. Obvi-
ously, the accumulation of these mutations is dependent on the
selective pressure that acts upon them. The persistent nature of
HCMV and its constant interplay with host immune components
highlight the potential selective pressure that might act on gene
variants. To characterize the overall selective pressure acting on
viral genes, we calculated the ratio of nonsynonymous substitu-
tions per nonsynonymous site (dN) to synonymous substitutions
per synonymous site (dS) for each gene alignment (Fig. 8; see also
Table S4 in the supplemental material). Most HCMV genes seem
to be under strong evolutionary constraints, as 96% of genes have

TABLE 6 Comparative analysis of recombination in human herpesviruses

Subfamily Speciesa

No. of recombination
events

No. of
breakpoints

Recombination density
(no. of breakpoints/kb)

Alphaherpesvirinae HHV-1 (HSV-1) 60 78 0.57
HHV-3 (VZV) 13 13 0.10

Betaherpesvirinae HHV-5 (HCMV) 314 392 1.33

Gammaherpesvirinae HHV-4 (EBV) 61 69 0.40
a The official taxonomic name is given, followed by common names (Table 1). For each virus, an alignment of nine strains was analyzed (Fig. 6 and 7).
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a dN/dS ratio of �0.5 and 64% of genes have a ratio of �0.2.
Recent studies of HSV-1 and MCMV also found a predominance
of negative selection, but the proportion of genes with a dN/dS
ratio of �0.1 is much higher for HCMV (38%, versus 7% for
HSV-1 and 13% for MCMV) (48, 63). A few genes have dN/dS
ratios closer to 1, indicating neutral selection or genetic drift. Most
of these genes are poorly characterized, but the tegument protein
ppUL25 was found to be a major target of anti-CMV antibodies
(131). This strong negative/purifying selection is an indication of
the excellent adaptation of HCMV to its human host, with most
mutations having negative fitness effects and being quickly re-
moved.

Notwithstanding the strong purifying selection acting on most
HCMV genes, individual residues might be experiencing a differ-
ent selective regimen. To identify positive/diversifying and nega-
tive/purifying selection at the codon level, we made use of four
separate algorithms (SLAC, FEL, MEME, and FUBAR) included
in the HyPhy package for phylogenetic hypothesis testing (56) (see
Table S7 in the supplemental material). Since these methods have
different sensitivities and specificities, we retained only sites that
were independently confirmed by at least two out of four meth-
ods. Of 68,287 codons analyzed, 431 (0.6%) showed evidence of
positive selection (in 105 genes), and 7,731 (11.3%) showed evi-
dence of negative selection (in 169 genes), again demonstrating
the predominance of negative selection acting on HCMV genes.
However, there were clear discrepancies in the distribution of pos-
itively selected residues, as shown in Fig. 1. There was a statistically
significant difference between gene families (P � 0.0054 by KWt)

and gene conservation groups (P � 0.00055 by KWt); genes with
higher levels of variability generally display higher percentages of
positively selected codons (statistically significant only for cyto-
megalovirus-specific versus core genes [P � 0.0033 by WRSt]).
Clearly, there are multiple exceptions, most notably the MHC
family (UL18 and UL142) and the RL1 (RL1 family), US7 (US6
family), IRS1 and TRS1 (US22 family), and US14 and US18
(US12 family) genes, which are subjected to higher levels of posi-
tive selection than would be expected from their diversity (Fig. 2,
third panel). Their products function in the evasion of both adap-
tive immune responses (UL18, UL142, and US18) and innate an-
tiviral mechanisms (IRS1 and TRS1), or their functions are not yet
characterized. Hence, it could be suggested that these functionally
uncharacterized genes might also interact with host antiviral
mechanisms. Also, for negative selection, there was a significant
difference between gene families (P � 0.00023 by KWt) and gene
conservation groups (P � 0.015 by KWt), but this was unrelated
to gene diversity (Fig. 2, bottom). No statistically significant dif-
ferences in selection between gene functions were observed (P �
0.16 for positive selection; P � 0.32 for negative selection [deter-
mined by KWt]).

Of the genes experiencing the highest percentages of positive
selection, there is a clear predominance of genes modulating host
immune and antiviral pathways (Fig. 1; see also Table S7 in the
supplemental material). The UL147 gene encodes an �-chemo-
kine (132), UL142 interferes with NK cell activation (133), IRS1
inhibits the protein kinase R antiviral pathway (134), and UL20 is
poorly characterized but has also been implicated in immune eva-
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FIG 8 The majority of HCMV genes are under strong purifying selection. The selection mode acting on genes is represented by calculation of dN/dS ratios. A
ratio close to zero indicates strong negative/purifying selection, and a ratio close to 1 indicates neutral selection or genetic drift. A ratio significantly higher than
1 indicates positive/diversifying selection. Genes are binned in groups with similar dN/dS ratios in steps of 0.1.
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sion (135). The role of the UL40 signal peptide in inhibiting NK
cells is discussed above (see “Wild-type HCMV strains contain
ORF-disrupting mutations in a wide range of nonessential
genes”). Interestingly, 6 out of 8 residues under positive selection
in pUL40 are located within this signal peptide, and more specif-
ically, 4 out of 8 are located within the nonamer peptide that is
processed to bind the viral MHC-I mimic pUL18 and HLA-E. For
pUL18, a crystal structure of its interaction with human 	-2-mi-
croglobulin (MHC-I light chain), an actin peptide, and the inhibi-
tory LIR-1 receptor was reported (136). We have visualized pUL18
residues under positive selection on the pUL18 structure (Fig. 9). All
positively selected residues are located on the surface of pUL18, with
L265 interacting with 	-2-microglobulin and D248, V250, and E252
being situated adjacent to LIR-1 binding sites. Although the overall
evolutionary mode of HCMV is strongly shaped by constraints and
purifying selection, these examples illustrate that specific protein res-
idues can experience diversifying selective pressure through their in-
teractions with the host.

Concluding remarks. In this study, we have applied our previ-
ously described workflow (36) to the characterization of HCMV ge-
nomes of 96 distinct clinical isolates from Belgian and Czech patients.
Based on a comparative analysis of 124 full-genome sequences,
HCMV interstrain nucleotide diversity, �, was estimated to be 0.021,
significantly higher than the diversity in other human herpesviruses.
Nevertheless, overall levels of purifying selection were very high, re-
flecting the remarkable adaptation of HCMV to its human host.
Given the proofreading capacity of the HCMV DNA polymerase,
additional strategies are necessary to generate diversity apart from
replication error. Because of the wide range of immune-evasive func-
tions, multiple infections are common, permitting the virus to re-
combine extensively. Furthermore, gene duplications can effectively
enlarge mutational space. Finally, interactions with host components
generate positive selective pressure at specific loci, which may help the
virus avoid immune recognition.

We have demonstrated the widespread occurrence of gene-dis-
rupting mutations in wild-type HCMV strains, unrelated to culture

passage. While some of these mutants might be evidence of ongoing
contraction of gene family duplications, others could have implica-
tions for the immunomodulatory and, ultimately, the pathogenic po-
tential of the isolates involved. In particular, a closer look at mutants
of the UL40 and UL111A genes is warranted. We are currently re-
trieving clinical data regarding our patient population to explore as-
sociations of gene variants and mutants with disease outcome.

Our data set is completely derived from European patients.
Currently, only two complete genome sequences from patients
outside Europe and North America are publicly available. The
availability of more complete genomes, especially from African
and Asian patients, will reveal whether there are geographical dis-
crepancies in gene diversity and mutational patterns. Addition-
ally, the majority of our isolates (74/96) were derived from urine
samples. Our preliminary results show identical mutations in dif-
ferent body compartments for several genes (including nasopha-
ryngeal isolates, blood, amniotic fluid, and bronchoalveolar la-
vage fluid), but we cannot exclude the possibility that specific
mutations can influence the tissue tropism of the viral strain. In
the future, it will be interesting to see whether there are differences
in the occurrence of disruptive mutations depending on the body
compartment that is sampled.

To our knowledge, this study is the most comprehensive anal-
ysis of genetic variability and evolution in HCMV to date, provid-
ing both conceptual insights into diversity generation and a large
source of sequence information of outstanding value for func-
tional experiments with this important human pathogen.
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